content
stringlengths
7
1.05M
fixed_cases
stringlengths
1
1.28M
first_name = "Bob" last_name = "Daily" #first_name[0] = "R" fixed_first_name = "R" + first_name[-2:] print(fixed_first_name)
first_name = 'Bob' last_name = 'Daily' fixed_first_name = 'R' + first_name[-2:] print(fixed_first_name)
del_items(0x80127F74) SetType(0x80127F74, "struct Creds CreditsTitle[6]") del_items(0x8012811C) SetType(0x8012811C, "struct Creds CreditsSubTitle[28]") del_items(0x801285B8) SetType(0x801285B8, "struct Creds CreditsText[35]") del_items(0x801286D0) SetType(0x801286D0, "int CreditsTable[224]") del_items(0x80129900) SetType(0x80129900, "struct DIRENTRY card_dir[16][2]") del_items(0x80129E00) SetType(0x80129E00, "struct file_header card_header[16][2]") del_items(0x80129824) SetType(0x80129824, "struct sjis sjis_table[37]") del_items(0x8012ECEC) SetType(0x8012ECEC, "unsigned char save_buffer[106496]") del_items(0x8012EC68) SetType(0x8012EC68, "struct FeTable McLoadGameMenu") del_items(0x8012EC48) SetType(0x8012EC48, "char *CharFileList[5]") del_items(0x8012EC5C) SetType(0x8012EC5C, "char *Classes[3]") del_items(0x8012EC84) SetType(0x8012EC84, "struct FeTable McLoadCharMenu") del_items(0x8012ECA0) SetType(0x8012ECA0, "struct FeTable McLoadCard1Menu") del_items(0x8012ECBC) SetType(0x8012ECBC, "struct FeTable McLoadCard2Menu")
del_items(2148695924) set_type(2148695924, 'struct Creds CreditsTitle[6]') del_items(2148696348) set_type(2148696348, 'struct Creds CreditsSubTitle[28]') del_items(2148697528) set_type(2148697528, 'struct Creds CreditsText[35]') del_items(2148697808) set_type(2148697808, 'int CreditsTable[224]') del_items(2148702464) set_type(2148702464, 'struct DIRENTRY card_dir[16][2]') del_items(2148703744) set_type(2148703744, 'struct file_header card_header[16][2]') del_items(2148702244) set_type(2148702244, 'struct sjis sjis_table[37]') del_items(2148723948) set_type(2148723948, 'unsigned char save_buffer[106496]') del_items(2148723816) set_type(2148723816, 'struct FeTable McLoadGameMenu') del_items(2148723784) set_type(2148723784, 'char *CharFileList[5]') del_items(2148723804) set_type(2148723804, 'char *Classes[3]') del_items(2148723844) set_type(2148723844, 'struct FeTable McLoadCharMenu') del_items(2148723872) set_type(2148723872, 'struct FeTable McLoadCard1Menu') del_items(2148723900) set_type(2148723900, 'struct FeTable McLoadCard2Menu')
# MIT OC - CS600 - Introduction to Computer Science and Programming # Problem Set 1: 3 Simple Problems - Problem 2 Pay off debt in 1 year # Name: Luke Young # Collaborators: None # Time Spent: 01:00 (hr:min) # 2018 04 22 20:27 # Program: Finding the minimum payment required to pay off the debt # # Write a program that does the following: # Use raw_input() to ask for the following three floating point numbers: # 1. the outstanding balance on the credit card # 2. annual interest rate # # # Print out the fixed minimum monthly payment, number of months ##(at most 12 and possibly less than 12) it takes to pay off the debt, ##and the balance (likely to be a negative number). ##Assume that the interest is compounded monthly according to the balance ##at the start of the month (before the payment for that month is made). ##The monthly payment must be a multiple of $10 and is the same for all months. ##Notice that it is possible for the balance to become negative ##using this payment scheme. In short: ##Monthly interest rate = Annual interest rate / 12.0 ##Updated balance each month = Previous balance * (1 + Monthly interest rate) ## - Minimum monthly payment . balance = 0.0 apr = 0.0 balance = float(raw_input("What is your current Balance? ")) apr = float(raw_input("What is the annual interest rate as a decimal? ")) minPay = 0.0 principle = 0.0 endBalance = 0.0 paid = False # main algorithm while paid == False: tempBalance = balance minPay += 10 month = 1 for month in range(1, 13): #runs 12 times principle = round((minPay - (apr / 12 * tempBalance)), 2) tempBalance = round((tempBalance - principle), 2) if tempBalance < 0: endBalance = tempBalance paid = True break # end for loop # print("Ending balance was: " + str(tempBalance)) # end while loop # print results print("RESULT") print("Monthly payment to pay off debt in 1 year: " + str(minPay)) print("Number of months needed: " + str(month)) print("Balance " + str(endBalance))
balance = 0.0 apr = 0.0 balance = float(raw_input('What is your current Balance? ')) apr = float(raw_input('What is the annual interest rate as a decimal? ')) min_pay = 0.0 principle = 0.0 end_balance = 0.0 paid = False while paid == False: temp_balance = balance min_pay += 10 month = 1 for month in range(1, 13): principle = round(minPay - apr / 12 * tempBalance, 2) temp_balance = round(tempBalance - principle, 2) if tempBalance < 0: end_balance = tempBalance paid = True break print('RESULT') print('Monthly payment to pay off debt in 1 year: ' + str(minPay)) print('Number of months needed: ' + str(month)) print('Balance ' + str(endBalance))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- def get_func(tag): def func(s): group = tag, s return group return func
def get_func(tag): def func(s): group = (tag, s) return group return func
# container-service-extension # Copyright (c) 2019 VMware, Inc. All Rights Reserved. # SPDX-License-Identifier: BSD-2-Clause # End point of Vmware Analytics staging server # TODO() : This URL should reflect production server during release VAC_URL = "https://vcsa.vmware.com/ph-stg/api/hyper/send/" # Value of collector id that is required as part of HTTP request # to post sample data to analytics server COLLECTOR_ID = "CSE.2_6"
vac_url = 'https://vcsa.vmware.com/ph-stg/api/hyper/send/' collector_id = 'CSE.2_6'
quit = False flag = False while not quit : num = int(input("")) if num == 42: quit = True; else: print(num)
quit = False flag = False while not quit: num = int(input('')) if num == 42: quit = True else: print(num)
# -*- coding: utf-8 -*- ''' File name: code\47smooth_triangular_numbers\sol_581.py Author: Vaidic Joshi Date created: Oct 20, 2018 Python Version: 3.x ''' # Solution to Project Euler Problem #581 :: 47-smooth triangular numbers # # For more information see: # https://projecteuler.net/problem=581 # Problem Statement ''' A number is p-smooth if it has no prime factors larger than p. Let T be the sequence of triangular numbers, ie T(n)=n(n+1)/2. Find the sum of all indices n such that T(n) is 47-smooth. ''' # Solution # Solution Approach ''' '''
""" File name: code'smooth_triangular_numbers\\sol_581.py Author: Vaidic Joshi Date created: Oct 20, 2018 Python Version: 3.x """ '\nA number is p-smooth if it has no prime factors larger than p.\nLet T be the sequence of triangular numbers, ie T(n)=n(n+1)/2.\nFind the sum of all indices n such that T(n) is 47-smooth.\n' '\n'
# throws KeyError students = {'John': 18, 'Jack': 19} print(students['Joe']) # try/catch KeyError students = {'John': 18, 'Jack': 19} try: print(students['Joe']) except KeyError: print('you tried to access an entry that does not exists')
students = {'John': 18, 'Jack': 19} print(students['Joe']) students = {'John': 18, 'Jack': 19} try: print(students['Joe']) except KeyError: print('you tried to access an entry that does not exists')
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoPanopticDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # file_client_args = dict(backend='disk',) # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict( backend='memcached', server_list_cfg='/mnt/lustre/share/memcached_client/server_list.conf', client_cfg='/mnt/lustre/share/memcached_client/client.conf', sys_path='/mnt/lustre/share/pymc/py3', ) # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)], # multiscale_mode='range' train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='LoadPanopticAnnotations', with_bbox=True, with_mask=True, with_seg=True, file_client_args=file_client_args), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] # Use RepeatDataset to speed up training data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/panoptic_train2017.json', img_prefix=data_root + 'train2017/', seg_prefix=data_root + 'annotations/panoptic_train2017/', pipeline=train_pipeline)), val=dict( type=dataset_type, ann_file=data_root + 'annotations/panoptic_val2017.json', img_prefix=data_root + 'val2017/', seg_prefix=data_root + 'annotations/panoptic_val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/panoptic_val2017.json', img_prefix=data_root + 'val2017/', seg_prefix=data_root + 'annotations/panoptic_val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric=['pq']) # optimizer # this is different from the original 1x schedule that use SGD optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.25)})) optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2)) # learning policy # Experiments show that using step=[9, 11] has higher performance lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.001, step=[9, 11]) runner = dict(type='EpochBasedRunner', max_epochs=12)
_base_ = '../_base_/default_runtime.py' dataset_type = 'CocoPanopticDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) file_client_args = dict(backend='memcached', server_list_cfg='/mnt/lustre/share/memcached_client/server_list.conf', client_cfg='/mnt/lustre/share/memcached_client/client.conf', sys_path='/mnt/lustre/share/pymc/py3') train_pipeline = [dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadPanopticAnnotations', with_bbox=True, with_mask=True, with_seg=True, file_client_args=file_client_args), dict(type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg'])] test_pipeline = [dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img'])])] data = dict(samples_per_gpu=2, workers_per_gpu=2, train=dict(type='RepeatDataset', times=3, dataset=dict(type=dataset_type, ann_file=data_root + 'annotations/panoptic_train2017.json', img_prefix=data_root + 'train2017/', seg_prefix=data_root + 'annotations/panoptic_train2017/', pipeline=train_pipeline)), val=dict(type=dataset_type, ann_file=data_root + 'annotations/panoptic_val2017.json', img_prefix=data_root + 'val2017/', seg_prefix=data_root + 'annotations/panoptic_val2017/', pipeline=test_pipeline), test=dict(type=dataset_type, ann_file=data_root + 'annotations/panoptic_val2017.json', img_prefix=data_root + 'val2017/', seg_prefix=data_root + 'annotations/panoptic_val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric=['pq']) optimizer = dict(type='AdamW', lr=0.0001, weight_decay=0.05, paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.25)})) optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2)) lr_config = dict(policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.001, step=[9, 11]) runner = dict(type='EpochBasedRunner', max_epochs=12)
STATUS_MAPPER = [ "Success", "Unknown HCI Command", "Unknown Connection Identifier", "Hardware Failure", "Page Timeout", "Authentication Failure", "PIN or Key Missing", "Memory Capacity Exceeded", "Connection Timeout", "Connection Limit Exceeded", "Synchronous Connection Limit to a Device Exceeded", "ACL Connection Already Exists", "Command Disallowed", "Connection Rejected due to Limited Resources", "Connection Rejected due to Security Reasons", "Connection Rejected due to Unacceptable BD_ADDR", "Connection Accept Timeout Exceeded", "Unsupported Feature or Parameter Value", "Invalid HCI Command Parameters", "Remote User Terminated Connection", "Remote Device Terminated due to Low Resources", "Remote Device Terminated due to Power Off", "Connection Terminated By Local Host", "Repeated Attempts", "Pairing Not Allowed", "Unknown LMP PDU", "Unsupported Remote Feature / Unsupported LMP Feature", "SCO Offset Rejected", "SCO Interval Rejected", "SCO Air Mode Rejected", "Invalid LMP Parameters / Invalid LL Parameters", "Unspecified Error", "Unsupported LMP Parameter Value / Unsupported LL Parameter Value", "Role Change Not Allowed", "LMP Response Timeout / LL Response Timeout", "LMP Error Transaction Collision", "LMP PDU Not Allowed", "Encryption Mode Not Acceptable", "Link Key cannot be Changed", "Requested QoS Not Supported", "Instant Passed", "Pairing With Unit Key Not Supported", "Different Transaction Collision", "Reserved", "QoS Unacceptable Parameter", "QoS Rejected", "Channel Classification Not Supported", "Insufficient Security", "Parameter Out Of Manadatory Range", "Reserved", "Role Switch Pending", "Reserved", "Reserved Slot Violation", "Role Switch Failed", "Extended Inquiry Response Too Large", "Secure Simple Pairing Not Supported By Host", "Host Busy - Pairing", "Connection Rejected due to No Suitable Channel Found", "Controller Busy", "Unacceptable Connection Parameters" , "Directed Advertising Timeout", "Connection Terminated due to MIC Failure", "Connection Failed to be Established", "MAC Connection Failed", "Coarse Clock Adjustment Rejected but Will Try to Adjust Using Clock Dragging" ]
status_mapper = ['Success', 'Unknown HCI Command', 'Unknown Connection Identifier', 'Hardware Failure', 'Page Timeout', 'Authentication Failure', 'PIN or Key Missing', 'Memory Capacity Exceeded', 'Connection Timeout', 'Connection Limit Exceeded', 'Synchronous Connection Limit to a Device Exceeded', 'ACL Connection Already Exists', 'Command Disallowed', 'Connection Rejected due to Limited Resources', 'Connection Rejected due to Security Reasons', 'Connection Rejected due to Unacceptable BD_ADDR', 'Connection Accept Timeout Exceeded', 'Unsupported Feature or Parameter Value', 'Invalid HCI Command Parameters', 'Remote User Terminated Connection', 'Remote Device Terminated due to Low Resources', 'Remote Device Terminated due to Power Off', 'Connection Terminated By Local Host', 'Repeated Attempts', 'Pairing Not Allowed', 'Unknown LMP PDU', 'Unsupported Remote Feature / Unsupported LMP Feature', 'SCO Offset Rejected', 'SCO Interval Rejected', 'SCO Air Mode Rejected', 'Invalid LMP Parameters / Invalid LL Parameters', 'Unspecified Error', 'Unsupported LMP Parameter Value / Unsupported LL Parameter Value', 'Role Change Not Allowed', 'LMP Response Timeout / LL Response Timeout', 'LMP Error Transaction Collision', 'LMP PDU Not Allowed', 'Encryption Mode Not Acceptable', 'Link Key cannot be Changed', 'Requested QoS Not Supported', 'Instant Passed', 'Pairing With Unit Key Not Supported', 'Different Transaction Collision', 'Reserved', 'QoS Unacceptable Parameter', 'QoS Rejected', 'Channel Classification Not Supported', 'Insufficient Security', 'Parameter Out Of Manadatory Range', 'Reserved', 'Role Switch Pending', 'Reserved', 'Reserved Slot Violation', 'Role Switch Failed', 'Extended Inquiry Response Too Large', 'Secure Simple Pairing Not Supported By Host', 'Host Busy - Pairing', 'Connection Rejected due to No Suitable Channel Found', 'Controller Busy', 'Unacceptable Connection Parameters', 'Directed Advertising Timeout', 'Connection Terminated due to MIC Failure', 'Connection Failed to be Established', 'MAC Connection Failed', 'Coarse Clock Adjustment Rejected but Will Try to Adjust Using Clock Dragging']
# __init__ __version__ = '1.1.0'
__version__ = '1.1.0'
def test_get_public_key(cmd, button, model): pub_key, address = cmd.get_public_key( bip32_path="44'/5741565'/0'/0'/1'", network_byte='V', display=True, button=button, model=model ) # type: bytes, bytes assert len(pub_key) == 32 assert len(address) == 35
def test_get_public_key(cmd, button, model): (pub_key, address) = cmd.get_public_key(bip32_path="44'/5741565'/0'/0'/1'", network_byte='V', display=True, button=button, model=model) assert len(pub_key) == 32 assert len(address) == 35
x = [1,2,3] name = "/tests/fixtures/data/names/{name_id}.txt" output = "/tests/fixtures/data/salutations/{name_id}-{x}.txt" def main(): return "Hello {name} for the {x} time!".format(name=name, x=x)
x = [1, 2, 3] name = '/tests/fixtures/data/names/{name_id}.txt' output = '/tests/fixtures/data/salutations/{name_id}-{x}.txt' def main(): return 'Hello {name} for the {x} time!'.format(name=name, x=x)
# Skin info and colours theme_name = "Future Bloo" theme_author = "Lucas." theme_version = "1.0" theme_bio = "Bloo" # A long bio will get cut off, keep it simple. window_theme = "Black" button_colour = "black" attacks_theme = {"background": "Black", "button_colour": ('black', 'cyan')} banner_size = (600, 100) banner_padding = ((75, 15), 0) # Command Line colours menu1 = "cyan" menu2 = "white" # Button/Banner Images (Base64) rtb_icon = b'iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAALEZSURBVHja7J13uBxV2cB/s7u3pOemkUASCC3UGLqEIkIAASkiIsWPjhhFQAQLREEMWEBUQEJVuoD0KkjvvQZCKCG955a023b3fH+c8+68c3Z2701yE26SOc8zz96yO3umnN+8/Q2MMSQjGclIxpowUskpSEYykpEAKxnJSEYyEmAlIxnJSICVjGQkIxkJsJKRjGQkIwFWMpKRjARYyUhGMpKRjGQkIxnLPzLAN93rWjeMMcu1JSMZyeicowdwGzAVMMDH7m/rNLCCYNz45NZIRjI60yIeO2ZH4BZgSwC2GwXvvgJwezBu/A862VxXOdB8cTMZyUhG5wHAKcD1AqrgW9+xf7fA2oMgkJW8zurHyUhGAoqxY4YBG7lfRwK93c8bqb/7YwrwYjBu/A0dNIc7gKMBOOhIglF7278/do+85cUCsIIgCq11BGAJsJKxLsCoRkFoJJAG9lBw6rmCu94TOM6MHcPKQMuMHTMEuBY4gB41BN89Djbb0kJp2mR4+SmA2cDPzHmnBUAgH9X7CcaNX+uplQArGR0FhQxwlgPBi8G48ZetZhj5EOrtJKOh7drR4GHQf5D9ef3BUNXFQqBXb+jRK/4zixsw//q7qGo3rIi0Y8aO2Qa4DtiVwcMIvn8y9OlnYbV0CeaO6+WtfwPqvDVr1IYD51oNrQRYyegIaFwF7I0YieEQM3bM4cG48aM6AIJxENpouWDUowY23RK6dIWBG1gQbTDUQqFPP6iopKBqhfKK96v7felimDUDM30y/O8BpaqlfIGnTXCZsWNGAw8BXRg+guDoU8K5BCnMfbfColqAu4C/AxXexPJuM+p1rR6JlzAZKwOUHYGLgAMAayTeeXfMc/+FSR8AbBeMG/9emc+L3ai3p7KlgN2XC0YAwzazN3X/9aCqGrr3gG49ysNI24TiXusWwsypmCmfw/tvQEOt3lGjkypv9KSewmspiSdiXN/nYIK9D3LfGUAqhXnlWXjodoDXgUOBZe68pBSscupVfjarU8pKvITJWFNgFS44UWVq+jrpIPK+bwIbAsNWSDrablRETQt69oaevUIYabgsL4wCZQ5yKhgL52Hmz4EvPoE3no+b0XTgFeBF4AVgMlDlSTnyauLUNDN2zDnApQAcfjzBDrtGYMUXkwRWAL8EWoEuTu0N3L5z7u9ZTzVMVMJkJEMtth5YA3Hozdpp91CVqVsIn3wgb3+3XXYjp6oFVdXQb4Ddz3rrx8CIKGDa80rgIKr+HgTQ2goL5mFmTIFZ0+DLz2DKp3Gz/Ah4DXjZgapWQcMA1Z604/8csS1pT2BwwpmhcZ0A0mmor8Ncf6l895nAJKC7W6tpJV21EjW+59eF+y8BVjLash+lvdf+wJZF3iwHBvPMY+FOhmwC6w2Cmn7Qq8ZKRz16QffuoXS0IqpaWzDyP1O7AJY0YObNgc8nwicfQt38uMOe6QD1MfCmU8fybmLypT0VrLQ6llWbVg+NOqcWVj1qCI45FYZuXLBXkUpBYyPm6j/I228E7nOwqnL2KzGUZYEmNYesN8cEWMlYZ4DUtv1IAhq794iqMrkswV4HwHePh6oqbYgAk3evptgYXQ5GpUAU97/WFqvSTfvSSnpTv4APXi91FEuAicBbDlKTgFnu+GXxd4+BgPEkKVHNUjESj+zHRGD1w5+HnsAgZSWrbA5zz7+gYSHA/cDvsak4XZwUl3H7ygPNClSpdQFUCbDWDSiJy19sSCMJDdttxx6J/UiM2eJZW2/9KKhSKUilnaG7ZxQixkBewUp+LgWrOAkplVKv7v+zp8OiBsycmTD9S5j4PtTOK3UkAqNJTk391AErpRZ8CuirRL04UPmSVauClW8MT7mfhwBXAQeVhFU6g7n3FpjwNg6gF7jr090Bq0pJVy1uv+kSc0yAlYxODSUxZo90C24PB6URKwWktuxHQRCCKp22P2cy9neBmEhX+bwDVT4eWBFQeb/XLoBF9Zi5s+DTj2D2DPji41JHtNRB6X1gBvCF2wIFlZRTr/p6sAq8rRyotArYHAOrnILVbcDX6VFDcNo5zjHhzk86Dak05ulH4PXnAD4Dfu7WZXcFLFmnrUpy86W9dSLUPQHWmicpbdpuKInLv09f6NUndPe3FXvUpv1IS1YOVOkMZCoKi5BUKpSwcjkLK3ktAlYKliyygZhTv7CQmvI5vPNyuaP7wElNAqUvsa7/tAJTGhjgQakcpPwIcgGBDh/IEhq8895+NOQ2AG4GdinEWFVWhefOSVZ89C48djfOJnW2O4beTsIS6Spw35uPAWNOgcskgaPJWN02JVHZRgJ92rQniadN3P4bDLVQqukbIyUFxZJNKSDFST/6M3rRCawqYoAlklUuF0pX07+EOTMxdQtg6mR4/rFyRzgZmOOA9DEwF1jgYCRqURro5mw+6RhVr5wEVU6SEjuR8eCVVeqgbNroPgj4V1lYZSrg84mYGy+X7/8VMB+oAXq546l2c8+p7291amGL+1n/L1EJk7HKpCWtwm1EubgkX1JqD5RKwaiUh01UuFIGbW0/0qpgOmMlrIoKJ2Fl7N+DFMydBXULMTO+hA/fhhlT4JP3Sx3lPLdNdFCa5rZ0zDZIgclX95YHTFql8jcd59TqgUJvzeq1FVgP+CewM1uMIDiqBKzmz8b842KZ0wVYr2QfJ1mJsT3tzafZbU3q+7WUlaiEyegQMG2kfu5Z1qYkMUmivsXak1YASqWM2nFAKgUp7YIXu1U6A/kczJ+L+fIzWDgPPvsIXvpfudPzKbbSwXwHpc+VCpdWMNpA/Zxup81Jq3SG4oDOvFrgOeLDEuJA1Rrze4t7n/zeHxuOUAJWDu6L6jHj/yxzvQ54xsGql1IFM26OAsImpy4uw0bYN6nvzwP5JPk5GR0PJpGWtArXo2f5qO1ysUbtgVIBNsr+VHhfKgooDSUfXgKwhfMwn3wAH78P778J82aWOj0LgcVOcprqADVfGY+NAlMqRp0L2gEmU0ZqioOSD6hW79VX93Ixql9rjAS2mVMDhzO8DKyaGzF/+53EgT3ujPJ9nCmgF9DVOQU0rBqdQ0E2AVbWs20lElYyInASGInhu11gCnrW2Ajuvv2tsTsCpjKBkaU8Z8sDJYFMud9LwSqVCoEmf5s3B3PhmTB3hj7aJqfGzXE/L3GSgNxfIoV0cepcq6fGaKmJGAM2ZYAUFxflS0zl4BT3e9z/9D5z3utw4GmgC9uNIjj0qBBWYtOrqIB8DvPvGzSs/gT0U7DqBrgbpKBqLnPnc7HbRMJqVbAy64J0lQCrPJyGATs4MG1f0vi9ImAqGRCZKgEgiqWgUhDS4PH3U/i/e10w16aCzJ4OC+cRHHYsVHdVnyMqgc2bjTnvNIHVB26TVJVuTjqQQMc+hLFDvg0oSzQHrpTh28TYlXKeQTxXAjy+WpcrAaxScMt77/ElNJnbFsBzQJeiJGYNK5PH3HI1vP+6nLurHKzEyN5dwUpsYsscpBYpWC1bV2GVACsKqB0dnARSxUbw4SNg8Iah4XuFwBS07X0rZz/ywdMWlFpbYN4cmD0D07QMPnoPZnwJH6s0v91GE/zol9CrpgTsUtDchLn2UpgzHWy80OuE8UxVbqt0m857y8VIS6Le5UrYl/Jl1LhSIGrtADj535fzbF55T7rbCnipJKyUQ8I8+G947zWB1SUO8DVOutKwanWwWupAVe9el7i/Natj/ErsVl51VglKhmhNMhlaC/kAeA+bOH4T0TSmBFjtANRebtujSLUbPAyGbkKw4SZWanJ1lMramOIkpiAov8WqaN7PqVR5KKVSMH8uNNRhZk2zhu+5s+GJe9s+EbvvTzD2MqjuUlpaa27GXHwOPP84TqKaCKxPNN4p7RnG8woErZQOA4hT4cqFDrSWsTFl27Hly0ApDk7GUz8FENtgk6LLw6qyEvPkg/Dk/WDDMf7g9tHXwaqHg1WgYLUEaIiBVZOae4fBStlhfQBtRLRsdM+V/KoRbjsOG3M2YnmhlVnHIDUaOCFWgho+AjbdgqD/IBg02ObJxUlOvvvfl5pSqbbB5NuLNHz0+9NpIu7wRQ2wqB7mzMAsnA9ffgrTp8DH75Q77GZnW5rvVI2lSJ+7U88hOPIkCysBrD+flibM786EZx/BLZ7JzhtGjCcuryCiIdTiedpaykhILSU8dHEG8VJQysXYs/wo9HyMdOfDqSAVaji4KqGvl4VVhY1LM08+CA/cJtfh127//RSsJO1G1MDFClYNCljLZWQvA6GR7rt7055siLihq7O6UJuC/2eDDaPv7dPP2fOw+Z0L52HeewPeeWVLtw6fTYBVfPGGAOOBg4oANXgjKz3JSW3T+xbjPYtT5doCUyoVLy0tWQQNDkpNjTYSelEDvPp0W4c5193c85XRe54nAQ0H9gXg1HMIfjCmxPEKrJoxvz0dnnkYt785zk7l59M1Uxyn1OwBp5loOEBcWEBLOySp5QVTroSBPs67iA+nmHtpG+CNIlgVwj1CWPH5JxpWP3XXpb9TBXsQBoa2erCqc68NyivY4qawp3vt5ZxAWhJqf+HDODusB6BIeeiS2REQW5117kyYP8+GusyaBm8XZS1MdKphohLGDAurHjWw7yEEw7eJl6DKwUnnx8VJRUUwKgGm1laYP8eqWbOnQ+MyKyktXtQeKMlNLFCqVV6juADLfkptGyHifXDZzbD9rjb6XMNWzocx1v3+258KrJqwIQpip8oRBi36bvdGtenAypYYqJWLGI+zPfnqXJzUVMqLWFZqaueDbzlgNQlz+W/0/VcKVlnlIewD7OTOXQ0w0B3btixvE9VSEOo/0FbSqKwqEXhcAkD++wrVMebDgrmYhnoLpnmzYNoXpWb1obNhvYTtu4iydcY5YNY9YDnR2GbKn32hvVA+pEoatcvYjArpJ+pvSxbD4gZIBfbJEqSgdr61Jy1pgNfaJf0KlOa5RTvHvdYrY3ZGQamLu9njAivl7hvhbn6CP90I2+5gbzYZMv+0KdyM5rLfCKyaiTY/0ABpdFJBvZr3EqKxQi0xklRboQRt2ZnKwalIauoIW0/7YVVpg2gvHysf/Zu7Rse518GEOYJ9l3sikrCu69NLFVZoO3G9LQjFvdYutNL2zClQV2vv6TdfaGumrzg4TXPG9leUvUri7zIlHiqGsEjiOmx0nzYZ1h8C3XoWgyit8t8ktSSVgjkzIEhbCE2bHEJt0ofhDWsXdntHE7ZlU7OyKy10i1GgFAem/kQDK/3gypi7kjS2McRABmxA8Idrof9AaGr0YOXSbFxSsrn1anjgVtzc5isI5hWolrj5LnRbndsWK2A1Ew1jaC2hzrVXajIro86tFlgtasBc8Xv98bPa/IJtd4Ku3cLMBmMIevaypXqWRx0rByHfc01M7fqWJsyMqfb+mDnVplZN/azczBc7qekDbOnoCe51WgnhKF1CNc97jpqSEtY60YQi0qBy1Y6FTk1LYZN1A2WHyLr/V7gt417TMXAqB6ZSxdr8BVwJbAfU0H8QwYV/h37rhZUSvHpMVFRCJoO5+19w419wN85kdbMFSv1b7OC0wAFtgTu2eqLBjVqiyntwao86F+edM6sKTCWM1jtgG220DavmJsy4c2DhHLuT/Q+37xu4AfRfD/J5gvU2gLR7SPToBS3NVtrNZm2KUy4XLXK4MhDyw2qWLLY20gVzME1Ntvrq0iUw4a22TsfH7j5+HZtSNdMBPKe+OC7L3pS4N3MlbI3+vWD8JhTrTNcc1zRhL0rFWJUeUqA85QyFIm1MVqCZrgBUqX7WcPKBlKE4HcVX5col70J8wm7eqRu7Av3YfjeCk850T2sT9QZKIm5FBVRUYe65CW76O24/kqVcrZ6MzUqymk+YsDzfgbpBAavF8xh+ZepcO6Ckm2RsHGu4bgtWlVUWPPk8DN7I/k2kdqkJ1tpiAdXcFL4KrKSaRaxgEZQvFa1/bmmxhQwXNWAa6mDWdFi2pD3miInOafOGu74THZhmqHueNgBV6j4tlZFQyoES1sP3iLUuqYQ3YrPoUwoYFW5xV6vXau9vYmiuJhocqX8e4IEqo3R0LTHFlT4ppc75C7lUxLd/8XsBuwH9GPl1gpPOsIuqudFTATPOiWDNBebuf8ItVwqsxHvTzVPjljooLXBeybkOWAucxLXIwarJk6xW2ju3kkDqHfPa7lpiwaZbFtdf17CqqrZbrxr7WlnlihmmogUM86rMTj4fhY3ArS17krx/9gxrV3IVMVg4DyZ+UKpWvYxZDkCfuGv1toPTJErnb/Zqx0OUGGO5iXF8aCDFNdHwv3sdt2GFJ13gISASw7WklnRV8NLgkq0iRoJKL4dKpy8ilE5JyVE+R84PAegDnAxUsO1OBP83xi6MlubQZmfSXgpQGnPfLXDrP8Sg/rgsWc/43ehu8oUOUnOVhFVLGC/k57nlV7U658AkGQqlpaQyUKJXn9B4XWS49mqApdIugl3BqqraxrNVVoZldoLAeWLzIbhQqp6Ar5RtavYMa1eaOxvqFthUqokflCsFjbsGnzjpaLaD0VJsaWhDfBHDPiVsoaVeSwGqXJUM//7Va8GXukuOzDoMq4ySlLq5TcrSdnVblSdZlYJUytvwLkS5p0+cWpdtB5z83wcDPwYq+NYRBPsd6nx62fi8xLRddOb+2+H2qwVW97o5yVNV5tCs7FZxsKonjP1a5Xlu7Uqj0kDy24itSIFDcc5kXL0vUQM1sCqr7N8rKsK1aIw9i0We6TTkm2HebJvPWb8QZky16ttLT7bnNLzrHhKfOTDNxZbpWapgoMHUO+bvcU6btlS99t7LWprCezjny9mtEmAV695BjErYVUlZ3ZR0pfPjBFJalNW1lYJ2XtBcDJzicuVKAct/777YVAfY7zsEex8I2daYvMBUpDqoefDfcPt43H7uULCS2BiJm1rqYDVfqYLabrVKYWXGjtkUOIxSaVQCpmGbuVZiPcNUqjhJqchYTfmyPTqWTiQr2aq7hLCqrArLRIOVqL6YBLksZuIHkMvCB2/ZbIW2wwJwdsTFDkRz3ANisrseqRjzQpXTEMqVgA5i1gKUr5BBCSdIXhnedUpTqZQr/37WNs5STpZEJSQ+By4dY/jWFwCKWysFZbx0ccbwuDIlpS5qrszf9OcOKcDq20cRjNrbqiGFsA290CqcVFCFefguDaub3f56u5s+TRgUuizGyL7AM7KvknInLpXqgiL1rr1pVG2VgQ7aygWNCX3JuMqqlZVWepozC/JZzOyZ9v8fOI/bg7e15xAbnTd5jnsIfOFgNJEwVskHkzxQ42yhcRIUbXiWS927cdJ/KcO5vlfjEsmzZd7vh7QUeYTXdWCV8loI9aULihgGfdWvVKOCUt1/syWM5LkyF7Otz8n+vwf8FiA48UzYbKvQTCFqRzpd8AJa1aUK89CdGlb/dPvrTVg1IPBgtUABa4EnWUn4wqqA1f8KEtTOu1vjd3vSqMTeRDurrfp5oX6Bw0j9+jR88gHmorPaeyiL3LWSWmGfu3P5OWFgra5okcLG3KXagFKwHFBqT6HDUnbTPKVL7LT3/7k2tkQlLHPxdBWBFnfTiAok9ppGpQL6tqmA9tUDLxdrYspAKFdCOvP//kdnYLctzyUNIy5NpLI6hNWDRbAy2DSQnoSJuBJv1eCM7D6s6gnDF1aVzcqWKTn8eILtv+5JSm3keZZLQG9x6SQBthhhc5Pd32cfEeyyJ2yzfXH+pza2f/SehpUULsw7yaiLu38q3f+kDrsU4BOJdIlTvbtQupBhW9VWaYfaVqrQYb6NB2euDITybQAp347XUiV72oTWuihhGQ9Yum6TAMyHFZ5k1R5xOV/md799VFub8YyX/wKOLMBK2sXrQFCxtSjDsHno32Jgb8XWIxIPkVQN0MGh9TGwkoh27Q1sXUUG9nrAhmNMnwLV1Q5UqBxPp/IGKVg41wZDCpxmTYfGpeFnXn6q/Ld97ySbXxmX/SCS6vy5upX8vdja9DWEda16OpUNJaULhDLuHIuts1KBYHk1g7jI/3wZCWl51LdSwb3lSvHk2ni4lsrtLBfmktiwYi5sC2FKgDwNMzHqX1t2qnI3UFs/l7pwpS7mbcCR5boIF7ncK50aeFsBVrcoWHUvAysdGLrQ8wZ2uBroDRsL9ujdHd0OZqnzrIFNW6riqB8SHHF8NDdU0rMEWvPnYH79Q6m2+jE2bGCQg30PZ1eqUqDKe46RvAJZhVp/caEfpoy0lG+HmhVnJypnW2prf209fOP+BvGxd/kSkmH7DNDrSqS7s4v4Bve4nL1UGVhRxhbQ1u9t2RNMuQsZjBtvCilGbcFKPFbVXRys/i1xVq3ArW6XNR6stDdQx1pJ6o1IVksVrHKswhK9Lnzhm87oXhPjetcq1ETC9vNpB6VGdU0/Vt7hTYDLgEqOHUPwvRPjO1mLGphtxRx3AMyeirM9vUI0Xk/CXtLKZCAe1mZlZtAldjRI2jJslwNTltKlnLMlVLpsG2DKlbHJlpOYSlXGaLMKQ8l7YF1NzVHA8r0pcTaqwLNXlQIXJS6OaeP/kX21teBdPa+7gF2jsPIMwhpWWg285SqB1e0KVt1KwGqBBytRA+NSblZtPfEgwJz/I7keOqVJYuj8LS6oV4ekZLCBpRcAFRz7Y4IjT1RhC2mb55fOhMGhra2Y3/8MnnsMbLzTW0Rj8nSYS95z2zerzS9cWE66aasSa7YNr3Nb9qlSttZ8O1W5ttS4DrsnfGCtUyqhk1J8D197onkp8YQwZUDWUWVNQlgNH0Fw8PctrPyW5wIriQkKAh9W/3bHVuN5A5s7Jay8S0dxhoJOpfIzEioVrDRcBmNDQCo4doxVA+2q8Oxi7ry2tmJ+f7bAqgHbqqyvJ0nliNb5alKQ8puuliqrk6N0V54c5ZthdBSYWB7bklx7t55W21jnjO7eIuvU3UaKYBXX8jyt4qsEWIC58mIpCNgK3KlsViJZGcI2Uj6sap0kMgyb5pIHdvElRHezvge8GIwbf89qgJUYrysIU6q6xqhnGlry/g2QTICjTyP4zg9sIKdJFXcrAkilMH+/CJ57FAfsqe57UgpUAqZlhAUMpbOND622KqaWU+PKgaotb3Ke0hUw8m1oBHS2jjxJ15zOC6ttsF2BS8MqUxEvWV0xTmA1DduCKq3UwEplYzFucW/u7Dr9gCHK09WesSdwhhk75nsdDS2nDkJ8SlWlA4jkgXbx7ElaDVy/AKvvnUTw7SNtpQSdz4dx1Vat09jcejU8dDvO9jRN7UvbpyS/sp6w/npceZ1y0tPySEltAam96lunhlICrDUTVrZgXCysMtHIdQFWEGD+/nuB1XSkuaeVkqT3XQ+3+LuXncT2o8Kqlgbb1iwuSXfBPMwd1wDsQRDco4wPHS1hxTlMdLqUdpbouksDC7D6znEEBx4RJoOLs0Kkq7RdDub2a+HGy0VFknq/FYQljVsJ23DVEqYp1ROtWNHShoHbj8try9BtlhNK7baTJsBKxsrDyu/IEgurahejhA+rNPADQhd68dhkSxiwPmy8OUFFpbWN1fQNJY4ibhCF1mcTMS8UEnVftKqV8a2mK31KYhwafnZCi1LVsspAPxhb8bOCg4+xCeFaskp5sDLGhn9YWOWcgV3KUMu+dRsuHfqxUAFLykOLClgq5q5U8ULfplTO27zWQSkB1poDq1OAK2iri7CGVZWVvMzfL9JNLIZEdnzg92HAQKjpSzBkmJUsenrVLnM5W/HSB4yOMG9thS8/w0z6EN5/ExoWyrv+C9xvzvthOs4B0QELSUtM2gMXePYkXcF1I2AsUMGBRxKM/na0zE464xQ8Ba0P34KrLw4BbAHRg2gNJ+2g0DXBFhKmKzUpdbAtO1I5aanT25QSYK3bsLoeoK0uwlHJSsHq20fBBhvCehsQDN/aSk+ZTAimpsaw2mVLszM66/pM6SioggBqF8DMqZiP34M3nven/So2VOImZcgvCog1Y8es0EJzXt3A26dkKIioJwHAOjthU+BSoJL9D7fnsrU1LKsDkJKcS6cWfvQu5oLT5atfctJSLwWqvFP1tGSlK1foevbNHqzKxSetEu9yAqxkrEpYjQPOBy/VJqaLcCGJuboaqrpAUyPBueOg3/WqiihWYsq2hhJUa4v9PVKO1w1d7XLJYpg1DTPlc3jlGahfoKe6GNvt+HG31bq/dyXefS5qDSsKLeJLmWjJqkKphCmsA+FaoIp9DyP45oEWzAJkY6KlYjIZmPgB5ndnyPf9DxtvJUXtckqCW1wCVn4yeNZT9xIgJcBa4yE1EtgR2BvXIKMoL7BMEjNVXSy0evQKi8aJez6fC8vx5rJ2E1AZt36k+mjdQpj+JeaLSTB5Enw5yZ/qRGdTe90tZqOM4D2JJnLrOkd6lCpWviIqod5nVsEqwKba3AVUM/pQgm8eYM9DUUdtVdNq0oc6mflRZ//ro2x/8h1+TbA2y+wkYEqAtabCqR9hhcxv4Nd36lFDcMLp1iPXjiTmoqJxUvYEQsnJ5F0XlnzYiQVg5nTMl5Pgkw9LVbac5YzNb7ptppJeelJc5tkHVVyS+EqfQoq9Y35dssHYhqXV7HOwhZVWbePKGi+q17B6gDAwtIuzg+UJY9XqCRPBdbqSbiUvIQwJrBJgrVGAaruE7/ARMHhDgiEbw/qDXVcbVTAuLom5UDfcwatC6oerzs0mCNtEzZkJUydjpn4G774Bbz4fN93PseV233bS1ByiDTP6UlzyxHiSlY7yhqhXrGxTgfbYsUSlJNqsAPU6FFvBYjjbjSrf3UbD6sIztS3uC2wcmlSukBAGSQaXmmDzia8J1kq0JHAyEmB1SjhlsKV793JwGklcCd9td7B1xTcYGpbvjetALZJAOl2UFxipHa7L8QYBzJ4O0yZjJn9mm7w+dHupKX+ObX75PvCOA42AJEXY3t6PbYproCHqUrO6l7TUJVLQSi/iUhkKLhvgduDrDB9BcOhRxWEgpWA1bybuPLzijru3s8dJxdUmB6Vaoj0Y42C1SuvYJyMB1sqodwKn7YnrzrK8JXx1WRO/yYFUXRBQVVXbZgWzp2MWzIVPP4L7bi41XTESz8LWbvqEsCtzi5Mm/OJxcWV5fdVMq4GBgleatnMxO/JalE5d0mlLWqUuhtXTHqwyJWAVV2YngVUCrE4JqdEOUt+IBdR2o2wDhA2GQt/+doHESVDlKmRGEpkldMFJBQbMvbfA55/Ai/8tNc1WpZYtcgus3tlZJG2k2kEnQ9QQXqoxgW8/ElCZEtKU3zjVsPIG95WEVUUI/XhY9cWmLfmw0lHsfrXVVV4TTEnue7g/1WNzNt9KgJWMOCnqMLdFu7Q49S7YcBPbMipOvdPSUyGhNqYLSxBE6y5FjOwuhKG+FvOXsTDhbT3FOrdYZEgVS3G/LyP0qEnBOA2rbAmQxBUn1O55rQIKHBvVq6735DcVMF8NrKrjYPUe8IwHq4oYWGm7la62qktD51YBrMYBh2O9nv7//h2MG39MAqxkYMaOOQI4oQhSw0fA1tuVtj9BGMekAZVKxQNKq4CFgnHpMC5IVJjaBbbK5ZzpYD1Yn7gv7E3YP1Fy3LS0o2GhS7Lk3e/6/6UqWfotmXSZFKlE0KRedVmVOGCtPlgVAmydzcoYH1aiBmpY5UtIVnGwWmVldgpFGpXkDthS0S/8DxbXHW3GjqkNxo0/PQHWuguqU4DjI+reqNEEm28NG27sdWmJsz+VaICwbAksWYyZPgWaGwn22Bequ6rmBrq6pVto0kZqwtuYyy8UWH3uDOQ12OjrroT1rLRNSWAiUk+LUuFMjLqXp3TD1haiBedaPAmqWf1N/+5LWPnVBiuBvg6wBcw/LhFYfeLBqptSj9uClY5iX1VqYFhR9oTTbQdqnRq11UjMpecB7FF4QOpUKmNW13rRdtyR6l/12JSmB9w92+Fjnao42uYTbfAwgj32g823KoZUnIon4Fm6BJYswsyYAvW1titLmNcHfdYjOO9PNlUmpYzrWroSYKXT8P6bmHOOl09PdlJBL2cklxIqaQUdgUyT2hoVuJoUUOKatbbGSFH+37Lq7/r/fifqHMWlf0subDN2zDCgPhg3vq6N69QDeKIsrCoqQlhVdwlh9dqzIqH+1507qQumJSsxsMdFsS8imnKzQrFW5Y61kO3gl7/2bKDm5qtg4ntgHT7vRRbzxdeYVQUt1cz20Fg7bnQ0YjsyrbQUuE5XHC3xpLBPtO8eB5tuEe1PJ6qeQKquFlpbMDOnWjDVzrchBHULSn9J34EEv/mLfVpqOOk+d2kFrvfe0LB6wy2avkqq0k1Oc56K1uxBq0lJWn4FzDgAtXg/Z0tAKa5qZlz7ppLJz75Ua8aOeQkYE4wbP6HEmby2TVjp/ovFsHrcwd5XA5sdkOoobhYblx+43LBq61gdDM4GrGRVgJU2ITgpvnvBUtGPsD6XjVU7/0dmFUh9pzhQHVTSjisP9uZmzOcT4emHugA/cQ+GDrW3resqofXAbLuDrV4wfw4sbsAsarAXYM5MaFwGn32sKxPEjVnYiPB33OsRwAj6DSL43d9hvQ0UrNRrJhNCK5WGl5/C/OIk2ae0Ke/jpIKMo6gAojlGmvLtSb5dyW+C0F5ADQZ2dtvWbn4vY0u3xPaUKyNRRbs5Dx4GDfWwuG534A0zdsyIYNz4z0uqSt/9v9KwEptVEPiwegwbve4XMWyOUQNT2OqqWwCbOUC9DPx0eWG1HMd6GK5CRyTbwTcbRBPUpUx0URPflcjblHlngAvRXnHdzHbIsGhTWmXLDTbaFHbYFXPNn2FR3dFO0noqAVbHjBeB2bzy1CDzSrvO6cfuBn8TmIGNCv/CwaISW4b3ImArdvoGwUlnuBtQeQIzIlllQmCl0phbroKrL5HvmeT2WUNYgSCvoCMleaWLzTJPBWyOsTHFNUHwVTu/jO/RwLeA/WLOxdbuPT+l/c00rnJPXqt+jz7ESrWAefZxeTLvThAUgGXO/1EIq9PO8TICvHI7xbCaoiSr3h6sfG/gpk6K2L7MsZ6+HLBanmM9FCDYbKvQFqptciKNp1LwaUEA/cIdj5a2C8UCVwRaClShh1LmLrbctkJ1APoPhAO+C3fdALbr0TOsROecBFhyyseNX2DGjhnhJAWJd5mKLYkbABMcED5xUPCbG8jvfRysfg0MZ+dvEJx1ga3YqWGV1rCqKADL3HylwCrvFlmz81LqonSS0ybF42RbQhjE2ORJUS0xqpz+Oa4rSw44D9gN2DXydB2ysY0zAxtqAbsHF1+Tb8vg67yvZxf2p7s5y01e00fePkwKAZrzTrOw6llD8MNzvOYbXpxVVZdysKqJgdVip/Jtg+0vuDEAPfvAznsQDB0GfdyxXna+HKvp6GM15/8oU5Bihm4Sk5rlnDDpDOa156BuPk6SD5xds1Vddw2E3HLC6hQ37y3FQxnsvo/nFQ/inU1+p20g2GgzodKebo2Uq/mVAGs5ofUb5UHT7aR0+yjd5KBa/b0KW4b3bGBTdv4GwZm/LbjTbdSnCaVmHdrQ0oK5ezz842KB1ZfuVcoXaxuVtDqvd1JBHdGSvMtiVL5W4ltExXX4zQPHOVvLLrFPV4B5szH/uiKUULUXS47TvTpD+bUFp8bwEbaeurbRgK0m8eRDss+XzHk/TAE/L8DqtHNtJdRyVVfjYVWlJKsqpQYuAdZzUNlAYBHseygM3djuF2DurFV+rG5Bww67h2lW+vgqXLZD/UK4/jL53G3OhiWwEikcipv1tkdtPRs4oCyoIiE6KU9NVaE6cm4keNrOq5r4stDLHVSchDV4/CKMWxJJSlpIScMD3Vaq0j2dfwJszE57EJx+vr3ZctnQziLGe13dsqUZc9HP4NlHBFYziMZUZZXnT4zCtYTt43UEu64h7nvrynXxlW174DfAgYXFtt+h0Zu2tRXz5kvwyJ1yrv4N/NScd1qqhKj/Xaceb0mPGrt4t9ku3J/c3Lks5t/Xw6JaHGReAE4D/gwQ/GBMQdKJeFh9WF11CbxegNVjSrLq7sEq42xxtirr1jsQfOtwW5E1n7eLrbXFP9Y7gTNW0bHaQlyDN4zarDKZ0IFQVYW54zr5rieczXSgepCl1QNOrnnQDq/reODYyMNpsy1LgEo3l1Vaw7Kl0KsmhK18bb2USuNTpy1oe6kklrO80EqAVQwr3eRApKmuauuiJKtBbnENY4fdCcb8yl5MqW6ZcuwJgmjBvOYmzMXnSL+7ZQ5AKeX1ERWwkeLk27jSJo0xsCrVqdcXy68o2FrEW+rftPULMQ/fJe50gD8gzUijC9g4QIwHjio8sb/1HZtP6Xu+sjnMHdfDx++KR/TnwA/dnAhOPRc22jQsuheUgNU//uDDqopo/0WB1aYF1a+mH8FRp8LGw6OloRtqbV334mPNrIJjrXbwJBg4OLRTSTxeRaWF1VOPwOvPgQ1xeRzbBSjnzBW6C5L2ALeltl5UUP8OP55g2+2VjcoDle/JzmRg2VLMC4/aApLHnqaKQFpgmdeek6/7xEm52kEk6mt2eVXDBFjRTjC+hFVBccNOURPXc4trGNvtSnDq2XYPhbrh6fCpo2HV0oz5w6/ghcdxsJlNtIWUlDRZ4lS+hYTJt+JulwTcxeoGaPXCC0raDFzp4dHuprW2loOOJNhxt+hNGwTwxSeY//wLGmrBFvH7OTb+p8o7k3lnPP4tsAU9awgOcpJGQZVSnq9cDnPHtfDR2zgnxmlOwrsMIPjxebDZVraWl1wnkTwEVhK6YBezDyuxWeHAsq2zNcL3TiLYaQ87l7za/+cTV+ex1gOnAkfQux8MHRYNIpb0rDkz4fpL5XufcpJVyoFJJMdGZRZIUxwgHK+2xgFWVw3RoBK7a+NSzDOPwj3/gn6DCC69Ebp2jwJr6ufw1oviPJrg1FdxEgUxqmu7Sw8lwAoNqH47qbTa/KoFg4AzgfUZsQvBiWcUwyqjbB1ijJw3G/OLU2DONAg7CUuzT4FNE2F1S+1u14XjBFZ+fFAuDk4xN26hJHOsrcXdtOadV8XTA/Af4GQ312rPZtIV+IsL54Dt3ULo5kka8oTO5TC3XwMT3gJbh+sMB6uLAYIzL7TBu9lsNNK7UMXCSVZX/0HD6lFPshLIDMU2hIWRX7cSZM/edt8Cq1QK89YrcNf1+lhPcdd+VRzrEncufw8QHPdjq1aBu3cqCpt59D+oMJJWwOnHNLrXJjfHCuIrbBRLVaXUVp2Bob2TmQowecyTD8B//hk+3X/1RxsMLQ9mJ5WZq/+IcmCtrxxFmZgwjOVyDiTACmHli/t+GRWxLa3vbrRKdvkmwfdckGdrSzROJp+CjHpaLZin8wLnOAN7lbvRRDTW1S0XxsBqoYNYbDAjbQQNugDFKwoG1sOPJ9hh12KbRTqNefpR+G+hzeAZzmbVnbAPoDwVv+WMtpvRsw/BwUfB1iMpZAL5db5yWcxt4+HDN8XbdY7zkllYnfsHGL6NrT8PoXQqjWMrq6ya9MjdGlaPeJJVFWE/xn4AnPgzgp1GWXU9m3X7dWB+6mF9rGcCdxCm7XT0sTYCJzpPLMHZ4yyc5Tgln1RySt9/U4e61Lhjy7n7sZFoX8agxHW/o6xUFQcqgWZFhc28uHU8LJiNu+eqOP4MG79YML7bfZgHbhdJcpaTTtd393OFUl11SE2QAGsF5Cxvk9iWjHuCiao2GPgrUMm3jiDY9xB70bNZddF1HI0T7+sWYH59GsydgQPVx84QWU1YhjdLtCtLHKx05HWLpwbSBqzCFmKDh9lW7RKk6Ntabr1KbrombG/D17BpQRXqSd4tYqjfaU+CA78LXbo5qTUojifK5+yN/8EbYKucnueM3+MAgp9dBCN2tLAyzgAeqRpaGcLq9vG443/MqX5ashrk7FUpNt3aGu4HrGdhJeWixZFw+3iphNEE/B+2+uiqOtZW4HJsHX+CX/7JwjmXDR8aEQkrA9t/HR6/RyTFRsKmG7rNWWzwrntA3QLsGpGq4tTWjLOfSf2wTAXU12Ee+rc4hsSAvjm77WulQh3SkErB26/CX38r750ADHDSVUaFk4jq6kuEiUq4AiPvSVbN6obYELgRqGK/7xDsrbqxBKnoTZBWRtMvP8NcNlZgJeWIe6lzn1WwWlwCVrUKVstYzjSRyBN2n4NtEnZFZbEqkMv7tpZfOQmmp7LfZYCdnCSyEb37WfhtvV1ovNZ11MUGks9jbv4HvP862Cj+C90D4GqgkqN/CLvsGaqBYmDXalJlpQ+rfzrpooawtPFWbqHAESfarjkBFlbiBXSOEauqvQ22hv2qPtYa4BJge/oNskGwW4xwkqQKFygUcLSxV2y6lVzGgU5qEbNFnuLMBK1qHY5tv9YlVu3XaqsuGilS7HuvY265GubPApu9MQPYhd33Izj/Mvs5HZP19quYswpZOB+7dVNDWBu/0anTolWklaqdSFgrIWUJtFoVxDYB7gaqGH0owV4H2Cd1QQVQbaMKlUIr4ZMPMb/9sRbp33CG32p1IVs9WJUzsPulTfJtSFVhdQPtAYxTBfJ5J20UbC1nOUjWOPVKnA0/Ab4NwK5724XQtXt4PvS+RbVpbLRweO81gA+cRDXESRuVHDvGgiDbGnWGBE5KdaqJefguDasb3Tv7OFj1wAaB9qTfIIJTfgabbmntitnW0FaZSkHWqWrhsf7MPRR6r6JjHQH8CNiALb5GcMZvbFxZVveF9Ao4upStYMsRInpsgE3IFum/SRnbdS2yLLZE0tXlH1Ce+iddhDDW8fDQHXIlXnfndhcGDiU4Z5wNiDYqvvDNlzBn/5+8/zN333QlTCVrjAHVClWmTYBVDK28sinlsflkjwLV7HOIlawiNot0NMhP2nB9MkHD6jn39O5DtDSMhpVvYF+gJCu/wmV7YLUj8BAwqOwTNp2xrvxbrpYWX9rWIknX1diWZN/H9v2D488g2Gk310osFy46UY1kITTU25IoC+eKmnCpk1YvASr5wU9sfqCWgArxa0Hh3JqH7tSwusFdhL5uMfVzUKhkpz0JjvmhbX8msMqr1ma1CzC3/EOO9V3gXHdu+6yiYz3aSTuw73cITj7T3jOtLeG8Fs6HBXNg2x2j0e2ZjJXmBg2F2dPkwVGvvMiL1L0hoS3XA98DCI4+TamAMQ1OMqq6bUWlvQ8uPEukqnrgPmBfYAiDhhL89VbrHNBhIO+8hjn3BK0yLiCs3CrOgLoSduIEWCtkcbdufq0WCqy2xeZB2dZRex8Y1f1jewZW+5LVfwkbc3ZXXqesByutAooaWB8TZ5VvB6zCLtKjRhPsd0jxE1Zu2vpazBXjJOXjeQeSFgeBbm6RnAzsYz1tuxIceQL07hOVELQNTxZCQx3m0vNlAT/tQLOxU5EqOO50gu8eH7VZ6ZgrpxqZB//twyrvYNXTeQBtkt7BxxAcdkwh+LPQ2VqkofpazBW/l2N9wcVYNbt9dfSx/tuB/2sAnP17gm98K2xom89bz9vLz8CNf4FTzyXQ9dAKeaYpOPj7cN2luOOdR5iiJZs4YP4BfLekNK0LHGYqotrAu69j/vwruYU+dCEURwIbsMe3CMZeZt+fyxbmzivPYH5X6Dz0kZMAK9y5XF95NLdyc9NxgkU2twRYKwYtOXnbYlMnukRax7cBK/Pqs9rwqGHVg7DfncBKJ9/GNeeMk6za8gSGIQsHHUkwau/ST9iGOszfCwv4UeB3DqoCq62wkdA2LOCUnxPssqczXnsLuBAnVREu4D/9GhbOEQnzerefX1pY/ZTgeyeEYBHPnQAmHlY3upu8j1u8WwIbAXDSz+w1am6yQIiD1d9+J8f6mHPxd1tFxyqq4EDWG0xw4RU2kr21xfWKzNnP3HUjvPiEvf82GKokqwrVESllQwfs6EJYoHGJcsD0wmYGjC6qpxWUkaoqq2w11tAuiLvn67FJ7Rn2/Ja1WWUy7rzaJr3mrhvglqvkM+9g82+7uGsyCID+68OGm8BbL67n1O1PiRaWTFJzVhZabtFv4zxjbcCqMmxwUFll1Zbb/qFhNceDVUqpgbqsiYZVnQer1uWAVcG4XtTy3n/C5vO2GFzdPLDR038k7MvXwz1dbZWGHXa3Nah61YQLWNQZXZdentr1dZg//NKqObYixs3uRj4J6MkRJxIceaKTNhSs8vlysPqnglUvbM/H9QCC3/4NNt/GwsqXrFIpGwt105VQO0+uyx+dVNV9FRxrztnE4FtHEPzoF/Z8SzhFayu88aK1oVlpDHbYDYZtHoYRZFTJoWhgs9g8dWWOXu5Bs10hSbymb1RKjdQLqwzv2/o6qx6/9oyc43uA7ZBk7FPPJTj6VAtZmX/jUsy1l8FTD+CO9UVn7tjSbbZg16nnEOy8B+ZXp+mYrDhtIQHWShmxtPu/vbCqqrbuXwurVuB+ZRfpodRADauFJWxWOt1m+WEV10Val2LJZOxT9ear4IuJYHvyXerE957OfX5MQc06/qcEu+1TCAMgnytewIWYHWcHueRcidl5xalGh2BTUDZg1Gi7CFpb3SIIn9o6mj0GVjlnqJcneDcGbGCDF9dbP5SstPculbbhBf+6Qo71VWwkfb9VdKwbOJWX4MIrYde9oDUbqoG1CzD/vg6efzy8cH0HEhz3E+jaTRnc02HuXlGYYMGr3OJg9XNgBFt8jeCok8NaYXENeQt9LqtgyueYyy8Q7/UUN/+9gYEM2pDg3HEwcmc772zWvs6ebj8z6QPcg/UxpzF809klYd/DbKrOkkW2JpaVOt92mobOey3UxE+AtXKwur7gXWlPB2GB1a0FWN3uea+qlYF9KWFuoB+6UFcCVvnlglUpdUBgBZgb/w7vviqG4WtcGEBv5xH7BtCDzUdYA/F6Gyi7iwJLpKpAZbiAf/9zMdq+7lSjs11MFOw2muDs37uwgpbSsIoa2EWy+oYDi43M3e87BIf9AHr1Do3rEmOlU2LCY/0Im5bS3y30jj7WUQDsvj/BmF9Av/XsQs+57dVnbaiDXcCzRW0KfnGx7V0pNquiMJmgoDa6+0YkreEuLmxLthxJcNQprspEjDSt+zJWVmFeeQb+doHs8wPnBLIxCXseQPDjX0H/9ey5aLWwMk8/AldeJJ/50sFqJLYMEQzYgOAnv7ZOgjkzMBecKcc6xXksfXtsPpGwOghWEXWqHKwAc/1f4Mn7ZXHd4eCkDezaG1jvSVbzY2DVtPKw0h4sddMag7nxb/DuK7KA/+rmN9zdsMMBOORYgsN/YP+lF7BWs3SsWYWz4/zuZ7KA33IA/BEA2+xI8H9jYJsdLFxaW0IvmfbgpdNWsrrjGm2z2tF5ansBcMKZBDvtHkpVGlaYUA3K5/Wxfgz8zZ2yzTv4WL9EyvGcdxnB6INDNTfbCrXzrdr17KNyyd5yx0Tw60ttcrcr4hipKyWwmvypSGQS9tLPQcK209l6B4JjTrWfF1gX7GuZ8H515YHMw3fKw1XsVdsDXVl/QzjpTFuxIdsKLe5czJqGueFv8Obzev4znBrdv6D+ffNA+13vvoa5+OfatvU3N28dQyhaQ+IlXK2wuuoS0f/nOduIwKqbgpWfbuPnBQqspCNzdoVgdZrYLlLRoECZN2Bu/Cu887Is4CudtLIXNlWnHwM2IPjZhdZQ2moXG9ksdOsWLoYgFZU0Kiuhrla30XpXFiSDhsIJTs1KpUNYiZcsknbjJKsQVv91i8ImLB/4fYLDjoZBQyyoxF6VzYahBikVuHlD4VgnAlc5lXyfDj5WgGHs+S2Cn5wHAwaFNq9cFia+j7nsN6IyzgMexkbTw/FnwNd2ioKqcGFNYTPXFWpgNTiJxlrg+wyAbx9JsPX2Ng6wAH4dZuPB6spx8GrBXrWoYKs6doyV0Lr3dA+ArFXpXvyflqpmOs/q1wvXd59DbLjMkGH2nP/nJri7kHv6onvgNHgxhIXMDKXvGtoZ7Z5JYFUGVr6EEg+radgaRVVKspLE2xYHonrC8jBasqpXsNJ6/fLDKlKNU83b2S3MPTfD24UFPN7N8zgXv2RVrBN+aj/f3AyvvwA9etgFrdUsLWlUVllp47eniy1kvjPaws8usnWm0mkLBA2rXK4tWM0GDgbg20cRHP5/sIHzshWkKifFmLyXw1dhAx/ffglsaZNrXHxVRx+rHWP/SrD/YS5Gy6l/Sxdjbr0aHrhNq133OomzkiNPJjjg8GKjugIVgLn3ZnjuUdz9MQCpPnHimQS7fMOew9YWe35TTjLLZKIVLaqqbBPZ3/5U5j3P7asvhxxrnR9DN3YOAbevt162GQ/WVgU266GHOHTYfFuC759s06iMgcZlmL//Dt56SRvvn/BMHM0xnsHAg1YiYXU4rBY1YK78vdRLag+s6pQaKK2jFnqSlS4PYzoEVuoJax67Bx67W2wg1zoP27eBfqw3mOCUs2HHURYGS5dg7v4nwZZfgw03jahrYeyOs4nU1WLOH6MXcH8OOYbg1HNsU4+sM6wXQJWNpse4OCZPDawAhrLtTrYKxshdQhVSoJfLRcvCpMLgTfPIXfDoXWIUvsGpPAd1+LF+4wAbsb7eBqG9K5uFCe9h/vhLUReXYqssvIqt5DqIvQ60AE55WSl+2eW3XwZbmhknscORJxMccoztC9C4DJoaQ0jJOS04hBysGiKwAhjAIccSfP8ke8z5XHid3nwZc9vV8Mn78t7JDjg7AdBvIMHxp9sUKrAPi6mTMX/6lXhJpzob7qcqPqxJ2axEkpIcwuUqLbNOA6vdsBLPSnUXe/EvPEPUgUlORNawkmJqPqzikpgXEc0LbG8S87iysBLbhTOymsfukZIgLc5mdXxBCvrWEdZD1aUrtDZbz9Gfzyc44Sc2TEBLG9ozWlkFdQsx550m1SfgGwdal/pGm0bd4AKqnFbdnAokoQsWVgAVDBpK8ItLYPtd7fuzrbbvYxCE0llkP2E+nHn4LimH0+I8vf+HBG525LH+9gorIeXzYVxV7XzM9ZfDE/dqw/SDbuEeBwxjxz0ITjxTSVVOmsrn7X1XiB5/Vbd6s3A88UxYf4iF1LIl0RAL7RgoPFyrYMoXmL/8xsJq0FA45GiC/b9jjfwC/aWL4f23XL/Dd+UbZ7ttW6CCfgPheydaqa66OpQA/3sf/Ovv8pmPHaxmEiY4N6nwBTxYBd6WSFgrBSvfZhWF1fvYCHjdQViKxTUrWMXlBdYSjU5eniTmU3BBocEJp3t1zothxftvwt03ygJ+yAUDDmDgEBsftPOeVmppabZ1l26+0nrxhm+jpI1MGB8k9pC6hZhfnWoX8Pob2oYbe+5vb2RtcC78nI163Nx+zQO3hwGLA4fASWcRfPMA+z1OxTJPPGD73w0a7O0nHS3q9/arcOd1cqyPAT8G+nfosX7jQHusgwaHqls+Dy88YWtAWSmmwXlfn3cPpRBWp59vQaIj+vU6DQKbdPzLk+3v629I8Os/w3ZfdxJmk5LEVN01Yzyp0KmvvzgRvn8qwa572bSfrt2cjzFvAfvUw3DXjVr6muekpGFI96DvnUSwz7dtDTEB7bzZ1uNpi/QBPOlCeXR8WEuM+ufXl0uxnJ3BMwmsSsCqELNSDZMm2JiS8rDSDQ5KSVb1FJeHaS+stkFKB59wZtg+rBSsPvsYE0bcf4oUnDvw+7b9WLcedgHPmma9aW+/RPDzcbDFtmFZF8ng1yWJ6xZgfnmKXcBjfm3LDFd3seqBWwhkW12ScLRIXqEiZSYDb70cwurkn9sYououIQS++ARz+QU2iHODoWECs0BKVKF0Bj56T6eVfIHt89dxxxqkCP78T/jGAaEqJIv+mj+Lui0q0VPu4dSIzUfcis23sbCqrIxWnw0CSCuP4AdvYn59qv39N3+zYTVV1S4QNg95Ew0BMRnbJ0CHXcj1r19I8PgH1pCeyYSweeNFzP8ehIf/rW+vOU7926ig/n3jQILvHGtbdmk72xsvYi7/jfw2BVvs8HPCPph+UKgGVdqTrhIvYYfBSp6wn36EuaiQL/U+8KwHq4oYWC3wjOsrXHHBzXsItlqEbbYp844zsFdVw/QvtWu5FdiGgUNtB+rh24QG1pefxvzzb9b+cOwY2PJroWqUUdKGLGCTx1z3F9hpd4ITz7IgEftLPo95/B6YPYPgyJOsSqjTWVABrBPexVxyDhx4pFXTNhgaagVNjVa1u/IiOO502Gb7MI9P7D66g/bkTzEX/EQf65YMGkrw27/C5luHNrSVOdYfn+dU79Awbh6/F8b9TL53qTOsf+wkrGb3gPga/QZZD2JFRbTCgV/t4cO3MWN/ZCE75hfQd0AoDTUug1efhZ32UHa7VNiZplDRQuUGbr6N/T2dho/ft001HrwDZk1BaQJ1TvXboBBHttk2BCefBYM3ioJqUQPmzuulDwHOHHIXxbXks2VUwMhtzQq0+8oksGoDVr87Q3ZxvzOy93MxRl0VrHRZ4/meN7A2BlZZlq+L8LXAlmw3KhrMGjfvRfU2mTkcFZxyjs3bq6iwC9j3Yh1+vN1vQRLyWr9XVtkFfM2fCY44Hnb5RtgNyBgrufz1Qth8K+sez2bDezBQ5XdSabsw/30twb8es+VfdGuoyZ9i/nyeLfuy/+EqMdqE0pkOM1k431ZH0Mf6w1/YOWYqLKhW9li/vlcISjnWv12oo9XnOC/aQmWT3MXCaqB9SPRbT1WiINrDL5WCmdMwd1xHcNXd1vMmAaTGwEfvYq4cR3DB39QDIB22/wi8phUVFfa7Pnwb8/H7tkzMzCn6HC1x9+YibPDqdgVQHXG8Dfz0x5sv2XNoDetzsBVe3ybaeDfngcq3T/mlkVeoN2EmgVU8rMxrz+sYlAeA6dj8Mw0rqcG+JAZWC4hWXFjGclRcUHO/CjiAwcMIDj2qOEdMezEX1evoaxt1fcrPYNhmoQH7i0mYC34avmf73WzJXN0YMxJ7ZBcw078k+NnvrIqRShVuQ/PYPXDh6Tb84OhTi6saSAJvOg2ffYRZVEcw/p5o/FHjMhvQKKrGVttbA74OKhXJSuxMC+eFqqmoMKeebT1fOSdBduSxAuZRd6zhwv/C3ReLCJuZbgPsDxD8dKyVlArnxITQFfAsXQJzZ9lmDt17huelqRFzw+VWbf71n60NqbXVfTYdLb+Tzlj19M2X4L3Xo6k/4Vylr2Xa3ce2e5AUE9xqZLGncnED5s4btFT1JjY4upHi1nEmBlYQRrRniW83t1zgyiSwioHVo3fDHddqWE3zYJVRsFqsbFYdUnFBzX00rgVXcNQp0TwxXw0EzO3X2sU5cIhVQ/bcL+zak89hnnwQLlMSSd+BBCedWehAE6ntJAtYzs2InVxRObfYZ03DXH6hLZ+75wHWRhNRebRkZROQ2WIEwfajQoiBhcqffinVOe1Hz73YlTLJRZt3iiSRy9qASt/or2KhzJMPwKUddKyzp2P+coEuFTxfue4lxqjZSd8HAwS/+rNNaBYJUUtHqbB0Dl0HWCN+ZVWhaB8vPmkrS8yaCtvuRLDPwWF1W12GWx5YC+Zizj0JZk/TqrEEbDa7e7U3NhfTWt77rw9HnkSw8x5hWIQG1tuv2BLPYSrRQ9jIdb/QpQ8qPGmqVd37LV6sYZKa04GwkrzAxe5G7KVglXM3wiJls5IYKx9WjSsCKzesiPfd48PwhbgcMbBeqjeehxPPskF9XbuFsKpbYMs0v/xUZOfB6efbJ7c2iostR3IPVfXLgrH7uf9iLv+tVTXW35DgnN9bu0k2G7Wx6DIsMud0xoKsqdEGi4bG8iVAd869xBp686pQnnYs5HOYP/7a5tdpo7/EQtXOt3WpVsWx2ms5213jJrU1OxD8ALC2ty22VXWvTPSciP1Jx3llKmx0+fg/wYO3hfM+4acOJirmTHtHs1nMH38lsJqKTZvJu/n0wKbPSD9N2HI72O9Qm96UyYT5l7ItbsDc/U8tpb0O3ErYS5Ay0pQPKgF5C8VdyXOJSrgysAIfVtcSVrXsRVjLKkfYjbk2JnShzoNV64rAysVb7crwEQTb7xpKVjr1QpKv7/on9O5DcN2DtpdfJhOaDj5613aYtqrTQncMvTn+p9GGqTpKWndMkcWcSkNLkzVE33xFuKCuuMOCQDdSCILysJr8mW0k+96rspu5wHrsvq+VJiJ2KyJeUHPDlfZY73jW2sDEMG0MTHjHFpSzx1rrjL0ddayLHQya1OITr1iVUwMzfPcEm1cnbcQKNbnSxWW0BVoVlbZy5x9/IWC0rbsGDYXtdil+EMh+0hnM3y+SRhdzseWJuzsjutT5sjDZentbgXTrkSo2LhdJkTIvPQX33SpS1Sxnt31bGc99w7kPKw2qJhXi0ES0DpaWsFjnje4rBKvxf7ISSmlYZRSsGjxYxSUxL1fFBW/+GVxZ3WD/w7w6TJmIgdi8+izBzrvbOKOKSufCTlm70N03wvWFXLQZbj7D+OZBNoDQtzWlM+GWyUR/n/oZ5pJfSOUDe7deeZdNQtZ2q4K7Ph3dVyYDLS1Wqvrjudq7Nh+pXHDcT6LGaW0YT6UwTz9C8PW9bKS1tFMDaFpmW7lf92f5y0x3rBt1wLHmHOgbCJs+tCjpodnBagO2G2VjliSxW0tWWqITT15llfWujv+TrqNW5+6Xao48Kd5Y7+ZvnnpYaq8vcXPcnrDjjx0n/cwGfK4/xEW0e7mcxsCMKbYEz+cfyadeBf7ljjNVwtOn7U9ZBSqJxVrmAatUtdF1O6xhJWE1GRudnCEsFKerhDYSLbwXl8S83BUXYsYJwJZsPyoab6WN7JVV0NxIsN9h9jik40kqBVM+sxUw7ZM3j43KrwV2o98gaxzXC6AAhbRSiTKFKgLmv/fCbwuhA8uArpzjotF1eeOIFOB1DZ4zE/Ob06V6ggRY1rnzW8WB34Ohm0RrsOsE9CWLbG5iRWU0B++LT2wBvQ9el2P93C3eXTvoWGuJdqRpUdJVswsH2IQ+6xGccpZrctEalawCrX66+66iyjoOfv9zeP813D7nuntoE8Dal7TKpu15ixrg92fJPLtjK6basee3bNWFkTvb48y2qkqsSqpaVG+DaMOejJOwOY8fu3te9zxMeYZ049modPfppUTb0mc921VS072DYHUfYapNL6L11xuJ1rLSWz0rWHGhxDgMIPjaTjGqYGVYhK1XTahaiMr03/sgDMWodTfffFzdouCEn1oVTkeeaztRWnVTaW2xtq8HbtVP/xpGfp3goO+FdqN8HLBCMJjH74Wwxr2U921xC6AbQLDn/mHlBZ0YLXPs3beoBIt59D/aa9fgFtxcF1bQEce6SC3QrKfuNDnVayRAcM5FYfqQX5deS1ZV1bZd2TOP6jguiYdKIWWJttnR2vL88+GkRFXFATbYCPb+NsE229n4sm7dbXmY1hZobnReUyVVtTRjnv8v3Ha17KEeGwz9HwWqDPFNWnPqfDSrkB4fVgJ0/eBeKVitVcBablg11GEuPldc3gKryjKwqo+BlUhWi1mBigtlho0Q3GjTqDrol7gV1aKiEubPsQ0WnntUq0WfE7ZYGsDwEbDz7mEuXsTmpKWijI3uv+AMCTRscsfaHyD4xR/sItS2EK3CCRQW1WOuvVRDYLHb9M3f1cYBbR2tRZVKeTWpVIfhOTNs3FfotZuLzd1b5NShjjhW6a6s+1TKQhR1Z2eA4Ie/CMMONLQ1rKqqnYfS2LmHkeaznaQukrw9H9/YP6x6KucjHxSgFXz/JDj6VOg3AHr1CZOYW5otrOKqYzQ1Yt54Ee67JSzPbGti3eTuX4FUhfpZx1JpKVNUv6UKVCJlaXtVdkXtVWstsFYSVh9iKy5UEnZi0SWNRbJa6Nms/E7My1VxocyxjAR6ssUIqzZo9SpTEQsr87+H4KIztLdttoOrPAn7AjYnLZ8vdmGnolKHefAO3Uij3h23Vd32OsjWP8q2KsBQbHCf+IGtG2Uh0OzOVx6pGBoCIcWue4eqlE5dkQBK1aXGPH6vlqoaHaxEbWtF6met3LGKlGGUO14Wo8Q0bQj0Y9e9bSstMYxru1tGS1XVUL8Ac04h/GAxNrUl786txPVZmFd1scAx7nyYdDRBetjmYXiIybs4O53HqR4mTY02rjAKqnex2RNT3PFWKVDprsza+6f7IS71tkalArb6WsbKgmqtAdZKwupNF1/Sn7ATi64S6ktWOonZbxvfoiQrVlCyApvyY3Px4poeaClrxlTMTVfowL55DlbGszHYp3affqFNxLfrpNPWrX7F73VJ3ilOapF+fbD5Vrbaga++iTG4pRlz341w/aVaLZ2vFoRR6kRQONbW5nBu6TQYCa5013LK5zYPMJQg6xysWol2QO6IY01789R9AMX2ZqWr7b4eTR3S10vU9apqeOslzIU/le+a4yTCLkQzJqSbEsyZYaUkCTatcNAqWgASkqAqR8h1aWzEvPYc/Ocm8fwJqB7DJmin3IO6wpOq0jFSVbOCtkBK90TU9io/bMF01HrPrFOw+vQjzB8KHqo4WLnITLLugiwiLLxXKi9wuSoutGO8CCzinVd6cvj/2bmnvPSLfN7ab674nbbfzHVzSasnmwBrFvA1/veQTTXRKhfufL3+gi33HIYEfOFu6G5K4oCafq58bjaqrqQzNov/2svgpSdEgprmzmEXZQsSlUJ6Mm7E0w9lOOaHYe9ELV21tGAev0/XIF/irkkz0ca3rR14rEZ5hKUOvzy4FrrNNl0YsH4xtAuSlYuRu/cWuKlQhuVzFy9V4x4CIsm1KqfOUJ58APY9JLz+qRRkFHxLgQusKv74vfDva/U73vNAVaWkqQp1jVMxYQpNClRLFLC0J7ClI7yAay2wVhJWz2GbXZaDVUMMrOI6MXckrAjGjc+asWNeBA4yt19HsN+hVqpJZ2zE9cxpcOcNuiTIZDdPeVLnlPguHpzJwHQ+mzDEPP8Ewe77hAt5cQPmzhvhf/drSUPiebopO84yoBefT4RRe4cG91QKmpswr78At1+jIfCJsskEHlgalbQyBxhsrrzYGvI328ruc/qXmOlfwh3Xhek3Ng2m1l2rlFpU2iA+rwOOVSQrDauFyiywsKBmd+tmpZtUOlqTqrLSSjjXXgqvPIXb52vuPNa4Y0gTbd0l52Q6C+YMMVeMIxjzS9dRJ18cOiLdx+XP77xmm0WENblanSPiSWziPjGgyihQBTHxVFoVXtKGCtghhvWy6yMYN35dg9Wt2LSKfjFqYClYrVTb+BU4viHYTPhdy7xtqlMrMoTdeVDSS4NabHXueE8Kzfr7w7KlUkoYtwjfdZ/R5yWjbsTNgEr2/jZsMcKZY1Pw1MO6SuUUZxfsQdiII6Pm1kiY1ya2p4MKEkv8mOmkNfGi6XI+q+JYW5SEXUsYc7dQOVr+BHwt+NlFsP5QlyZVaW1P1V0scP/2O3mwzMJGjHchTO+q9EwPi5QUF56TPgMIfjAGtt3eSnNduobJ+XNn2xiq156Dpx+B2VO1FDoV229yugrLCJTKV+Gpf3hhCtr7tyRGBWwi2lCiwwzrUcHRrNnAWl5YqYqbAqtJMTYrPFjpWlZ+EvNytY1fwccI5vwfpYBfAIdiC//jQhSmurm0YhuJ9iFMGRJPlra1CGjrsblkhyJ9+EIb01SnivYiTEPq7i3gJe792yEdbKJjspvfIrcoezipJaPOr6iBAhYBQD22QcSOKp7oc7fY6t33S5UMHRe3Ko91kZrjQnUfSNrVycAYhmxCcNixsOkWFiRLFmGef0J7AT/C5uD1dpJVd8LATrnnFqv5L1SG/x8ghfTaN+rdeXvf7U881+IISilI+XYqDapl7ZCqsnoNrCqpao0G1krAqgW400lW/d2N4xvYl3iw8vMCF7NyeYHtH6kU5rzTxHPT1d3s/bAdUwZjG4CurxacqLMt6jjq1AKrU9JhkwJP1t3k/R38BhDtp4i3gOvdvvu675cn6gx3zmrc1pto5yANqzoPBNI8ttHtL+MWdR9sBPwgYKDy4FZ581pVx1rnqYCy70VqEd8KjC5xFRucCviFerDoKHS/A3itB0ZJXN7Tbdu6663HMiVl6rSwuM7hEJ9KI+pvs7JT+VJVYxu2KlhFKqAPrMw6Aqs/uAsnsOqhbnyxVYidQnsDV7htfEfJWmpLe65m7b2Rn7UEszBG6hBVNsCmX/R0IDDeTdyibubGGAnmE2X0rnDns4+6iUW1kKd3o5pXrSetiCTQ6uYlLn4dz5ZVxt/cajrWhZ4KWE807arJSXBnYjtbixT8hZNyRIob6OAtdrecUjnluxao71uo5p8FHsUWjezj9jXEPSzWI0zID9x+007V7KJCSJo9+1LeA1WT5/0rZVRvpjiuapXZqtZoo/tywSoIbEF96+rXsOqnVBUNqyVlYLVCbeM74LEC0RZIEC3r0apAm3cLwV8Etd4CFgkxpzxTOrhPp1jklY1Il88RaVOi+VNKHW0hmrYi5XGbPZvVQgWYBsJaUnl1P1YRxj/paOrVfaz+PJd5JgGDbRR6tbuvapzktoGThLsqUOWVgXqZpxbPV98pYJTqCK6dcwEaOvG6Wnn3skRLEld4ElCrd+80xtipllA6tUbXszLOQWTM2DEkwFoZWF33FzGuzsA2chRYiWTl11/XsJrfBqzyrB7JKnIKPGmgSRma88q21KLAUOfd/A1K4jDuHKTcDd+sbuDFapHnYgzPEnvWoqQr2Z9eAKKu5EpIaKIGLlKSK24/aXWcEqBY+RUca61SgZcSzWSQxatLAKdjvG/akylwbPKkOC1dNXjnROZd4UlCS4gm5Osy3a0UF8tr8c5pY4zqFwcqLX0WJKrVfP+vOcBaCVhNwmabZ5Rk5bfhWuzBSryCWvRv+gphZWLEd1GDqpSqJYtCigkuUh6zRYTxYloqEnWhSe1TnshLPbveImUXWqRUlZSyUVUpsOC+S/ahJaE4G4uoeSkl9TYqY/RXdawCj6We+15LGakY9R2KI8MDTzKs9aRNXT9tqZI400rK0vPXRSS7qvPe6kmlTR7o/FQaH1S6DEzOV/++SlB1emAtF6wWN1hYfTZBw0pKwfYuI1ktULDSeYEaVrnVfsFCQ6OWrCTaWhbbMs8u0qSkBEkfWUo0t0svsozaR4WCQgXR3oqLlNNhqbKZZRRoKpUxucnbhzbYL1L7afQ8WCJZZTrJsS7xVMBs5F64+Bpjzv+RKfGAaVVwCBSAmspIcRrgck5ESmtW89PxW02EjVC0fUxLkrqKgg+qZUQTlVs86azTgKpTA2u5YfWnX0uB/Hew+VFppQZ2p3Rnm/nEp9p8dbCKXwDNnooh1U4rlMG12XuCxqVLoNzZuu2SSC2yGIyC5FJvMbWqeyevpAeZV6VaUC1E8+98qMjiQLn5O8uxaqBGmiwE48Yb76GiQaUlocDtJ60cBYuU/UpLcX4gsrZhNhGNSNfnRcd06aDXFk+yWub93OyBKudDuXCsnWhkOiGsRq8grF50bub+xLfhavJgJcCqZRUkMXcgsLIeFHLqBtaJxK2eYdZPQjWe+iK5fDqHrcK78Zs8A22L2k/W87iJly2jwKIXsPY2+ZHRgadWdZZjbU+ZIN8RIvZFkTYFJlllO1ukpMM4KU5/j0hYKTVfefB2VVJjiuI66r5aWOqcaTU33xlB1SmB5ZqFPgTA4ceXh9XnEzGXnS8f1bCK62wjF7hWwUpLVivUiXk1QSvnqRWyuNJK5cl53q9Wz+hqYhaxSEo6NSRNcRpNS4xKlPJgJfuoUAsrp6Qhv553BALO09TZjjWSwFsGVr7anvIcAzpwVufkLSOai+qXYcF7YOlzJGCU6HxVE7vI0N5CtKZ63DnrtBJVpwWWg9UbuGahwQ67thdWj2NrTwustGSl23DVegb2Wg9WLZ0JVm4h5z1pRhZc2jP46viaojZKcixm7Bh9U+vyti3ePv39xcXemJgFq9M88h5ciqAi8+rEx9qe+8BXB1H3XaX6nmyMQbysFGfGjjFKZTYesBqJr66gz0ur2rIx9qk1BlSdClhFsCrXLHTCO5irCo1C/4HNQvclq7g2XAs8WNUrkTySE9XJLl7eu1njWn3HtV4quhGVNKPfEyiPGjFgMBQHCeYpbo7ZWmZOuXZ6mzrVsbbzPtCqO55k6Es+2RKSZqnzYpRU6RfQ09UVUjEAzXtScVEvwDUFUpEH+VedmtMuWLn+e+bJB+H+W0rBqobiBqc+rBbSAc1Nv4JzFHgqDp6aELnB2zoGtT//tZTKg/fk921OQRmwmFL7WROOtZ3XRjdqEIhoKU4DNk9x5HnJ74w51ylKN4YoBeD8ih5fO45/1d77nSmXsCyspMtIMayagb9jy4KUslk1Eu3GvID45qatSl1ZI584nQymJdXbdeAcaKD4bbGMJxmaFZFyYuAVB2AT97qqrsE6AyxXQuV1YFBZWBlji5E9cZ/A6lwHm7bUQN9m5fcLXPVJzMlYV8EdtKFCrjUQX93AynxFByn1ngYxanQxrEQNNAZz01XScHMhcKGCld+Gy29wqnO0OqS5aTKS0U4pMrmfVtFY7cCKFKcbPoJgv0PC6okCq4oKB6sr4b3XwJZ1/Yt7cmlY6c42Pqx09HpnyQtMRjKSsaYAqwhWR59iPX8EUW/gonrbCql2nsDqMgcrMa5LXaR0G7Cqp3PkBSYjGclYAyWs5YXVy9iod0NxSeM0YexLKVjpvMCVbW6ajGQkY10Blhk75o42YTVjim3lZGH1JLbWUD8Fqx5Ym5VOdfBLdfipNp0hLzAZyUjGmgIsB6uj6VFDcPD3i2GVycAXn2CuuEg+8iTwVweqvmVgJd5Av4yt34Lrq84LTEYykrEmAMuMHXNVAVannWMbXIqBPZUOYXXl7+UjV2D7p/mw8hucajVQB4Suqn6ByUhGMtZmYLkyMT8BimHl1EDz1MPwyJ3ykYuBFxSspDyMhtUyonFWEragYdWp8gKTkYxkdHJgFdW0qumrYGUlK/PUQ/DIXWDtTJc5WPUlDAjtTrQjTGMZWK3yfoHJSEYy1kJguZSbKwqw2mxLFRSahrzB3HUjvPaswOo4ByGBVa8SsPJ7xcVFr3fqvMBkJCMZnQhYZuyYTVH5gYWaVgKrXB5z+3j48C2w7ZB+7WDVrw1YLfZgVU+SapOMZCTAWglYDQFuoVQyc0M95oHbYcJbYMsZn4c1jkuFUIGVFNX3JataBauvpgVXMpKRjLVGwroWibXaY99omZiGesw/LoH6BQKrXylY9cYGhErhPYGVtESq92C1mCTVJhnJSIC1EtLVHcABDB4WBoaKZDVjKuaWfwisHgTGOolKcgLbgpWogrpof5Jqk4xkJMBaIVidg8RaHaWi2FMp+GIS5ro/y1sfdGqgqH9astK91UQNFMlKhy0k0evJSEYCrBWG1RHApQDBMT8MY63Safj8E8z1l8pbxwG3O0j1ipGsdLslKb5XRzRsoahRRAKrVT/M2DHDgI2ADYFh2DzOPby3bQQMVb8vwlaElTHFbV8CU4EXg3Hjs8nZXSXXqj4YN75ubTy+lSrgp4vwBUefBttsV1ADzbOPSdE9gHOw3XB6K1VQWsfrelYaVqIK6o64LZ4aSAKrDr3ZRwIjgU0dkHoDI1bhV36A7Xj0XDBu/D3JFVhpLedQYHf3p38H48Yfsxq+d9XuvyMrjpqxYx4BDmLUaIKDjrBG9lwO87+H4IX/4gA01sFKVMA+hEGhXQg7CAus6tWmyxkn0esdD6cdHZhGlgXT4GHQfxD06Qu9+tgbZ4Ohro6ZG917QPee4e+tLVC7IPx9cQNmUT3U10HtfHjnFf9bpjl4/S0YN/6t5Aotl9AwHjiocK0a6mFxHUCfVS1prTEVR10k+0H0qAmL8C1birn3Vpj4LsAc4PvADKf69VAqYBei3ZilFVeDgtUikuj1jrqpMsBebhNA9Sx64/ARMHhD6NXHAqmq2mUoEIWTrgAsfw+8qsBVXWDQkPD3QUOidYO/dyLULYCZ0zBvvwKfvD8UOBY41owd82/gtGDc+MXJ1St7XbcBrgN2pUcNwTGnwpBhmD+dF70+Zu1ZLitjwzocIDjiOGtkn/Yl5o7rYFEt2MDRHzrwCKx6KFjpdtstHqwaiIYtJNHrK3Yz7wgcBnxDqQlFcAqGbAx9+zvbYwkwBUEUTEWQCqKfC4Jyj8zwtf9A6D+Q4Gs7wZJFmHdfh+efgEW1RwMjzdgxRwYXXzMh8rlkaIHhCqALw0cQHHWyXYcfvSfS1UvBJdfWxUJrDT6XK6QSOsPeZAYPIzjux5j/PgDvvCz//o+zWeUdpHoTGtm1zSqvYLXIgUpgtZQken15r0k/ByiRooZG3rDdKBi2mZWc+vaHisp46PhgkvLVQcwWJ2GVkrhkoWhg6b8ZA/k8LF6EefRueOtFMSnsAkwILrnWRD6/bl/rcYDtJCwB2gDLlmCuvBgW1QEcCdyjnjyRE9dRa2lNUQnrAVsd9JJz5W+fYKPcr8Z2senuJKqubqtSoJLutUsdoBYpe5VfzjiBVembZVMHqUOLpKjhI2DTLQg2Hg4DNyiGkw+lwpaK/p5Khe9NpdoHMWKgZVTXKeNveQurfB769CU49jRMv/Xgv/d0AZ4ARpnzTpsGmODia8y6LHEVasuh83Tt9TD/vV9gdSdwH9FO3JH+kGbsGNapRqrqxE0DXgLOdKDp4mDVgzB0oTthKy4dviCwEntVEhC6MpAaNZpg861h0GBrBC8lQRVApCCUigFVoP7nvz8ObkFQXh30JSofViYPuRzkc9Z5c9+t8OyjAI+7Yw67JF98jVmXoBXph9CjhuCE0+2DSGD16rPw8L9FcNjdraVASVe6J2KHdX9eY4zuwbjxx5ixY37iJKM01oheqbYq91qB7WyTI2xpLr0DFyt71TKS2uulbooMcIJbtHu7hwL0qIGddyfYdEsYMqxYymkPoARGkpVQ9uegDYAFUXuWL2FpKSufD9XAfC6EVi4HuSzksgSHHWvtWvULDgD2B56S+8ic/6N1poKse0jdgqS9fftIa3OUh8YXnwisAE512ksl0c7TumU96nWNGisbOFpPtNNtRm0VDmR4J6tJqX4iVRVVCE1gBWbsmNEOVFGb1D4Htw2pAkg84GgQpdNh5Vf9t6WLoa7e/m3OLExzo/1sYyNM+cz7Pk8F3GQ4dO1uf91sK/v3jTaNUQuJSlYCrqyFFdmstbN95wfwr78BHI8Ne2h1X5gD8muqarMc90DYHd3vhxAE0FCH+c9N8vbTgY+UnThQ6y/rzp0ArMiutS4AS4aGVlqdrDzKw0c0kl2kKu0JXOdrrytp6viIyrfdKOtN23Bjl6dZClIKUBFIpaOAmjMDmpsxc2fZ8IL5c2DmdPj0g447Fv3LHvvD8G0JtvyaDTCuqnIAMyG4tITV2gLZVoKd98BYYO3qTAuN7uEWFKSttRRaEVjtc7AtKKDT3nI565lvWIgzsN/tTC8Vbm3LGsy6cyaXJeX+zroIrEDBKvBE0FalP2cdmMQDKPaqJCA0FPvPcirfloANAtx5T4Lh23g2qTYgJbXHghTUL7Set3mz4dOPYPYM+GxCW9ORmmMpYKa7RtJWbb56KI0ANnD2SoAv3Oekltl67nUALz4BLz4RQuyYHxF841uw1cjQEK+lrEwFZFuhfwY22wY+m7A+sBXwqZtXk7rX1jpJy4WlvIBfqklV7TX33QrTPsepymcQ1pHztZtmZbvKAsGael46sryM3Cya6HlF8xb3t0a3+Z7AdRJWSu07vGCbEmlqsy2jkIJiqUlDKpeFWdMw8+bAZx/DxPdh4dxSX/2xe2hMJ+yOLTbFKmWLFPVentrVwChsXmG6ID19PhFmT9vEGX1zbsLT1QOtJ9YJsx5Qwx3XZMwd18AhxxIcf7p1FAi0MhUWWtmMPcYNNxbIboENSA68+86wFrWH1+XFi2CVTkMqjXnmUXjjeRzAzyd0bFW7ayUqX4sCV6snWKyzwDKeVJVWJ8soHbpZbdoTuM7ByiWNn4CkVMjNOXIXL4gziDeOp9NWbZo1AzNtMkyaAO+9FvdVXwBzsYnHnyo4VZXYeniASqttI2AbJEr+pJ8RHPQ9qO6COfkQ+b4uys6UUsBqIWzHVgEMBAby0O1dzVsvEfz6z7DT7vbYjAmPMwhswxI7+rjNB5UBzNogZUVgddCRBKP2jsIqbbtM8fh/cA/9091Dphdh+JCcMLFZtSgDPGsy3DMdCCtf3BSaa5C1Eg0GXedirNwNGdqnetTAvoeEap+2TRWkqXQIqalfYGZ8CZM+gg/e8He/BHgf+AyYiA05ybqbuIt7+lYC63tSlAZUxrNFptx7dgBsrs3+3yU44afQq8Ye09OPwJzpAPOUfQklaaXUgpG+krMcSDdj1tR+5qffJ7j3VZAcxcA7fjt6Yws+5tRDsCChs4Z6vuJgFYmxKjykMjB/Dmb8H+QjvwNmu/MiMY+Vyr4nsIoLbTDrKrBQRvWsOim+S1XfZOucJ7AIVIOHEeyxH2y+lTKie7apVBqWLYWpn2G+/AyeeSQOUO8A7wITnBRVreAk/Ryr1GuFB6m0glSKqANFpJrtgL70X5/gpDNhlz2tFNS4FJqb4JZ/yHw+IRr/g7c/vQkQPwY2Bwaae24i+Ml5zv6mzsG7r8v+G918Wrwtqx6WZq2F1eJ6zHWXyUeuxsanSdWTboTB2TkPVP66y6+p66gjJayc97M2wOfVVnjfOhJDUwyq0YcU26e02ldXi5nyKXzwttS/1+Mt4FknSX2ppKcuzj4kP2s1r7KEmpfy4KJvZgNsja3oADvsTnDq2bYiw7KlhbmbO66D+bPA1riaqPalX7V6KN8tc6l0tq6B1NdCSzNUVIRS5bxZMGca2BCaLg5Y4rQRW6iW2tcuWIkamM9jbrka6uYDPALc6GAlgdlS+cQoI3vW02qydGDQ6NqgEsqrH2Hrv2etr2O13KCqr8VM/ADefQ2mfqZ3NRN4E3gGWxCvSUlRA9TPXTxJqtJT83xAyQ3tX8O8e/9ewHAAjj6NYJ9vW6mqqTGc/7uvw6N34Wwo92KDiIMSthId9pIhGmC8NQB9B1iJLZ+zMVipNOaJB+Tz9c5OozMkJI4vs6Yak0um2viwuvVq+HISWM/h7wir9op0lVEqoIQTNSugR7zx66RKGIwbb8zYMYGCFDE3jdGv6wCoRgNnAwe0CaoGgdTr4p6W8ZGD1NPutYtS8/qr37t4Kl9lGSkq70nBec/2I1tP4GBgKDX9CU75mQ38lOBRsa1N+Rxz1e9lvnc4g76GYd7bNLQ0sHYHNqLvQIK99oemZZCvtnBcugQeLnQFn+FsNN0Iq35oF/4aB6wCrHrUEHz3uHhYZTK2O7q1V76HbThco6QrbbdqIQxjkBhHySBp1nbjdVYlFACpnCJT6j1rOah2BC5EFVKLBdWyJZhPP4LXnoNpX/iQes1JKpMUhPoqOHVVEpWv8mkpKqUkqDg4ZZW6oH/+GnASUMk2OxAcdSp06w6treExpFKwsBZzbaH09c0OrNqwnldPef+pHhCGSuyJTTciOP4nUFEVSnCAueNamD0NbOxXk/uML0XKcQdAYMaOCdaE+y0Cqx/+PJpqE4HVI5J204QtM95CfP9OOc9NDlJLCUs0rTUpbx0Wh7UOB3z2wFZ8PBYIvX7bbh8a01tbYepkzKvPwMT39McnAK9iS/J8rBZibyU9dVU/d4mxS/mZBb69MKvAoX9u8f52NLYkCex/OMGe+0NlpY2H0o1wF87H/P0isaU8A/xbgUODsoVoYHBWSVopp27+BCA4+Wc2paelKQTjGy/C3TfiJIOPlH0q7TkM1ijpyt0v18bCSrIRHKz46F14+A6B1SkORH2ddNXd3ROBuoZi29P5uX5NuTXadpwhGStz843DBnxaMeqgIwl23C0EVV0t5r3X4fUXpLAhzsD8ilvoryg7Tk9PzdM/y1bhSRUoKJkS0pO2X2hQaUPsb4H9AIIf/Bi22d7JSXn31Hdeu9YWG11tYfUkcLGbF57hXmLu4oKEDXCMs8NUsd93YMuRFuoiYUx8H/PHX8j5etPZq1KeOhN425pwv0QrLpx2jq3oqmPrBFZfTMJcW+g2Nc7Z8ARWUlcupa615Ohq215Rju6aLlgkwFpxO9UFBYP6dqMIvvWdMI7q84mY99+Et1/WH3sceBS4TYGnh3vVYPJtU1WeRKEhpaWonAJRS4mffUmrH3AlsB09awhOPAPWW1+BSqkouaz1UllbyvtO/e2qVLQUUQeLhpYsnCw20NEav0YfSrDXATZC3/UDYP5sDavHnNOhh7tXI6WyWYOi3COwGj6C4Lv/52rgB8WwWtyA+fuF8tE/ufPd17NbpdQ1144IyVbw2+GtFV75BFjLf+NdJaoMg4cRfOcHti5Rawt8/B7m+SdhxmR5+yfAc9iYmakOOl0ViKq9rUsJA3oqRt3TkpQPKF+qavXsVVlgM+AaYDOGjyA4+PvR+u0S+5PJQD6HuXW8htVvneFb3OmV6mmvQ1skHUuMvjeK2hmccKaNQdNjwTzMFQVD/jPYOmv9CT2dAkGtZkZiizrjoiyC1dFe78502qYjCaz+coF89D4nhfcj9ArqLlOt7mGgK/ZKo+FG1gKvYAKslbvxXsFWDYDDjyfY/uuQbcW8+xo8+aBUewR42UlSd7gbpSLGUF4ds1XGqHzacJ6NsUO1tEOS0hHhOeDbzo7She1GERx6VHQBaVhVVGCu+wu8/7qWrFqw8VBiR8kog2+LUg1F+tsW+COwS6FZwtCNo3CcOwtz/WW2coSF1Q3Y9B2R0ioIq300Upw4T2dclMsFK8Bc9luonQs2ofkWBSuxa2bUeV2qYFWv1MFG1tKKvQmw2n/jPYYuoFZVhXnteXjhCQ2qx4BbsR2uJd6oQhnJqzxVrzpGmpLF3kxxlHJLGbWvJQZQGlIihRzvnASUqgJAOmNfKyoxTz4oOYofOFtK3kk9PSiuItsaM+dzsVUoiC0+Jw13r/2TPoeXYoNgRYpoVtKV2Gaa1N+zdEJ3fduwCh8KGIP55xUCq1edVN6PsC2enGvxvmpY6f6dy9YmI3sCrBW78YYBBzB4GMGu38S89hy8/JR+y2POFvQs0eoGugKrHy+lPX0Su9TqSSe5EsZy33De6j1RczEqpHEwPQogbHwbxD/tKypt0OYDt+LAcIWb2wDCYEXXyaIImM3YkIVjge0LDgmdyOskOfPOa3DndXIe/wH80y1UXc9JkuibYmw0LUQjuDvLPbONc0wMahNWlVWY8X+Gd18B6xG9KQZWFepciBpYB9QSbTa8VhnZE2CtwAjGjf/SjB3zODO+PMDc9Hf582wHqCuwuXza3V4KVpWe2qdDEVo9tS/r2Z80FHxpqhykjAPMNcBRRUGKqmQJFR6s7r9FYHWWWyQDCFNBBLStRIsz9gJ+DuwGwBYjCPY7zBrzNaxyOczj98Hzj8n5/KVzSvRR6rPurpQl9ILpzkrNnc1OEym8N2q07dspsNLnWmD1+P0aVle689rPnctuClZis6p3sBLJKs7IvlZWQEmA1X5oHejSbfZwxuAH3dMtrWxOGlRV3s9xnj4NGd/b19oOw7mfn1nIA1QBvVFXuh+kGPe0f/x+uO9mgdU5DgwD1NNeghUFJI1uYR3hbHxV9KyxhvytRqoa7+776utsUKhNQZoL/Awbxd2baP/KjFKPGwkbloitRiSsHJ0kobeoSmhMLasIrP57P9x3k5zrfzrnRV8Fq0oPVmKvqiXaHd03sq+VIwHW8kHrBjN2zI0UVx/QsKqidCMOiMZNlYo89yWocpJUwa3vP1EjnYHFld6tR2xEtbWjYL2BL/xXFtCvHBTKwaoLtkHEdgUVcfShBHuMDnsfRlTAV+HO62WKTwNj3aLTvSt9CU73r6x3EoVuWtIpDMttwsp7MPDZRLi3AKvz3Wt/wij2Ss9mVa/UQIHVUs/IvlZXQUmAtVzEKsQn6goE2rheGaP2pYjPrSuXItNawmiucwHL5mZGSuyW8k6l0gUVEMD8868SOzbNqbrNDlZ6AQmsumK7Sm/ljh32PYxg5z1sOo+cJvECLluGuecm+OhtmeK/sPFY3QjjiwRY2vPoSxaLFLCaO4vBvd2wqqy0KUifT8T8+Vfy8ZvdOe3vHgzdlRqovYECqzp3LsTIvs60xUuAtRL48iQsXRUhTXEtojiJKkf58IOiAMn23IxlS+z6QYqVVfYz118usJqI9VAFHqwq3O4HA5sAwwpfuP93CXbZA7p0CzvjqHI55u1X4b/3Qf0CsJHrf8HW8RJA9VSSlfaGZZUqqOOMltGJgiLbBStRAyuqbBG+P/1SPn69s135sIKoN7BWbRpWLaxlwaEJsDrqxjz/R346iF+MLq4PnKHY1Z+Nka5KqnvLcxOWLbGr7VUaVtf9Bd5+CWyg67XuvtAJtn0cpPpjww2gpj/s+k2CnfeELl3CvoO65nxdLeahO2BCQaq636mARi1OAZXYraS8dtYtyMWUD4r8SqWrkrDS9sGCzaraBoZeXggMfUDBqkZJsaImLnXHLaBaqFTipXge0nUhnzcB1opLV345HS1BQXGZlVwZSOXaY5Nqx+Ip2ca8yBNYWQXNTZibr9KwusE93QVWm2BruK9XcBZssqWtjbXZ1nZBShNUCINOW7M2Rs16GUWq+iu2+GBXBSiJ5RLbWEpJVsucFNGgJKxOJVW0H1aV9nwvbsBcfC4smA021up5J8W2BauFHqz8c7DO9ERIgLWC96r6WafK4P1cSrLKlwDVCqeWlK2tFOMJZFED5g+/lMUzCRv7U4Ft27UjsLFbTHYccSLBtjtC//VsGlLOtpMvgEokuAnvYO6/TdQ/3H7HObtUDWFKj9S2qiaaftTqwWqxMi53moW63LAKAh9W/1Gw6uGALbASm91CwsYddaxD4QsJsDp+6MJ0pWrZazBpUK2wyhezcEqXKwlSxa70CvekD2H1MrYJ5wjg69j2XV0B2GIk7HMQwfa7WnWvtcVu0mZeq5pzZ2HuuhGmfCpTexobU/SZW5R+8b0uSqqSpgnNClZiXF8UA6vsGgWrVAoz/k9yvt/D1jwbQDS9ScOqXklWYmTXoRzrbB/PBFgrLmHpctAaRn6HEr94nqGDamq3GWMVcaUrteSSX2hYLcHGQQ0t7Pi7JxLssidstAk0N9s669lWW1VBjOpiq6pbYINMX3tWPv0GNgfuGQepvgpWGlS+VNVEWHRusdqWKVhl1yhYVVVbyWr8n+DNFwA+xwbH9new6qFgJYG3AistWfk5gutsH88EWMtjuLIlofEkKDx4EQOsDlH7SsKqVLmSgmRVGaqBoVoyCYlGB9hmRzjwCILtvg5dulpItTQXWsaTz0VhtWwJ5uVn4JFCCePPsakoVzso9VP2KV0yJ6MM6zpsQQzsSzypShbpmqUGFmD1Zw2ru5WN0IeVL1kJrOopTmhea6ovJMBavVJWvgys/K3DSp+4tva3UK4CgA5bqKyCzz7G3HC5wApgOAOHwLedJ3HIMFtEr7XFNoIQUPlSVeNSzItPSdlenGR0L7bWeKWSqLp6EpVE+QdKRdblfAVWccXnJP1nzYFVVTXm0bvhzefLwSpQsGpQktUCisMXIqVi1tUKvwmwVk4ljGu8YbzXDq3RFFk4bZUrEVh9+hHmD+eGO/n+KTYcYYdR1h6Vz1lYZVtDUGWzoVE9CGDpUsxL/4MHb9egehobQjFf2an8uvMaVLp8soDKh5WUj9FJvGuON1DD6t/XifR0n4K5VAv1YbXQg1WdUonXylIxCbBWk1qobmRWJZzaXDh77Fu6AoAsnk8/wtzwVzjudIIddrNF87p0swvOGDB5K0XlsqFEpY3qtQttdYowREFGNbbhxkEOWAsIY9KasMnhLe51llt8UtBvqacCLlFqYRMxzSvWYFj9w52XfkRLG5eSrEQVXCcDQxNgrSZ4rYaFc4RTA8sn1RYkK2ceWW99gpsec/9z/w8CJ1m5LZe30pSACmDpYsx7b8CkD+37+w2EBXNKTa+/2/TYxvu9Dlt1dQLwNrbChVb/moh2d/nKG+6uEKyefcyHVc7BqqeCla4UWquAv4B1PDA0AdbaoH+WS7WJS6qtrIaqKqjqAgMG2fy1TIV9n0hWIhhqcIn6l05DTV+CvQ+E0d+OhkdIcKjkVRoD9bVQuyCU1pYuwcycBksWwZTP4eP3oG6+9NIbCfwA28fwDWxV1teJ1mvvDOk2my4vrPh0Atx4ueziWgcaKRMjamBWwWqhg5UASzyCS1lHA0MTYK2ZgOqHLWOzAzbBeHeIKbpXlFRbaSElsKqqDv+ezrgAT0LblFE+AUmnIeMsTpIL6FpPBR6oIARdrxrbgCObLdi/giHDlC0sC/V1MG82Zurn8M5rMP2LzYHNHbxewRYXvJ5O0EbdeWBvWV5YmYvOkl3cS7R/YFdCZ4O2WfmwEsmqOYFVAqzODKhNHZR2dKAaUaR++m3M/Ty1iiq7cKqrFayq7KLKZCx4wEpBGjq4fngZwKRDKUu+Q28Fu5cJJTJRI/N5u++8txn3/x49oWs3gqEbw+6jYeE8zEfvwfNPwKLaUcAobK35C4OLr3krlAK/EliF4SJ77LsisJriwSqlYCWS1Ty3aclKB4ZmE1jFmGGCceOTs/DVSFCHAXs5QA2NvKFHDWy7AwzcgGCDobYrj1dauCggVBaPQKuy2sGqwklITnbJayN7VhnZVTf5VAqmTXaQSoWSWUGqcvauIRtBq0hVbsvlQkkr79J3Cq/5KPDE6P/pR5i7/ql7N54bXHLtZYX3flWw0h7YSNUFd86ru5SDVW+iHW6kntUCbNHCuUq6khQkaXqaA3JrSAfrVbt/7/onEtbqA9ReClBRCWrwMBi+DcGA9WH9ITZaXSQdgYivosXBqrpL+LvAKiMRBUBgoK4WFsyzJU7mz4Y5s2DWdFhUDy89seIHuc8hFkxDN4aqLgQbbgx9B9g5mDSk81FIaXhtNZLg13+23sgHbwO41Jx32g7AMcEl15rVAa4VgtWiesw1l5aCVVcHK10ix1cDaykRxZ6smkQlXN2Q2tEB6lCxQfkSVLD51jBosLX/xAEqsjlJJxN2tCnEWWnpSv42fw7Mmo5ZOA8+nwjTJ8PTDy/PIcwnLKHjd1cW41efwl+efih6/PLDplvDiB0JthoJG28eQsp4amMmY438G22KuelKaFh4FIA577RjZXfBxdeYVQGu9sOqIgqrC8+EeTPB5gdOwRrYRbKSPopNROOsNKz88saJRzBRCVcrpI4oKUWNGk2w4SblJag4SAVaDRQjuzzpnR1lzkwrMc2cCp9+rBs7xA0J3JTcvcVq0TQ4MEkxwgr1szTMkEUon5etj9tHP2yQ5CbYROouhW/uNxC+eSDBqH2gb/8QVhG1MWeN83+7CBoW4kDyA1QqVAcH4rYNK3FqVLqHwqJ6zO/O0rB6WsGqq1IDG5UaOM+pgdpupQND18i2XKtbJUyA1TGQOqzIFjV4GHxtJ4LBG9m0F4GQAApCQ3YpQOmfU+pJn6mAhlrM/bfDUw+WmpoEHUKYyyjeJ+nGLIGcEk4A0Qqqunpq3oOdjlSXIMdGZYcRt3xfbL33HYEtCrPb+9sER51i8x+NceVqXHR9ttVC6/ILpEzNn4HfqOMwqyQfs2NglfFgtTAGVrVE61qtsVHsCbDWZEgNH2FLsbRHihKDdt1C6zFb3AD1C61Xqmdv5aVLRxdPOg0TP7AVAOyiARuQWe8WSd5BRmpOVRJNNm5RoGr1VBEBlt50qWeBXbMClLzK3yNVFYgmfvcF9nbgGkT/9Ql+/CvYZvtQ0hJgZbMw7QsxaM8FdnELvrDflSzLUx5WEogrNdirraBoLjkXJr6nYdWXMC2pQsGqQcFqTglYNbOGp9wkwOq8F2a0gtSIIkhttKlni4qRolqzMHcmZv4cmDwJXn8u/IIROxOc8jNbKSHwmkRod/qEdzC/+bF86h3gcbdg+hA2c5BSLpUUd+vxm7JqsBAVAQvmqLyCXbPamoi2jM9SXBq66FS6eR3uJC+C3/0DRuyooJUteBrNHdfBk/eLUfvkmO9Zkcqs7YOVlDWWygv/uETK6HwCPELYRr4bYR36phjJaq4HKz8wdI21WSVews4JqrOwOXNtQ0rglG2FuoXWrjR7ho34tn34isfIrxOcdq59ivuQymRc6/gM5vnH4dLz5FMPYIvjrYeN95EGp9WEDUibPVjprjwt3sL3O/LENc3IKmi1UNxxWkPKN9jrnwPgIWA6cIi54CcE//iPVZ3TGchnIJ2FVIrgkKMxFli7OjA0qn1kWU6Pmit4uDKwmgo8p2CluzI3E+YGznfAmk+SH9hhIwFW+Zu7UCOdHjWw7yEEwzbz1D0njMybbVW7ebNh4gcw7fO4XS4GXsPm040BqtluV4If/9rCKq3UPw2rTAZz5w3wz7/Kfp5wasYgpfp1cQvHeEbcuPZhpZqyanjliO/wo/dRVOKZ4iYdaaKNOsQmlnbnoR8wylx1McGl/wylUkkD6r8e7LAbvP3y+tj+h/8j6rXMmrFjlkc9vHYlYDXFSbTVymZVqWAlrbjEG6hhpaPYE29gAqwOh1UNruww+x5CsO32hdrczJ0FCxycZkwRm0YcnD5UgPrEQWYrbEniao44keDAIxSsMmF5GAFWLov5z78EVlngKbcABiq1TwzkOQUqDRdfBWwhvr1Y3BYHrjhQEWMDSxNtgeZ7HyuctDKUie8N5pMPYYsRUWClUvD1vaQF2Z7YvEO/9hjtgVa07v3/lW0fLwG45vIL4mAlamCl+36BlVRdEMmqnIE9iWJPgNWhY0PAGtADME89DAvnwyfvl3r/K8D7DlJvAjO8xVmJzQ28DajieycRfOcHxV7ATCasqpDL2drrthNzDnjWQaI/xXWmtKon9iVtCG9W/29pQ+LKxWxx1VONZ/cq1f7Mh5XujF2F7YU42Lz7GsHwbSBIR2x/webbyBft6GBhymxtw+q0c6LVWYtg1cXC6qE7fVhVOcnKh9ViJVnNU9JVkh+YAGv1jGDc+PfM2DGvMumDXZn0gf/vl7Feoved9PSRtyArsLWP9ALdAttGqxhWkbw9t1iXLMb89QKBVa37jkqnAsp1E0mq2dl2pFSLLtnSqKDV4klXpRq45inTJ7EEGOKA5auCGaKdsaXQ36fAvsyabm1/GaIhHRnpK0qVA1Y+DqZm7JggDgRFsOrTj0gNsVKwuu1q3Pl5Wn139xKwEpvVvBhYJZUXEmCtFmiNckb3PRycpjgJSi/ECrfwKpR65res3wb4G1DJ904iOOzYaAJxKoh2TJ4/B3PuSTB7Gu7G/8TtX7rMQLRyp9RBlx5+unlDUwmpSrceKydNmRhYtQWsoIxqKOdJzltXN28bNNri/AS6OsQmw+U7NsN6Q7UNLRvjNGg/rHRZnnhY3eKOx+8d2OLOuw+ruMoLLQmsEmCtHmhdfM1T5vwfPe0ZkTMKVhpMAhX9t4OBMwH47gkE3/6+ddmLBFFol5W2r9MmYy48A+ZMx6mVnxNt4KDLDEvvvnrC7sANarE0EhbFa42xTeXLqHxxsCLmFaKlotvqjq2l0Cp3bLbY3/pDoaXFwco5IPySNhYcErzapIAgntF2wipdXEOsbVhJ78AmBasFHqx0fmCTO097yDk0Y8e8F4wbX/cV2WUzbi4yvrK5JMBaVRc52p5eSw0Vyg4j6o3YZGQxHgScDsAxP7Idk7OtYeiDcYtGxgdv6riWqU4N7OH2lyIM4JRk2jrCDiuy6cx/nf1fromrL0HFQSoOVHFSVilpK4iRTCuchLUtQLDV16yEpdOQUimbF2nHAmdD0oGrkUqlohaasWPOKQ8rpwZWVYewevBOuL1NWEmJZ4GVjmDPY8MvNgd2dsfVMwYci4AXgeeCceMvW0Vw0jXV9sAWTvxK5pIA6ysStgjd8b7xuFoBS/52oMAqOPNC2HKEbfCgqy5IfakggDdfwvzxF4Unn5OsehLN4xNYLSb0SPnuc6lY2URxI4c4yalNOK1AYGbQDlVRzuNZwDB22tMWAsy2QrbCdetxU2tqRKnB3R2surtjlXPe7PabcxVaLwUIjjkVavrGw0pVZzUP3VUKVj1iYFWvJKsU8E0HqJGxJ2S7UeHPn0+ExXU93cPsIDN2zN7AGcG48Z93AKQ2xQY3Fyfcr+a5JMDqHMBKlYGW9trtX4DV6WNt4b2CZOXUQHGnBwHmvtvgzuvke/4HzHSShEhVEqogqoj0rvPd57qle7P6XK6EHWqVNM/w9mU8kOmtyoGdYM/9VD5hNkzTMcDMqbKLeieRdSeMP/M785wCXAeu6OHQjVXxvRKwevU5H1Z4sAo8WM0HhrnrHIXUbqNhPVfHrE8/FzpBVK1tbYHZMzCP/AdmTD4A+MCMHTMiuPgaC4rlrEjhAH0YOrgZYNTosKbaappLAqzOJV3FRWxDtOvzgWKzCsb8GjbdMrRZBYFdVji7TDaLuedmaUbaCjyIjdXq7RYgyv7kP939ukr1hJHUTZ5BusN7I64EyIyC15+B4Ww/ytaeN16NeVeKxnz0nuxioZJmxa6nHxYnYRu5qgqtqeJejRWVBTWQSRPg7xfK/u8hLJvTXcGqxZ37Bqy395tI2EvPPrDzHgSbbmEj9SNACMLfA/VzOgPDNif40bmY55+A/z3QBXjInP+jEcEl12YjlV3L26MuxOZm7grY4OaddyfYdMsw4b4wn1U3lwRYndikRbT9fJZocvB3gXMBgh/+AjbZImpg1xUY8jnMtZfB2y/hFsKNbmH0cQswUFJVq1owC9uAVcSF/lVDqszYB/gxYG17pZ7mQQAvPKGBlVG2Qg2r44DLo7DyGst6QaFMmoC54HTZ96PuHOoW8rp34EbABthkZ9hqe4JR37QSXKaCSKC/n+ROAHNn2mDjUL0lqO5CsNMemLqF8NaLWwLfMOed9mxEHfdqgClQHQ5sCdhUsV2/CRtuHAY3r4a5JMDq3KDSWxysvo8tgUJwys+tKz6fczePi0QQ21V9Leb6y+GzCWDzAW9z++qjVBzJlZOnu0RSi4F3oYLVUtagSGrV5AG+ezzU9AvPj7/A3ntdPKYLHIi1l1G8tUcCFxXBKigBq6pqmPQh5oKfaljNVLDSktUQYAA2XxN22ctW1BgwyOs2pB5G8t3TJ2M+/RhefVbK5BTdVGpMwgYcV2pniDn/RwXp1IwdMy4Cqu1GEey+jy2hrSWpSEWQVTOXBFhrnnTVqmD1A+BigOCkn8HGw+2NrCUqqRK6qB7z5/Okx9+72ETclHtydydaB1xLVtrIrg3s4hHsFC3d2wmru4BBjBpNsMOo6OLSJaBTKczDd8lHp1AcHpHGNq74uT33Z1mp1oeVqIG6aUQUVjPc+e/pJKuUU8vXR6qq7roPwTf2h/4Dw5r2GrISAJzLwaQPME8/ClM+tQv8jN9ibh0PdfMB/qpMCTXOWP8aMFY9qHR8XB443Iwdc0bBkF4KVKtnLsaMHfOVQSsB1vJLWDkPYMcjHqmTzoJNt4jaCqT6QmUVfD4Rc9n5ss8XgZsJs/6lw4roFy0xsJJNd1nR5XXXhOz/MPl4v0OIpMcIqCT5+4O34eX/4SA9ldBjKotsJ+AnAMHJZ4cBpj6sRLKqrPJh9YgnWYltbOOC6rfJlgRH/9AmYWezFlbGRFUseSB9+DbmvlugzpNgvrazTeu6fTzYHNBLvHsoSxgULCo9wGDg7+KYYPAwmyFRElTpVTkXlL02kbA6rbXdiuKBuqD6wh3nbiirimyiYKXTPoph9Ri2vlN/wgJwkp+GZ2D3YVVPGLqwRtUCd4GcBzB4WFgpwbczSR5lNou54xr56BfuXtUFBfsDpwIEx/0UNtvKSj1BUFoN/PQjzIUFWD3sYCWSVRen/m0AVNJvIMH3T7bFBVtbLKwK2Qie5DztC+vp/XKS7PsZbPmfKwCo7kKw0+4YC4md3fVGAULngMoxnu5sfAPpWWMDjrceWQwqkaak0seqmYtvEgm+KikrAdbySVko0fhkbCvyNu0m5okH4H7xlnMVNs4qDlbGg9VCBaqFRNuYNxINBl0TYGUDOY8qUYpYyj9XVGJefRY+egdgGrZuVld1HXo7W04FB34Ptt3eqj+pVPGDojSstBpYg037sYv3oO8THPx9+87WFhde4U6triLRuNRGxr/ytOz3LeB24AXAftne37bq6PpD5D2buO81RD3AzU7F3RA4D+uJhN32tZJoRWVoSPfV53R6Vc0FpVXkHMC+0o4+CbDaKWXJxXPS1slOtSkPK9CwasYmP2tY9fbUwGan5mlYiXG9ZOb/GgUrHXUuZV0K8VGusUbdQvjLWPn4J05FEbteD2BfIMO3v0+wz8FhjJuuvKDVwEkTML87Q/b3kAerzbAewBTDRxAc80Pr+Wtucr0V81Gp2UlV5s2X4eE7oXaeSIAPAnc7tXIgMBogOORoe3xR71pfd90kx1Nq5B/rpMYqhmxioTl4I3UjejX+XcnsVTSXQNls9YMxUFJXAqw1YJyMDkwsB6t/XQHvviqwOtdJRXGwynuwWkCxJ3AJ0cz/LJ2grfsKwypS1kW1LKuswvzz7/LxD50Nr4d7undxhuc0hx5rwyFaWyl0r5Y2aHp/n37kw2q6O//rYVNnrK3qmNMI9jvMLuaW5jB4Vdur0s7De8/N8N5rss//YsMpjNtnFwedwYw+FDbcJIReOLq5ay42uT7YGLKdAdj/cOuJzFSE3+/3pUynoaFuVcxF56qKGq7r+weJhLWm6IQ2ovj6NmG1uMHeSBZWE5zqmHUG9j7OwC6963KEEew+rOooE2PV2TP/l6usi8Dqxafg1acBZmG9qH3ceeqKbUSR5jvHEex7iFXXIjbDdLEaGMLqQQWrjbEJ110ZsAHB2b+zUlVLs1MBHawgomaaN16Ef/1N9vcB8C/gYwfUrm77GjbGjOCI40PoTftCPjeFsGdhAGyN9TIPpnc/gv/7MQwdVizZaTtVpgLz5kurYi4Qn1tqvkpDewKsVQ2rv1wAtXMFVnJX9XeLrzdh6EKWsFqlqIHzlQpYzxoWY+XO1RCnMh/QZqUECTeorLKVXC8vqILvEkab98AW70tzxIkE+x9mVTZf+omELkRg9YCC1XZIu7H9Dic48aehVCXGdQlJEZtV4zLMbX+TBxDAfU7K7k5YprqLk2qOA+Cnv4E+/V1OpIEZhfSiGYShAvtgY8hgl28SHP5/roJHvriBrpyzxkYtueOcN9e5c7Qyc8kS7ajUTLSzkk7vSoC1VsBq5lTM9X8VWD3lDOz9iIYuVMfAqs6zWcWFLXT6GCsFK9vkYfAwa2AvVSlB5fPR3IS56Geymzfdsfd22w5Aiu+fQvCtw4thlUqFamCVi2C/6Mw4WO2Fja2Cs8fZWKbmJlvSprXVSVUmDFdIp2HuLMzfL4KFhQfQbdhg34EOEtKhqD82n687Bx9DMGrvUAI0BvPCkzKfz9y1PAEblgH/9xOCHXcLwya0F1CHesybg7miMJcP3Vw+d6Bambn4zUnKdVb6SqWtBFgdBasvJmHCnDQfVn2cgVfiW1qdGuiXiCkXttDpY6zM2DE7OjvRoKImD6VgVV0NBttnce4MMbJPcuesTwFWR/+Q4MDv2coNeeW1k31KC/liWE3DhivsBdQwcAjBuZfAsE1DWGVbVXyV8jS+/wbmyt/Lvp5x90FGSTLdCPMZDwLWZ8c9CA7/gd2vcWrd4gZJwap1x3Y2sAl9BhCc/DMYspHyRAZhaEYqFUqh77+Fuaowl6fdXCpWci6vEQ2E1lKWX502kbDWFliZl56Gu2+Qj12N7WrTjzBsQYISBVal6llpWDWxZsVYFc4Vo0ZbV3xbsKqyr+bBO+CVp8Ru9baTRENYHTuG4KDvWcCIWhOJt6qMk6zud7DaFBgF1LDbvhYQNX3iYSXSWj6P+e99cM+/ZF93O/hJOzWxE0ka1T7Ahmy2jW3XJiomFoDmmcdkP5Ow1SQ2YbtdCY480ZXUyYb2KpEaxXmQz1tPcziXO509rncHzKVZ2a18aOn6/0USVhLpvqbC6n8Pw8N3yMf+hG1GEQcr3E2wjLCelYBKPIGLPVitKWELV+EizjnoSKuCRNSaTGx1T6q6YB64HW6+ArcoXnHSQl9njE7xgx8THHIUNDaG9iWRrNLKI/jpBOkSLbCa6mD1LSDNbvsS/Pz3rlCMByvZXyptG39c9xeRQlqcpPyxUwGl96O096rGVkrYhL4DCX74c7ueW5pDqC5bJGEtLQ7Aleywm4VJEFhVNJL3F4SNSABz499kLs3AlWouvVZyLne6V4mtynqQ8rt4+4HTiYS1RsHK5DE3/BU+eAMHmNOdwVxgpRNpy8GqTsFK17Hq9LCKGNf9c+W3z8pkwuqeVbZ+uvnfgxpWD7n7sT823KAHu+5NcMB3LVxy2RAugWdknztLw+o+B6ttscGXaU48i+CIE6ClycKqtTUaYyWhAvW1mIvPhQWzRQK5wV1bsVdJo9qM+3kPYAB91yM492Lo0cvaiiTiPpXG3HuLPmWVHHkywaHHWBWwtQXSMgc1l0yFzTn9wy8k5/QTZ1hvcSpgz5Wcy6vYKP8K75LqKiStnsF9ldROS4C1OmDV3Ii580aB1XvY2JcGBSo/1UbyAuNg1UBxjFVnLw2DGTvmCGy6xyAGD7NpLH36eZ6t0pIVE9+HqyWNjUcs4TSs9iE48zd2wUmogVbbRLJqqMP88VfazpQHvofNw6MsrArXNQP1CzWs3nFqIA5WYiOSANZqB4j+bLcrwQ/GQJcuUUCk0/D+m5IL2QxU8f1TbT/EnFZBJaA8HZ6zhjrb3s3C6m0nDaU8Q/+KzmUaNswmRdjpSaLYdRpOXjl58p3lvkuAtbywWlSPueL3ku3+HrasiY6xissLXObAVEc0cl1gtaaFLYQqoNirKipLVEmogApVg6qyGiZ+gPn1qbK7F90C6QmMAHowajTBmb+1f25tDVXBgn2nIoTVhWfCvJlguxqtjy1oBwOHwvE/JtjzWxZWLc3OE+jtK52xpWYu/rmWPv7tVK5+DhDSsDZwv+8G9GLk1wlO+Kk93tbWaJBn3ULMNX+UfVZx1A9tLJQxrl1G3klTQF5Fr3/yAeYP58rnXgbuIPQw9+yAudzs7rGuFHusBVrQSeKuEmCtDKxmTrUxMBZWj2FjrKqVZNWbaKpNkwerWs+4vqaVhtnUSVVWBTz6NNhmu2I3vKSN6FAD2d5+RRvGX8R6RnsVYLXbaIIzL3ByaUtY212uhXjNGup9WG0NZBg0FE48w9nRUmF8lYaVBGJmMhYQIayexZabWU8ZtKvV9Rzq7FDWJva94wuVYyOAyGUx/7yicN6C3/4NRu4S1vDPmvBcBQFk3Lmb+L6G1VNuLgPdfdURc7kfm2OopbTCNBWodHOSBFhrJKwmT8L842L5yGPYshx9FKziysMsc3DyYbWYNaw0jOtCcxHQpUgF9D2BEnGu8/mqu1gbyk2FtJuX3PnohY3I7st6g22JniCwoPHtTALBhnrbCs3CqtV9Hn54rg196N7Dwq65CVqbVYwVHqw+xIw7W+ZzO7ZL0QBl0BYJJI8NNt0agEOPtZH2hbrzChD5HOamq2DyRLvXk8+G7XYNA1HzLklbcoslfOGj9/RcbsXGfAmsOmIur7l7vEZ5FjPKK6iTnItKayfA6ly2mLKwMq88A/feJB+5DOvirlEqoIZVXhnYNax8T+AaURrGGdbHIw0O9jnY5rlpFVDbq/xcvuouUFVtU5UsrLJOslqkJKu+DBxCcMk10LO3sjVlw9ioAqwiaiBABT/8BcHBR0HPXhZyLS0ual2pk5EYq7SF1e8Lhvo7sUGUAiuRPlJO/drWqZtW+pM6/QJBUS8rKjBPPhjm9h19mp1XWnVIMgZSXpmaj97RUqfMRWDVEXP50Hk7eykYVylDu05w1p7BfAKszrUYt8GV6g2OPi0eVk8/Ao+J/ZULnKjex4OV5AXmS0hWdRSHLWTXAFiFhvUeNbZl1tCNi+sxRexVrsFDpfPgGTC3/APuvlFg9ShhRc8NI7DqVeOqJLjOObIAS8Hq20cRHHkSDNvcSi65rIOU23LZaICpxDd9/L4GxH+wFQ76OzWwm7IR1WB7DPajzwCCH/8aBgyMhleIUVsA8cBtFCSfo06x5yZQaXqF+8udwwlv64KC9wGTlUraEXNpdg/ZVsIKFV0JYwLlnvVTcRKVsBPC6g2gC/scHNpiBFa5POaWK2DCWzjAHEdYnVJgJSV1xdPi11+vI5rAvEaUhimSqkaNJtj3YNXgQEVi6xLEhVy+KmtoB8zlY+Gl/+GO/Rl3rnpio883AtcKTWAlXjwdHFpRaUMOfneWhdU2O1rXvRRMNHkrYWSz0JoNJY5CDSsF1rqFNqo+Coj+yq4jrv5NHCCwBu3T7b2hC/kVPJYerHb+hvXWZSpCVdAYMF681fw5mKsintIv3Vy6d9BcmrHhNk2EFUK6qYerxFo1EnZb0venSYDVCWEV7H1QFFaNjZj//Etg9baz3SxwkKohjDLWScytDko+rHxPYKcuDeNsVWcXpKpvHxk1rAdB1LDuq4Bit6pbiPnlKdJAYg7wOmEi84ACrMZdC1tuG/XilYJVEBBcdDXs9a0wHMAYeOMl2GgT6NrdRa3no4tYrmvtAsxvTxcJ7UNstYL+nk2nGtvkYQAAJ54Z5vnlcp6H0VVO0LDqv74NCu3Ww323XGkTNiRJOVj9+jRJR5qIjR3Tdf1Xdi7N2MJ9i523Uwz3YmMVz+Aywi7ajUQj2zvd/ZlJYOXBqqEe849LpLPI29g6Vk0KVn6qjUhWS5Q3UKSqBmVc79SlYVwe4IVlpaoiL6BTASuqXJqNg9WEdzG/Oll2Pc3BoYs7b72dxABn/97CSiSrnBfJnqkIYXX8T+y16tYj7JpdtxBzzZ8I9voWdO9p96GbQ6Akq2wWc9MVAoiPgOeIlkdOO8/bhkA1m25FcOxptumE7DeSEmQL4Znr/gLvFWqeVQVn/hbWH2qhpB1vohamUtDajLn+LzKXT7ER/hIOI/fVys7lDAer/p7hHqUCLnP3pzZVNNNJ8gbXeWCVhVUqZROY77pRYPUgMM49kbRk1c2DVbOCVb1nXPdhle+ksBoH2ILzcbYqHbOUTkdVwMqqqAp4363wz7/KridiI8bFHtMd2zE5xXGnE+y2T3wwp8CqoRbzynMEV9xhm0BUVIY2oeefsJULtt/VNlbIZkMwBClIR+1r5tqL4OVCvuJLTuqQRdzbzcv2G/vWEQQHHRGGCcQBYlE95j83CSAmANuw3+Gw426hymeUk021LzPX/FmCOOc6753YQSs7aC7/cAAa4O7b7uqeFViJ6WIR0Qa8nToWMJPAyt3YH7+PubkQr/IA8GvC8ia9vadUSonUPqwaWEPCFlw4x0lI5+CDjrQqR7ukqspoLavGZZgrx8FLT4px/U1s2EIfwoJyGwHV7PcdW663qbG0ZGUMVFQR/OBH1oBfWWXnMHcW5qYr4aHbLQdOvitcxL4aKCWEn3kUHvsPTvJ92Ukd4n3bXLxubLYNwVEn27LEUss9ny+yETF9Cua6y3TJmW3sXM4qhpXqr2qTjwtzaVCwqnZz2QzbBGNl5vIX92DsT3zifZMyXTR4wGrW92pnXMeZBFYug/2Je+Xt52KbFPQmdANL2II02GyNgVWdgpUOW8h1NliZsWNGA2cV1L/hIwj2O9S2jyonVWV0OWMHq4oq65b/6+9gzjSRGt5y91aNsscMBrry9W/aqprNTaobjcDK1X2qdJ7GvgNCWKUzmCfuh7AoH5x5oQ2DKFQ7cDYjXUdq2pcQBmN+4K5jFyfFDHQ/wwln2k7OxkQBEQQRqc+88CT8+1rZ39MFw/hPzofefcrCiulfwh9/IZ99nzC1ZmM3l64rOZerCGMDa5Q9TMNqqbpn64lWB+n08YCZdRpWuSzm1uvh43fEE3gG8LwHKg0rylz4Bjp52IKLVL8Q2+zAqn/fPc6GcxTUllRxowPpZlNZFTWwG4O59R9wV6G0zmRnH+rqSaNDgJ4M2IDgJ+dFA0MLYQcaVlWht7GyCubPtelQzz0q35MHUsFe34rWKA8CpwqmC+3CzOUXyH8/c9djODZsoAcAow8lOPRo6NHbpvBkW4sDMDMuv+8/N+lKn9cpiYbgG98KPZZ5o1qCqQfj334nn/3E3SebOumuZwfM5SmlAvragJasRBOopUxvy866njPrLKwaajEP3SWwehP4JbZkrAaVzt3yYVWvgNXgidWdKmzBjB2TwaYRnVSQKA4/nmDb7YvVP68jS0T9q1SwmjUNc8U48aQudYt3gQJ8pVssNmWp//oEv/lLtMlDwWblwaoyhJX538NwUUGqEol2A045x1YkyHmpKKkwj9H872H44HXcNQqwNeG7A7D19jb3bsNNbOmalub4mKZU2sZK3fVPrXZd5471e0AFJ5wJvXqHretFwhL4B4GN5/vwTdznstgaXb0A2Gp7W6p56MbQ1LSicxFYSSUH0QayFNdf09qA2K5aWQOKRGbWYlhtGgsrApg323ZmaViIe8+P3QXt6TZda0in2jQpY6WAqoFo3fVOE7bgQHUhtoefFaP2OZhg5z1t+oqv/mlQacO6L1U9cT+ElTinOy+grwIGbtHYqOyfng89a4phVShW5xX2W7YU8/ufa6lqHjDbSSUEI3d2qpIp7iyTyVjb2A2Xy2e7yufYdidrF9tqJDQuCyW9nFZNXYxZfS3m7oIxW9SuK9xxDsDm8hGM3AWyLpxCG8VTgUNGK9x0peyjm9i82HYngmN/ZBukrvxcaogGm8oDVscFLiAMuRHpao1QBddqYLnAx1tiYTV5EuaGv8hb78HGqnT3YNWNMC7HKM+KuIDrlcFyKZ0sbCEWVNuNItj7QJX/R7z6p21VWqqqqPSlKghjmXqohZJ256wV65aH45300NIUDXbU/QgLCdJV8PoLNrRk1lQxTs9157fKfQ9svnXUEK3VryAFH70Ls6bIfyo59AcE3zzQNl1taoKmZWH6jm4/n85AthXzzmva2zkBmzj8oVMnezvJcSgAm25RvB8JvQhSVoqfPU321YVDjnFz2cHOpblxZefSWz1gZU23xMBqoXIMLSGmqm1nX9uZtRRWtgnC8BE2783Byjz3ODx5v7z1Mmd/6O4WXA/1hJK4nLzyBi71PCuLlWTVKaotlATV7vsogzrF3r+018y0ojLafiufx9xytS4DPR0brpBzC7eLk0R1XNoAoAc77Eaw5/7F5Y1TXsXQqmorvf3z79qQPNdJVZWEVTXhgCPChg2qQF0IrQDz+gtw2P8R7D4aRuxo47RamkM4iJSnk6JJ2TLLN10ljURwcPiXuzfWU6aC4QDse5iTGiVgVbXlchKfefsVOOQYO5dt3VxaW6IS1crNRdurUA9XgZVfLNIvadTpq9quzRLW+AKspAlCayvm4TvhrZdw0tAvsTlk3RSwJMeqOkaykuJ7i4gW3OsUYQttgkoWsm+nioDKC1cQkLz5IuaaS8UDuNQZ1r9U50wKyeHOgxh3NwYIDj46VAM1rHSn56pqmD0dc8EZIok0OiN5i7KHhUFNUtRPVyANUhFgBT8dG6bF5LJh+EQ25/IOtTE7BdM+t0UZv/hYTuurzlv8OWFStJZkrBMmlwuBJbAJKiJqdvDjX1vJNXAtvESSynXYXCTfUNJtFnuwqo2xtbasSargWgksV1juIHrUhLCqq8XceQNM/0K8Mye6Bdfdk640rKTigobVYqX3+3XXv5KLbsaO6YcNT1hBUDn1T8NDQFU73y6aMPF7OjYsIIN1m2upSs5Xozs/1tj+tV1gwHoWLjrYsZDOY8MXzH/vh6sLpXtmuoXZlWjyb9add5j6RbRWeTptp2ViTr9USCiAIR/14E353EreL/xXq7lPAy+4+0PXxuqmbHRL7Fn5EpqbwwqiMlRbe1utQeUUFozzHTYXlHFdPIF1ysje4HkE10hYrVXAcpUFfgLYxp2VVTDtS8wd18GiWoAn3eKudRe7G2Gd7q5KUhAASfG9xWpbSjQi+CsRp1V4wt7YGt/tB5UYpTWodLv4fN43qtc5u0lDzLmCaE7aYvf+jQDYbKto9cuUCjmoqLC9CP/+e+n0LAt0hjLeV3jeWVvw8JP3u7BwnvUSSjKxb8vyoaVHEMDH79mshk8naCD/D5uE3LWg0oZwkOMWQC8AFvPZhB7UzrdzEYeFTvVKpcNrIPPQ8+mYuUgC82IPVqViA9dIWK1tEtbh4MrE1PS1hspom6ZT3CKQqGtZfBK2kIqB1RIFq2XEtItfnRfd5fuJRGXDE0aNJthh1+UHVZwaGFX/RCKd6M5VH/VE11JVkzpHUk7H2pqWLrG2plQqWt64ohKmfoH564WSiDwTW0c98DyNxvuOBmfT2ti89BTB6EMcJHJe3JNsbg8CsEX1Nrzg3lt0Pa1PsWEtj7vj6u/uCx8O4vnUkvdk4Gvm1ecI9jkolLA0nLU9S8+v4+ci50fUP18FXKPaxq3VwDJjx9QAR9OjBoZtaitbvvOK/PvX2AjgagUsEaflKR4oWMkNsFQ9meI8gastbMFJjycgkekQE55AeVCllffPzwWcOcX3/k1zi0dqKEl4RympSpeArsWGIBzJK89Yl/0GG4Zer6ZGzB3XwjOPaK/Xm4T5ml2J1hZr8r7jJWBjbrvahknssmdUutJQAJgzw5ZBfuRurWrJMb6GDRTOO5tQpXqgdSEsSeyrvRI0/AjwNe6+wUa577JnVB3UWwDMXqVz8YOYtQd7jenE1NYIgnHj1xZg1dKzxj1J63CSwc+x1S2r1MUXNVDbAAIFq2UerJbFiNKr3BPoDOknAMcDuwPQowb23JdgxE7LD6o4iWrWVMwDd2g71WxsMbt674meVkZdvVAWqae6bAKuXwD7A7D1DrYaaDojuYbyXe87e9V6hN2xK9X18NUc6Y69GTZ2DjbZCnYfTbDx5jBosK1jNnsGTPkMPngzrP5pRxO21M1b7nvluuJgUKW2OEA3KlumgGEHbGFH2GRLNZchX8Vc6hWotAq4yh6yZuyYVbu2PXV+rQCWO3F3AEe7X+/EFi5rdAugi4KUVgW1dNWkFuISpQL6ovQqhZWzT53l7FPWkD54GMEe+8HmW0Uj03VuWcFmUk6icr8vW2IN3WFsT52zHU1WoKpW6p9R50jOj86hrPVUEVk0Z2AjundUhzjXeQAfdZAaiK1MIMUQxcCubWK6Q3at+/vOTjXepo1TKg+hOudsqSdMTpdSKoEDQoU7ZoGDtg8t8zzFIsU0umt1HLDdVzwX/ZBt9u9b6Pi2cQmwVl7SSrkLmHEXvVqpgaVg1aJgpaWq5tXlCYxV+7YbRfC1naK5fpHIdFWcTrxvWqJqG1RZbCfhLxSoungLRZ8fneVfp2Al4Fqk7H1aYtiesL/fTCdRbeAcBv0J03nSRBvO1nugEglumZt7GhiJrTaxJTaqPnDzhTAUQktrcZU0nJiKqmVcsJ01KlvmIrUJHOS7qrCpP7s7iG5AWM5ldc1FvNctq8sptLqBtbbFYdWrJ5S0Jsl4Tyut2uTUzbCMaPXFVW5cd9LUCcA3ImrfzrvbdI8+/YoN6dqgW0r1i6TVVFhQPXyXD6ppTtLBSTjVhJHq/kLRcWh1nmRVrxbOUk8qNe46THDf19fBqsozHufdZ+RVl+vxgx4XuQeJcdf1fedVG4SNPB/i4NiHsMywRHEH7jsr3d8C5Wzx27VraXIR0bAWac/W6D4r99UHTtV92XlKh7h5ra65NFOcxLzG2qvWdi8h3tMppaAlv2uJIe+pgrLpJ9QqgZWSpvYuePti1T7PPhV4sT3pjOf5y0RDFZYtsQGzxaD61P0uqp+4yAPvvCyLMerqiqr1nhfVrwkeEIYmBOp6pDw1Z5n7XSq31nl2sVql9khmQaDU1ia1yZwl+Vd3345cUyXxtKhNP7wWe5LQEk/6blHrqEIBpsUzMayuueh95tcmUK3NwEKJ0ylPtJakZA2uJnVz+U+oDtP7lW1qD2xrq9Dbt9XI4rCEYAVAJbBatrgtUImHtFIB3XgGXV2RUgOqzrOZLPNsJtrAm/JPA8XpToGSVJYRrYkfF6Hd5Ek1ld6cFxOmVuUUJLJKtRWwNsfATsJZtONlifdAE3tTVt1frTES0eqey1opVa0rEpZeIEbZUwK1aFrUjdLs6f0r/YRykegnAIcWVD6wBfO237W0NOXH8Wi1L63qU2mJKlNhwxOiXr/lAZVv0F2sIKVB1aCe8I0lzp1Rao+JAZXYcAL3eYkpWqrsY/VE3fO6Iqbss8Wzr9UraVEAqH9vKQMGbcNc6tkzm2JsQzl1jCl1DpuUU6J6Nc4lvzaDam2XsIySquTmMMqomVM3WIsnTq+0cV2pfHsgxdnK2aaCIB5SWqIqeP1iJKoP37I2qjBkYDEw39mojFL9fFDlPNVjied50pDSpZ+1KhK7aMzYMfqhkfPsYYvc/5qIlu/RoRKLKc7ZFOkNJUHrZgp1SpppIhoRnvMkoEYF6GUxNsxlCihxcMjHPAC/0rms7bBaW4Gln+g+rPRCzSn1b6WfUg5ShzlIDS38Y9RoWyhvyLBoQGM5aUqrfQVjugZWBSxdgnn2MbjnZmmlBTauZz5hLl6XdoJqqed10qBa5NmpStpM9KJx0DKeNNuo7rkmwhgv7bKPCyvxpRr90Gl2+2xQ8GhU6pgOtvTNAE3qmLRZoMk7xiJ7kxyn85L5x/iVzGVdGGuzhJXXOr1SFfPqf3pb7otfElLlVL4421Sc2pfxQCWq4OefYF55Rpd6EVBNca9dndevqh2gWuZ5neqVcX1xDKi0+tee86avQ7OyaUmibgVRr622JzaVknyd9KYXvZbmdNG6KvUdxvO8NccAoVlJ3LnlgENnmksCrDVYwtK/+4sosrX34rcJqY02tVHopVQ+bUAvtGrKFMOqoiKUrpYuwbz7Ajx+r06fWYp1oX/ubuouClQVyuHgq2S+10lAtUiBapGSdJpi7FTtlUa1hOXHFTUqgOkF7EsTef+7lPSWU/vV+15GNEJcSzVZpV5qr552tkS+t9xxdqa5JMBas6Ur/XMQ83/TnhvApcgctsKQ0qBKp6Nt032Pn9SmEslqwjuYF56Ax+/RU5qFDb6c6a6fNCit9ECV94y72ovm26oaiLrMl5YwqK+IzSTvnXuZU4poeEPek6ba+i4NQ5Sa2OLOgwAiHSPtZb0t7jvNchxjZ5rLWj3Wqkh3Bxilf0VefYN8yZvAhSDspSDVc4UhpaWpTCbSJKEALS1NzZyGeeMF+O992ja1yKl7U93POn6qkjAA01c3moi62P1+dIs8iWop5UM8VkRt1nFxOj4uVUIqbrc04e07paCQivke37aZ98wGKyXBdKa5rOb1tmr3vzan5pQAV6wYH/P+0QpQIyL/3G4UwRbbLh+ktAFd6qWr9lMFaSqdgboFmLdehuefgI/e1t88E5vfN4MwJKHaUzH8ODNfotIFCBvUq25R7ktUrcthp1reh0jcg8T46vtyqOj+vlPqZz/EBV+6XpHvXBPmkgBr7QNaaSlKQhCGbAwbbmwN5ysCqUJIQjpU+cR4vnQJfPIh5tlHpYW6jBlOmprmYNElRppKx9inWjyJyq+U6qdzLPMkKj+8I88aFtvjPaSCMuobqxoKnWkuCbDWzBPbzwFqr1gpavgI2Ho7gmGbeXFSxBjOg/KQSqWjKl8mNJ5bSD0Gr0QgJS2svnQQkZCEKmWb8lNa4mJ5lsaof3HpHNrr53ui1jhQJWPdAVZmnQXU4GEwfJvSUhQoOMUASje3LAWpdAYWzse88yp88JYPqQasAX26g5VAaoBS+TJEvX1ZT+1rJprCsUTBSUPKV/v8nL8EVMlYI8baVNN9U2z6y46xgOpRA9vuQLDhJrD+kPJSVFDcqikiSQWpqLrnQ+qLSZgJb8Nbr0hnaQ2pmU7dm63sUgMdoHyVT9umfPtUHKj8nDMtTelI6dY1WfVLRgKsNQ1OGQelHdzrSHS4wYoAqtCEM4iRolJRSaoAKgeppUtsI4FJE+C+m/3pznGS1KcOIgKp9RSkfJVPS1O+2rdMSUxLvE1LUrp6QjPRcjkJqJKRAGsVAmpHBaaRRdKTVvEGrL8cgCoDqSDGwyeQymZhxhTMhHfhnVdh4rv+bKZii+JNd6CoVpCq9CQpXVEiW0KaalTS1LIYQGlINSpIaY9fFi/6PwFVMhJgdYzkNLIsnAC2GwXrDyYYvBH06e+FGywnoHQun2+XEkhN/hQz+VOY8Da89qw/mzqn5k3G5vKhIFWjAFURAymRdlpLSFPLPBVviSdl6eTZlhhpKomUTkYCrA6A0zBgEwWojUrCafgI2HQLgv6DoG//eOlJfm83oHTCsQeobCvMnOoA9Q68/pw/oyasR28aNoeviTD8oDfREIRMGUhpaaopBlS+FKVtUjpuqoVoPao80VIv60w2fzISYHUkmDbCtjDfveQHRHJaHjiB6wnnhR6UA5QG1cJ5MH8OZvIkmPxpHKBw0tNErNG8TgGqi4JURQlImRKQ0vWQ/DpIyzxI6VpIOhzBz+L3q1gmoEpGAqwSqlxvJS2VB9PgYdB/EAzbjKD/etC954rBKRIbVaKulAbUsiUwfwZm7iz45EN45uG42TU6G9SXzg4lzUFlG0Q0RkoAJd49bZPSOWN+Zn6jB6lGzx61TNmxmmNUPr1/XZkiUfuSsW4Dy3WkGQlsCAxzUNrI/a1nu8DUszf06OmVA6YD4OTek05HE41nTYfFDZjZ02HaZHj20VKznO4kpynYNlR1hNHl1dhuLAInreqliKZfaBXMh1SLp8oto9hYrv8fJ0n5KTOJNJWMdWpI54491N9GOkmpt/p5RJt72m4UdOkKAzewYOrZC9Zbv20wFUGqnXDSNaVqF8CSBsycWTBzKsydBW+/VGqmC5ztaRbWmzfNQahavWrpyc+21zFSBZ4TLQqoy6Q0eZBqC1DN7YRUksWfjK98fBWR7h8gDTvLjR41sOmW0Kcv9OoTQqlPP1umNyiROtUeMMVtPpyyrbBgPiyuxzTUwcxpMG8WvP1yuVlPxHrtZmADNacRdtUVQA0iDDWoiLFD+QZzbY/yIeXbpRpjNg0wP/xAG85by0hSicqXjHVWJdyS7UaFf1l/MFR1Iaiqhv7r2ZSVmr6lJaU4KEX+1gaYBE5LF8PixdDSjJk3C5qaYPqX9u/vvtrWcXzpwDTVwanOqXYiKUkfvHJw0oZyreZJEKeWorIUhyH4oGqKkZ7iAjlb1L78eKl8ovIlIxkaWAcdSTBip/g4pnYBiXgoLV0CSxaFu5o/F9PcZP9XtxAWunClaH5dubEUawifp9S6WqfaVXo2pips512xN2njuBS5KwUoiNYl8oustXiSkQ+kRu9/LTGQavUglUsglYxktM+GFV0MPWtgs62UrSkGXvrnubNg6mcdMZc5Tm0TMC0jjHGariSiyjZeM21ITilPxdN2KL/We9azJTV7kpIvNWkjeTlAxUlRCaSSkdiw2rBhBcBt+KV/O2ZIKV/5nknYQMjAwWmeA8kEwg7BGU9Vq4jZyqlzcXYn3fVZA9qvcOnn7vnqXkuM3ck3kLeUgFNbql6kCmoykpGM0sCCaEXEvljvoJZE4l5lEzBpKSbtASTj/U1v4oHzwZQp8Zry9hen1sVJT6UkqFaKexS2xADJjyjXUMt6+/KDOLXRPJ8AKhnJWHFgBZ4kkvJg4MMmpSBR6j3+z77nraKM+uZLTf53+SDV4PVLz+Y9OMUZzFtjYOVHkfsG8lwJCUpsX4kUlYxkrAJgZWLgpWHjQ8WXmkr9LVNCkopT4XxpKQ5KfopLLsb2pDffUN5aAlRxP2fbUOtKxUQVNRBIAJWMZHTsyHiw0hKWthllYtS1UjCqKKH+pcuAyYdSvsRCN97/czEqXq4EdEoZv1u915wHJh9QpoSKlwAqGclYTcDCs1EJbMTA7Ud+l1LlUm1ITHiLPChhdzIx7/UlqFwJuMSBKFfGxlQKTPmYLQFUMpLRSSQsGb7UU05dCzywQBhkKWCJM9rH2Z1MjASlAVUKVrkSEIpT30pt+RJgNIkNKhnJ6HzA0otRL/p0jGSk/1dOtSu1UUKSMiWkmjzFHrdy4Cn1tzhvXZzUFNfaPhnJSEYnA5Ys3JSCUuCBqpVoIGa5kAIfUEEMCErFRJWSrNr7v0gp4DISUyI5JSMZa6gNy8SoclrqyijJKk7NK9XVlxgoxKl+5aQs08bfaENaMiXmkYxkJGMNl7A0bAReaSddpSnfgrs9kIrb8m38TBswMjFSWwKmZCRjLRtxke5+JLvYsNoDKUrAoy2gtAWgchJSAqVkJGMtHaUCRzUItN2KEoAqJ1GtzM+mzD6TkYxkJCphm9CgjDRVFo7J6U1GMpLRoSqhL3IlIxnJSEZnHankFCQjGclIgJWMZCQjGQmwkpGMZCTASkYykpGMBFjJSEYykpEAKxnJSEYCrGQkIxnJSICVjGQkIxkJsJKRjGQkwEpGMpKRjARYyUhGMpKRACsZyUhGAqxkJCMZyUiAlYxkJCMZCbCSkYxkJMBKRjKSkYyvcPz/ACZjXdcxg6j1AAAAAElFTkSuQmCC' rtb_banner = b'iVBORw0KGgoAAAANSUhEUgAAAkgAAABOCAYAAADb2OmbAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAHxfSURBVHja7H13mFzVkf25PVFxRppRzllIQgkJhEAiiRwNJhhsEMZ5nUH2rtf+rcOya6/A2AYbAwZJ5JwRUSQlJCShnIVy1kiTY3ff3x9V1a/e7fe6e4QkUt/ve1/39Mx0v37v1r2nTp2qMtZaZEd2ZEd2ZEd2ZEd2ZIc3TPYSpBztAIxUP0cATAj4u2Ln7zId5QCWOq9VOK/NBhDN3orsyI7syI7syI4jN9IRRF9GgCSgR4MdDXB6A+j1GTzvrQC2OMfWLIDKDgBn8VyeDWBW9nJkR3YAAPoAKApwQo/2GMn7jIxevK80d8gaDwCHPoXv8aUHSLlm6rQv1heecqMAIJmU+mge8ClqDwwY6n+t76BklFnYAijt1PyTbWyA3bfb/1pDPbBzq/fzotnayHoBOC0EPC3lDfI9M3XaouzU/4Ib9pQbcwH8F4Ojk9WvXjVTp12QvUKfqfs0AcBSM3XaoS/od+zjAICRDEwAIAfJrHsOgFOd15YCWAZgtpk67f5PcC6lAH4C4HT1GfPN1Gnjj9C+oh1r2VeCvs/RGhJh2KKuV3a9P0rDfB4BUgAIkucjmwV6GOyYwkKgtDO91qYt0LqtvkJBVy3samb+t34Ym/616kqgsgKoqoCtOASUHwTK9mkA5RrRbADPf5LFJjs+k3O/PwOjCQnAP2QUMOwE4IN3gG2bAKCvmTptc/Zqfar36FIAlzkb52Nm6rRrP4Pn6zIeGuDIz8Xq5+Y7m80b32ruuqXs4iwAXQAAPfvRWr76IwCYZKZOm5XBdShh2ypW12Fks85+yCigZWvv55IOtO80GwodBMr20/PaavkeCHGQZb1/JmuBzZo3KX+f+zkBQhoAucYbDIB4UpqiYqBNcXrgo3+W50GvZQJ6zCeMXAYBpuL2QBGtYUb/zbXfAaoqgAP7YLdvBtavAlYvKQJwEYCL7JQbbwKFXX5npk7LhuI+/8DoCgAtAABjJsBMPAfo0h04eAD29efkz8uTo+fZZIxjwBTdAGByEpswZgKwYRVQcfBrdsqNfz7SHv9hAJzUa2hzR89+QMeu3s/degIFLbzlsHvv5P/p0t3/88H9tIbdNxUEUMz9mczdQLuYeB7MmFOALt1hP5wrwGICYGbR/0weCQq/jcjYuQ5yrGVvCfo+h+sspxuNDcCBfeQo79sFrF8NrF4i0YWv2yk3zgHwlyxQ+oIxSGzkIwH0YwQfbsQuCOrYGWhTBLTvkB7QGJMMgMLAUrpHD67QaGoEDuwN/l3qb+//sXURATr9Oxvw6L4mzxvqgY/Xw85+E1i9RH6zBsD9Zur027Ob5eccGJ17Ocy40z3Av3sH7P13ABVlxFLc/uC1SXMiC5KO9v3xGL2i9sC402EGDAF69QNgYOe8BbzwMAD83Eydfof3/5PTJYIEhaiOLMBxGQ8X4HTsAuQXeL/PhGWX1xsbPBakqpzYbxjg43X02rqVMm/9DNJtM+5PdhZt8+xixWLYB++Uf/krgBOQKhQm16HvII4qdAIKCsP3lXR7Q3Oc6sN1oq2l6MKmdbBvvwJs2yh/cZeZOv1HWbv/ZAzSpwKQFBgamXLSChDq1hOmqB1N2JKOfmNNBWJSTVr5/e4dHpbZtwe2vs4DNhvXOFcLwNy3jv1dPGUSPZZ2AtqV0LVo2w7o2sO/+dmAY/d22LdnAgvfk3d7zEydfm2WWfhcMBJ3ALgpdAMwBtiwCvae/0vcWwDXqdmauLlm6nSbvd/HgNEbdRIwcKi3hhgDrF8Fe2/iHi3F4WW8HjmAU9IheA1Nx3jon3fvoK/YoHSUEvYHiMkuP9Ccb7EUoqn580P3BzqCsJnZRVMj7PtvAK89HXK9RtNa2rkbXZs2bdM714frWAeCpAyud6B4OMRJ1tdo6ULYaX/x1vrbZlybdZA+wwCJBXwjAYyGXziXbOQ9+hAj1L1XZkAobCLWVAFVlX4R9K7tQG0Nzc15Ry3RpxrAumbSR0FUUldIHD3d6Hsc0H8w0LUnzEBm1awF4nEPNMXjwMfrYKfdKYvWf5vbH/yNu/hkx2fGaP/AG+9xocDIGNi3XgJefUr+7VYAv2MGQuZeXB2WQFL2Podcc5fJ0SxNsfM7vy4l6P7wo100F3jsnvAPLioBBgxxbNqfCJIUojoSACfof/aws9jQQOEbGD/o2bMT2LqhuZe2goEPQFoZyUCZy4vOMv4bdx20eu7y8XMGRuF2UVMF++Q0YNViem3YGGDQUJii9kDHzkDn7smgIhMwtHs7XQ9jgP27Yevr6XlDPbB9swLER2B/6Xcc0KWH5xS3LyWnuKgd0K2Xt65rkKTX+/17YP/ye1nrx5rbH1yUXes/IwDJTrlxDIgSHg1NOweAIdOpK00AmQyZAiGerHb7ZpqQG9fS62tXAIf2N/eUF7ERGgY31fw8ogw7R208q3mGyWvuYdSjyRAoWbUQxJ3D8IIQB9ABQEcAnRhAjQg0rhMnwow9lTyjeNwzoJ1bYW+9GaBw23Dz54eiid9nDeezYKw3QWtYxkyAOfsSz7uV+V9bDfvE/cDKxQBQB+BnAB4BaQpzFDiKAmgCEAMQM1Onx7/I9zgNyHFDVc0X37ojBLjCGCASAfbsgN2+BaZnX+9/CgroftoQxjcVgEkHcNzfV1eSPhEAKsthyw95m31tLT1ft6K5TI+MeTyvygEs53VqGwBGEljBwMddC8NoFOuA+hjP3yhI7P6jtHaxdyfsyiVAcQlMr37EpLmsTNC13r2dfr1tM/39prUeINyy/shP1P5DgOEnEtDdsUU7OZmNUeOBoSNh+gwgMK1Bko0D8TiF2568Xxyn35g7HraJtd7a7Fp/rAASA6LTmB2aADc23rMf0HsA0Lk7MUOZgKGmRhLtiVHv3gHU1VCWTmZjBx9VDAYiADYAqOGFcgX/XW7AkZPiiAQ8DwNI2pMfCi/zozN7Ua8B2BngLcniEPSzLBp68SgB0BPAMABDQBouoKQTzDd/Ahw3wjOeeAx2xl3i4UwC8DYAmNsftFnD+VSN9CwAPwUJ64Ge/WC+OtmzFb3pbtukmcAF/H+bABQAyOd5F2dgVM9HI4CmzwtAaiabMxJHQo/jlvRQYaqkMh4Cctx1S+6RPEYigIn4nbzEBh1nm4wHawmDAJDW8zTUEztuABxyWJ7D39Tn89pSwWukYcAjoGeHem5SAB+T5m+CgJFeAwXYnwzgewDOJ7voD3PJ11jX5diF77rneD/LfrJvD1BxEPZQGbBjK2WFzX+7OddmgXJYVytHugbAemcv2ALgGgBjeO0HSjoDZ14Ac8pZQIfOCX2W/Z8pwPqVAPB9AHwT0ZEPy48d+OjMa7w3BgyD+cG/0/y0FojHaE5t+xj2tz8CKLvtLLm22bW+eQAp9zDesD8DossCAdGQUcCAIRTb7dozWMwnE/fgAaC6kujc3TsoBLbg3UxO4wO+4R/yXV7Mk3UDe9S5APJCHnMB9Ah4TQOk3AyBkAnxkAwv5CNA4bJS5/x7AfgugMfZKMIYJJvidxok7eaF60UA3QGcjbK94+3UX8H842m6B+Jd9OovAGksgDkAovbm68lwEstV1nCOkXGWgvQUX5dN2lz1TWDgsOQNoKkRdt77wDPT5d+fBvALvlkdQHqMPP5dE9sB1Dwxn9J31DVyihXr6TI6nxzopAA5gBOqEpCTCpAEvZ6K4ZaNWjboSA6Qk5MMkAQYxWPEIPCGZbd9TH9TX0evAyQXWP7h4V6R7czqwAE6q9l5BD+vDGC/w9a10hAmyM1cCQJNYYyRXufa8P4yFsDldF9LYC67Fjh+jP8+aFCUkwNEo8D+vRRiqjgEbPsYWL0UKNubCTCMMwiyHFUwvK7uSeFIu8+7A7gawHBI1uCYCTDnXgYMGgYUtoAXptsD+9ffCzhay9+7jTonsd9t7FDr9b8bO8IjsWFlX/vovTBT/tsXLbA75bZjMYCW4iTxWh8ngGSya32akZvBApcLqulxOlOcIwMBUY8+lOqYX5i8gFRXAmX7YffvISB0YC+wMmWmayXTtuKxrGWkvoQNV8CNPnJ5UnZwXnP/Rl4LA0JBwCeSYiGA83M/AIOhQ4sDj4e5+Gpi0jp2hn3tOYCEdN2U16DfX39emFrPPQQ0RQC0ks9F+1JFv1rgwznyHsvZcBrYcGKe4WTHMQAOfwDpKUhrdtW3YEaMIftxGYmDB2CfexhYkdgofwvgQQCt1VHI8zcKgOMnqHfm0pFkdnS21ZEFO81hczLR4zRHi5NJ5pELjiJ8iXNygJpqoLqKXtvPSR+RCOlUaqrIBlcsAcr2HM6VqQSwku9nJYBV/PpOPgyAXfw8jNF2j0IG15EMmJ90YTIErI3uo8sYWQYG5wEYxQDaU5x/7bsww8ck3+NIBFi/kvaUHdtYXrEv7FxqAXzM12YbX8MydrRjPH/DHOruKZxpObow+zsy4aRc/DWY084Fevb1QJEcC2fDPvBXYP8uMNs0lz8HKdZ8eb0YwEkQHdZJp8Pc+GMgL99jJ/fsBJ57WP5nDagERDWDrkZ78/Uwt83IrvWHC5BUobPTk1iinv2A40ZQXL13/2RAtGcnLQyV5VQR2sueChrL1YQV2lLy0jWwyefHzup5JocbMgtjgbQRu3mlAjysY9z6uWE6dSCzUx6lOv5MolRl7NoOvPQ4lPd2IMV7Q21GQV6d/jmXAexwACUo7QLz41+TFytb2IL3gI2rwNd7LxtOpTIca26bYbMs0lEFRlcAuBlS/XrieTBnXODXsaiQgf1wNvDw3fLviwD8nhfVbmyXbXiDy1XgqEnNZfE6w85nJM+DMMDzybQ6ukZOy1Ykkg1idI4k0En1d5n8b6rMIxcc7doO+8KjwNIPDvcKLeH7ZpkRj/M6uJY/tIpDOJkAHnmta4ZsULqwWBD7kwrwhDlvLgsu6+kFIK3qJN8VOeNCmOOGU4i5dVsv9KhCZvblZ4C3X3avZTWAjexUV7LzuZ+d6wZ+rOS/a1BsWG6Ge4m7pwwEMB6Ap6q/+lswZ10EtC1OnneNDbBPPgA8nwAvGwG8x/enLYI1qHKtu/Pn9Ens2z/6fzCnnEnOg7Bp89+lkh8HdgPAQl7nu/A+I2uCtbfcYL3M1uxIC5BYS3RDIEs0ZgLMkBGkoNe09J6dwIG9sHt3kYckmQPJYxtI8LyCQYGwQkETs1SBoPwAkOQ+z00BhIJi31aFHVxPRn4XD3geDzhKAIxjIycmoN8QmPMvB4aNphoaABBtosdN62D/8b9C+c5j4wjyGmzAwhVBsg4qlzewMwD0T4QyTr8A5ppvUXFJof5XLIK9/dfy/nMYyBXw+yHxnYyJZT2LowKMxoDSwi8S5tWcd3mwzigSAWqqYR+/T4dXZgC4jT3IXvzYlsGRMEfVfB8beQMQzUIXAD3slMlSef7wQI/L7KhsqyMGdo4E0Al73LXd+3nvbmJ3DICd2yi8DwCtWgPdesGMGc/2G6Azks3uwznAv253z2gvb0a58MLn+aBeWnXM6q3nNbCc71kjrzVB4CfCtpop4EnFgAeBnjDA44a/0oGeIL1kqsc/ADgXAFBcCowaBzNyLMky8guS9Vhy3bdugp32N0nG2QvgXnYY9qj9ox3P8UJeo9swOMpnWylgJ8Iq9kjvK7lpnOt+vO4PBEBdGM64AObMCwkYAUAs5rfp5Yth75kK7N8NPpf3eF/MU8AlJqEwPopAGqaePobp6m/DnH0x2WOEl++9u2Cfng68kSgWuwnAOwD68vc18GtYY9lVOQOAxFT/BOgeX8ISDRjihc2qK4GD+2HXLKMF5cP3w95zLntF25mpWBjACOWBxGfuxNSP+QFsUW7IhHUBkAt+tPHGnOdBr8VDDvldZ1C9mVN58gGnTIKZcLY/RTfKjnxjI+yLjwKvPyu/eZPDJAhZjOAsZPq7yvc/DcAp0I0R+w2B+dq3KEsiJ4eMtLEB9ukZwIuPynu+DeAgb7K58IsiSY+U9SyOJDCSui0/FJBhLlV6iiCh6crFsE/NkE1gMYB/sEPRixf8Yl70GYGjge2pKwOgksTinW7oGjpBgCcTrU5zwc4nBTqNXJBVft63B7aeo4rlB0mHYkChrmULMr9Z132fbLhAwpwRPzCSz9u0Fvbhu0U/AgAPgWpQtWFbbM/3oB2DWIW00MgbXxQU4q5Vm3WmbHEEqfU9YeGZTFgepFkvMwE/Qckm+nlrAOeiuBTm2m97jqSAI3c+RCJAtAl2/ruSmQUAb4EytBr4WndkcFTC11fChk18ja0CoYXqu2pn05VZGMep7s1rPoW3SjoBX/kGZQwnnOGo36YrDhFr9M4rOmrwEp93Ie9xAl7EqRnOn+WBov5DiFkbMZbS/fmaoKaKMtYeTZSSqAJpcXfxeiFzr4GvQx0/NzDGZp3h9AzSrxOgaNQ4mCEjaUE8uB/YuQ12+WJgywZdoVOPOQyGljM7tArJcdyiFAyQC4RcBJ/rgAM4aLvJAUGxAJR8OEdYNll3AD8AcE5ic7roGpq0XXv42SKwgWzeAHvf7cDBfWCP8gEA0+GlYwug0+ccBpIu5M8eyyEWGpMuhTn5DKB7L/rMGDH2dvY7wLMPAgf2iNfyEUh42Jmvc5yNpkrR0Nl2JEcOHN0MXbfl0utgTpwQrDOKRIDaGtgXH9N1VF5h1qgFe4ICjlo59+86kO7NP3oNADp2IXsuake1VNoUpQc9zQE8zQE7YUBHXqsoh6046P28frW3Ra1ZLjb0ScYSeJlI7TlcAXz1RgpzFrXzC64TQmC+P5XlsI/cA7z1grzfMnZ2NvE9bsPrXVFA+DPOm5PYcw48DWDMCYOGqWdtCOixAUx4PAX7nQrgpANFYWtjOqdSn893ANSj/EChffQ+4IIrYE6cmDxvxC5276Dr/vFa+e2fADzL97CbAkbFCpDmqLVUAFA+PJ1mPIC1jzp7ipz7IA4DEuvaviNw2XUwJ5xCtgTQmqttuqmJamDd8yd5/50AXmXCoCXbcA6zgx15b+mlnB4q2XL8CTAjT6Lojbx3tIlCu0sXAE89kHDH2Ylao65DAZ9/DbOaLRWLZrIrdCYA6dzLYYaOohmyYyvs3FnAsg+Dyr9Lx/g5/DifJ5IWPrdDsHYoP8VzTWe6jJCOV7vZW7EQQBT0PB1gcg3ZpY97A5gC4OLEBL7gKor/inYk6hhITTXsmy/qxfRNAP/J7I2mVaO8SNYrgCL0p7RduYTZIi8lcNgY2mz7D6ZNT4BRfROBspceBzYlKoEvB/Vja833KJ+/V5VaxPOyRnPEgNFZIJ0RpScH1W3RjFFODoUO/vUXEZpuAnAP21kX3gDaq5BahJmIOrabweg7GBhzKkzPPsQItS+Fv+5JCHjJBPQEvd7U6KWcy8sVFQxwVNG8DU41+nlHpBK91uiAQ1Y1/PMedkQiDB43K2ZgAkhbSYD1jAthLvgqC2nhMUY6RT8Soc1u3izAC1EfYIdwCdvN8bwZFfD9KVTsQI7DyghLlK/Co7EUACeeBvDEMmDHY81gd9I5iWGHzeDniwH8GCQyBs77Ksz4M2j9CgJGkRzYBe8B0/4qv30fwL/4HvdRdlHMa1tLvh8Rta7W8Hyp5vlQD1UbLA1A7AjgawDOBAC06wBccg3MCeM9pssHjPi8Vy+FfeBvWoj/JocCu4O0h/0YDCXXCBx1MjDyJJj+x3kJNuJ4NzUCq5fBfvCu1rw1gLLv3uJ9tCtfh0K+FgVqLubiCCZtfDkA0pplsF7oRw8BQ+/x863wpza2cJiiVGGy/JAwmaYxow5yDzqiCK4FFEvxGBY2iyG4Wqs++jLD9hVIWfvzvgpz8ukEjIzxYs2RCE1mY2AXvg+89KSOk98D0pC0UADF8DnWqe9exLHtCQjMGBwNM/YUCoW0KfIMMx6n5oWrlwGvPKWLZS4GZTvthleHycKv/coNoPOzvOvhAaPWAO6GpO337Md1W/oHh9MY1NoXngTefF7e5lUAd7GH2R+epqK1Yo3qQGLTAwnA3rotkJ8Pu2s7TI/ewK5tfiWbA3Tsts3Oa/BCVGVOsdXDK8CayaiCv/L8bj6EMV2hAMVm3uDCapNFQp73B+mwzoDUpBk4HOaGH/jLKSTq5kT8KfrrV8Lee7vWV0pSiWWgFaRxlFBao3KCGnlzroOnRWp01ql4CscvlVOXCRMUtO5lIidIxURZpNcpWQYEtyOhvxsNc/4VJN8wJrFuUsArh679oTKqiL10vlzXaRzGbM/3tL1iUwsU0GyAV+aiVoGjmgAnNOzoAuDboPpBhIS+8W8wo8d5wCgeSwbVu7bCPv8I8NF8Deg2gzSqMxi4+McZFwI9+lJhy87dgVyWRtg4ga+GenJ41ywDZr2k/3MxA6PX+Pt1YjatLX9XYS3r1TWJ+pizbHgtA4C0bRPgiYVncxhmDjMdWvPSKiB8lg4UueyQBkONIWAomsFjNAQIpTL6dEYMc9sMyt+65YbUjRDFqIWKl8V17y7Yl54AlovsCi8A+F+enN15k9OUexc+enHceajv7kjTy559qUSAjs/L52/dBLtsoY5xyyb7OqguUgc2HKGPRRBarxbxKII1UNlxuOG0oLR9PVdyc4Etm2D/9WcJHe0H8CR7gt34vpUo1sjwvaph29yn2JKlWL5wpMy7Y3QDq0B6Cq2F2aUAjhzLFciJcBheAFAukhMPwkBP5wzAUcRZa0qYeSW76tAF5oYfASdN9LNikqYv9XQiOUB1Oez0u4CZiSrHh/ge1cITTcdDwI/oPBqdo0EdTYrJyJThTrfOZaoNSgd2Mlkvk9bNoA3XTpn8B2ZTWyTp71zGKDcXyMmFXfA+8ECin+8qBkZbONQlAuzW8MTHUZ6PtQoMyeHej2iKCIRlhuvbGUUKIhH6l5oq2OceAea+Kee8i5mciXzQGDwCGD0OpltvoHNX0lzFYsQO6ceGOmDjWgJF/ky9ClByz+MA3mDAJbq3uGLNJFmjCVTOoIz/t1at/9l1PiOARCzJFmcRE6W/W//BDZ+FCal1qEw25kyZoUyAkGv4QfS034Bt+pC+veUGKdwX3iE6aLOrraG+WF44bQmAv7Nxt+UJfIICQ935uvtHcSkwYixM7/5kPK5ORI6tm2A3rALmvaPbBOwG8C4vJh+w8bRlYKup/Bq+Pod4o61StHM8axJHIJx24ZWhafvIzaXw61sv6YyTOQDuY5sZwOCoHTytUYwXN9mk9/Kxj+/hOQBOZPbRMPsYVLhPc0W6MrBmEAXkaNChq9DnhICanDRgR44+zs+5GQCkVBlcQYLlCKjsxkhIpu6//SfMuNMoJVrCjq4uKhKhpIZZLwN/v1WuXR1f9xq2I6nRI2xFrdqYD/JRrkI67sacyrGLpQmZZRLysimeBwKcUNCTkmFQv7PxMLv4A6ScxbmXw0w8J9hhyMkBcnKB8oPEGn00Tzt6zzJTdByvZwKMRIAtqfsH+T5VOOE0nRWWaj/5D5YyUKbC+Vf6IwXxeHJR0KYm2HdmAi884n79rijtAow/E+jVD6b/YKBTV3JwdZHQGB/xOLBvN7B1I+yyRcD8WS4omgvgZXZ6q/j7t+H1oY1yvHP4e1YowHiAbXo/vyaat+zIBCCZqdM32ymTdRp5bgBDFJZt5gIiq2jleAa0cTQEFKWKnbsgKMSYUxuwY8y5zBh5hfsyAUaxKOxHC4GXnhDtyD4Az/NkPBvALUx9tg/84JHjgJ59qSddlx7JuhG9eAeDIrBH8QqzD9Xs+XRgo2kLT7uSz/emQhnOHvYuqhWj91kDHxN4oyvmMGExh3zLAcw2U6fd/rkJp+XkAssXUVYLsUYHeAN4D157AWGNdIaahNP28j2TVHLZiBt48XwV/pIQqeq4BFWNzwl5rZjPK+j3zW3Pk2n/wqD6OymMPLEuHMfzhWzuqpv86dfRJv+9icu9ArBsIeydtwJ7d8h77mGw2FqFcozacOv4Huxn29egtUoxF5mKn2MZMDyhjuDhsjxBzmK6NTOFXZQC+BtIuxNczsJnExRSsvPeBB79p7zNOgAzeW0awoxRK4cxquW17ABf//183SvhJZw0hewpOtR4A4DrmWkExk6EmXguhf/09XKqdtsF79O6f3Af0H8oVcru2ddrp9WuxAu/JbX2sFQtfctG2BWLgaULgU2rwy5pEUcX2oP6NEqP0AgDwkr+7iL8r1dhNbk+Ug+qkn+XZZAyHHohylGLqPR1KlDP8wJCZjJSUb2ZaoeChNKJ1NPk1HN7pDY6f+f0oMJ9QaLadatgX35CZ1bsToCroHHmxUCHTjBdelDhyC7dKcYcjdJjLOYZpCXaFpvWwW7Z4IbPNCh6HVRtXMShcrSCV2FZPA3RPTWoRX0vP5bzotL4WejXxffkrIT3mXrMN1Onjf/Mh9Nqa2CffxSY84a8zSxQg9kWDKJLFWskbF81L4L74LU92Kc2glr4s6B06ErsVwTDBQjWA2baRiEIDAWFuMJq+TSnCnPYhp+KJekJXZtm4vnU4kHKFQRlp4nWaNc22Mfu070et4EqL+fwPZGSCkaxFuVq89kdAFx1VmgY8DmcsBYOi+U5dnZLTmZRe3Iyx56a2mHYuwv24X9qgPAGH13Y0StyGHABRmXKYdjH170CntYoqqQDcQU0hGEV0T6Vt+nZn/sfdk+97sdiwOYNNG9KOlBfOA4NJsKz8veJ3ZFZo/pa4OP1sBtWSyeFIz0+5rm7GqRR2sbrR7laLxrxJWhc3Yw5mxFA0h5nYcCi6qrfLcLTRzPRE4WFx44aEAq4MMmd0yeeE164Twxkz07Yt2fqeLN/TLqU6NSSjjD9BgNti0hQHY8xGIp5wEho1niMPIqd22C3bgIWzwtqODmPvarXQSmj+c69asFhNXmU1+XeiSC8ko2mzNloxXDsp2U4dsqN3ZkJO1m8Tww7AaZjZ6Kn2xTRY9l+CoW8/TKw+iMA+G8zdfpvjvamkFTsMVU4TetZli+CfeIB4OBecDj7CVAV3U7MGgnLV8BfoJ4X+/28AcixX7FGdRIWNVOnx5kF1lWBZR604seWyqYLkL7YqgZBxnkeyQD0pGtMmqrgYBADHQ9hl1uCGoMSSG7fkVovDBkZHJ5O9EmLALXVbg2Zbcxe7IGXIeWCo2oV6tzjANcDKsSjw9bxDEJbzWd5PqthZu1kBpWzENZo/rvAY4lrv5DXt0aQBq8Tg1O59vXMymlQuptBUhkDo+E8J8YxIBqBdEVRe/aDOfcrwf0PjaNLEyCUm0fPc/m5/E4E/okLY70emAnhdUyt+27DYhu8RVdVAlXl3ttu3kBPDu4H9u8BVn0U1m9uLUhu8RA/NmXBUfMAkm414uoAdBp6LMSTiyPzzAuflxQOhOzRviB+YJSqc7oGRlo30n8ocPoFQJ8BMCUdyUstLmFa1QQbhw6dWQtUVQB7d9JkX7NcC7v1Yj0fXu2MasUKdHbAkQAk2fxks7PwRKE1vMCU8yJe6Wy0nyo44nE3gJOTaHnNABhDvbmMgWlxFSwBpAmJLEIoAfsR/C7sHVOed1F7mG/8IH04rfwg7FPTdFbLuwAe5UV7EG/CxbzJ56gNuCxgEziowqPCTLhFPV2QVAhPyNlKzZF8hNcaCyq14Ya3ghqPBjUfTbVmpEo1T8VG62MyqF1FCQDghh95KdhNjf70a7FjyTSd/Sbw9HSpbNwIyjhawqxFKbOv+Xzucs2r1L3Zo1ij/SrcocM7cXPbjHg46DkyYa1PcXNJDjMHraXSsFe0Rts2wd5zuzgMYKdoFgOjvuw0FMMr6FirmFTLc3scOxUd4OmTwoeuAs8FUU333l7V92YBozwgL49ZI2GOIv61X5fXiFugshw4VEbgKM4moprL0jm280LBerQvoUOMr2df//4iz7d/TA78hjXAknnAoQODQfXRJoN0TM8D+MvnbqJ9iiPXCZMJwGlUHlvEWfjSLVoxd5H0L+LHDAhJF3FprzCSF9JTm+051NUAFYdgTjsPuOGHilLN9f5OGhKKJyCT3lqiVnfvgN20jjpMr18VFHOuZJZoHkhAu8YJd3ZRIZMC57kwAfpeSSy6VoEjAUUCjJyN9lP3KiYAgLnuu/4ef740bF6EqithX31G/m92YvPT1/0IVCxg7/i3iXkTVOzRDafFYlQkzsvEWQ1Kx93Cc7EDsxOyCUvqvrBGuxUzIZuvD8x6dpX2+1nHtkUrKIVWIxmEvjLNaIqHsELNKVaYLt08BtL3TQYJsYEzL4KZdAnQRjKNmpyUfQCGN+mP18E+dq+ugr2AwZFkypUo1siy7Wi9yz6H0StToR19f8imvqB7ETuaN/vDzGOTwYbLGj3/iO4o8AFIKlDHodFO6vq3UiBf1ruOKU9q7ESy+76DvKbGqYqiBjUdFiAnZR5yGQjl5lJrLcm027yBv5sBtmwilkdMZeaTR+5Cl3YBjh9Nz1u2ToSMTa9+dK1LO3pgrGtPoHN3mOFjga9cB+zfC7tyMbBoHrB1wykgndU37ZQbf2OmTn8myyKlH64GSXc11pS6RerCZPHUYOiogR/dYHMkPCFvr2ZTqtpAcnODDUR7DfI3kYg/8HiojLqvb1hFFcjXLAfWLQ86kx3wWrEs4E00qFRCgRMW0eGRHAcU6ZRjAUZSKE2nvTYexkZ7LBbdlwBcZK7/ETB8TDIwikTIQ1q+CHjpMb3BTXQ3Zr8+wx7u+dwJaRES5B27wCiSQ5qKh+7WAPgVULmFzvDaIbip+8JM7IVfz6I33zRg1sBOmRxxQmw67FrohNPCehWmCoWFaWbiaUJlqfoZxlO8h/s5I0AFW88DAPQaAHPNTf574rs3OR5rcaiMNIPvvarDD28yo9pRsXlSzsSqsI4uq7BXhdPK4Rdjf5acjaNlo/1Bmb6Zh5lzcoF1K2Ef/LuEgsrYLhawXXRmpqMbA6RWCGmkjhEnUdPjvoNgiorpc9uVUjf7wB1OzYmmRg/ABQGknBzKTPtoAbB7O1BHji02rDwSl+4gvMbk7t4rh9R2at449RygRx+YXn0JJOXmEUmkoxabN8DOe1s3j3/MTJ1+7Wc5dPtZCLEZM3Ua7JQbXZ2BLuLoNnHVC5fSDNkjcbLt4MWLR3IoojjgtfRDuoiXdKCQSMfO5PUHifC0gQRRqnl5/FzAUg6wdzfQWE905v49ZEivPhV2NjWgVOlFoOJ3axggBTVKzA85NHDV7VYEFDUoYKQPAUVukbTP3ELOne6fTrxw4mm8iBlg305gs0+XVc+L7C+ZGRNGJFEQzdw2Ix4e20/LGnkpyld9K73YNB6DnfUK8NyD8jaLOGxwkD1jSd1vzfcxCn/q/m6HmdCsUWMmYJbt2BVpu0kWkQDWKB1LlAl4aS7DlOr/3bBdKwB3glqqAEUlMJddCwwf6529C6Ql9FFXC/v+m8Cz07VjsgBUn0mAkQixZZdtRLLWSEorHAgLp32WnI2jZJ/+mkZXfTOYgXfYd/v8o8Ds1+VtFnJILZ+BUQdQhe3Wvg8bNJw2+4FDae1u2ZokDJLQosNYZfuAhgagoR52/x7Wc26l81m3Ehg0DOaM8wlIu731JPwabYJd8gHwwmM69OeOXcrBqFNOqqytdTwnNiNYi6Zt09X2apZX6tU18u9L+XkOqL5SjJm7lqCyIP5xybXE5nXpQSZkVThv6ULYZx+STOjHzG0zrvWHgL9cYClTgBSWXpucLnqYgMhOuVFCXML49OYjJxG+yHQI+AG8eLIAoDZtPW8mjFKNRALEgw4wqq2mo7ICtuIQMUN7dwE7tgArF6U6O/E418LrjbNFbXJQhhJUQkEfWg8GJzSiQZEuUFeL5IJ1TcpIP9MeLoOkn6aYE0tAGRozebOLO6xZrfrOzdJVJWkqhoyiwnZC0bsZUMIarV8FO+Mu8Y4bGLi9p1gjSd0vUOBOQjaaNdrH3nWlwxpl9D2UHesU/NwAYBQWPkv3c9rMqhSvpfxdmECZCw16WaaXfp1DnAXhAuBIDhCPw370AfDcI9LyoRFUb+pt3pQlzCnhNF1Xp1zdGzkkjdzd+GL44rNG/jBzqppGwqZKSYvH/yV2sY3DzGuVXbQHtR3phHMuB4aMgOkzgOwtJwc4eICOeBT24w3Eihw8QP37aqrTrcNA74HEbh03XIXnHRlFYxPsknnA849oofNcAO/wGiyaJwHTklDR0mEaq9luRcYgiS+6KW6ew/7rYqOyluujAf42VPWOsysZrMdziHIMSJtF+oRrvkNFLvPyFaCMAwf2wt7xOwFJt5g/P3S7JxT/coGkAIBUyhhlNIAJxkydFhB1QwjjftjG5XnjqYYW0nXrCRS0gCksBEo702siqEsFflzqNOxR91sSGjgaJX3CuzMz+Wp1PDnL1YK6gTe4cvizw6SVSFCtqbwUm1hcGVCTYzBu24I6x7Aa4ZSXT7eIcz2oCSG/nm2mTjsGjWwNOCOrEMDpDCpaqnCGFEXL43+QTa0KXkqrpPo2yXd2vpvo0vTYDldTEcYayXypq6EKup53vAhUPT0CL3W/GH4Rtq6ErUXYboZaRqxRCpAU5vSYEMO2GbwWDGoSf53pOmEz+R5+oJyuAKdmf9etgn3hUWDjKnm7+QxYcxRglfTxXHjp41Jvyg2nucUfG3U4zU6ZPJJZqKBxyEydtvQYLPSafQ8aW8zUaZub+Z7pRdhBYebkgo+zATzD16gz24U08z0JHbsRGyhhoXdebu7XX8bAdSyAFiguBS6+mgo9wgT314tEqK/Z/X/RPdPms+O1jc9RgHQJvAreUo9JwFEj/DrPWmW/8QCHWEcBYvBXYa8NAECNAUcTkguNytEFFIKeLOE3M/lHnn3KNd60FnbqrwDSgY03dzxs/b0bj2iCS5+A9TajvYUzhyfw3yw6CnaTC+rPeDoC2nsFAKQj7nm8Jd44Wrb2GJ+iYqANh1sl7JUO+OjNyv19TRVlhgFASUegoDA5xqw9iEgEqK6Cfe5hYgm6dCcDL9sP+9ufUEiHNs1GRY9KCFKo0Dq1Met6E7oWh1ufJiiMiRBA1BjgQbhgSA5tPNpwoDdYBRRGMlAYiXS6Lf+YA8qGmGGmTjtwmPOiP0/KyxRTNAfA983U6StZSyM6miJeoPRC1Vp5d3UOG1PGIGcQqGL5iGaFZvVGnMI7tgveB154VHvHb4JSxLV3HCbCdtPDdYE7uYefkJU40v0oj41XmaRxSZdlqsNpe3dRpun7r8nbLeV5VeEA1lZq/ojOqCwgnFbGdl3F93EIe+i9QNlWzWG+5Vx+d7h2ozabkWpe90oDjPSoYLDyvJk67f4MAOofMnIYdJj5owXA/X+Wt1nDjN0OFU5rD09jFAP1VevsfHwN/81Otq0YX7soqCfoNv4uKxlEXw+pf3Xx12AmXeyt/z5QxJq01Uthn3kQWL9COzZv8HsX8RojeqAi5ZRJQkzEYX4ktKZ77MWUIbprf6o2NdrBDSty6ZO5IFkPGOP5+UsAHc2dT3ICgwpLxmKwd90KLFsAUBX+JQDi5vYH7eGCJAVmZE5mvu7StZ8NYLqZOm0Wv9+jkIKjNB4zU6dde4TWGAFFE3znWNQeGHEiid279zrqAOm3AP4LV32LKowiTedwY4D9e2Ab6pPX+E3r/G++d1dyraA+A2G+egPQZ6DnOWidkYCjmirYd1/3dAlXfxvmysmezqhsL+wvvw3s2Q618bqVdKWmUIU6ahzvP47kNgg6NOFWFG9UBtMQQLs2OIDI7emUKMegmJP+oGJoE9SimhIgBI5Fs91XdgMY3pzFngHzT0FFIFsE/Ml8M3X6eDtlsrS6ac0LlfSskywXreOJq7/pywtu6u/GujT/1nEQpmc/YODQ1ML9ZO9YAGN7tQlnKsI+gOS6Rp8p4fwxpLpzGRjdhKC+XWFgNcI6o9lvAs/OkLfbwRvzJvj1X6IzkvuidUa66OB+tqOhHLY4EVRjJ3iI8xc0aqulVtdh2Y2y39PV5pOafQ8a+3aB+24qW0susMq1yO5GmAjbDTMLm7p3F+xD/wA2JpITpLJ7Z2W3ukJ8vWLsKtiehal7l++Ly8RonezpAL4P4EwAwPizYC64EujQKZkp0sDoqRnA+kTSzCYGBivg1QxrpQBRCyccBiRrPxud9blJRQzgrP3a29BOcH0AMIohuLSGu5+EMcXfAnAiTrsA5js3I4npjccpo5Bs5ocAHpDPNbc/GE8HktheZV6entJZ0JKYzPaWxwD8GcCHKGoPnH4+8O6rQMVBALjLTJ32o8NYX8aAqqYnN4EfMwFmyAigWy9PTlFdCfvKU8eQQTqao10HmCtvBEaPS24+qY2lqgL23VeBpx6Q/2zgCZVvHpnlxb5zc4F9u2F/dj2wexvgpflChbrc1Hm3W7SbpRNz2CHNELmNLBsC4s+abtUtWpIyCO2UyVeEUYYJoNCtJ0xRO0qFbVPk120FMXcJnM/9gt5/FQAuN1OnP5eKZWBDugG69hRAOoYBQ6gSLQA77W+ykYziBauQF9RSUHZLV15s27G32Fdtfv5x0ulA154wbYuAkk6Zh2ZdtlELfuNc2O6Ru+Uv14L6I5Ur1qid4x3r+i17VDhtHzyhb0Bdoy+dUNJfmTxI45K5zuh1DpV0hL8Ip9YZ1TqsoxztGGBPhJQQSACQEmDAEC97qk2Rv05XKpsBgIP7YefMyshumL0Jtt+e/ahxdefupLtsU+RPY091Ho0N1N5izlvA6iUAMMpMnb7U+9zJvkrYKQGqDjO/8QLwWqLkxmJQ2YRyxRoJa5cuzKyrYbv6HTk6APg9SNgN9BkMc9WNQP/ByWu+1CdavRT26Rk6m3gb2+9meBmebiIMHJanyWHpm5DciLgpBdPjZnFGA/YCvW9o9sktzqp7protfzowo3Y8SjrD/OEuqq8ktahUrSb74D+AV54AgB+AkmO8gsG3PxhP1Gvy5mWpYv4nJLFDQ0YBA4Z4+0pJx/B11x3VlbBrlgOvPQtUlAHAXQB+iEu/DnPqJLKf/50CBs3DzdTpG9Mx26GgqGc/4LgRtP906e4vKdPYAPv+G8BrlCuUezQXPjN12iw75cZJyvtJFweQ7t8VASj5A35tIoBreXMkIdqESfQlg+LMkQhlKCx4D3hyGrB/lyyki3gxvQzAKPvmizBf/57nbXTrBfPXR2F/ch2we2tLnrTbFR2qO0bXBngQ4gU0Od6GC4rcTt/u60GNFuPwlVSwsFNuvMJOmXxZkpcpk6FnX5q0QTVBfGHKStgdW/yZIOJ1JI/yRIHGRN2hxPlIfztPYNuzHzDuDK8tBy/a9vXnBRzNN7c/uNTefH2OQxc3gTRsJwPop7xQoH0nYMwpMH0HkG6tqL2XtRFXNWh27yBx4p6dVIF23UoqNjn5R0Dv/smgSXueWzbBPvWA6x2/xqzVAMUaFQR4x0Gp++UKUH+ZWaPkRr9nX+LN0XQ6o+l3av3IPGYechlAi85I9F9xdmQq1OYsqtwzQWnmA32AaOSJ4Y2jXbsp2w+7bzdMYSHs5o3Au057oKIS6tclduOzKwM7ZfJZ7ESE22/XnsEJKPJ46ACwcyts+SGYTl1h57wJrFzsP49eA5Lew95yg1+EPfE8KoUSVNMoXIR9kEMkcxkYDYQngtcFNwWY7gFlhblhZpEmuO2v8kC9Lb8KoAPadQAu/RrMmFOoAbGvhh0Do51bYR/4qw6lbQOwnkN3bdnJEj2RK5jWuqKqgBBak+OoBnWJcPu+pasFFsQ6RVI8arlGLoALAVwOoDvad4T59z/677WsZyYCNNQBC2fr61LC71UNoNHefL01t82w9pbJ4aBozARyGKT/XNi8bGok+9ixhVfHOp3t640TTyMwRwDpVAAwQ0fS+5R0BM69Anj9mRYAfgJjfpSMj2xqUDRqHMyQkcFN4BsbqHzMq8+IeL0OwDNHlUHS91q1QkjXuTsS8trVAK5MfOlzLoe54AqqPKqLwonXIDUtFrwHPH6/aIrAAGw2X4CWvMldAiDHPDufampEVMn4Xdthf/p1YZI28//rNHo3bux6GK6nkepoUl6FK8KzAaBoDICfJC2qQ0bRwqEpQ3fiGkML+67tsFs3AquWAls3NOem1gEYYf780AadcmunTO7P53RWAhiNmQAz6iQvJVjO4dABSgFetVhCD+eYvzyy0v70uggvquMB/AiU6eL1uRt5MjB6HMzAocQOxZ1S/taSQW5cTaHZBe8mn/2FV1E7hAKnIKWuutwUhX3p8YQ3wd7xa3yvuqjQjWzCUXhd3TVrtAf+9PA6OELfLxkwKuVwWjMa/apQzoP/0ALsxQyOypHc087VGR2E19i0P0jUO8QHHk4YTxWWe/XzOwWu7WzdBLt+FbV50HbD88q+8nSY2HgNh7qjDPZvSApRpLJft67Plo2wa5cDHy3wNbE2P/gV0L0X7L23aylChdrg5gM4F8A/vPsQ0I8srNbXC4+5YeaXGQxpEXYLxdrpKuS7HbuQMHMDPL2nZHwVMFt0I7PLwKRLqc+eXvv1ue7eAfv6czrZZjOz0luUvkjAsyu2lm4Dh3i+6MxFt4ZcFME1AcNAUaos0CDyIOgIYpF6s95oIoUbJ8Fc+22gsKVX+TvxSM/tkw8AD94l8/F/OCy9m79vNYdYr08CRRPPgxk0jJxKzby47PvBA7CrPqKiyDrbsPdAmJ//Dli7AvYf/+NqkGQPexXA+Sgqgfl/d3jvfXA/7H//HCA932gAMLc/aO3N1/cPtKN0oIj3QLtmGTDzGW0/r4DqrW3JPYbrYliXcU1rBh3jmDGiLz7qZJjLrwd69HYoVb+Had97HXjsPg2MpM/SQQ7X6LT6MgAd7RP3w3x3Ck9lnrcdiKa037oEAPrweyx2WKNGBxA1hYCkphRAKIqUhTetRsk3MaK/KGlR7TPQn+njToimRpqcC2cHpclKc8MRiVeGj4U56TS63iVUtdW++izwyhMtAJxhf/4NEVH2A7XiuCKhLwrrb2cMsGIR7LS/yqd8ABLj7bQ/va4LG+YlkP5aAHD8WJjTzycqXQSYLDZMUMFl+2CXLwYWzQ3qZee9zyXXENsk09KnN+LN+KMFsI/eKwzFQTbaJQyMeilNhesdB4mwdep+oi4K9URKTRN/AcGRF8YB0jf6FWC0ZyfsrJd1xuAaAB+CMkc7KcaitWLyJBQuOiNZT/okQrPtSoHxZ8KMHg+0L/Wzjm64detG2HWrgHlv+8AI281uACehVRugZWuYS6+BJYBUCWqkWwRKx57Ljt51AM5I2ErP/sC402GOG57efrdsoNpOyfa7LGG77UuB4hKYi6+GvfMPouv4Pp9LW95MFzJzBlzzbZgxpwawqI4Ie85bbph5FjNB3eBPTsjjdUFf/6DkhAr4U+I1IzKQma3TKZw2kKrsd+2luhYIdDDUy/LNFyWMCT6v5XzN28NL0y92QuHC+B5iwCYgWsCbGwqPIvOCp9Zhh4JKXaTaM5ECKOUDuJUBbiGKSykKctxwDkHHgHjEu07iaCxfJOAoxnOmN59jC9YjSbmAzECR2OrBA7CrlgCL57vrbwXfhwloW0wgbdhoylxc/iGYoZrLn7mF5+b5OOVM7lKBxF6MXgOArRtGMnN/mr35+kuZOUPCjkadlBoUiQ557ttu1fOZrL+bw/O3OPfYLIqT5UZrgORWiHY7irdn9mCShFLMN39MFxYmnH5f9RHsE/cDa5ZqI9nGE7wVG0eOI7jbCqAYT/wrH+PPAoaM8Bgka6lK6a33wP7ndwFKodzKKNMFRNGA50E0bJDHEVJnypd99l8+lMwCNjPypOBFVa5NUyOweT3s2hXA2y+7C/s8NpBxvHj2RN/BMOdcCvQbTBoHPTatA1Ynru0SXhhv5UneIqEhGX2yP1QiR2017EtPaFbnbgC/4An/J5Dwr1PCox8znt6rTZH3neIqQaSqkoxy9pvA5nXuZlGTAFl9BsFcfA3dW5cx0qHZg/thX3xMe5+LQSnKBbxgS5+olmm8Y11U0E3dj39Jw2n+MI40NE3FVtTVkHbHE2BvB/CRCuUMgteeooWjMyrne9CSF11PxXzymTCjxlHYS6c3u6Bo93bYFYuBuUmgSFLCqwD8EUBPjDiJHILcXCA3Idpuy/MlzmDkN8yI0jjvqzDDRgOduwVr4eR6rFsRZL/SnmgmSET+LZEdoGdfDkEnNom+DNJ6gBIlzha9nrnoKqBVG//3dwGqv9YXADzHWqMubBel8IuwG/j8dHKCtgthjeoVODIq1PUL1sbQxn/F9cDIE3l9Y9ORc921jbIXPfC8ncHzLL72JQHAqElJJSoUMJKSGxIKr4JTWy1DRigJCDW7LIaj2bG33CAv5AH4f+yMEsA9/0oqhllQSE6j/L9vXkcoLEr7mDBrbdkuLmPHob2sveaMCyhpRaqUB+0tNVVUYDO5wfpydnyf4HV9Atp1hLnmW2QfADB6vACkM9iml/L1PQMAhbddJ6H/YGFs3+K5DBSXAiefATN0FNlRAjgHJNvs3g777mvAB+/oSMiLfJ4fMBbpwNc451gzSG4jTRHIud3FJwM4B1Jb5Js/I++msJBvtiNfikSAFUtgn54OrF0mr+5l7zLKi2cXeBksUn9CUiur2Rsabm+9Beafz1A5+0Q1IguMGAvz27tgf/tDAPguvOaWQSyQC4JiAZ4FMulRF6blMed+JRnRJ02GHbS4z5tF+gRvUZ3Pi8VJDIqA9h2Bc79CFVhLOyUb6c6tJMac84b85j1meq5KAJrzr4QZdxottq4nagwZp1fFdR1Tu3mgLLCzEv9z1sUwI05MCLgTi4kckQhtGIvmAfPfDjLK0xOedN/BJDaV7u4mhDFqbID98H3Ao313MQiOsUamlQoB5PPr1byIBvVP06n74nn2FBrZTpkMvgcjHDvpjfCaIak7k3tjDihd9v7PSDjtb5B03UzT9uMxykx79J9QG+5M/m4deWNIpzMqBPWfIrtp1wE4+xJyKFq19vfu85UCAQGCmU+51ds/4BDrW2qTOgMA8JXrYc65jHp/JY9vcphoVAKsn3UhMOh4bgthw+n/1UuBV55y7fcD1sE9xQ7FzTIvzL/9J3CCSk6LNkHp4n4N4NtyLcxNPyUgpRuruskJ5WWwM5/R4ONDligM41C6gCCpKRV1WCMNjEKTE5QDfRpfV/oSF1xJG3V+gbfRy3nu2k6s4tw35dy2MHB+keeFMEZuBftK/uxqBaI1a3QI/qxkN/HGhhU2dWa/82Mz+/Ilv7eEZK/wyRfOuZSAsDE0nyORwDllX30GuPf/tHMM3gM80uDcy6kQa4fO/ibrbteJ3Tso4ckDGuAw5kJ2KNezQzRLZBHm2m/795bdO+TZDr5PQi7Qve/ex581aSJAjz7yPz0w/ixqTt27P9lRkKMjRMfWTbDz39H7xXZQRf2/8vwshNfvVAgb82mE2CIhobQIe3lXJDy9sy/zx5rjcXWx+MavXOLWtNgOYCMbY4kSCkqKvgimJdZcxsdSAIXYt3OgffDvtHhEcvwofMRY4Js/kyak9zOIW47grLWQZr3IiGENBEZBISsBiInKsA3Apo2wM592GZU32RDGsvaAMrxOO5+Qd//BwSdSVUFp7R5tvZVFjifwYgacdQnMWRfRpqMrsmo688XHtTE9wwvYXXxvCKBNPAdmwtmUMi1dr92Qx7qV7sa1jTeMYp4/lI494VyYEycCIvJLLKyRZA9501rStXhZLh/wgnpN4vy8sYo3X526X84G1o83qnzewOMJVu7YjlMBnGqn3IhPEyT5wmlF7WnxTVlLJyeoxhTYGXmb14iBATojqTMlOqMIKDWfJnW7jsDFV8GMPNHzCV1AwGDCLl0IvPwkcGi/fPYCng/PM/jtzEDjDAAFKOkEc9PPgKGj/Jv3orny/6t5wwf6HUdaq0HDaH4nwsMOa1BdRX2zXn5c/2YBKNPoXQYXEzhsdgp546fAXPsd2tjUediPFsj/d0rY69e+SxWWGYj6NkEROceiLkDdxvP9eF5DXD3iSiRnB7ph5nKEJCfYKZPbALiXbY70UFffBHTtkZz9VFUF++YLwFsvJHhtUOXrx+Flvpby+l+sAHQjvKSaSp4rZXy+ZQF6owYkJVHwun0MmxArrWm4fCHI+UvU+6uEnT4DmPWiDk935mtDF/fa79HaW1BIe0hToyqPo957/SrYV57Se8t2BkUz2OktZIfgHwlH7+v/Ruda2MJ7r/17gNefEfnCTmZtGvj/u6FdB6C4nbdmc9KMKekE+62bYYaP8faJWMx71MAw2gR8vBb2Zd/5rmcn525ep1swE1UIL5tRRPuxYwmQhD3RVaElDjqA4+MTEh7Wdd+lrA2NiqGMeOdW2Dee16GQTRxW2cwXu5Q3uUJ4AtrGAK9B6p5UMZr8Hzz/UBEGDQXGn8UxUG/imfOvgK2qAJ56oBBUXOwEnhhOka3MgFCIQfg7ZafS8kR0L6H5QYt7NW8WRKmXdAbOvIBo/f7HhZ9EZTns26/okgi1vND0SojpJpxLwKhTV2+CCmKX81yxmFJs6ZzW8wZ3ReJvTjuf2KKho4D8fHqPWJSZIgUCd+8gTZA30T9gJuxUZrFoXDGZQnLiaYQ1ppRCoS89DrzwiI6VF/ni70NPAM44n87n77cKvb2H59CJoGKUJRndWLceSMtWQGd/kVRT1C45rCkjVWdyPdavgiVPcQJg7g/1aD+NcFpY2r40NH3xcd3o90O2sToE1zMSZqRG6UdOSISw2ncELroaZhQDI5cpkcdoE+zSBcBLPtv5kMNIL/MaMgDAz3iNopX7ym/CnH8FbSqa3di/B/aRBLAYggHDYL7yddKGyPyGSbaVmmrS+HiNmOtZ+/YCO3AtGORcxXOPugxccQOtD+53+3CO1lgMxgmnwlz+DRJhy6ZiLZCjpC45OXQf/OE0+ID+eV8F+g2CGTgEduazklkE3ugkOWGPCldJsc3A5AQ7ZbJX5qGoBDiPgbQ7v6uriAXwrs9edramO8BItwQRZqvRAdEaGB1SwKg2GBhZHMuQeMryKENHhTOwOsswN496rz1yD3BgN/hebGLWmu7ZjT+FmXQJRWfq64CGej/zIvN6/SrYl5/U6+9CPu5hW2zJkZXzIIkPp18Ac9l1BNq1fTTU0znRWMr/24mvPbGsJ4z3S2mkQfzIE2Hk3OJxsqVolB4jOQRcqypJIP7SE649zwL1ASxkaUgreM283SKgTQDqPw2AJGnbwir9hicCUFwK89XrqZKlMYzS9Y0CCfHeelFXy93B7MhKZRxaj6BT6MU4pJ3APhUOqeH3uwPAb+39f4XpM5AmooAk7r9lrpxMpkIgaRoow26rTzh4GMbEnsJ/QRdpywQYLVvoLu6zeAH1tA4XXQNz0kSq5aIXHo24raXJu+B94KlpwIE9+vRaYswEYNho6pfUrRdN2MSCD79wsrqK2j3Mm6XfYyAGDKNJPmw0hdCEOpdMtIgFLEvEbAQ4sI/YsHlvadAXYRBDQGbAMJgLvkoMX0FheDxfXTf7/hvAEw9I2QcvhDXsBODEiSSW7TOQhIfz3gamJwTl63iRmZQIj7XrAAw+ngS/xe1g8guJSrYWaN0mvDfgJ32tbD81TN6+BSg/SE07vW7dADA7rAzDpxpOk5osohvcu4t0Xx/N1yzdy7x5dWIPT3RGYfWMLIdCCRlf/S1qNZGTm8xqCusaicAumA289Li2nbeZmVnBDtZ4kAj2xAQou+gamIuvJiDrvu/KJbD33U62U9oF5vofAGNPpXOIMvCX+R1nXUhTIzkjHlCv5xDav3htag0SdU9KbCClXYArJ5NNu+EngMLhM/7m3Zzv/wcxBPE4edZBRQBrqmGfe1iH02gcNxIYOwFm9DigzwCgoQ72vTdg/+eXwN4d4HV1Gby0fR1mroDT1FeSE+yUyWNANY28Mg8XXuk5CDrUOO8dqdkj12cmqJigASXddFCskZuhVq0iBgcyBEbxTwkYJWcmh2lNwxIacnKpoO0rT2oCYRkDAlozL7jaC3k11NPhY/65HMDu7QRmPl4r7yPtlF7l9xsKSjoYASnSO/B4Eov3Py7ZPg7shX3obmDxHNFAPc/3qjMoM20sAJi+g/yMZm4uaaFkzZCQZZTLscRygO2biSR4/mF9Sd9hOcgbfL692J4EHAUCIz7qjlGaf6LTuG6k+TMGRlR75PIbaEFza28IvbZnB+xbL2sNzBZmEF5lj65UeZjiOQhzVKd0CfvVUaZi4vV8fm1AncPPwtiJML/6P0LikRzeyGO0wFRXwv7198DiubJpXwNg6+GWaudwxK/FIEI7ZetNZt0qMgJv8lb5QkIXXUNhhUHH+1uv+ICR9X5esRj2n1PF2wAGHg+MPhnm+NGUgp1fQH8vYEYeY1GPqgeAjz6gsNzBffTzCacAY05lEV1Xv35MegPJIZ5tfT0xhM8/JH+5gY2oTcJzPvNCytwTQWpQ/N5ljrZvoQ1MtGqdulNob8wpZNDtSmhxWfA+sXGrEnVkYqz5WMahg/8D0NH86QGgZUtvE/Y1fUQwi5XqeSI+v529rQbYfXw/NvJ9XvBOZhqkOx6+36fdCrrvR86+b2bWM/NwWi13evdsejXrW1YzMJIGoW1VmCTm2PM+BkVfAZCPESeRk1Vckhy+EmAkta2enq5t512+v2t4jl3MDsbxif+95tswp0yias1avyRe8XuvATPupJ8vvpYKGBYU0rWOMcMajfrCWnbe2xROJFupZ33TDP5+3TgcPpbDtwSMrr6RMkvzC5LnW2U5JanIxjh2IswNPwQ6duENJep53vK/DQ3UsPVft3vvM+kSmLETgP5DKMzVWA+sWU6M61xf7d/NAJ6Fv6ZRkAg7ATrslMlSNf2HCSDtlnmIRCihY947mgWrZ13gPXx9SkLCacIuSkitXDnGEkorTw2MjinjGtR6SZVHGeqtmcakrg9WW0Oh0acT+/ouDlGfAaATOveAufkPwKiTaA40NVE4rbEBaGykvS0Wo3n0zINa37WYr/1bbB/D+ZyHsH3SXDv3Mkqkcu0DADaugb3zv8Xx/pjnuTSwHwbpr3nKJGKe2hR57FF+AUUY8vI96Us8TpXq1yyjzGoCXdqOXgdpi9vw0ZoPAUaJUBo80b6A6QoAFccSIIlI+ywAP2cqzruoJR2DJ8DBMtjXntFGuYlv+LNMo+rO3OI5SP0TEeIdgtdryQVGus1DhC9gB6biBuOmn5Px5uZ54rdYlCZSVQXsX34PLJkLRqgXgqqQZgySuLT/vQkv6tLruFt5YTBjlJMD1NQwOxNQpPzir1HI6rjhFPN1N9+gzXLbx1Tw7cP3gTMvJuFbnwEUOjMGqCyn99Jsj9ZQCKipLKdw2uzXSbA9Yiy9T7sSTwytC+Tp99Ig6cM5FKIgir8eujCkgL7hYxMbU2ITChI2SouZ6krYR+8B3noRGHcmpXaPGOMxhBWHgJUfsRDd50GXsf5iPm/c4h1PAXARho0BBg0FCgqpfk4oKKLraCsPeX+zawdQV+P97BecZzKkqOo8XnAkK1G3OkjSxh3JDLqkYo+ZhNNqa2DnztKe3hZFgXdCcN+0OJLrGe1jndE3E3P/3MuCQap8djRKoYI3EoWsP+IQzUZmZyax00ax0A5dgUkXUyi5bZE3R7UN7dhCTU83rKQ7/Zu/qIwr+O1FbGbfbvLM/Q1d7+HvN4k9/cEJh2DQcMrCHDGWNgqtz5NzWTQX9uG7Peb3334Nc+YFHrMr5xFV4GjHFiqmWF5GyRGDhlG4u1Vrzl5bATvnbeCp+13N0T4OsayAv3WOJCdIGRRqX+Gv8u/1eAta72qrqWq9B4zqeHP+OwObEvj7M8o8EYW8ZhcPKZ2pMFpV6vw+FWDkVKX2Wi+lYouCnGQNjFZ+BNw3FQocfsCO5WQAOTj1HKpB1LaYwRHvY00MjHhe2NlvaLD8MTMwj7NdTGDAnlBL45LrYE47l0rBBNlHZTnVXfLYrHk8byYm5gEAfPVGmOFjyYlO6I1zgLw82nsKCgkg5eYB+3bBvvMqFXb0Svms4HXkHZ6DRQzeBBy1UBojyWCXoqDVSG4dVnUsAZLTGbo/AY/ejteQMJIa8q68ePNG/uJPMkvUUdGqxfBqb7ieQ5nSG5UpA9ZCPBFZR3gzbseT9gEAML+9ExhzCi0Yifo7UULdVRWwf7hZCtc9yVR4RiDJTrlxGP/PcWk7ZbMx2IXvA9P/5n+jMy6COYXLE7RoCWzbTBVJi9ohSX+iAVLFIQJaABnk4ONZSMegaO1y2O2bSewshfOkI7SAIjGIDathP14P028QhfHEeKNNwLIPYevr6BwlBBaP+9kjGyfm5rH7gHdeSQZ9+vwaG4C1K+g7DRzmlbP3XWtVIfWD94Dtm2GOG0HeTfvSROYa1iyHXTQXeOI+/YkNPE/WOBuAro0SA/BIgGD1SI0F/BmVHHKS1yxvTDEE93jSxel0nz+domzN1Gn2yNpzSLFHHU6LRkkE/eLjwMG9cp3nsg0UK52RbvQLx9GR8PheBjF/AADzw1+Tp62zWOQ8ErWUdsD+7Vb57APMGH3MztpgZmxonHQ6zHmXe2nOeq7KXNu+Bfa1Z4H3eOEv7QLzu7+RxsdE/M5APOaxNgtnw/75N/JJKwE8zOvZKbwJeYZ72ddhxp1O7KYWVOvzkEQVBmgYeDzMT/+LUp5NxM/Wit2WHyQQYgDT/zhimXNyaTPavxd20RzgmQelH6UwqOXwyizolPj9ipUJbJ/DBWTv8MkH3KrptdWwH7wLzHxKA6OXmNE/yPNCs0bF8BJwIvx5IsDWhR6DgFHjsQZGKVt1JFov9Q+VBXh6nByvKnZtDckFnpmuP0r0ma1BlbVL8M2fkf5MygCIbifaRI+xGPU0fPDvGsi8AUoMOIPZVI+qHzwCOPVsmPFnEJALso/Kcth3Zmod6zZmdk4BlecgB+TiqylU3KIVgTXRoBrjsUcFhXQsmkvhaI/ZkpD8Byy1yeU5UaSAkYivWcicCKPVKLaoXAGjRPuwYwKQknotpSoOJ/FmL4Ojntmie9kgNDDSheGkiazUtShT8eYDAfHmRp8Q77YZ1t5yg1Rwbc3v/x0AP0eHLjC3/hPo3hvI4Uih0NSNDcCOrbC/+4kwHk+CCluSaDtBM9ogcLQQQAuMmQDzleuCr0dYOGLMBJjTz6P09XYlQGUFxV+3fUx6nE5dkRRe0eewbzfpVgYO85Vbx7oVZHBvPAd8799hLrra+z8NZqRIo7VUtr6g0NNp5eQA61dTFfNnZ8Dcei9RugmAFk9+r6ULYe/+I7B/t+eVjDqJmDBpJbBtE2lGFs+D+f4vgZ59/Kmd7sLS1Ahs/RjoN4iMT6qsr1tBG7XXdVy8znIGQxsdliIIXIuuYjjrVNrxoqdBi/t8Bx/y+lp+L8nwXKKAuq6aazLQ97kNkN1+f04Y4fABUlISwVXfIrYwqDVFYj6sokxBCbuS1uclfi7hNN03TdtzeYBu8ACAvwAYjeu+TyyEG1Z1W5Pc/p96A2lkWr+9T2sz4RxiUDt0SmY3ZZ65wIiubYG5/UFiTE3EnwGUCL3GYZ+aDjyWEKi+yPqqwdDNm8edQSzcoOOJtZIq8cLWAiSo3bDaD4wAKoly5oXEAGmQpoFaXS0xr22LvZY61ZVUQPa5h4BVS/TtruJrvQVeNtoBdQ8Oqs0lKWRlpk6Pc4+3mxHWhLimipyYV33A6EVQ0swBXvfbK2Dkyigk7FqpwmlaY+QyRtFjBYxYU3RaUvhM2NagAoxhbJFR4GjPTiIQvGvWyGGwVfx9OzKw6YpTz4b5r78qGUPUC/UKYN67G/b3PxN5xVZ+n2HQGbgduwHnXApz/Bhg4BBVBkB1MLCWHO93ZuowXwOzUN0TAu7BI2Au/RpFAvLyKNQXZcAmde5MhNiiAgZImzfC3vwNeU/pc7mEo0pVPA/y4DUeLuSfpbZWowqjyVw5pOav21e18Vg0q705SYQXVByuhjMUXvYJ8d7gOGW9CqUJMBLBZo7jOaQDRiGpm4mClsIitWXNy18BTMBJp8P84n+oxo9W0UebGCRtgf3dTwUk3Q0qchkIktj7XgjgOJx7OWURuNdDZ/fs2Umx22EnwJxwMoGi9qVkKBtXU1jojeeAk8+CueW/aUK5wCGoeJYc61bBLv/QE3V26g7z2795dYikUrXW2ASFsqoqKHTy3MMi3oT547+AUeOQKO6mNgvE40B9HbUteOQfwGXfICHocSPIICIRMrbZbwLvvQ6s+Yg2j5//nouXBWh+3H5M4mlVlsMungu88rSuQBxXhrKPH8sDNgEJxwb1ZNLsYy689gj56tDNJFO11zFpwJEOm7nASDNGukt4nToa/CEPeziLvT+JIMyeZf7u2cUizzWaXn+D2QcJp7n1jLRusEwBo33qfgwD8DB6DSC2xL3/Yju5eZSVNfU/gr/UcaOA084lvVSHzv5wmAYlDfXEhL7ylG5zspkp/atwzXdgrpzszTvjZKnF49SQOagHFUC2e+aFxAK3KfK3ztEgreIQgYlXntJ96IDSznQdBh3vbaZ6g9XssXjnjQ10bWa/KSnXCbk2H+IYVCn2ztXxVKlNReaZOJ+n8Xw5NcGS6CbENVXEYnmtfOpYAPxnvtdFDIYkpCYyilYqTNKgBNjCFh1SGiNxZBqR1MfSHo09r1QBIn8LqKL2wIgTU4MiPW/EhgQYRWPAmqWkt/Hm4CF2tGbzmiFhx3bMbuebJ98H2hT70+E1G7lvNzn44pzq0bEbcN5XSLYxcKgjr3CchxWLaQ9/71UNjGYxKCL9wYmnUebniLEqOYcZrCZms+rrKasuJ4fW+bx8oLAF1dCjZJm9fM/rFRCuU6y6FJuGE0arUmHXQwobVCp8oNnFo5PmnzH9Lo1kZ73mZii8xrqAGr7h3RGcuiml7CsdAz4Af02LjDIUmAoWpCkI9d8BzMCCd/vbu/8E87Pf+TeCXI7qdesF819/gf3x1wAqWbAcwH325usVSDLyeXcDOA5jJnjgKBJJLpaXm0veXl0tzO3TCZzl5lKG2BsvAO+/IV25gRt+TMJuG1Kjw7doUx0K++Fs4L3X/B7jKWdTu5VOXTxAkyg8ZplBc5iapQt8HZC96zkNGH2yCgnEvdAXIkCUwl9myAjg2Q88zVRDPVGpb73k11ld/0MKQ2rmybfAON3ecyKkr3rrJeCJf7lecZWjlahKMYd0KwTjAB23hU5LdbSAvwhqUEuddOBIp565XcFdcKRZozp4FeP178zheM0ZJxHIUX6QWBZPO7iMhdBL4bUG6RCgMxLvTjN4+wJsmurlnHxGcgVs3Xdq7y4/ODpuFDBkJM25oaOIRUmEwGJ+cFRbQwBi+SK9PoG91sXsvM0AQBu/GwpRDI59Z6YfHI2fBAwcSpvl4OHkEGjGygmHYc1yAjKeEFWu6QiMmQDzvSm0AcvcT/STNMk6xG2bCGS99mzCkXEEqpVKtFqhNDwHHGAkGiPAX98uAuB3AP4jsf5r+YAwRn5g9DyA25jBbQsq2tdeHUUq7BpXIK4yABgFhtJwFFL2OR3/NFBx2tOTWCLpB9ajT3D4LAgc6QK2kRxqLbPkA80WgUHRxxzubME21U4ByPYA8nHuFUDLNhy6iiXXvYpEYO+61QNHHbuRQztsNMzwE6gsiTsf9fts2Qi7eB7w9kwN2HfxeU0CcAEA0rZefDU53bq2oKzhDfXEYC5fBLz2NMyM1zlzLY8AUixG85VGlL+jtHnKcx1AfqxXc6RcgaJyB9xrfBDVa2vuUQBHmYXTpG7PzESVWKn5cT+fdCkobVCnbrZQC2mVI8AO8myambppBSTFlGdSBipFcAfeeqGz7dydajRFAmj0rj1h/mMq7P9OERBkAdyHSMSpj0T1nsyFVyaDI13DIi+fQFGXHjQZ162gJpjzZ/lP+5RJVMJdMz1BlXFNBFi2kDLf/Jko+wF0QOceMD/4d854sQoPwCm2CKCinLQ7M32MjIRDuuEnv6XsNejvbQBjvUKfua1hzvuKB4pWLWE90L9cQWgLnHwWbcqaynXBUUL31EgA6+kZ+tykBpZk1lgFJmSRPaA2g0yAkQ6j5cArPKazJloGgKRcBxjpHSyMMdK6IvdwQ2waKDW6+qPDYIH/AODkUFGttoW6Ws7MekSzLHNZZNuJtQcdkNw3rU7Z834kl+EoR3IBP391dbGfXBZ15uUD+QUwv/w/ynTs2oMr5BtPkxO3STo4fLyOC0b6CjVWMyh6CZQl2IrDGAQQmhqT29aooramQxfgT/dTc+XeAxxGJw7ENEsboyrDH6+jnpKLZuvz2MUA7WUA/8SYCTA/+Y0XQlZF9Xwbb0M9sGQ+heS8zEwwIBFHIV/NuzoV2ixDcsavJAK4QL4LKMPz/MT6L9mMe3aStsljGAQY/QmUGdqa50hxADDS86QuZNOr0uGRowGM0gIiYYl690/fF1MzRTpjOyeHwklrlxNz7gGPGlAtuSWs5ylhhqpIEQfSLYLmZTwGNDX4w2GSuMJFSXHe5TA//g3NzXal/uQCHYEQO1nHQGbWy24pmCV8HydB+qNd822YCeewHs4B63t3wa7+CFgw253jhAm69kgwSPb910UPV60YeavW1UbFKGrR9SFnjlQ4kYCGgPUxMUlyjyAwCq5p4dLv0SbYxQtpY/V6G70FYCqfeCmLwTooYKTRYg28Yo9lToZC+RHKULCOB7Ua1G/sz3j473no1ReYeA4BmQSNnk+T6ITxGiT9EwDsz75+n7nj4Tht7kCCdm3dNhkcCTDKy6fJvX4VtQvxelFBLRC5AErMlTf6w1ZuJWvRJz18txZdHlILYHcAMD/4DxKYJt6DAY02qG2bSCP2wB2+6Qyv2OZgAKQfckXh8j4RtUCsXk5F+l55Eti9TQtCK9nYSgG0MF+93m/kCTihgNGOLaR7mvYXly0SoxFQks/XsNYJqckc8jWVDQhf6fYycYdBKmRQ5KaUagZJziMMCLli6ziSe/o1Oc9dUFSvjkbHM8qUBb4XUtNoyCgSLYclEcRjsB8tBB68UzPBr4BqCpUyMOoIr8mv6Iwa4O+bts/RfYU5O+8DAOa/Q/q23JZeWE3sp6CQEgaGjGTHI8djceNxzourpmq7a1cCyxa6daSqedF/h0MYdbwWdeNNvJjPdZB9ZybM5B+rEJYjVD/xVA80uVllMQqdYcNq2HUrqAq3V9UdbAdyHu/xRkgNtUTcGgSOIhGy1/nv6jpeEqIQLzqfv1NbpeXRgngNjLR2U+Zeo3NMBXAeikqowniX7lTkdfYblCXrfZ93QD3sdvLnl6pr2k4l3ojOqEGJ9SsUOKoIAEbRIwWM7JQb24Hq8wQDIt7r0HcQTPdewZWtNYPv1OHKABQJW7Sc96ECBo6SXq+1NlAC5J0AOuHN54tw8TVAaUclfM7xohSlHcmuc3KUfcBbY2MxYonWr6RIw1svut9+KYeZe0Ay0wUYTboEKG7vfXdhidavAt580a1BV8NzPAbgdNRUeSxwbSXw4N+19ignQGxdrgBQeQB41mG0ukwdx9wjBI7uRKqaFolKzx+6wOhNzuBYzTe9r2KMpJWA9hxqAijfQyHA6DCFeFaH2kQkeog1Q3cC+Lm99WaYlvdQATiZbICXTTX65GCQ9OeH4qxHmgPgVLtoLgGJFi09cBS3FBZauxyY9YqeRE0qXlrOX6gEQIl94gFqjSIVSwHSF6xfCTv7LVdfIOUOKnnzLhbP0R7YC+OjPr1sN6xeRqEqr2ZNTG1gMb5PHUUfY9etJFo5qD/O1k2UrfLKUxoUAf6CbkKhFwLoiAP7gL6DkpsvVlcCa1fCPu8Tl8bVfJDeaa35uSy0utWAW/ah1tHuCNBoUI9NDnsjQEYLo90CZC44ckFQEFOkn0cDHnUTZLdhst64MgZIPhY4XU2jaBPssg+5UGlCgP0qZ7/EQPV7JG1fF/BzdUaaNSqDPyMqyNl5y06Z/Cq2bTzf3v0narg6cChQ2JJrpvBRwExSTi7N40MHCAzt3QmsW+EyqeDPXwoqiPcez6MCPm+pydRWOW4bAZyA5x9uaasrYc6+lEJmmkESHZwAl13bqSny1k3AprUU5vZCXTI2qc3nHXgNvrsyO0mL6IdzgONPADopD73iEG1qrzypQ9RRZot28hwvYtvXDX7rnfX1YMDmUuPYhbaJRk5YgPnl/9I5TPubJwOgrNDnQG0oqvmzRTYh4Eiyj3QF7MaQjKMqZ8P7xMDITrlxJKga+wRQ8cORzQJEmYbP2HawY2sYKFrNIdSN/L3asY6nSAHHAhVGb1RSAXH62gMYZ3/3E+Dy6ymRol2Jl8CQl0dHbh7ZR2MDsGcHsG0z1V7bsNoN68lYweHyd5nR/G8AZ6G0CzDpIgJGRe2IVd24BnbTWmD5It2gPBHsZTH4e7y/ghOcTrebN5IYPCcXdtpd4thXKYe0geeAG4Yvc8CSgGe9jjQ5zmjo+EQi7Yzod1lA/cBIxNcrnewEyVAQStVN3TwYwhgdBSGegZ0yOaJ0Je15cZoMrrtibr2XPMOcHA9tRzmzrbGBKG0CSWCP71/mzw/F7c+/cRazZt7oM8jtnSZjB9/oRsVERJXXPRK61cWkS8gL8PoUQXmEh/jaSOpjrtIPdBSBNkaNo9BedSVQVeHWWzqkFqY8RetGVCiKzmfoaOC088jDBYBVHwFLF2gWCw7NGVWLoRQCbMWeG3DiaZSR1r4jsGMLsGenWzTxkHq/ArXIGsUIVqVgHyucuHSds/g3BnjQcv2EPWqljhaKAnZDc0G6olgASEoFmFIdQQ2UU6b4pxRhBy30G1bBvvw0sDlRbPF9UPbRdiXA7qBsWvQjQfWM9sGfKVgT7OxYfb7+GmIAFTbs0QfIyfO84u2bgRUfhhl6PahWjICilXyOOmQqbGCbAFYQ/Pq50Blx486gcItmiBfPA3ZtDTuPcmYKlvB5bOHXcxRAc89jMoe02PYvBXZsBdYudUNoAowiKhzTCsllFFy7OOQ4Dnqjce1CNp6nEroTb8wHZS3+D89/sRNJxy5SwKilw4bUKV1UhUqWSAOMMtq/+vD6OZoB0Ujo1HsJmQ0YeniAyC12zO2NsGkt7KZ1SZpNBkUfgar1RxVg1NemUIXo48410uBWGNgfQDcCB4AzLwIizKjmRICqKmD2a6ku1cfMYC1mwN7I9zGP7fshlHaB+d4vqEvBrm3AisUuGyvzbDO/j7QFk9BYLtvaUAC/QoeuML/9K+zmDcBtv5L/3c9/JxnHuxlk7eTnuq2Nzkard/VFXpubG3FUAJKPNRoyilI3dU2LaBNlRs18RgOj10GtOZbzzXeBkVDvOUpkVekY7sEA7/IoZCgYndUmDEQJU4nf4ANmxmvUdkNYJA2SJO7/x19okHSfueNha3/29bMA/BRuPQz6Tpv5e9YqwV0rvi5NfPN14cuxTPt3dRb+XbzxVMFfSFMAjVb4x3ixLQ64GFUqBNUEr/6IBllyv6p5wotoMGgc4r+NKX2OXqhFDyRZZF1AhfN6h5xbmfIuihXzKItIo8pi0Jo1t0llpeMhB20AUUf7I7ohyWAr5M/WuqNIADhyQ2oaCNkAsJSKaYqnEHA7DZNtZiLsb/wgvKbRto8po8QD9O8zY7TVAUbSHkTKcDQiuZ6RFmDr+mSJTJLwc0/Y6HdBlbTHs52GjahaaHfzRrQcXquhJnUvC5XYXsCu1FMRil/P+Rr+/BGgvm2phojo9zMQWsaP5coWjZpPcg4tkdweYQIo21Y16UMFO1Z7eAMRtqgt/P0p4+r8ywPsQmcAa82GLhvRpNi9GK9Bf+fzmg3KSpvO11ScllYOE9dGfS+pbFzviMaDQiQZA6OMwBDvZejRB6ZnX2rDEdT7MC0gMg5LtI1Cp8s/BDaudsNKq1lXtJa/U5ECsa2dEJpOutBrWoUSqmtwKwTCiaD+fSc5ewQC1qMGeFm9mxjMyB4iYCbHuZffhLRdSp7n23k/W8eH3rOtckRaKvB/tUg11NiuFoBqDhNv5nPcxvZcFiDQj6bCBkccICWxRlqEx7Vn7PJFVOHSA0avsfh6Kd98zRoJxSrUe9yhCnWxr3JHYHWUUzcTC7BMiDbMtPQA8EsAE9CxG8zU+5NBUlOTn0lyQdJfHrH2p9fpkgIj+fv35bBEL57M7fjaCAviet4SZqzha3Ec/30ln2sXfix2rnGTErNpA6vj75mrPIUovPpT7R2Gz02jLFeGWsibpSzo5fw/UgW3SIVQGxWA0RXPNaPQGVSXoxO/bvn9OqvvKBlRVm2IOtNRA0sdonU9Djc8FWBoidIQOpMtVx05IcAITmgu3fOgn90D5rYZNqn8QvpK7v7GsqlE2Ht2wr77qq74vYjDaXP4+ndSOqMi+Nv9aL2XS4m7HdQz3PgSLK8Ud+3K69JYttHOPF8L1DmUseMgrTHK+LOblFdcqABRgQJFBv5+TTWK2aji13N5Hkp7EAEvbVUoq4rnn5zHXp6HAo4iChzp88hT4dk4/KUcouxAVPBrss6KXEGzM1bZf5jTUO4A1noFjBqDnAVdMoVtQ9uE1uYJOGqjnJkcx5kRcFTVHGDEImpJrx+pjmQw1LMfCeY7dyd2qKSjJ5MIa3KdKSDatglYvUxXStf6L9EU7eD76V6PlinmXYMTbtQFMbXeRgMFw+/ZgefkebyOduU9uCXPiXp+jz2KlTnA79egZDkFal4KeBvJWlbL33ELA5igMiOaoXUdAHFCxrPTL1EB8GfGlAOwjtnfrUpXV+ewRSllNkcUIKVkjQQYvfasBkavAriPaeO2SK5poTc0KA+zXBmtvulphHhHYyRAkhh5EW8EvUDZbSMTIKl7b65cax2QVA8sng/7p1/6QBJPkhYqfNcPlP7cjydbB540Efirgx+Av2BeObzMrJZ8fbvye3Thn4WBiiE5/fGg48U38N+2USCri9Jg5DuCQJ0xoN+rmu9TIZ9DN+ecWiK58WiZ+l6uQDTK5yXtYLrxob9jLpKLglU4m0BYu5n6zDaAUCYj7ACCO8VaBywFPQ8BPpkBoGZpB8MquR88APvmCxoYbQRlH73E90H3TWvn3Ic6JKftHwgRYEeR1EE9ozC4hMC7sf0M5cdefH6FCpiU8cK/T3mcjYo5ylOHUnUnwr918GfJyCGLeCu+Hn1BwvR+fF7t+P1F/yZd7/cpByeqQFoevLYIEbVJCugXTabM3Rj/bWt1TzorR6RQSRbqA9bZA2qTdYsr1iM5I1KcBSTfKx/7LtqpVnxuRQ6T5YqL5TtVI7k2jW/Nt1MmjwS1vBihgFCvwKnyScCQq73TgKiminREe3eFAaIa1tmsY7ZIHFA301V3lM9Rxu3e70q1npXDX8unylnLhEDI4+vemefjUGZo+vBrrfi61vIc2Mtz84AC3DbAPnLVuhZT2sv6gPU0pkLG2glpqRyAXDXPoeQtRby2tOL3OcSs0VoGSNuVo9MsXJAOIOVmuJCGs0ZNjRRKe/VZoKJMA6N7OF4ZVNNCh0GMWnQqHWB0KIAxOmIZChluI27qf7WaKH8E8Cvs2zncTrkJZuoDQPdeXmaV3tROOBnml38SkCSldKcrD0uHZ4TCb1DsRa2z0ehKttp7tWx0UYdBaXKoa7046jBTnfI4IuqaNylvRGt6KkPeq5L/N0ct0A3K661RYjnNGLpVemWxFiMtUOelq0bXqUVbizo1C+luAm7oQLNF8eQNwKaYI9PUH5hPPOf8P8aP7IxOxwK7zUK9GkAb4CVWtOfFtqPSGbVR4LkmIJy2H6kF2Idr05pl0xtKNbyMxSg84X8T/1++8tYBv4A+qsJIDQ4wqlHrkuhyxP5ivLbVOkyIsCnClMo5RdTnx5V9RZTTqDcf/b66K0CEP9fwvZD3sArYaH3foQB23hU+1wc4CwGbjw1HsN6GWKCAQL5aQ+od4FnjaJ1acoioB4POCQB62ymTe4XOhjETgJIOMJ26UpjscMGQrhsXiZDoeP8e2G2bgZ3bgEVzpDBwECCSOkX7FRDqFACI8hXbDLXuNzoguCLgqAwAkm49Hyh2zqq5pJ3HJuXMVDuAqIViHSMOWK9TdlKv7qHLFmkJghTSLXSkHrXq3OoVk9qK53MtX8c4z91dDoirAdBobpsR9xKMPjkuyM1wMX0riTWqroRdu4IYIw8YzQRlbS1QE6KdA4xaK2+mwRGYuTRh9acHjAIX4ZjSRQmwmQrgF9i383j7i5tg/vB3oP9gmhO5fHkl8yoZJOWAmgBCLe4CFmRhdwGEFlHKdarnvyvg8yxUlLpRoKchIGat60PUKI+jrXqs4veM82saHB0Kea86dS4xNjTRLsl7RJAsynb1D1VqAzL8PoYNpxJeD75GpXPRIbVDAecWBoxiCGzoaj8ZwPkMjZQssHjHtdVUEfcVXxf1JwD8je9hT0dnpNP2651wWlCD6KRaNZ/QpnXKr1TTb83nU8t2oR0c2QSiSM4kjMGfiVjnbN618Gc5NqgNRrxgcUD283y1PI919p7MQS0T0Hoy7eBogFYLfzaZbGb5/Pct1WZVwzZWpdh51/bdFgthzoLDoKa9T0ZtqLmKGbEO4JJsz948lzqzTKAdh1nCx5BRBIA6d4fp2JmAkJSVyRQM6XkvzBBraLF/L+y2j4Fd24CNa4FNq4POYi8Dom0cUtoHT0wve2BLR8Omkzas0v40OixaJfwNVDVL5ArmtRbMKpbNOHuXOC37lIyihQLjNYoRbXJsQ94/GsAW1TpsX1yxoQVI7hgQdUBWk2NvOlpQwu8tN7ecAdIBtdeQLdsjiwty0yympQAe8nmZ1ZWU7u1PHX8FlLo5H/6aFu0UMGqjNAmNCK9p4QKjpk8ZGCEg9b/O0Zz8GcAt2LtjqP3OpTB/vJ+y22C8DDcZo8dpkPQPnkAvwCvMthdeY8g8RyugU1wrlZE0Ko+4SS1KcQVuYoqFKkdy/5laFWeWDSVf6Zaa+B5Zh4UKey85j5Yqfixhvno+Jwt/Zlk5kmub1KnNLKI2HImDR/j3Beo7VgWcW1UaT6u5G8DnamTEGknG6aP/1MDoFVCmWDWHRzs6OiM9P+ocoBukI/M5PEegH5b2iquU9k2qcmudW1SxMFpTozMo3TpSOqW9ztHh6BCs7LgSKt6n7LdCOQa6xlpQWFeXZ2hwNqG6AD1QTDkOOcoxyFfh7XgK269JYRPxT2gTwoa1ZU1WBwY/RSAhe0ski3H9o6iEalmVdKDkge69qBVLJkAo7LkLhsr2Awf2wnItKqxeJg2N3VENEgWv4bDOFr5OrRQg6qjCRoWKIdKhUgt/Hal6BXorAw7NEtUGzJl0MgCt7TqoAJFo8lrAryetC5nrYXXWXGfBKmZU98trUkAMDtiqV59d74SMaxSDBKXhO6idjKMhtUnHIE0A0AUTz4Mpagf7xP264mUdqInsQ6D+Si3glTpvB6/YlxZgR9VEqAox1rpwPcKnuWklgaRax0u6A8CNAE6x/36TB5JMxCNPdbjt3/9PhNt/5WvzEryCaAcCNAOafq5xFsqoAkhRhfYrHe2RbifgeiGNitZsVPS4GNJ++EX0cg/dXkzag8hR75mnKGjRnWk9RDVSp9jHFbiG8kar4c/w09+xKsQzbgpmi75YoCgta6Sa+gZknD7NAL6CwVAfeL0QhQnOV+xIUKsWHcr8RCnZaYZmh/bzz9XKm9dlKKJOyKnJORpCjiYkZ8UkQrDsqYuXXqFCSBWseZI5b5yNIegcGkPOoTEg5GXVOp6rvmudYgk0a1Xt2H4DUmb7pNVwtGPtj2TUgX8u5jnTM+3dKyoBBg2jOVnUjtigvAIqMumCoEyAUJBmCAyEqiqoxs+ubdSwe+kHYWdVDdLarQaJgHfzHNeC4t4OO1QAv35Na9jiSG4FVOesfZUB61ZtCJAO0YHZVHtWjWKtatlGWyuABAcIBc3LVHNTGNkcJyxnFEumGa2o837aQZFoRa3a/1o5ToifPToKI6VImxmk5dC1NmiyzGFvdBs8AV4bBY6K4a+A7dahqVThIdezDNAjfJZGUmabUIDd2GAuh1QU/eGvYS7/hhdmi0a9EgBNDcBHC3SdpOcB3KKMLVctpprObAgwlDiSa/HoYmLG8Q7qkVx/KAZ/2qXUf9EpuBEnhu16tNpwZcEW7YFkaugUfO09hHnUbixd3q+NAt+6vH69MigN2BqRkeD6CwWM+nNY7PxQ1mjDatjH/+WW4pgOKgYn2aZuk+gCJ5wp4TS3bEJ1aofniNmjbhSsa1GJJ6+zv/TiHFaJXP/satIChMk+UXKuYl51PSxdv8ZtLhwN2Zjcmlv+ela3zbD2lhu0zse1/fwQ268Psn1tE1wwsZ0DfHrDK7UxEkGZYakAUMtWQNceMAUtAAFBJR2Cm1+nA0NhQKiqCqiuAPbtgW2oI0Zo907dLDlorGdmaD9ITL2Dr7GAn5YOENKlPPIQXOcs7oAivS5VBziFNQEh3IYwpgjNS2TQrZDcrDGZJ1oDFUdw1f4gxyLq7B8R57MK4Bdgu2AxzNZk/9BibmGCtWi9HkCTmTo9fjhryifOYmOQdCkbyRxmjKyzGAk4EmAUVGujxompVn2+gFHgpMtVIKmUQVIfvl4Ekm78KcxXb6Bq2WEg6d7bROz3LKiwVw786bxB7SXiaiJBMT5aDKczIoImpc9jVJlYohnQnelznPMJqg3kvpfWH2hjcVNXXU86FhJL1xtQgXNu1tGPuB6//XzMrSMGjm4CVX5vgZ79YK77nl9rtH4VNZPdukH+5TUA/wLV5CmGV4ZDSju0RXLafljx1qAG0Uezg7px5n9egA0EVS8PK6jpAyKZAWofSAqyQ50VBwckpTqPePh5cCNcAogR+LPftO235tCWrBvjVMxsBLzaZ5mDngT44UKKAFW6B2A6diFRdNsiCocFMTzhO1I4CGK2E2X7gIYG2L27gYY6YPsWqgD98dp0776OJQyb2NE/CNKyyCbcQoEgFwzlB7BDOmRm1T1rdBw/AT/VzqOrZwsKtwaAouY6dkbPkRz1XXR/SBfcxdRan8o+gtb8HARng8KZ79GA99KMrLYjOU8b4NTED3dtOUJp/knG7zIMutpnC/hTN3VKbNXnGxilBEltFUjqDRIYfg1ADk45G+ZX/0cgKR73F5NsagB2boP9w80S914I4OvsxbgLuk2zUOqQn1ucMKmtRbKxmaC6Pvq9gJAChWney+1gbxxvXotUbZr304aek8KwY+Hn9qUAR9Tx99zLYSaeSxuWMVT9+rXnNDCaB0oUeB7JNcp0L0RZnOpVOO0gmtUg+pjYoztHguwgqNedfg2HP2dMmB3KvHfPI57iXGSzyFUsDkCp7L2dDxbGRzzv8Z/ocg4ZBbRs7Qc+RcVAG8ZSJR28zLDDCYGF/d/uHfS4fzdsfT1wqIwAUXU1sHxBJmcutaU28lxcpeaogJ3CABCkgZDekIPWGeswkU0Oy18bIIkIAkP1KUKnzQDnzbYPE7C2m5C9Is3+452XclRc+zMhe0eK7+djvvR5huxjh91r74gBJI0MBRy1DQmduMUDddz7cw6MQq+LZI51ANUg6g2q2voVACXo1B3m1n9Qh2drgVgUaIqSR9TUQLU0HvoH8NF8cLz7evOXR95K6l6fAaWqwFLybzMytqT3COown/F7Oe8T9F7NWARM0HkZuLWDvmSgyGF8lwPoYr59CzBwGNDY4NUo8zJO54IayT7N87aYAZHuhdhahWmCsqBStvv5dOzaqGsROH+9OXIYhTWbex6OHQafh1NgMaDw4XJmgA5viNBZBgMeH9uTDvSkAkHpXivbT84gALt9s9e4dPtmuiR7doS1WQoaVSCRdDWHxupA6fQS3tXscoECRAUBh641lQ4MacaxEeFZXLXwp7vXO2AoDBAdQ4fOZGQf6eZmGjYXn3ytT7xfCtuZZj/henlEAZIu+qWrf2rWSIuKXaHZFwQYBV6bXAWSShkk9QQwHMBlkBLvv/gjzDmXcjfvGIMkrrhdVQn71DTg9WflzW81dzz86wRI+hJu+NnRbIP/CoBnMfE8mOFjYTes0vNJgNEjzBq1gr/isgAjSdsXnZhb0kGX4hDb/gQNorMjxf08A8DbGKMIJM7o8q1CGugA4QLnMMCTDvRUV9Iho6GeQlzy+/KDxPTI/3hFRZs7PmSgsI73DymmWQvKGtNhxKCjAMkheF3YUGeU5YQ4bTqM5Ir33YzCuhRAKF2roiPMEmXHpwKQGMVFFHskuiMRA+rYYL2Douu/mMAoFCRJS5ISBZJ6A7gEwDAAwClnU2O/Tl0p5BZtIiapsQFobIR9ZybwwB3y5q8B+I25/cFFiMezICk7MmaQ1Mt1oGahdzJAaqFYI13AVdL28+BlnUi26SH4+zsdo3Y/WYCUAEgtWwGdu6cBOeGMWuJv6+soiytsrFupRftHYqxiMG0YAFmeP+sZpOzlQ8CLBjR5SNZWuaAoLwQEBQEhzTbrUI3WeeqaRKkODYJc7VCouD4LiL7YAEk3cdSl4mMKYQelJH6BF0+fWFILt6XwWU+QbmAcqGEgKRd/+GuYsy8lzy8W9YEkbN4AO/1vWnh4F4CfmdtmRI90Mazs+EKCpBvgJVa8BBKl6oxCDY6K4fXXA/ytXwQcuaU4jmG7ny/1vfzkIbYjM7aDspZlwasEsFKBDundJbqRJfAL53Oc5y6QCQJEQYfb61CHxSJIbvEjKMQV5rt1fTRD1BDABLlp6EFZhkGi4ywg+hIBJJnAEtcVhK4zm0LSR78ME8OnSRKQ1B5UTbUHg6SeAM6G9AwaOhrmG98Hhp9IICnK/duamijk9t5rwOP3ygesAXC/uW3G7dmQW3ZkMBeD+mEVKXAk4TRhgaWOT1hR0mY2k82OIwiSJvB9GxHAFZlw2ijweRWojIMJABUGVPunCsFC86DHCJITMVwg4/6cFwKQggBQUOJJxL1MCK6K7pZyaHQYn7DHIBAUxArFkCywRxYQfYkAkrPx68kdUeyRRtFf4sXTd63y4fWS6QSqRNyTjyEgfRJlnoyfBPP171HDWwm5NfHjnh2wLz4BzJ8lHzIHlHU0w0ydfiBrhNmRYh7mqnkoDaNd1sgguWJ7hsVbs+MYA96gDLlICNCJBDyPZHgEgaGcANYmJwU4ygsBSmEgKyj71m3y7Gb+xQKAUFhtqzAGyA2LaQc/GgKEAsBQFhB9SQGSj0VyjTEpFTC7eCYV52rFG5JkuPVkRqkrgOMZOFEZ9XMuh7noKmp6G23yQFJTE9WueWoasGW9fFAFgNkMlt4zU6dtzE757FBzUBcQbAOvwr0u4irNMQUcVQUAoy9BmPwzv5C7Kdq5SA5fZQKCXGATxgRFHDATFCZLBZoiKdifsMwkjTDiAWyQWz/HDW81pQA8TQiuJxdLwwgFhMmyYCgLkIINFAETW6Ho7IQJAUl58LQfpSABbXc+uoK0SsPg9fEBBo+Eufqb1Pg2kkMAKdpEYbiNq2EXzQfeeVl/YB2A4Wbq9I3Z+5AdyqGRfkiiO5Lq49IKQHo0udV8s8DoswmQdDFMV5eTk4IByg14HsYG5aYAPUGhLhNyBIEgt/5TLAAIxR3AEk3BFKU6UhU4DAqNZVmhLEDyjdxM38ipN2DDgX92yPXgIm8xJNfS0J2LdZfwtgAGAijG2qXt7e9+TG918ddgho2mbtXtSoABQ2H6DAIuvgrYuAZ2y0Zg5lMtAJwKYzZ6tyJ7T770KN2bCJJEIc0dJaym67i4LWPiX/Q+dZ/D+xmkB3UrPOcgWBQdJGp2mZ2w3+kogQld9JKPOMILYgYVdg0DRWGvxQL+N6mQbcBjGiCUne/Z0QyAlB2fCCRJSw23SZ+UoZeePKX8PB8UgusIoANeeizfvvSY97ajTqYqt9YCNg7EE8a8FZEIEuUAskApOwG9+VYPr+BjRLFHgb39siLTzxVgclkb1yGD83NQuCvV+4UtJG6mSBypK4SHhc3iacBOEOMTT8EA2XAQlAVC2dF8DzM7jt1iJhluEvZoz0CoEx8dQKGQFur+SHXjUlBYLmisBbUbaMxafnbwCOqLpMv1a22GT3iaHZ/p9UP3mwtriZFKyB0JAUDuvhDUngUhz9OBorCQVjzF62GgJ+h8siM7sgDpC7Jp6ZpSIuAWoNSRgZC0esiF1xy0AlROvzW/ptu3vM/P3Q0vu4B8ue3b1aS4bEIc2Rja5wkgyf10s8OCMtkiIc/DxNFWfZZLs6QCKnGkDqtlAnRSgbDsyI5PZWRDbMd+6IVCh9tEKFsBKsxXyqBJUrEjDKYAf2XjQ6Cso1a8sImORJdcyI7sfIshoGdddhP63AwdxgLbttzXIPAT1P8wFTCyIXPDHsbfIc3fZkd2ZAFSdqRc7GLKsxKQVA9igSoZBEkxvzagzKMcBZQs/ILNoCaL8ezClN1Us/f+C3c/tU4nFfj5JHPEZudRdnzZR072EnzqC55mkqLwRLNud2jpaRdV4MoiXJiZDZ9kR3Z88deO+BE60oW8siM7sgApOz51oBSDV+213gFKGjA1KMDk1v3QP2eFt9mRHdmRHdmRHc0c2RDbZwskCaCRQmgScqsCZbW14kepfaL74Ek9m0Rxvywwyo7syI7syI7sOLzx/wcA0Yj4Je+AvvwAAAAASUVORK5CYII=' button_joiner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABzzSURBVHja7J15mFxVmf8/5261dvWW7nQ66e50ks5CVgISBEI07AEXBhQVnAzIMw4iDijMo+Ioooz8FNTxp+LGDCo6ICCjEBEYCUJMGkMSyE4SupPO1vtWVbeWu5z541ZXd6U7gUbSaSb3+zz1dFX1qXPPOfd+z/ue97zve4SmaeRgANcrinKNEGKeEKIIHz58jBfEga1SygellD9zXTcLIHIEniyEeEpV1fmqqqKqKkIIhBD+sPnwMU4gpURKCbBHCOU800y2CE3TDCFEo6Zpp+q6jqqqKIrik9eHj3FKYtd1URSltaambqGqKMoNmqZdZxgGmqblpa8PHz7GH4QQKIqClDIqhFggDMNYp+v6mYZhoKpqQcFgMEgg971PaR8+xlDSAo7jkMlkSGcyA6pzATRN6xCBQCATCAQMXdfzkldRFIpjMRRFIZvNYts2juv6o+rDx1hK2xwXFUUhlU7jDuegowkhjKEGKyEExbEYQgiSySTuCMz34cPHGElh18VxXXRNI5PNHllEVQZIO4BQMIiiKJim6ZPXh49xRObc2rfge+XIgoFAgGw265PXh49xBkWIYxNYCIFQFLKW5Y+WDx/jbU2sKLiuW0BibURxfQKlrxsKk6muw6qYhFNUjBsMg+siHAclbWK0HiBwoAk1GQdfS/BxMhFYiIE94PyyVxuBvSeMGOlps0ksXIIdKwNVBSGQiuq1R4CQkvT02ah9PUS2rCe0ZzvC9rUFHycvtPHQCNcIkDj13aSnz8WJFIEQng1dCDzmei+Zm3XsyhDxcy7CLq8k+vKLKJm0N/eoGlZFFW44imIm0DvbfIL78Al8PCFVlcTis0nNXIAbCHpkVQTCcdG7WhHZDEK6uKEwVkU10gh4pNd0zPlnIIBIjsSp2QtJzl2MGwwhHBetu4Pw9o0EDjQjHNu/2z58Ar/dME9ZTKphPm4w5EldCeHXthBsfg21vwfhOIBEKipuNEbqlFNJzTkVqWlITcNc9G6UdJrIhjUoZsJb6EeLwXVxioqxJ0wkuGcb0U1rUdIp/477+D8FVdO0OzRNyy+MQ8Eg2eEbxscFVnkliVPPxomVelLXsohuWU/k1Ub09sMoqSRKJoWSSaOkTdT+HozD+xFSYlfVIANBpBHAqpxEoGUPRvshjNaDBA40oXe1I4Mh7NIJWBMng6ajtx/2VWof72hkLavAiDWMwMExJHBi0bvJTqkHTUNISei1zUQ2rUNJxo/6G2Fl0VsPgBHEmlIHuoEMBFHMOPqBvaj9PWjdHRhtB9A7DiNDYezyCuzKSSjJOFp3O5zkbqHdP/gtvbd/h8DubSgte97071If+xQdP/odajqFtmW9z6YTAOsIAisnqiFuKII1cQrSMEAoGK37CW99GSVlvuFvRTZD6NWX0NtbQdNA08k0zPMkef4CLnr7IaKNqwnub0IGQpiL3o1TXO4/BTl0JlNYb2HPvzeTJZ1O+wM4LtfArjsm20jZymrcSDRntFIwWppQ+3tBvjnpqPZ0ENy+EbtqCm4whDV5Kk5ZBVpnW0EdWncH4ZfXYFXVYFdOIltdg9rbibBPYqPW0Ns7im3D0K9+gLj/Xnp6e6GkxN+HHwc4YRLYLqtEahoIBTXeh9bbhRiNauu66Af3IjIpUAToBk5JOVLXhxXVO1vR2w+BpmPVTMcNRfw7f+RwTqql51u/5PDaw/lX/x0/LFShr76Rno09lHzuawSDQRK33s3htYdJ3Ho3nQ88m/9d5wPPYi29ZPiS6da7aXtic75c9w8ex51UO6geLr2Ew2sPk7r6xnx97b9Z69+c8UhgaQRAUUFRULKZnHFpdDO6kowPqtxCeFtFI0wCwspiHGhCuA72hIlII+jf+SPI2/nvD5E++/yC75MXXk7bw2vfUIWO/91KrJnzBok4cx5d/3J3gXref8cPif/dStzyivx3mVPPpP27Dw0Lk+t938fy9Tmv76Kzq8u/SeONwEg356CheOtY5S00RUpwHXAlIBFWFjGSCu5KRCaT8+hS8LMTHCEZP/l5nCn1iJ1b4GPnwTQBN30UWppwa+ppv/muY1dgJuHbX/Z+97HzoLMdWV5J96UfzUvW5IWXo+xvHiw3TcCqR5A19XR+9huF9dVOQ/3uV7wy116MPoJW5eMoBHZzcvB4v5CuR1pFQeoGUtWQiFHV4QSCuKqWJ7ETiuCq2rByrqp4arOqgnS9ZR8n92vocjh12jmIVBL5qSsxNq6hoqKCqg3PU/z/7/Sk4ILTSSSTw5bR+XqeeAjlh3dRUlJC1d7thP/8lPcsxUrJZLOklyzzPv/0XvQf3+2Vq6qi6q7PoOxvxll+GYlkcrC+nZtxvndnvlwsFjvp75c8in56whw51P4+sC1QFG+bp3QCesvrCNd5kzUI7IpJ3jratkEDJdk/oseVDISwquuQmo7W3YGwMv7UPXR8wmHoaENp2UPJhAkoOW0o9Jen6U8lkbXTyWQyhI9WwcF9RCIRgkFvaaKIoaYKF3viZO/Dnd/HuvP79B75+1QS0zQxBj63HcYwjHx9PsahCm207kfJZDx1VtWxptQjQ+E3/XsnWkS2ZhpSVcGxUTtbUTvbwRk+AThlFVg19Z7hq6UJxUz6dx6gq71Aog5kJB3R6PgGVvuh+dSGaXXh6LHbEYog62YO0en7GZKv3Md4JLDa24XW2+FZnoUg2zCXzMz5SO3NrXeyU+rJVtchEeC6GHv3oCb7hz880Rjmu5biRGOoXe3oh/adNN5Y7qRaWnNW4YLvIzlCtR7wnAJMEyZMhKkzC8pZSy9BhiKIltf/tsm6+TXvzZc/Pbj+PeLlNu3AHaIk+plRx7sRCwi+tsXzuhICNxzFPPsCsjPnIdVjz77paXNInnYObiDkxQqnUwS3bUCJ9xVK3vJK4svfT2bmfJCS8MsvovZ0njw393ALIpXEnlJP55LzvLG7+kacmnpIJWHvLs/7bsMaCEew//3XWHNPz5O396Z/9aTzq+v/JokYeOnP3pvrP0vsipXe+reqitgd30NsS6C+0ERVVRWKb10cNU6onhJ4fQeZ+lmkSycgdQN7QhXxiz9EcFItoQ1rUHu7C5buTjRGeuYCUrMXFHhdhV5tRDvUAlLilJRjV9diTZlGtm46VuUkRCZDpHE1wR2vnHS+0IGN60iffT72dx6kdagF4Q+PIHIZD6M/vpv0nEW4sxfQ9dMnCi0N+5uQX7ieQNFbP2lHf/EpjDXPkj3nAvq/9QBH6knuT79NV1cXMZ+P7ywCA0Qbn0NGisjMPQ2paThlFZhnLifbcApq60FE2kRks7ia5kUXFZchB8IOcQnufIXwpnUoaW8/ODN7IakzluEUlyMVAbZFcMerhF9+EcVMnHQ3uOS2j9Px/36Os/TCwS8fvh/5hesJRyJ5SV3+z1fRdfPXcM+9aLDcqkeQN30YXdeJRCL8Lc6TZf/y93Te8m/Y770UJlR6X+7cDH94FPnL71NUVuaz8S1ABINBGQwG0TQNIQSxWIxkcmyNPE5JOfGLriAzawHk4n1xHc9KbWXBssCxwXYG3SSFQqB5J7HVTxYEP8RXXEVqyTKk8IxbODZax2GM5l2onW1o3e1oHa2eIUuePEEN/f39mOagn3lRURGRSKFHmuu6JBKJgnKRSISiIdI3nU7T29tLSUkJwWCQZDJJPB7Pfx7Asb43TRMnZ2w0DINwOJwvY1kWXV1dw67rw4NpmgwEH41M4GiUpGmOIXnLyNbOIHX6UqyaaaAb3j6Em3PSsG2PyLblWZgHfLVVFb39IKGtGzGad3p+1K5LavFZpBcuwS0qwYkUea6V3sYzSiqJsXc3ofUvoB/Y6wf5+3jnETiVKiDwCVOhnVgJmboGstNmY9VOw42V5NRiAC8rR/5zLqUOSqEEtmpn4EyqRWs9QGDXVgI7XiGwczP6oRbccBQ3GsOqmoJTXomSSqK1HkTtbENvPeCT18f/TRU6Go0WqFBv/xUF2eo6UnMXk50+BxkIga57ktcwQKgoGRMllfICFRw7v7crNR03EMItinl+1KoKqueGKaSLsXMz4RefRm/ZM+gTrSheih3LAiFwisu8yUJREOkUam83SrL/pI8R9vHOQOpESmCpG6Qb5mIuOBOntMwjH144mxLvQ+vpROs4jNbZhtLf461TBwIUNA03GMaNlWBXTMKursOeVINbXAa654aZWbgEp6KK0LrnCGxZj5LoBylxo8VY9TOxamdgT5yMG42B66D09aC1HkDftxtj327U3p6Tal3s452PMSOwGwiRmrsY89SzkLqRV4sVM4nW1UZw9zaM3dtQUm/OgOaGI2RnLyKz8Aysuoa8Cm5PnkpmziKMPduQ2QyZeadjnnMhdmX1oI+fBFwXNxzFrqgiPXshxu5thNf/2XP0cBz/yfDxjsCwlDqGYbylLA3HlLxGgNTCMzAXDZDXW+dqnW2EN/6F6F+eQT+8f1R7tMKy0A7vJ7h5PUpfD255BW5RKWrHYaJ/eBj9UAvm0otJXnA5bkm5FziRSx4wuLYmF5QucUrLsarrPA+xvm4/WN3HuIRt22Oc2F0IUnMWYS5Y4lmEBQgJxt5dRNc+i9rXw2jjgAutYTbBDWvQ9+0mecmHCWxai7FnO+bSizDPvRgZDBcYwkQqidbZhtR0nOIyLxhioKryiSTecxlKykQ/uNd/Wnz4EjjdMI/kaWcjQ5E8eYO7tlD0/JNvq2OFYiYJbNuA1naQzPzTSb3nMtySskHy5v4GXttK7L/uQ9/fhD25DjdWOhiXLAQyHEGGI+iHWvw0tD7eeRJY/m3ysPBiZRWkZy3ADRflcz4HXt9B5C/PQDbD266kOg7SCJBeuAS7rHKYJgDCM1K5LtKxB5MJSNXbolJVcBwys+Zj7N5GsNfPBOFjfOO4BjNkZi7AmlTrHUOsqBgHmom8+EfEcZRsVl0DTlmlZ7CScnAPeWBveSBcTlFAU73tK92AQAACQe9vKEK2Ya7/dPg4eQlsVdeSnVyH1FQQClp3B5HG595U2ti/SepPrvMs0q4zZD0/QF4VGQp7ZyzpAWQ46u09GwboAc+N0wiCEcQ+IrTuzaD7F3+ivbEN84YvDWo01XV0rG6ivbENWV139KXGNZ9+wzKjRc99vyN9zaeR1XW0N7ZhLVvxlupJ3vZN4l+975hl4l+9j65HG4/7A/tm+hL/6n303Pe7k4LAx20bKTNtDk5ZhecwYVsEmnbkQvmOr3XXiZUghZJz/nDROlvRDu/3jFVGAK3ldYRtofR1Y2zdgNrRCraFcGyckgnYddORhoFTNXn0166pByARDCNSKUKhEObVN3rrfzNJxyvrqaioGDHW1WqYi7K/+ZhlRvugW6eeCb/4PtZ7LkOkkvQ88gBlZWWjDg1MLzkXpfF5EokE0ejIwfnZuacitmyku7ubsuMYmCAO7aNiSSUdHR1H7UvRV24gkUjQ5zgUFxf7EnjUD3LuOJOBtLF6RyuB7ZuOfyhf7jhSKR1wbEQmhbH1ZSJ/fJSix/6Tood/SmjNM4hsBrWzlfAzj1P06x9S9NBPiP76R0Sefsxz/tA0T60eJWFkKAItTVA1BSklsroOc8WVXjK3Ha8ihCD1qX/NS+Sh0tqurEZ0tKI1zKX7sZfyEi952zfzZbsebcSZfwayuo6uRxuH1TEUHb/9qzcx3PVj5ORc6tbnX6f75S66Hm3MS/qR6j9Sq3Cm1GNdeS3yoiswb/gSnau20t7YRsfqJrLvvwYAt7wSN96HetlH6Fy1Nd+mnvt+l6+/+xd/8tq0bAXtjW35/3WsbspL1L57HsyX77vnwRG1ge7HXqKyspLsTXeM2JaO1U1o//R5tK//mM5VW/NjNbTfR0rsgWsObctQHK1dI/Uveds38+0a0MoG6sy+/xo6Vjchq+uOOvbtjW353w/0aUwJnKmbgVtUDIqKcF30A01jE8onZS7wYYj7ZTCMGwp7wQ0lZZ7aLBSkquFGYzgl5bjFpbixEtziUi8jyICb5mj6vPx93pt1qxETq3EcB/PqG1FbmnHbD6O0HUI/5wISK28icM/tiOkKbFhLYskyUqkUTu10ZDKO87MnCP3pCaybrqLnH79Aesm5hK+9BKYJnLbD9Fy+kv5Pfh6RTKLN1OHh+0lcehWpVKFdIfLYz73JZF6UdMUkMJOIe25HvflqnCn1dC84E/OG20es3xniyFJ0/73em+WzSGUtEitvQvv9r1EbNOT2V+m95kZSc09HhiJIKcnefi/Ru28j9fVb6P7WL5GRKIE5QVg+C7usku6P3ED2jPd4RH78QYxL5iMl9C4+h+TVN5I97SyCKxbClz9N5pwL6Jt9auESaWI1NO+m68zzR2xLpnIyMhQhvu550vUzkUj4/D+i3vGZfL+HHmBv3vAlMqcvJfgPF8M0kW/L0BRC6Ws+PWK7+u55cOT+TZuFRKJecAr2xfMhlaRnYg22bZO48lqMVY/QueIjI459JpdP2/2f36M2aPT+7NvHPOrobVehpRHAnuidloCioHa1oR/ch3DGxkVRSSYQVtbLcqnpZOaehj21wVvz6jrGnu2En/oNzoQqUssvw66q8RLpuS5uJIbMB1WMToV1JtWi7G/GjfdBxUTsmunYK64kcM/t2LfehfLqX9E2rEF97AFS516C8g//jKypR3nxGdKT6rx8yUsvhFSS9F2f89TvCz+AM6Ue8z+fGrzQi8/gtB7EnjUP8addBPbtQVt5IaZpEgqFCh50dd8ehKYhp81EPLcK+dQjRD54Df2As2sb5iduwR2h/lQqlVeVrVMWo3S14+7dReDO7+NsWkf2azdTVFSE3LqBxIevw5znZfGQV30CdeM6kv/9ILFTFtGTi0G2dwxGErtFxWQjUdSN63Ae/AHhkhIsARzch5PsR4YipB9dS2DjWvRbV5J44Wmc8vJ8zi176gzEuueRV6xEG6Etife+z8uwue45qKhCee5JeGk10UmT6QOcF57GsiwMw9Owwvd9nfTEajLX3YK47zFPi4r3kc1m8+q50t87vF0tzXDOBSP2jwkTvevu3UVFRQW9O7dgT64j/cG/x6mpR3zmo4if/n7Ee5uaUu+1/wvXE4pGCYfDYyuBnZJynJJyz89ZKOjth1G728fMx1jtbkck4vngBLe41PODrm/AntqAPWWqR+5QGKuuAbtmGlbtdKypDTiVk/LpfNT2Q6Mznk30VGD1wF5keSXOdbegtjSTef6PEIrgvPIS2Xt+QXbJMlRFoH/ny2AmcQ/tR5y13Kvk4fu9sh/9J0KhEM6UetQ7PlOYO2rlReh33Ejwazcjm3aRWXwW5o8eH7butKfOQLQeRNd1nCn1yG2bPILXTUekktD4HG7NyPUPlVBO1WTEvtdRVRV76gzYs5NAIOC1r2oySksTbnWtV+fD9+PMXoA6Yw4yl0p2WO6ruz6LUz8T8bpXjz61wSPN3t0EfvsARZ+4FNavIVM7ncQ9P6d0/mkFCfPc8krktk3IqQ1Hb0tnO0IIzyax7RVCoRByoN97dxXkme56tBGmzUIRAv1bX/QmolfXF9ggjN8/OKxdkcuvHrl/v/oRbk09HNhHKBRCCIHWfgjRMIf0h67DWPUI9u5tRx17Z+a8fPvfiLzHh8DFpbiBgLdNoyqo3R2IMTrtEEA/uA+1r9ubMIZ6lOVuiEiZXiI9y/ISAQxEOzlOLr+0t0+s7942OgJPnYF4fSdqLoGb++HrUNb+CTWX4UI++RDuu5Yi1j2P+MSl2Jd/HMIRxMF9yFMWeQ/XF65H2d+MPONcstksIpXEee+llJSUEP2Klz+q/LzLSG0zCaoqJbd8BGXnZmQyTk9PT0F73PJK5IG9cPGV3n154Wk0TfM0hZYmRM4rbaT6hwbS25XViLZDXgRMRxvOmcvQdZ3s+68hfe5FaH/8LaJhDsqOzYiffAvCEawLLkf0dnsVfPFeKisrCfziGdQXmqisrETWToOD+9B1Hev0pfnxif/PLtwVH6b81qvRXvozmEl64vH8hGItW4EMRXBffAals3XktkyqQdm2EeV9Hz16v3PPgjP/DG9y++E3UO76HNa1N3tt3raxgOSdq7YOa1dy144R+1f6rrO8up94KD/xqK0HcRefhZwwEfmlTxKJRI469krVZJStG4+Z5fP4EjhWCqoOQkFJmShmHDGGfsUDVmdhZQfXxQUNtEFKz6CWJ69dQGSR7Cew9eXR9XtKPfLAXoxNuaNIOtvJfu1mxNxFnhELCLy8BvtD12LvstByD5Hs7YZoLD/rhv76Arx3Bdlslshv/gOWXUTvxh7Myz5C4J7b6X5uFcaaZ+n94r30buxBVFZhfOO2YelghWni3PJVnHcvL5A82WmzEM3e+6PVP3QNrCTj2JdcgXvb3UQf+jGEoyQ2x+m75U6MVY9gfe+rUDEJ2g5iHNqLvqkRuexi3GcfR1/zLFz/Wdob27CnzkD70g10NyxEhiI4Ta+hqirWrAX58Qk/+TDJK1bStb4Td/llBO+9HbFv9xAr/zRPvWx+jaL/+snIbalvgHg/yoJ3HbXfeW1ty19R9zfjfPdX2I83egfjAezdVUCg8JMPDW/XHx4esX99MxfkrzugpuvbN3r3+vEHcRyHcDh89LGvnYZM9OV/+4Z22yPjgSOhEGbqrTtaxJe/j8yMuchIFK27g+jqJ9H3N49pmJ49cTKJ8z+ANX02BCMQDHpWZVVD37Od8FOP4JZNIHXuJdgTJuaOZsFzOBGC0JpnCQ9YpEeB9o4OimMxAoEA7R0dqKpKeVkZpmmSzmQoKy0lkUspAxAKBkml05QUF5O1LLLZLGWlpZimSdI0qZgwgVQ6TTzupQxSVZWiaBTDMIjH46Ry5xNpmkZxLDZs1u7q7sZxHKKRSL4+gL7+flRVJRqJHLX+gnuau1ZRURG6ptHX34/jON7zEg4TDofp7unBMAyikQh9/d64FcdiI7ZzoG1lpaVomlYwPsdqT/zOH5GtmIT7obOpmDAB27aP2pZgIIBQFBKJxIj9LrC09/Rg23belTiTyVBZUVFQZjT3IWtZBdcFzwWyu6eHoqIiQrn0QUers6u7m1AwOKIKnc5kjp1SJxQKDbNojgb9K67CmtqADIbROluJrH7SCwwY44D5zOwFmOd9AGfy1AIC47ooZgKpqt56N6cye+JGwXhtM5FH/wN1SNJzHyce3Y+9hDOlnsBnPw5PPUIsdnLmsMwcQeC335FDUTwf49y5R5ygBN2BnZtB0TDP9yy5+Z5qmmcpHDgYbUBddB2MHZuIPPFrn7zjEGVXLKGnp4eMbVNaWuoPyPHaRlKScYRlIcMCta8HJXniUrkGtm9E7evCPP+DWHMWeXvAuj7oH+06COkizASBl1YTWv0kSiLuPxXjFD5xR9h1OTKcUNf1NzwH55gV9nSCrqNkMwR2bkbtastF/MjRHeD9NkAaARQzgbFnG9qhFoSdBSOAAEQ2g9bSRGDdc4SffIjgpnWITNp/InyMaziOUxBO+LavgX348DF2a2DFHxIfPt65KCCw9PNA+fDxziUweMdr+PDhY/xhJG4OI/DAhrYPHz7GF0YyLg8jsGVZRz2l3YcPHydO+g54nB1J4GGRBtkxDD7w4cPHG5M3m83mAzHyW0hCWAqwcajxauCf2WwW27ZxXdc3bvnwMcaQUuaJm875Wiu5A9kHOKrrRq8mpfyVlPJMKeVQZnvxn7aNbdteehifxD58jDmEEHniqqpaoEIXFRU1C8MwjGAwuF1V1elDo1kGSOu6rm+Z9uHjBBJ4gMRD1WddN3pmzGj4g+a6blYIcZ6iKH91XbcyH6Y0RN/2jVo+fJx4Eg/AMIzu2tqpzymK0iwGXCjnzZs/sb+/7+fJZHKxbdulnMDDv3348DGMxLZhGD3RaFFzZeXEXYqiNAPf/t8BAETChsHsPJizAAAAAElFTkSuQmCC' button_leaver = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABJwSURBVHja7J17mBTFuYffqu7p6bnsssu6uwoCAgpoQAMGRQ+okUSiJjEYjdGQED3kURJDEmI0B41yyEniBS9H0cSTYyIGLxHUREQUYhTkqpHoCooKrAgILOxt7pe+nD96ZnZmLyoeg7tLvc/Tz+z21FR3Vfevvq+q66sWuq6TwwCmSSmnCCFGCiHKUCgU3YUosNF13QWu6/6v4zgZAJETcH8hxFJN00ZpmoamaQghEEKoalMougmu6+K6LsAWIeTERCL+ntB13RBCrNN1fbTP50PTNKSUSrwKRTcVseM4SCn3DBgw6ARNSjld1/XLDMNA1/WC9VUoFN0PIQRSSlzXDQshjheGYaz1+XzjDMNA07SShKZp4s/tV5JWKA6ipQVs2yadTpNKp/Oucwm6ru8Tfr8/7ff7DZ/PV7C8Ukr6lJcjpSSTyWBZFrbjqFpVKA6mtc1pUUpJMpXC6ahBWxdCGMUDVkII+pSXI4QgHo/jdKJ8hUJxkKyw42A7Dj5dJ53JtE+iybxo8wRMEykliURCiVeh6EZizvV9S/bL9gn9fj+ZTEaJV6HoZkghPljAQgiElGSyWVVbCkV36xNLieM4JSKWnZprZX0Viu4nYCE6CFjvRL3eplAour9brapAoVACVigUSsAKheJA0Hvqibt+k8SoscRPGIdrBsBx8Z6WdTkC8CEZuqDr4LiYWzYRXvscWqRZ3SGKniXgD5FBtyF6yhdIfPYUHDPQJtC8SNt/HiDxsafhajplLyxGJuLqLlEoC/xJkzxutCfevHClLBKx+H+LOH30cQT/uVoJWNHDBOw4PeMxkpBtwpXS+18Wbe2FfED+uQtmADRdPVJTKAv8r+kEO0WC1RB2lsCrL6M3NYDUigR84OJ1fQYyFkFraVR3iEIJ+F9jgUVBvOg6gbr1lC1/ApmIHXIXMTvhbPbf9AdCy56gfPb31V19CNFzHyPl3WZdB92HjEcRtnVIX8x41iIajaq7+lC2wA49YxS6vQV2DT+uOPD2yDUDpEeNRd/1LvruHT2yz+u2+1v12pUF7hkC1rTcpuf6vR/Dak26gNYrrqVl+nVkjv7MIXHRI7PvYc+a3YUtdtWNHdLYI8fScsufStLtv3852QlnF9I0LK6jYXFdh98mrpjFnjW7SVwxq7AvdtWNNCyuK+TVdPcTOEcMLOkG7Fmzm9S3fsD++5ezZ81u9j26Rim01wqYosdHmuZ9HgBOuJzIJdOJn30hriaxBg6h9fvXkhp7mtcg9FL237+cxFmTS/bFzp/K/pvmt9XNEQNp/M19pP7tCyXprGEjaZx9F5ma/gCYr6zCqaqmYeznS9KlRo1FJONE7p9HIpEgMvseYudPxamqLqTJjB7Hvjse6bBMTMtXLsEaNtJrRLa+TWOjGkjs/QIujDp/dLIDh5IedRKu1CCbhWwWu7yS1u/+mMT4s3B9Rq+72LGrbsQaNhKx+XW4ZCIMEXDmcNhchzXhLJq+dJFnQb/1fZyqasTTi7w0+W1zHQRCNH/5EhzHwf/Kak/wp04kWxRDnh0xCvHeNuR7W9AmnU/irMnIHfVw2/VteS1ZiDtgMI0zf1N6kgOHoN1xg5fm0i/h8/mUSnutC03Rs97C/x8N/xv/pPyhe9B2bYdsBqws2Bauz0/0osuJf+kC3ECwV13s1MgTEck47jnHY2xYRXV1NYenIlTPmgbJOJnTzyaTyRCe+3PKTijHvfJC9LsXEfzd4xiPrYURx3v97LI+pFIp/IsfRDY2wMSvkMmt15S4YhZuIIT74nJ0XSd78hmeyH9/K757b6SiooLDDz+cw381A7mjHvvMLxOPF02W2VyHfeecQrry8nKl0gMZxOpxIhbiY8+28r/+MhWRZiJfv5TskBGeJZcSV5PEzv0mTrgP4aceRkZbesXFdqpqcQMh2OaSAfa1r87aI0ilUhiGQXLhGhg2EgvobGw/H1QeXLGU2PlTiU+eSmjZooL77D50L6Zpkqn13G3mzCM7Zx4dajIZJ5FIUPB39u7GMAxM01Tq7N0udGcc+Pirb/sWKu67FXP9C4hMCmy7MBstMWESkYu+h31Ybe+onWDwQ74PY1kWkdn3eK72jnpYstDbbrve+2zfCK5f4TUOY08jk8mUuM+maeIEwx98UoEQ7qBhRX5+hKL3dSl6tQX+oJvRHyB75FG4fjMnSrvdaiO5WVpCIuNRzLqXsPoNxBowtMhFh9RnT8ExTMoX3Yfe8H6PrhNtRz3WkYNhZNeicn0+UieO96zo6UPw+XwYhmcf0w8s72CNfS8uRTY24Jx8OtEf/MKz8C8ux6frSCkx6t8iM3ocXH8lLLi7c88AcE48ucixUq8R+PgC7ilzodtb27w4c+fu+v3Ezvs2mQFDIJWATAYsy5uC6S3S6Q2A6TpoOgIH/IG2x1P5Z8pSkvnMGGLJOBV/uLWHtF6dXz9z4yvEho1EPP0a1bO+h9y9HYDI7N+SmDSZ4LNPUD57Og2AGwghrvwFVQv/B4CWuQuwRp/Ssb6L3OjspT8ucZ9xXfzrVxA7fypMm0l5Mkpw1bO5vvK1RL9xGbKxgeoLTyHbfvxCzUE/tC0wtt12I+QDHTQN3HyUkmx7jqz7vFFnnwE+H+i+toAIxwGpeY+XuruAz72Q+LkX0j5+SiTj1J45lPAt15AYexrOiONpeHx9aZrGBhI3/RwRi2H+YxWJSZNxZ85hz8w5HY8TLh1YCjzzmCdSwN2+1XOfq6o8C73yaYxVy8mM/yKRW+YTaW8vfn8bjU1NqKGqT6gPnLdP3X3ryiYXNiG8dMXhhvlHTppesLzoOcHqept4dV9OzAYYfm/zmz2uPoqNWcO+fbhA9TdOQS5dVJrglTW4P7wYbcdWgsEgZbOnoy99rDTNime9fjDA0OE4rls4tnz9JbQd9d53q/6GrusIKQvfV/7s2+gL/wj7G9ry21wHt12P+6d5hMPhDmVw1faRrrMwTdM1TdOrdCEIh8MkEolu3/Lsn/lr7Jp+4DfBDBD6218IPf1nRNI7d6esD63fu5rMwKMhk4Js3n3O9X+LZ3H5fAjHBjOIGwyDYeRmd+XaN8vCv/Y5Ku74Rbetj2w2S1NTU9cttZRUV7dNpIjFYiWPb0zTJBwOl7zgrn2aQCCAYRi0trZiGAaVlZUlx2hqaiKbzVJeXk4gEOhwDvF4nGQyiZ3zjgzDIBAIFEac82UIhUKEw2FlXjshmUyi58YXerULLZJxwk88gBMMeUEOTlH7JfJhhp5llrEIVm1/4l/7DlZFX88Ca7oncMB4/R+EF97Xrcvr8/morf3oo+XhcPhDRdJVmq4e8fTt2/cD8wuFQoRCoU+sDIreLGDLwlf/1kfrLlceRvrci7EHDmkTru59+tc8R9l9c9F271B3i6IHCLgnL+z+Mc49O2QE0ak/Ijt8VJt4c5/Bpx4h9OA9SBXYr1AWuPuRHnMq0UumY/c/qmQpHpHNEHrwboJPPoQ4BBcIUPRgAffUeNIDPe/McaOJTrnSGwgrQkaaCc+/E//KZyCbUbG1im7NIbuwu/7eVox/rPIsrOOA46Dtepfy/74B8/mnENmMujsUyoXuti1XLELZQ/cgY63Ez5uCvnsHZfffgW/LG+quUCgB9xSCyx5H3/ku+vvb0fbu+tTOI/6zm0mdfBpVF4zrdnXU/Nu/Eli9HHPBPBoXrcNcv5LQLVcr9SgX+pNDWNmPNXouUkn8G1aj7dn5qY6+Z4YMh/p3PnAyxqcyttBvENnR40hufYtUdX/sIweTenFZj5jsowTcg3D6VOH24DA0p7oW9uzssAJF5qtT2L9kIw3r9rLv+W1kvjoFgOzp59C4aB0N6/bSsG4vrXMX4PYbRMO6vWRPP6fw233Pb8PtN4j4z24upG1ctA571EkAtM5dUJJHe/Y9/pJ3vF/dWwjot2f+klhdlH3Pbyscq6v8i+nqWM2//Wthf9MDzxXOvWHd3kLZuypXV/VT/Nv8PuVCd2NSJ5/hzZDcu8ubaWU7XgihbbWFE5a8AE2AzM+T1trmSUuJ6zeRqSTGhtVojQ0H5fztIwejbbq9ZCqjPeokWn8yh+Ct15Gafxf2f91Ly5QfULHoD0SuvhnjhSWIM4dh/fJ3pC/6d2KXn4dIxmmuHUBfyyJ2waUYSxay/5xvIk8+jeClZ5NY8Qz2wtU0T55K8PiTyJx4KuY5J5D63ATSc+bROmI0fTb/s3AOocfmEx87Ac4YSnRWLphj2V/Qb74G69UWWsaMJ3DsaNKd5F/56tpCeVJTruz0WEz7KW4ojP9Yk/QRg7AefZGmb07HP2Cw17DNnoH2zELs11o7litQBp3UT7hpv/fbvz2Jdt3ltNg2FRUVhbBIJeDu4NpJrfT/QJDkxPM8ITqOt0xOJu1t6VRu2ZzcfOjiCKV8UIMvF8CQC2wQyQR9dtYfFAHnLYu98tmSYPbEBZfiBkLEr7sdrrvda3YaG4jFYpTfeyOt489CLN4Aw0chGhtIJpP4Nr+O1X8Qqa99B3vAYMSMixG/fxL7yMEk/ri07aAvLiPT3IgbCJFatAb/hjX4rppKbOWz2FVVBeFZtf3Qtm9B6Dq+AUeR2bAW+9c/JVBWRkwA0VZSkybjdJJ/MpksTMWUkZaOx3qvHsZ/0TvOm6k2b6SsD5lQGG3DWuwlj9Cnb1+ib3Usl/bj2Vid1E+y/1FeWON/TCMQDhMMBumt9FgBC9fpZGe7lSrzq1VqGtgaaC7Y5AL5278QDU/YjgO2jYy2HrQXm2WPG+PdcO++ja8o4CA7eBj6wj9iXXNZW0MFOD+8ntYrrkZ/ZQ3u6ucgHsVxQdM09Ib3sY85ltRnT8JYspDMO5twBwxGmz0D+4G72kQCaIEAZdvfIfqdGaQHH0N67nwq39mEtrdt2qh11NGItS/g8/nIDh6GeO1l/H4/5tARRAMhRN3LONNmdpq/WxTQYDy5gLKtm0uOFbprjhf6OKQ0FtgBWLENuXEDfr8fXdc7LZc2eHjn9TNvIWJ/AwjRq8Xbo/vA/rqXEcl4R/G2Dx3Mhwca+fDA3FYcOqjrbW50TszGGxuQjXsPjvt8eH/km3UIIUpWoxDxGPa4MwgdewKVF34XsSlG+cw5+MaOR75ZhzV1knfDjzkVreF9dF1H27MLZ8ypuIfV4l53OaFQCJGMY3/+XCoqKgjfcCdiU4yqiV8mvXI7zjnfoOqqb6GvXwGJOM3RaGG9KwCnqgZ357tomoY9YDDs2u6J+XMTPME89UiX+ZeVlRXy2b9kY4djxd9+0/ty1q3U1NTgf2AZ2spt1NTU4B5Wg7u5ruAJdFquROf1ox9xJHLjhpLuyKFjgXvIihyhF5agxSMkx0/CqaxC5GN4tVybZDtgZ70wQiubW3XSLnKhc6tYyra3HLqGCVLgf+0lgksfRUZbD0pZrJp+2KPHwVaHhqK+Z/jhe2m55ibiS14lDpiL7id6+w2YP7oBe8YNsNWBtzYiGhuwI634NQ3fpg2esJ5YgG3bBAMBePQ+YlNn0LKhGdm4D//ca2n6+xICix8m/t0ZxL8+Fdm4D3PutaS3vwO5YHwAkUhg/+Q/cXfW4wZC2NveQpOS7PDjkTvqcYBQF/n3rawsiCj41MPEprY71tN/Rr/oMrLTZtIwbSbaznr0a6+g6ZgTcAMhnPq38eneGyI7K5evi/rh4suRW97Abxi9fmWPDvHAgUCAZDKpxucPMpFIhHQ6XdpIhUIYhkEkEinE0IZCIYLBIOl0mkjEW9/CMAxs28Y0TYLBIJZl0dzcTFlZWSH0L5VKFd6bpGka4XAYwzC63F9MU1MTtm1TWVlJc3MzlZWV6LpOIpEgnU5TWVn5kfLpKk00GiWV8vrAuq4XlpJtamoqHAvotFyWZXVaP01NTYX66E2k0+mSeGAlYIWiBwtYqipRKNQglkKhUAJWKBRKwArFoShgVy2mrVD0bAvc/n2tCoWie9CZNjsI2LIs9W4ahaIbYlnWhws4m80WnjEpFIruY31t2+5gXCXQYfGn/MuaFQpF9xBvJpMpzJXPi1gIkZXAhuLBq/yXmUwGy7JwHEcNbikUBxnXdQvCzU8zlVIipSxo1OczWnTXdR90XXec67rFykbTNCzLwrIsXNdVIlYoPgWEEAXhappW4kKXlZXVC8MwDNM039A0bWhx+FVetI7jqJFpheJTFHBexMXus89nNB999DFP647jZIQQE6WULzmOU1OIcijyt9WglkLx6Ys4j2EYTQMHHvV3KWW9yEchjRw5qjYSaZ0fj8fHWJZViVpyVqHoTiK2DMNoDofL6mtqat+WUtYDt/3fAJkQuaX9eWk6AAAAAElFTkSuQmCC' button_group_leaver = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAB+nSURBVHja7J15mBxVvfc/59TS++wzmWyTBQigJKACQRB4AQVlUUERBDSAqC8XEV7cLoggelX0VbwoueBVvLwIXhDwFSGyo0KCYTckQEIgQyYJk5nMkpnpvZZz/zjd1d0zkxAgkEmo3/PUM93T1edUVdf3fH97CdM0KYkNnCOlPEMIsY8QIkUooYQyUWQEWKGUukkp9Rvf94sAogTgqUKIewzDmGsYBoZhIIRACBFetlBCmSCilEIpBfCyEPKobDbTJUzTtIUQS03TfJ9lWRiGgZQyBG8ooUxQEPu+j5Ry4/TpM/Y1pJTnmqZ5tm3bmKYZsG8ooYQy8UQIgZQSpVRSCDFP2Lb9D8uyDrJtG8MwanaMRqNESv8PIR1KKO8g0wKe51EoFMgXCmXVuUZM09wkIpFIIRKJ2JZlBcwrpaS+rg4pJcViEdd18Xw/vKqhhPJOsm0Ji1JKcvk8/lgMeqYQwq52WAkhqK+rQwhBJpPBHwf5oYQSyjvEwr6P5/tYpkmhWBy9i2GWQVuWWDSKlHJCgleZFl5dA159I340rrWFfBZjeAhjqB/huuGvHsouC2YpJZ7n1eDVHL1jJBKhWCxOOPB6qXqc9un48QRUnYBnR/HqmpDNbVjdXRjpYQi1hlB2QZFC4CpVA2BZo3MLgZCSouNMLPDWN1GcMmMMeEHo90LgJVIUZs7BS4T5J6HsojaxlPi+X+PQkuPS9QRiMGXZOC3tqGisCryiBrwIgSjvO7kDPxoLf+1Qdj0ACzEGwOY46J1QKqjb1IYfi2vAqlr81jAxIJRma3+wD1nIQ+g5D2VXV6sn+gH6sTiU49NVjFvDwLJ285J1KMsOf91QdnkxJ/LBKWmgTKuWbgPwAkKWPqq1i5UdQb3B5BNlmKhoDGVaCNdB5LMIzwvvkFBCAL8Fpb9i91YzrxzNwlUglhKkMVrH3uoi4ba24za2okwzmE+4DmZ/L2Z/L8ILw1OhhAB+4/j1PSizYI3/SoxVp4MvSVD+Ntnxyo5QnDoTL1WvgV81jm+YOFNm4Efj2N1dCKe4Xc/NOfSjpE84jdwhH64cei5D/NH7qb/ivJ3yZup+cDVG/ybaTjk4RNaOArCi4ivakVKYOYfc3AMozthD28FlZjXKm6nfmwaYFtFn/4G99mVNwrkMOMWa8/AaW5GZYUSxUFKZDYpTOvDqG8eydYmFFeA2twFgbUcQD1++kMzRJ45dUGIJMkefSPYDh9B6yRcxVjy5091Qru+zqa+PlpaWEF3vgEw4J5YfTzL4yc8xePIXye2zP159o7ZNo3FUPIGKJ1GJlN5SdfpvNI7f2KwdV66DHBpEuJVYduaQj9B37iX0feEbOJOmakDXN+En6jRjj1bZq1leGnh19fjx5Dar5VuT7JcvroB30W0wW1S28z8LK59DNbex6Uvfwgtt8FDeMIB9vxJKeoc3ZUcYPOlM8nvuV7FHy8xrmpp1LQssG2wbzNJry9J0aRhY6zuRI0OVMaVB7v2H4McSuJOmMvTJz+O0T8OPJ/Uc1Wp5tZOsSidRVgQ/WYcyjLd8jiPHnYrIZTRYz/8MyUSCye3tenv6b7R87kjkyuWoDxzM0J77gVKkv/Yjupe8hvOhj9Lz52V0L3mN4csXglL47dMZ/MmNdC95LdjKn5W38vdzp/3LVv8/fPnCYJ7qMQeu+SN++/TXP78adWLr+6a/9qPgXLY2x/DlC9n44Opgv54/LyP75YuDz3v+vIyePy8b873sly+me8lrNftuy5wbH1zN8OULg2ux8cHV23bu79Q2kW3g4Q9/EmfyDA1aIZD5LNGXX8QY7MWvb8JraNaglQYYUrOnlBq4Xa9gr1mJ2bOhhn11CKq0ECiF0z6doeNPI/rCs8hsumI3j1KfA083gGXpLDDDAPfNZ6kVTjgdv7kV8Zfbkff8gabmZizLqtnHsixarvo2Q4/cR6FYxGttDT7rO+9SaNbvM12d0DiJ/NW34E2bVTNG5ugTye29H5NG2aKbC0VEPk80Gh33/8E8Z10Ie82rHPf7DqL332+h7eSDkPKtK23D3/2PMSbEeHP03fAAzpx9avmluZWhz59PcfMADbdcR+zpxWSOPpGeA45g0pN/DfbLzz0AkcswdMM1kM3i/uSGbZoTILPXvtAxW69DmQyblj1Fa0vLdjn3XVKFVpEouX0+QH7O3IB5rd4NNN94NfV33kjykXupW3QrdXf9nsTi+4kt+wfR5U8RXf4k0WeWkHjwTmKP3ofVuSqwccvquDN1BioarQG7M302uf0Owk/WVQBc/rx6C/5voKQ5Ko3zTTiu9pyrz3flc8RjsTHgDdacFU9SX1/P5Pb2mhpt4knMzx+t1e0ffo3i+d/BmzYLsXI5nHZURQ3vWoM/fRa9F/7gzR3oXvMwf/tzPd5pR0HXGtT0WfRd9KPt4Lz7GJmjT0Su64SrLquYD4tuq5mjcMLpOHP2Qa5cXmtm3Ho9ALl9DyKfzxN5eon+rQ8+CqcqBbi411xE1xpk18sYx5y0TXMG0jEbec/tep8DJwVF9KENPBq4hokzuYNCx27k9n4/yo6ClAjfI/bCs/iJSkKGH9GsIYcGMDZtLG3dmD0bkJsHQEr8WCJYEIq77U1xz7m4U2ag7EgFkIZWx92pM8nPOxBVBnE1aKUsJYWUXoMOJflvzb0XLBidq2vA6xz6Mbof667Zeh/vJf31K2sHeOgu1D8epq21lcnt7XgHHIbIZVD/8mkizyzW/3/6bzT88nvazp+3P+lM5o0f6KLbcP/tIurr6pj86gs0XvP9tzZeNevNP1xfi1//DOtXV9LY0KDNhx98FbmuE+/I40lnMkTuupmm/Zvxj52H8ePrSVz3RxLX/RFO+YIeKJmiUCwSuetmZH8vHHVCUG6X/d+XoGIJ1KMPYJkmzvz/tU1zVhwVGfzzTg7Mm7YqLWjCe6H9d8gLrQwDd9IU3OZJoBReYzPKNEBKrK614Ps4bZNRpon9yot49Y24U2do9bnkXApsLSH0fi+tgGIBZ9YcvJZ28LUNHKjQo2LKzuw9IRIj+s/HkJk0arxVVkiE52igvMV4sEgP6xeNzUjDCK7zlq73iONCJlP5fGSIeDwefFfF47CpB9n1MvUlFU8B0SX36ePt2I1CoYC9hSiD2lL0YdVyEokEsXgcBUQW36vHiycpFAokEonX/323xMAlJyLfuwbne9cwOHqHXIZsNksikaB4yVVw0gI8YLxlw/d9FBD/+z2kT1pA5sQFJO6/nVxJfVa//xWRaJTiG5iz/F5KSTKVYqLXte0wBvaa2nCb2lCGqR1FkWgQGpJOSQ2WBm77NNy2ychcFuH5+ImU3uIJ/EQSP5nCT9UhXBc5NIA7fRZe6+QScFUFsCX1WTvCbIhEIRLD2W0vch/8MH59IwIxVo02JKJYwBgaeMsJHdaq5frF/MNrEtKtR++h+YCWimp31WVbMB43j+lXpn13xhZVPPdN1khvSb1/q4Uu2pu/FYklUDPmkD/9PNInLdAOv0W36e3W68e9NpHH/67HPuAwisUiTpX6HI1Gt3nOihGc3mn6wu0QACvL1skThkmVG7jW22wYAei89umIQg45PIjw/YrTqUwbSmH0vqbLCpta9aKgqnimzNiGqb3XdqQE4ChEY7iz9yR/0JEaxGWwl2xf4TiYG9cjM+m3fN6BunfEsWQPO3YMYNrb22lvb6chsuU87mqgimwWWibBzDlj7EwVSyC6Xqn98tQZteAuM9NoGbVfMN6rq9/yNbA7V+kXl32l1rat2vw1L5Lbd77+9X70LeQFp5L417NI/NsFWB2zxi42j96jr+v8wxk57zuB+myaJlLKbZ6zumXNRLV5JwSA/VgCZUdR1amS1QxZBm9J/fUamlGRGKJYQBRyGJu6sdaswl69AnPdGoy+HuTwZrzGFpQVKYXCSsaAonb8cujJjkA0FgDZ2eO95A86Aj9Vr53PhonMZbDWrsbsfQ387ROTTS66FeIJ8lf9jsHLF+JP7qhoJfscwPB3/4Ohs//PNo0VfXoxxBO4V/8e5737B2DbfP539M2/7El9E5dV9w8egTtlJgDpr19JvioLrEZOOJXcmRcGxxSM99SSLTLzNi9iJbbknIuo+9SCYNGq++4vEM+nMR5ZQ3t7e4UB5x9OQ0MDqVQKccVC3OM+M+648b/fAy1tOGddGKjPZW/7ts65s4B2h4eRlGXV5B1XVNxSnLecZaU8/Zlp4dc1YHSvw508newRx6Ni8UrMuorZVSSqget64LkgBH5dY2VxMC0NXtvW78uLiO/j7DUP4RSJP/AnrO7VyME+ZGZku5ZXxq/7Ifl4iuKnz6RwzEn0HnPS+PbyI/ehLj4HUltuUJD81ZXk994Pf6959P/6rtrvr1uDuvgcIqkU0TtvYuTks1Eds0nf/SxlXUKuWo5f8oyPcTZ99XI2fvXyyngrl6Ou+T52Q8PWT7BjNs6qIhvH+aj5W2djPXoP9uIHKH7oIwz/3xsYHr24//oq+vv7SfxzqV5gjjuZgeNOHjtYa3utFnzvHaRPWqDvg7WvaPW5lA22rXM2NzfvdADe8UuO2Ir6XGJhmU0jhwbAtBj59NkU9p1Pcff3UtxjH4p7zgs2Z9aeuJOn406apm3nKR24k6frMJJhVqnQdoWFI9ESoPVW3Hc+uSOPx22bgtc+DWf2XriTpuqGAttJmq66mMRZH9N23TgeYE47CnXmR4nH41t1GMnuLpovOAX5yH1jxlCH74ZlWSQSCWR3Fw3f/Qp0rQm8rPzmKvx/PjH+wNf9GLHyucr7W69HHTsP27bHxJDfiPRncziOQ9M3P495239BX2/lw5XPwVWXoX53DalUiujNC4necLU+1lH70NcLLZNqMtWMFU9irO/UbxY/GKjPwTXfhjl3RhHRaFRFo1FM00QIQV1dHZm3GCp4XQdWqgFn6gyd4ywkwnVIH/NpvPapYEeIrnga++UXwPcQnof94rMYA30U3vM+hs7+mg7HVKu0ox0Ovl9h59HsXnZgWbZeMKq92Z4Lrguug738SSJPPILIZRDFAjIzHISvhLt9Wg55nkc2mx1zvROJBPF4vCYGnMlkGBkZoaGhYQyIfN8nnU6TzWZrxhh9UzqOw/DwMI7jaC9rMolSKhi3eOVvyR59Ilx1GQ03/ZJsNkuxFJpJpVLb5H3u7e0dr/1phYWrklcyGe39LQPRtm3i8XjN+WWzWdLpdDBmeZ+RkRGUUrS1tdUuEv39OI5DXV0d8Xh8zPzbMmdvby+GYUxIRs5mszWL0w5RoWU2jXCKiFiiYgcbRsXRVA75WBbWmpUYfb2402biTp6uP/O9SreN8VIgpRFkXgUOLNOs2L+mVdqq5lKqJtRUnHsAeB6Rpx5F+B5eQwt+PIkfjWOt79wuhQ2GYZBKpbZp9U8kElsEkJSSuro66urqXtezPN5NWR539Bk1NTW94XMaDag3e06ByRGPjwvELWkCrwe6bZnzjZzDxLOBff9tb6kjXAdjsE8nXpQSNCoglpU+V/kcxmtdeI3NuFM6NLirc7XL3xOilDUlamuIA/u6CsBl4JpmZdEoA3gUkxf3nY9wHSLPPKYdI6aF2z4NUSxgdq/b9eqEawLDKuzuGTqxtjLxYB+YFs7k6TA6/ioEyjAwe15DeC5e+zSdTcWom6q62CEAv6wFcRDPNWudZGXwjk7woPYmLrzvYCgWiTz3OCKfQ0mJO3k6MpvGGNgU3kGhTCwAv1OZWPg+Rs9rUCyUbNqy3STAKWL09WCs78SPxHTYSUidRBCU+VUBs9r5JWQNi9ekUAaeaLMC+tGMXb4kSoGlQPkU5h+O0d2FufZlnbIZieK2tCN3MQCnvnsu4uufI5PJoOrrCfk3ZOCta2yWpdVkp1jTf0pm0xibupGZER0CCryJZaYs9cIK4rol1dgYZUOPVq+r48vl11SzdemvMsBUtapkeVwpEb5fagSw60kymSSZTIbICAG8FfKNJ/Hqm1CJJMqKIJyCrrUtGWLKjuJOnaGLFDy3ip1VLTCNUbatZdUy63g2crWqzjg2szTGqNH204sxBjdpB5jytYoSiYZ3TyjvMgBLidvUhtcySTuwSkwp3EjFawyoaAy/rgm/oRljQyfCKYBK1gKymklNs8LCpllRo6vt2vEYebTdW203l8T+51Iiyx5HFAolJ5pXSvCS4d0TygQE8NvlfRQCt3WyrkYxqmKv1fNWz++5eC1tmF2vIAf6dPsbxBZAbNbawlVlgLUgFVsHbmWlAQnWsieIPP53RC6rx/a8yryhlzaUdxMDu02tOG1TxqqooxePqtd+QzNeQxPGxvW6AqmuoYbNa51ZRpVta4wF5XjVJVuqOBECa8UzRJc8gMgM6zF9vyq2jH4MRCihTDQAvx1dKVUkits6uVQ6WMWEY5qya+Cq8l8Fzu7vwV7+lPZIl73Vo3OoR4N5vHjwG9AU7CcfxV5yP6RH9DGX56x+EoQi9NKG8u5gYLe5TXfbGIPXqr5T44HO91CxOH4yhdHbTeTpJXit7eQP/ggqkdR2rx0BQ6eBBsX98RREo8FC4Te1oraxiiby17uJ33wtfmMLfnNrBbxKhHdLKO9OAPupet3tQozDvjWOpSomdR3MjeswNnQh8lnNvlISXfIg9nNPanXajiDyOeTwZkRe5wGLQh5cB795El7HbLwpM8h+7it4k6a+rlptrFtD7PbfYq5ZibP3ftDQVMnSGmPvTgxAj1xxLX4iRf3Xzwjv5hDAb48o0y7FWKvBKyuPSBFCd5ksJV0I38PqXIW59mVULIE7bRZ+U0vQm1mUQ0tSQl0j3rRZKNtGeC5iZBijuwtjfSeyb6MO+zjFSvgHMS6QzVdXE3nwT3oBkBJRyCF8T3f2qGnrWdKd5cQAsDNrDix7kpGRkZ22oiaUNy/vTCxkTKF0NQOX4rFVZYRGT7fOgZ7SQeEDh+DO3AM/WR8wtDItVCSqNzui2V0plGHhN7XgzJtPcf4RYNmYq5YjRoZ0lZHnlQohvBpWNbpeIXLPbcj+TTplU6lR/bFLDQJ8HzwfUcwjB/omxA/oTZ8FG9ZiGAaD195J79Ieepf2MHDjQ3rxnDKDgRsfCv7ff/tS1JQZjFxxLYPX3hmMM3DjQ2S+8RO8uQfSf/vSYP/MN34CQPbcS8eMMVqy517Kpr+uCfbLnnvp2AXn8GOD8ftvX8qmv66h+PEzGLjxIfoWrQjmzJ57afC+vA/A4LV3MnLFtcG59S7twTn8WAavvXPc4w4BvN1EjB+LLavMvk85J1oZBu6sOTi7v6dUoF/r5Krd/CrAlUDmFPEbWyjuN1936CjkdD/nAMR+8D1jw6tE771dp0UaBiJgWV/v6xQR+RwiM6I7Ym5ch/nKSuznn97x4J17ICqWwLvrFvIL/4hKJInsHYUj98RtamPg1HMZvugHoMDeKwLnfxZv2iwG5h2ESI/gtkxiaGiI4sfPwJs+i+Kvf8rAlddjP/53zDkWnP9ZMp9aQKZ5MukF5xP9/oVw5J54TW30H/fZmv5Y3twDSS84n8hPv43YTcLTj5Gefzi5XK7y002ZwdA3f4JVGt/r6UbFEgw9tEgvRGtXY+xhkvnbvaQXnI/5599j7GGiXljG5jPOo1gs4nXshrOhi3Q6jbP/oRrUTz6G1zEbX4F5zD5w6/XBcYcq9NuC5dGPL5EYm/vxJk8HIcgfegyykNPMOW6staTGKl87l8rqsV9l1ypfN4OfuYcOKzlOJdykdCjL2LSB6KI/aFW7zOIljUAO9mt13ikismlENoPIjOgywgkS/3X2PVBXSSmFe+hHtMPwxXyN7yH225+TPetC3P+8Cw47WoPtpeeR6SHUpxbgeR7pT5+Fveg2ikefiGpuI/epM+FTZwbjZGbvjchlyH/n37GOOI7IbdeT+eHXyCeTxGK60YGx/Alid9xA7rCPIc+8ADV9FvLR+ykUCsE+hSNPQMXjOP96jv7fiqfJzNxdLwSxBNzwSyzTxDzlbLxn/0Hx+xeSSqVQK54m/ZmzSbdO1Y7FZU9gGAbOnvOQ6zrxAb+5DeOCj0DnKpoe/BMDp3yBTH0z8b7XdpoGdROXgcd7mmA1AxumbsruuoHXOH/Ih1GJ1BYdTqB0n+Zy8b7vV6nIFfb0Gls0KJ1iaXPAc5G93UT/8gfkpu6Kiq/8wBY3Nq7HeuFZzNXPY2xYixzs003jJ1Dyhje5A9m1BnGoBuaYRm0P3U164W0YQiB7NuiOFNkMLH0Y++XnNeC/fx1+8yT83/wMs2MWxqrlY5u+LbqFxkM74C+34bRMIr3gq9gXXB4As+xMK84/HEMKrJ9fpnsrv7aupilB+Xh93ycej+O1T0WufQV5wqn68q94hkQigTtzd3h5JZFIhFgspvfrWoN30BF6Ybrrv7EsCz+ZQmzaiDFvf2T/JrzHHqS+vh63tLCx9OGtNhcIGfgtaNPVoFSGifnqaqyXn9eF9KaFO2MPsg2tmGtexOjvrai/qrpeSpcdCiExejbojKmamlYf7KhWn4uFEvsq5GA/sfvvQPa8pp9uOCoLTE0YH/PWpTh7T0TnSxjDg7gAl/yMtt/8mKGf3oQ7c3diD91NBnAWHIP9idMpfvtnyP5elBCYG9ch+zfhn/IFzP+6Gu+VF4kISa5jNuYnTqdx7UsM/OJW7OefxU+kGG6bTNvnj2Lo4KMpXPU7Cn2bKBQKRCIRza77H4p8+G749pdwr18E8QSiZJvXRCRaJmHu8V6cffcnf9gxGH+7F6bN0Ez66ksYra3ITT24Bx1O1LIofvwM8ocdg/WfP8WbMRsPYOYc/A8fr79/9x9QhxyF39yKPOGzkB0h88kzsBbdhiPEmPlDAL9ZBq55PX78N/nf1zHcOhm3YzediVXfSPF9H9TAdV1d2OBVOaHKtrRhEFn2OPYLz2iGrbaXXafCvspCpoeJPngnsmdDCdBUFoSdLDXSb52EeHYp9gP/H7H4AZxzLqL3nIsw1ndiXnouec+Hz5yNesXHXd+J7OvBVyq4qY2uV/BRgaoavXkh+QMPw/35TWwCrGeX4px/Csbxp+L+4Dp6l/YAEL3jBvI3LURUNbiLPPUouZPPgpPPIrL4ATxAbR6oAVD85oXkDjwM597lDK/v1Pb7i8uQB3wIsWlj0NYpecuv2PzNH5N+bgSRy2j1/hdXkDz8o6Q/cTrq4VWMlPpfees6Md6zr14Arv49/UDkvj/iXfLFbWoBtLPLmJ5YiViMbJXjYXtIft6BOpFCGrWPLgnK/Ezk5gEiK56isN98Mqd8CXfGbiDNkqpcUonL4SPPq+3IISX2C89gL3tCh4GqFgzhFCnO3Z/CB49CZEaILb4f2ddTqR0O9lUgJMb6TqyXViAyIzvFDzgwOEgsFiMWjTIyMkKu9JAy0zSpL7XYGRgcRClV00upob4egKHhYVzXpbnUPkcpxeDmzUFD+EgkQn1dHa7rMrh5c+C4Spb6dlVLutRvCiAWjZLL52mor8e27ao1tTT+N38Mp30Zjn8/9QMbKRaL+EoFx+y6LkPDw3iep+/LUmsdz/PYPDSE53mYponneci/LEM895Rm/9Jxx+NxkrsggPOFwtZ7Yr0dBf1m9zr9BIVYEhWJ6KohTDAC6Oi5pURu7id27x04e7wXZ6+5+I2tQdtX7WX2akM8QqCsCLJ/U+2TA0s3mm/Z2M8uJbL4fuTwEN702dp2KnuwSx5nUSwihjcjN6yFXGanSZNsbGwMrmEylSI5Tix4vIdtl8+v3EdLVWlI5TGr9zVMc8w4o6/R6H5T5WNRJQ/04C//EDxJ0VjfifWzb1NYuxqruRm7pIqXxzRMc0xPLgVIwxjz/76O2Rj33EEkEqk59ndDqusYBo7FYjWu/+0qhqkfiZKs17XAsQQqGkWZNnJkCGvlMtwZu+sfOUh9rGJINVrVVWzxzgyeDyx1g/ZVzwECZ84+qERKNxAoFnSDvaFB5EAvcmS4BOpQ3g5RSrG5it1N0ySRSNQw9JuVvr4+UqlUYJPvqlJ4PQZ+e92mLnJkSD+Au7TaK8OESAR8VfXYlFFN68pAFoKgqF9VuZpUFXqFGtucDZ38YQz2aSArhchlEY4TAvadZItx2H17yXhaxrtBduwDvpXSPZbLqq+s0qnLABWjfcKj63lVDUmjRG2pXznmLHVJoNw8ECIplBDAbyOqKxlVQoAvS9Hq6vTLanW5xMplnIuSIV8DfEFY/BfKrigTry/M6LTI8t+gAFdVh4FH1RSLWrO5xjAOywFD2cUZWE2EOKhfeSiZzpGmkitd/fSF0fgM2FvVOrKEKIWgvPDXDmXXV6F3aOqZ72FuWIvMpPEbmvATKf0UQtOqatoux7GLGVXyh2buYgFjaBBj43qMwb6q7pahhLLzyXjYrAkjgXbt+74/IdhYmRYqGkPFk6h4AhWJoWJxXaEkjao+zgo8Tz8/OJ/TxQeZEeTI0ITLXw4llDcrxWJxTELOGAZ2HAfLsmoe3bijRLgOIu1Aejj89UJ517Ov53ljcrslYx9KFzxSMpRQQpkY4C0Wiwghgg1ACOFI4Jlqdbn8YbFYxHXdCaNOhxLKu0mUUgFw86X8diklUsoAo5ZlbzaVUjcrpQ5SSlUjG8MwcF0X13VRSoUgDiWUHWFGChEA1zCMmuYEqVSqU9i2bUej0RcMw9itWr8ug9b3/V2+KDqUUCYygMsgrlafLcse3H33Pf5i+r5fFEIcJaV8wvf9trJ3q1rfljJ8DlAooexoEJfFtu2Bjo6ZD0spO0W5CmmffeZOGh4e+n+ZTOb9rus2MiHTLEMJ5V0LYte27cFkMtXZ1jbpJSllJ3DV/wwA0Ab3XQmI9nQAAAAASUVORK5CYII=' button_token_checker = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADK0SURBVHja7L13nF9Vnf//POfc8unTS3pCMkASagKEDoqAIKIiWFHUdVfX9Ys8tvlD17YN2yq2VXEtLIoKtqUI0hSEUCQkJJDepk+mz3zqbef8/rifmUwaggQSdN6Pxzwm+cz93HvOued13v39FpZlIYTAGHMScJWU8jVSyvlAgmmapmk6XKgC7DTG3CelvNFxnCcrlQpW9Y/nCSGuFEKcoZRqk1IihJj8pgEwZnoJp2maXi4SArHnJwngaK21EkLkjDE/01rfbgFzgY9IKV9vWRZKKaYCePL39JJO0zS9bDTBLk2VcU7gUGvdprVuE0LMdxxnmyWEeLsQ4kylFFMBPPFFKSVqL448TdM0TS8xgI0h0hqt9R4AllJOfLY8lUp/SjiO85hSaoVt20zow0IILMvCdV0spSZ05ElQT9M0TdNLjmBMzHHxg4AgCPa5xLKsfuE4TsVxHNe2baSUSCmxlCKRSODYNgiBrp4E0/Cdpml6+UhWsRcEAX4QxBicwkSNMVhCCHeqziulJJlM4jgOge/j+T56mvNO0zQdMlJSYlsWfhDsIwXLCZF5AsCO42DbNkEQTILXVNn5NE3TNL2MUnT1t55iyJoKYCEEcuoXhBDYto0xBs/zCKNo8vNpE9Y0TdPLS2KKqHwgBmrtwaqrBqsgDIm0Rkr5Mp0xf2wK0zRN0zQB5gmmug+AJ9xHUdV0/ZKQ1ogoRIRB/O8qkE31X8IYzITLSkhQEqMsjFTwkh8o0zRNr2AAx/jScLABrDVCR4gwQLtJgtY5BE2tRJkcxnFBKISJwIBRCqEj8D1UpYwcH8UaHUSNjSAq5QlRAaSKgS7FNKeepr84AO9XhN7jjwfD8mxMLCYLhU64aNclbJpJZeFi/NkL0JksRigwBhn4scvKSYAg5tKehzU8gN3bgd3XiTU6jCwXqxw8BB1BpGGSY08DeZr+rNG7B1aFEPty4IOqhOsIEQRE2Rq8uYsoLzkRb14bWBbWcD/J9atxejqR+dFJAEduEl1TT9Ayk6BlFmFTK/6s+RgpscZGcDq24nbvwNrVg8qPoQrjGClijizltJg9TX9RJBKJhHFdF8uysG2bRCKBjiKCIPjTwieNQQQ+6IiwoRV/7hH489rwZs3H2C4qP4rT047TsxNrcBdWVTQWOgIBRtnoZIooV0eUqyWsbSCsbyFsakWnMzFAjUaWS1gDfdiDfaiRQayRQdTIILJUAATGsnaDepozT9MrHahCEIYhnu/H7qNq7MbBBbCOxVmdTBHVNlBZsJhK2xJ0TR0i8HG3bSSxaS1u1w5kMY9RCqOsvbimqRq6IkQUYpSFztQQNDQTts4kmDkPf8Y8olwtwveQgYccG8Hp78Ua6EENDSBLBaRXRngeIgrB6FhPnha1p+kvAcDRnwhgEQXoRJry0cdRPvF0wrpmZClPYvOzJDavxRrqh9BHGPPCdGwhQMhYVFYWOpklaGwiap2LN2suYWMrWDbGUshCHrtzB27HNuzeTtTYMMIrIzAYUeXG0wCeplcogP2DDmAhqi4hgz9rLqWTzsabfySyUsLu2onbvgVroBdreAAReCAURqkXBiKjEdqAiUAbkAqdSKIzOaJcLVGmhqiukaixmbCuKTaEKYUI/PjZfV3Yg7tQw/1YE2K2rLqnlIrdVS8a1AbhVZDjo3/UvW2kwCRSmEwNz3mxELE0Ui4iC3l0Ko3J5A71ToIoRBTyiDCoSjjVeSkFloVOZcCJ60EIr4wcHcYkEuia+pcnrzzwkWMjoBQ6WwO284rPZ3/pABxFCCnxZy2guPwMvCOOQo2OkFr7OO629dh93SAl2nZi989BscZphNbxs6MQY0Bna9C1DQQtswhmzMGfMYeorgG0QVbKyGIea6gPe7AfNTyILOWRxTyyXIQgiDn0n+prNtVDpakVf8mJiIl56gi8Svx3JwGWFUvyQYjq6cDavG63z/sA88SyiVrnEM5dgN3TherYitHm0HjOJuwbyiJoW4rO1WHqG6tSDYj8OHJkCGvnFsT4MMZ20HVNBMecgBrox978zHPP9yCN0WRr8Y86FulVsLdvROTH4sPlzxDA1n434wsQcUUUEjbMonDqq6i0LSX5zCoyj9yLNdQXb+pkas97H5zpVMGmMLYTfxIGqME+1EAviQ1r0IkUYX0DwawF+PMWEbTMJGyZSQWBKBexuztwurZh93SgRoeQgRdzkj9ljFqD7RAeczKjn/oqxrYPzFgVyHyR9G0/IrNhNajncASEIaSyeOe9gbG//Si5m28g/Y1/AxNwKH3fUctMSu++Gn/BUQQLj44BbIHq7sbZsZn0TV/H+f3dyMDHO+Vchr/yI5J33Ubtte8Dy35pB6c1ev6RjP7rt7B7O6i57h+xBh6HVOaVL0dP4HLKIfii3EhCR+hUhuLJZ+EvaCO17kkyj96HGh6IjVC+h3aT6FQGWcojggBj2SDV/kVHY6oiWfVvL8SKXJ3cBGdWYYDwyrHrqX0LOp0hqmsibGwlbGolnDEbf0EbhCH2QC/O9o0ktjyDNdCLcRIvjBNXxUpr3R/IfvxvGM/n4/HMXgAf/Cg0NMH3rocnHwETocOQQm8nslIhjUH4XuzXnhRFJSaTiy3pCLBtSEFRKmSlQsJSsfRQKsaGwGwNxk0ivAoiP4oIokl8G0thUmmMmwRlIcdHEOVSfMgAwg8mzkSMm0Dnag8IDCEkwfKzGfvAP6MXLYGN61B//y6icgkERK++lPLrriD8p/8ga9tkbvtpfEClwEdSHBwiO8UEYRw7nufEIRz4iMI4Igj2XAvHxaSzuyU434vjAXw/VqkApEAnkphkOt5fyRS+7VIMAtJRhBX4iPFRhDHoVAaTzsTxB+OjCK+yeztK0IlUfB/bjtWiseGYYQAijPMDdG1tvE8OMb04P3AQ4C9cSqXtWNTgLtKP3ofduR3tJjGWTdAyG++Ixei6emRxDHfrRqz+nli0nAoQoxFhiJFyd3SW1shSEeGVYx3Vsp6HoUvEgJ84DKovWvV3IwxE2RrCukaiphmEjS34rXOI6hpj7lzfRFTfSOrJh1HjI/FB8IIAHCE7t5Jau4qwejyZGbMJ3vhOIstC3H8H9qP3o3bb2pGJBOFxJxHOnEM0az7CcWL9baAPe81jqJ1b0Lm6eEOXIKp4BGFIsjROeOwp+MedhPR9nDWPIbesRzc24597MdGsWQjpxmvQ046z/mnkYC+iVMA7+SzC2QtQw4PgJgjnLkSgIT+OvW0j9trHY0CJPQ8wUSkRHrGYwjv/Fn/FaYhf/Qz5m5/j3P6T3Rft6sZfdBTBaadRWH42zr23x/79ImilKJ/3elh6PFIpKBVRXTuxn12FKIxDGKIzOYIV5xLNnAeZLGiDGNqF1bEda9PaWCKJAkyuHu/4UwnnHgH19RAZxOgQ1tYN2M+ugihEVkqElTJ+EJAuljEz5lC+4DJMrgZn0zqsdU9C4OOtOJdw0WKYcFGOjWJvWIu1YxOiVCScMQf/oiuQhXx8wLXOQihJ4sG7Ed3t+3DEQw5gM+Xn+VidvbkLMZZN8unHsbp2EqUysSspk6O0/EwqS5dhLBvj2ES1TaRW3oc12LcbaFVOq9Px6R+0zIkND1GIGurH7u9BFvMvXLQVAlTVYIY7KZJa/T3Yfd0YKUkmU0R1jfjzFlFefgal5WcCguSax+KD5oVyYTcJrUlqhADfQ89dwKjjEAGqoYmMgMSMmZMRbyaVofTGd1Nadnq8GV0LpI21q5fM/3yBZHc76Gj3u4hVTXS6hvIbrqTwxndh7dhMtrcDd8M6ghNPI3/1ZwjaFkAh5mJyoIfcrd/H+fVPsbdtpHTRWyhd8T6cZ1cjKmW8404GSwKK1G/vJPuf2xHF8X2nF4b4S46nfOEFiNXrkF+4FtG+FSubJZ1Ox3rZptWM/+TbFEZH8EdHKNbU4uowvkHrLKJrPsP4kUvj8NeEjfvMWjL/9TGcJx6M9epjT6LwwY/jtS0FS0AEcmyI5OrHSH37OlTHdoTWhMcso/jWD1A+/hTIpiAUCK9C+oE7kNf/C0aI3QxVa4xt4518DuMf+TRaWWRv/Cqppx7FzJhD6Z1/R+lVF8c7Xmgoe6Tvu530zd/EWr2ScN5CRj/1NVRPF0Qh0ez5YEHt9s24Xe2xR+VlAvAELsVB48BaozM5ZFBBjQ3HdzYG7bp4Rx9P+fgVOB1bsbp34rctpXLsyXEE1ejgpG9W6IgolaZywmmUTzob7boxN1Y2xnFwt28itfIenI5tsRvoxUZaCYGR8XJIr4wY7MMaGcQaHaFwxvmUTzwdWSlj97THksCL1Vn2u24RJpmh/MZ3U7zwTRAEWP/yAcKO7XDWhYRv/yD59/49Oj9G9u5bp8icBjk2SuGfr8O/5K3Y9/4f0U9uoLz2D4RnnU/5H/4D7SZR3/4q0R23gGWjv3Iz+Xd8kMzWDVg7NyN8DxIQLFyMfct3cT/7UbymZrj601ROPgv95vdRe+v/IIrjk2IjUYipqUfPOzI+C7vaoXsnuWwWK5mcHJ9OZUmtfhSxeT2VsREYGkAjwAUzvw35+O+wv3AtQakA13wG/6yzKa04D7X6MczRx1H4648SHHUM1l0/I7zpGyAt9Ic+RvmsC4m62qn54dcQiSSl170N74yzUA/+FvM/X0Qn0ph//izFN7+VaHyE9B9+j4hiKU/2deEtP4PK334MMTKI9Y3rKD3xEMJy8D72JYKlJ2M/9iDBD74CI4Pwvr+n9PrLYLCP7PqnYtVGWUSts1GPPYD65N8RVUqMbdtInTC4jnNIc+VffCilZcWiWhhWE441OC7+/CPRTa0k/+8m3C3PUi4VGHv7ifjzjyTx7JOIYj7eG+kc5ZPPorTiVYgwxO7aGYdHWjbBjDl4bUsxrgMP3oW9Y9OLS14QYjcbq4ru0qsgvAqu5+HPb6O4dBn+3IWIqZzvBePWTNY02ucENQbCEOM4lC64jKilEXHdJ7B/cRNpQPR24LfMwn/H+yi99nLs1Y9V475jIPlv/xvCiy6HO2+BH30b+9mnsBqb8S99B8GihahvfgX1pU/glvKxuP6lj5G/7ruUzn8j7pMPQqUEDphnnkL/4n9JPP0EjmURti2lfO2/Ull8Ip4BN9JVW0XV1pGtRbfMgjKwcwsyDHEzmcn5GgAngRruJ9mxDWVAGU0kZbzeQ/3oH34T96Hf4ALRw/dSOefVVBYtwa2phyUn4p20AvHbe+Dz15Lqbo/HLwyFI2+mcsGbSf7iB4jZC/BXnIf2A9TdP8d+5H4sAaalFe+Y5ZTXPYXtefFhPzpMeO5FRK+6hGigB/nd65F3/QzLstAXX07lVa9FrnwY/uvjJJ56FAtQIwOUFi2kfP6bcO79FapcjI2U5RL6xq/hPnwvCUAriairi/fUIXRRWfu1cj1vkshyEaMsonR2QsqLpZHAh2r2kEkkq3pUGWEijJTIKEK7CfwjjqJ0+vkYyyZz349xtzyLrJRifbixlcI5r8NbsgxZzKMG+5CF8ee23L4gQMvYSJJIxqd1pQRaTxpVXkpfqkllCOYtRPT2Y77zRRSQaWnBGeqjcO8vCE8/j3DREgrHnEzK9+KFbZqB99rLEPWNWDd+HTatI21J1PJT8Y87BQZGYOdmdG0d7tFLcGwb8dRKikO7CM58DX5dE/g+2MBDd8PTT2DX1ZFOJPGffpyyH/tQvUoF25jd1R4MseQjFfhAuYTFvpkxGI22XWStTRKBKI1TlgoCEBvXwv23Y2WzZGyLYLCXYGic0LbxG1oQM+fFZ+uGNURRhHX8SSSTCcTYMOXunYRnn0ElnUHMmoduroWHHkQ/8RCOkmSbmzG3/ZDSzTdQAKKzLowPFKUI3vrXiBNPwfryp5C/vhVbSdKLjqJ83qWgQbRvJhwbwV18LMlsDrt7J8Ha1QTveA/l41eQevx3sWA53I954E6cXG5SZTgcCj2+OCRIiRwdiUWM+maMtEAIpFfG2fYslWNPIv+mq7A6d+C3LUGEIc62DajCeCxq19TjHXsyOpkh+5tbSaxfXbVAxqGUVl8Xmft/hU5n8NqW4mx4mtTTj6HVwc3BEFGEziSIahtAxuM3L5GbRhiDtmx04wxIurClG1Ipkm5cVDCyHazAx86P4s2YQ9Q8kyjwY9H1rPORI0NENUmCV19C3dgg7vAuvEQqLrvSXEt07RcQ/3wd45aFILaO69lZ8MAXEh0GCAPGdbGBhOsSGY12nN1+1Kq2NblJhYgt5ZUSZEC0ztj/xhECAh9RLsaMIAqrwSix9GADiWQSEwZoacXSVBigaxogVwdJ0FddDW//AAXLoiQk6IioMQPN4Nc1I5tmYHJATwdWdztuNotBYFJpEm4SR2u061DxK3DyaciuboyGcNkZpBYdTbZrO5FShFW3UvSGd8JFl1OSkrKUccprYw1kIaptwCuV4nWQEgUkEonDqkKrtT8l+YWIz3ZvZ2zgOOJooqcfRQ0PgFQ47VtJP3IvlWNPIWpoxhrqx33mSZztG2PrIgZdW08wewFqdIjEs6uQVdF5QqcSgY/TsQ1341qKZ7+WcNYCWP1ILNIczKwjY4hq6gkbWxDFAlZ/70tqmBA6QpTyoGNDllUpYTlxTLjxqokdtgtRhCkXCVOpGATbNmJu/Cp8/L8wb3s/ett6xIN3xmuRykC+BPfdgdmxkch2YztDsQC7ukAqvO4OhO3G3FxIJHERh0jrfazOe/quLcToEHL7RgjAzGtDJ9PIwjh6IjJMCMToMHrBkRReewW6ZSbpO34cgxkQ2qCU3F3lZVKvZ7eUZoDHH4JVj6CTKbSOYimuvxcsn+iZVZhjliGCeN1UrhY7qlSj1UqoShlh2fgQ+5vHxzE/uB6z7HS48DL0G65E3PDZeP5unLbKulXw6APoCQnDq8BAD1TKhJvXYxKpPfaCPMyy3V4UKzNKYe/qwtrVhX/E0XiLlpJ64kHQGjU2SurRB1Ajg0Q1dVi7enC2rkdWyhjLQkRBHE6YSGG3b0WNj+5jNDK2iwgD7L5OZKlI2DITnamBIIhdUXvoteJPBi9SErTMJmpoxertwO7YdvCixvZ+XNXlJIZ2oXq6iGbNQyw/A9Y/hciPo2sa8JcuI5o1Gzasg3VPYs6+AALgyUeQt/8Ee+Fi/Gs+Sfmit2CvX4PVvg3V10mQzsHD96Ju/e6kuypSFlHLDGSlgl0qoB2XaG+d/I9KWgrh5bGeWYW1bhPhwiX4F19BtGkNsrcjPigijalvpHLh5RSu/gR6bAz5+3tQ48N7uPkmc8SnHA6MDiH7umL9etM65Nf+dXJjaiBqaMbYCeyRXVid2wl3VdBLjoPlZ8BDd8bRavPb8FtnI4uF2G9uWbBjK+KX/4v99BNEp56Lf+k7KK68j+SOTbFb6ozXwLZNiBu+gFUYjy38QNTYGjOnkUHkslPjA2GKfeNwanLwoo4TIxWylMfZtgEQVI4+IT6RjcFIifDKuM+sIrXyfpytz8Zhj1V/rpkIDoii2Oy/35PNYITCWBbGdgjrGvFnzse4iVjE0+bFGxCMxlgWUctMdDaL07kDa6BntwX2pQCxlIgowt2wGpIOwYc/iWlqQYznCU88jfLr3kbYnIG1f0A8/QRWtcgByRRuroa6G6/HenIl3oWX4R2zDOupx7Ef/DXUZxDv/CDJi99MgyWor8mR+uh1cPc6nK/9hJrZc3B0GDsAXqADQyeS2D3tpB64DZoaCD/0MYpveHccSBGEiMI4/tkXUbzirzBJEN/5IqV7foVnJ57b5mhZyJF+rNWPIgtluOJ9OFd9mEYF9TVZsu+9GvmjBxD/9xg1y1aQ3bkF0bkD2hail59GhALbwbv0Soa/egv5D38Kk8rEhj/Lwl5wFDXrVpH+8beI5i2gfOk7EX29uL/+KYyPwasvwf7AR6mdMYtGIHfJW5G3/h75s0fIXnApaRNNdkc4HGn/RqwXYszSGnf7RryedvwFR+MddTzJJ34Xi0RaI32v6uyWeyUxCGRhHFHME86aT1RTj9WzE+zEJJil72OAsHUOUUMLCMH4m66KuX5fB1Z/H2poF2poAJUf5U/JAxY6IsrUEDTNhDDCbt+CNTYSc8oXczgYE2dO1TdBcx1MiIjVtRClIsmbv4WXrSVaeiLjX/4xanyYaMFRRPXNyJtuRN/8baRtI3M10ALkapFKIfIjZG/9HiP/sYLiRz+PWxgn84ubCGsaKL/x3VT+4+uY916DsWz0nAUoA/6dt1IZHCTM1kENkK2Z8s4By4FmoK6hmnO9l1HTshDFPIk7fkRYLlB6x4coXfFeomWnxsexDtAzF8QBGN/8CubnN2L7PnYuF9+3tmHK3tIYJ4FuykF9EyaVwV35W8z3v0zhbR8k+PAnGHv9WzCWi563CCUtzPf+i+L2LWR8j+TtNxNm/orgTe9m7OTTkcolmrcQ2d9H5X+/jpSCsLkZ/ACRSCLCgORDd+O96hK8d76fwvZN5G65gZrP/SNjV11D8FfXUDjvImRhDN06H9k6i+hXP6K8bjX2vAXQrMBrfW7X4MsVSrmPdmNZn7Ysa3dXBsvCGIPW+nlnI6liHmwXv20JOleHs21jrPtUa1fFv/cDqDBEZ3P4bUvjKvNjwxAGsQ/PGEwiibfkREqnvQYEOO3bMIkkUUMTUUMLQcssovomdG0DOplGu4lY95kIyYx0LN4JDghmEYYEc46gvOwMVGGc9MP3xJbuF6vrGANukqimjnDbdnjoNyR29WClUpO+VdW+BVMuoyslgromgmyOaHgIVt6PvOG/sLY8S7KpGaumjiBw0Q/eg71hDVY6g9PTgU6m8BJJ9LOrST71KKp7O0FNPWEqQWCnCIQkXLcKdect6Ju+jgp8rLkL0Eah77kba9M6kul0jNVEgrB2LtHDD2CteRQX4ogppkSRGIPs68R6dg1hKkPkVwhqGggtmzCRJOrYgbj/DsT3rsfu7SLjutiNTfjpmeiHH0A99QiJZDKWrDK1RG6GcNVK5NonSXW3Y+/qJDAQWTZ+TR0BkrBzO+KeXyK++hnI53FNiDM2hB4bJ7IUYUMjYWSINq3D+vENcNvNWKk0or6ZaM3jse+5NIbjVaAwTlDXgN/fi7vyftwNa4jcBDqVwbddgmSasKcTcd//IW78GmLHZqzGZkz9PKJVKxH33TZpgX65SVS7NERVXE7+TM1GUkrhuu5kO4fnO1AR+ESNLeQvegve0mVkb/8xqUfu+aPuGBEEBHMWMH7ZewlmziO98l7cdX9AjY3EFT1mzqVw4eUEs+aTfvDXpB6+B53J4i9aQjB3EcGMOdWwP4EcG8Hu2o7V3RHnAQ/3I70yRNGBOXE1u6Z01oXkz38TifVrqPn59zHCcDCSBSYWfWxsjCAIqKmpwXXdffROz/Mol8v4vj/5N9u2SafTJJNJtNZ4nsfo6CjpdJp0Oj1ZQXRsbAzf98lms6RSKYIgoFAoUKlUpkipFo7jkEqlcByHQqHA+Pg4yWSS2traSRExiiIGBwdJJpNkMhmUUgfUkY0xFAoFPM8jiqI9jDxTnxVH3AYMDw+TSCTI5XKTaxMEAaOjoyilyOVykw0FisUinuft0djLdV0ymQxWVQULw5ByuUylUpl8/kRXkXQ6jTGG4eFhpJST9zbGUKlUJueezcauz1KpRLFYnHzexBySySSJRIIgCBgZGQGgoaHhkAE4DEOCIJhktgetJpZRFmp4gMQzq/AXLaV82qtxN61FDu16zuwToyRqoIf07+6geM7FVE44lcqxJ6OK4xgh4qBzZZFceS+JPzyIHBlEFseRxQLOtg3odDaOYW6cgb/gSLzFJ1JpOw41Poy9qxs12Is12I/V14UaH9lHBBHGYGyboHUOxnax+joRlTImmTw4Eo/WCK9CRoJOp7Gqm2jvw8+JQpQAbavYNiAk0k1gOU58feDjBB61qSRWIhG7Nar3TgtDIp2Kr41ClO+RxpBwrElft1QKmUzEgPQquEFAbTqFSiR3j0dHqEqZ2mQClUwipnSo3N/BJ32PFBrXkhi1Wy0SSiHdBGrC1hGFWF6Z2oSLTKX2kL4sv0LOsRFuAqlUPP7AJ4UhYSliT3T1nskUqioRmGqyStJoHDXxfIGw7XjsRiMqFXKOhaiOZXIdQ5/aZAJZfcfC90hEIdYez5NI10XZdjymSpmcbUEyddh16TwoHBgRx6LqbA2FCy+ndPZrST9wB5nf/AwC/8DiqIj9gCgLb+mJeEtPIpg5D1E9+WUpj711PcmnHsHq647L78CURHJDlK1BZ2oZe8v7CdqWYO3YEmfGNLYgyiWsvm4SG9eQePrxOLhkD/E5IGxoYewtf42uqaPm1u/ibnoanUgdXEthdf4H8h9ObW0z8Xvi2ql1gCdaS069x/7uvU+D9gPca0JV2kOnqq798zHc7N2WhylW7T3mKgRyd3/bPd7//j6fmNPUtdjnu/t5/t7znLiPnqLLT1y/93rsfZ/9ren+xvBnwYExBmM7yMIYyT88hH/kMZROezXupnXYOzbudvkcwNCDMSTW/gFn6waiukZ0rg6CADUygBoZBB3u4WIySk06IuKAjw5UYRzd10n2np8TNrZSuOAyjJPEJJKEdQ0YZe0DYLQmaJ2NztZgd3egBnow1sGPwvpjL/35BAYYY/YQVZ/r3s/nefu714QY/fxf+/MMaDBm/w3yDvD58wXJH3v+/u6zv+88n3kcrpZoax+O+EKt0Hu5R9RAL6nHf0v+0ispvOZSam7uRI0MPw+rsEBUSlj9vZjhgWp8dVAtlCefYzwGbAdnyzM4W57B7unAb1sKUpJaeQ+ppx7BCIH0K/sRoTXhjDnoVAZrVxdqdLiajD/dym2aDlPaC0MHNazESIWolHCffoLEUyvxjzqW4nmXEtXWx6Lyc/QYNrIKUr8S11sqFeLvVAvaPRfwjWXjbHmGxOpH4/jq+UciSwUS65/C3rYeq68rNmbtxX2jRJJgxlxEGKJ6OyHwX7IQyml6Adb7MAS/Mr0WL5QDC15YPvB+wSQVYmSI5O/uJJw5h/IZFyAHB0isXonMj8YgPlBGUbUXEn9CDIUcHkBUKgRHH0fU0IzdsQ05MkhUUz+pO+/t/w0bZxPVN6EG+lCDfXEY558894O5iXW10oTZ/WYmJBgd7f7/iwFJtQTwYVcIXwhwExg3ER/ir7Txv9TLs/e+f0legAA12Evqnl8ginmKF12Bd9wKkArpVWL/7EF/rgTHRmdrEZUyVtcOZH70wMXMopBg5lx0OhdbqYcHD5vCZ8L3kYVx5PgYcnwsTrAP49I3olSMfexa8ye5uqqGQ1HMx72mDicATCTHN84gPOWc/asyh/P4D7kOfBBJVso4G54mfe+vKJ17CaXzLiWqa8BdvxqreydydHjSjYOyYq4s5Is6OIyysLp3kn7oLqzOHVUGtv9NboQgmHck2A5WbweqMIZOHOIaRzruOBEcdwrli6/AzJqB8CPU9s0k7rwFObSL0ts+iCoVce++BTE6iMmkMOlsnC1UGIdQg4zrW5lMLq6JXS5BtZaTsS2iY07GO/diVOc2krf8AGNLTCoTZ4GVijH3N2BSSUyqWmPKGESpgCiX4rpZlo0ojMWhsIkkwvPiGHUDxnXiZwc+opiPjZJKIQpjk9KD8L14rFa1/pebQIyNEM09gvKVH8J+dhVRuYjt+7FIbQAnDqmNjj4B75zXojq37zl+iLl2pONxpKtrUywgisXdIqat0Jlc7M14jvn+5QJYCIxQyEqJ5O9/gwhDiq9+PZVTzkY3tmBvfgarpwOZH0VUSohKJW5YFkUYUQXdCy3ALgQIhd2xDad9axxffaCKGlqja+oJZ81F5kexBnp3d284lBRFhItPoHL5e6mcfh5aRWAlEadfgEDg/uDLFN/9/7DGRjHCIHt3ovr7UX2dcY3spcswuSyiEtfVkn1d6IYWopZZmFwthAH2ulWERx5L6e0fRD16H+rxBzHz21BVO0HUOjvexJZA9fYgd3XHOcRSEs1vQ9c3Y7VvhXKR8KjjMJma+PnViDiIUIMDqK6dRI0t6ONOxurYDl6Z8KjjY/AGPjqTw+RyCM9Hde5ADg+ga+qpnPcGSpe/m1RhLE52WbocU1MHaOTwMNbmdYRtx1B6x9+iVk4Zf08HBD7RsSfFBfB0iOrpRPV2Ec1ZQDRzNkLGjEKOjqK629GJ5P7nGwSvmOL/L2lzswndM/HE75DD/ZTPvJBgfhveEYuRhXHsjq1xgbGuHajxUUS5gNBUS96IF3F4PPd3hY6IWueiMzXYnduQYyOT+u+h5L5CKYpX/h3Bqy7B/fq/Et7yXYK5izD/8W2Kb7gS9a3PYrJZAtsm+PQ3wPHJfOOrpL99HdGCI8l/7EuExy1F9I+TuP0nZK//F8LlZ1J4xwcIjjkZdIXa/+8DmEwWutuJhocZ+dAnsE4+i8x3v4iRFuPvuQY9Zz7USjLf/AbJm76OKPSC41K56ArKb34fdR97P3LT05Tecw1h2zFkfvxtShe8Cf/Uc8DRJO+4jewXryVYdjrFD3+SumvfD13bKb/nmjiwZHgAb/mZhMcdg7WjnewXr8X69c/xLriU0pUfxiQtyhe9hcxvfkX+H/6d8PgV4Grchx4m9+8fwTgO9HROGf+ZZG74HJQK5D/0ccKFS0D6ZL79ZTL//Z8UL7yM4of/EeErTNLGXvUkNZ//KMHRx5O/6iP7zJeh/rgY/F86gCf0GlEuYW/biCiXCecdQTBzXlzitWU2Qeuc3R0UdnWh+vtQw7tQg/3IwijCCIxt7+6h9HxLzD7HdSIM8Be0YdI57K521OjQfg1dL6ve61UIzjgfc8RizJ0/Jbzjp9hjo6TaNxP997/j1TZSaDsGU9+E+O1dmG/8J1x9LeUlJ8I5F6PPOB+2bUJ9/dOEZ12Kd9qrsL7uUHn7ByCZgev+CXP1JyhceHmcFdbYgjnupLgY+/e/Qn7DWsTHvxzr2h//AMYbo7ijHUZHSNp2XMY1CIhaZlBsmok7Okzlwjdjf+tzFN70LkSuFvHlT6HPOJfK8jORZ70WM2MOoeNS3LaJZDJJsHQZ4pmnMPMWEc1dgPnhDQSrnqDw7BqEZWEN9ePs3ELFkeh/u4bSVVfDnIWIL38Sffq5eGe8hkrrbELHRc+eG+vC+XHkTf9NobsTcfUnsVc/RnT9Z9Bvez+lRcegjjuFcOlyjJPFfPuzkHAI3vZB8iechrnwjfuf7yHeC4cXgIXAuAmkX8Fdvxq7fTNOU1xkPZg5j3D2AqLGFsLZ8wlbZiCLpRjAu3pRQ32o/FhcA7mYRwT+JDafs8/RHwG5dlyCeYsQgYfV14XwSnHi9qGkwMc/6SyMAHnbzYjeLty6OlJoort/iQQKH/o4oljA/PKHuLffTHDJWwnHRykdtwJx0aXw+EpUVy9hpUB0xFGUjz+V4Njl2Nd/Gud7X0YYg1/fiF52OsyeDbV1qN/9GnXT16t1sxtAR4iBHuhsR/Z1IoSBVBoCP3a1dXdQaZ2NmTU39tNvWENw1Yexb/0+zjc/Sziwi+gjiymfcBqWFPDMU3i7ekguPYGweQbWyvuJ3vUhxM6tWF/7T9jVg5QCk06hCuNYHVsRloW5/3bCL92E84OvoL71OXRXO+E5F1LO1MSi9ayGuAbX/Xcgv389/hvfhT77DFI7tyIHejGFcaLZR1A+5VxMfRP85k7kFz+OOnY5wVs/QGV8FFVTH2+X/c13GsD7itMmGweyq6FdqME+3A1Po1NpovpGwpnzCRa0EcxaQDhjNhwb+5Stnnac7RuxO7ahhgbA9/gTElr34M5RYytRXRNWfxcyPzxZvO2QcmBj0JkcYRigEgmSEhzHITAGGupxa+oJ25bgb9tA+NDduLkcet5C9F0/Rze1wKxmzAVvJDz/jbFvoVAkfNXrUP19BLd8j5RtkbntfymWPYr/9s34mmKByKsQATUtrRTXPUnpdVfAjXchiiUy//YR3Ptvw+gollAqZeTwIMxbRHD0sbh33Ur53Ndh9XYT/OQ7ccmc+ga8nZuJjCaqa0a2b4sjjGfPj41VTz+B+cd/R/zmVwghyKRTOJksFPMEzTMJ5yxEjg2j33AlBD76a/+GBSTTKSrt7fjIODXRi8evywXCRBL39W+jXIbSm6+CN18FLqhHHiFqitMAxe/vxjIa94xXExQLyJX3o1acg//6t+53vofDnjisALyHeDvZQSFE5kNEpYwaHcbu2BobYxpbCJtnETXPJGyeSTh3Ydz5oL8Xq2Mb1q5urIHeuB/w+OikBdpMpC8+Z78hQzBnIVFNHYmNa1BjI4eF+8iIuHi6njkPNWMetgbpe5Su+Gu8FeeQeuwBsC1EXzeWX0EsPw3pOLBzM2buAugeRHz6HzDtWwANqRzmXX8XSz8DfdjzF5L/p+uQa5/EaWrBX70Kujsxi5aijzsZ7+LLCRYuJvWOcykvWYa57iuUapuQYYQtY6lGlIpIpYjOOh98H/PdLyH/9mOY2jqs3k6cZBLvrAvisNpiHn3kUuRTjyGB8uvfjhwbJmpowdQ1ojc9g1MqohxnMjlDZ2uIEmnk+tXQOhNtWUSZGmoCj/KZr4FKCdk6C9O2BLP6SejuQh99HGbpsjjvd9smzD++Z8IiSOQFiEvehnKTqP4eVK4W5h8JoY9+3VuI2pYecL7mFc2BX0oT+h4dFEzcfMyrQLmItas7rmyYq4uzjJpnEjbPIpw5l6iphaixGZ2twV+0BDU8EIN4qB+ZH0OOj6Dy41ApI4ze/YyponY1PNNftBiUjdW5I67DdTj4EpWN8+wqKq++lPCK91Gpq8WvbcA/7TUEyqI0Gif7i3WrsJQkOuksTBTFtap6OzHlCD13NlSKyPFRrF3diB2b8M69CPn//oXgiMWEJ5yKTGUwcxfCr38Ou3rgX69Hn3wWWlkEi4/HmrsI6pqwOvvxd2whKJWws3HXAlkYQwU+4ZxmxC0/Jdz0LMmtGyid93rkNZ8iSCXRbUsxP/kOoqcTXnMp+rwLEUbjnX4eorcLvfh4SNiYbRuwvDIyl40zq6IQk84QLDkGa2wQ6/f34CMwH/0cwVg/0YmnY275LsJ14chjML+4aXL8ZvmZqI1rYX4bzJ4XlywaH8fd8HvCbBadTGOPjSJnziFatATZtTN2Ry0+HnOg+R5udABMvujmZgdFR1Zx0v9k/nAQxC1BuzviFpGpDGFDE+Hs+QQLjiKYOZ+woQX/iKMQvo+1qwe7ewd2dwdyuD9uHxqG1T7EerIKBIg4BXFWXEhPDe6KfYyOe8j9fsZxsVc/hr3yPiqXvJXCicugUMZavxr75u/g3/tLxN98FNW1A2UM2nFh0zNI38N9+g/owR4q//QpKAlk+1YSv74F59EHCM97PdHVn6JU8Ujd8Fl8ZRPlapFrHoPCGGZ4BCMV9h0/QV58BeX//A6EPvZdPyda/SiE/u4Y+TCIE0K6BzG/uAmhFMk/PIR3/hsI/+rvKUqD++ADyJ/fiEmlsfq68Zcdj2k7AbnlGVi/Fst2MBueJerrQpq435IxJq6gWS4jZISeMQdn4zrUpnWEF1/OuKtwnlgJ//sN5LkXxVbiifEPjcR9oR+5D3HhZZgv/RAsgWhvJ/2JD1KxLUqdOxAjQ4hUmqiYR655HHHPL4ne+lfPPd9XAIj3SCec+ImiiLBaqP2QDdSYatsK4rpYtoVx4+wik84SNrQQts4ibJmFSecwTgJjWajJxP4dWLt6kMODqMIoBCEmmaZ86rnkL3sv7pO/J3v3zxCjQ3+879LLNWeliFpmUUzn8MIwPlwKeezhfpxKCeeEFYxv30JifJjE/DYqUhK0byOZTCHmLSRvKSIvBK+MPTZM0ivDgqMoCIGueIiedtxUGlnXQNC+HVtJ1FHHkN+8gWzooZYcz1gQYXwfBvpwhneRdhxs20YODOCtOJv853+A3roB/ZG3k0WTqKnDnzWPgrTi8rfDQ9i9HaRyOcS8RRSUJPQjKIzF7T4xWI0tlJ5dQ862cJNxTrKIQkxdI5VZ88gPDCI7t5FdfCxFZRNGIYwMY+3cQmb2XKKmGZS3bsKxVDz+LRvJohELjyYf6ViHrVRwOreTmjOPioaofSvpbA5mzqU8sAs5Nox77LJ952vb2PspunA4kNaaKIoO3B/4sAHwPpt7dz9gwjhPOUrn0A1NhPXNcQpiYythcysmWY3IicLJYvBqeKCar1xLefmZIAWZ23+Ms3V9HFt8OMxzolplMU9Q8fHY3QdHWQonV4M1NkJRG6yaWpzAIyiViVIpHMuC/Diehqj6PSnATqWwSyUqBqodinBthQwiQsfGchxUoUgRcLIZnGKBko4rM5qJzxwH3BT+inOoXPkewrq5yM9di/nNL6hpbERGIWJ8lHK0+9l2KkXCdTHjo3iRIZjQEgCr+nw/mcBJpeMk/WplUOFVMKNjFAFsi3QU4mkmm8VZ6TQJKdCFAr5tYTvu7vGnk9jFMmV2j184NikBkRcQJhO4roso5vG1QSRTOKXivvNNpCZbBE0D+KUOfNBRXDtZCkhlCWsbiFpnE8xbRDCvDV1bH1/j+3GrFMvGCEnq93eRfPLhuObwYdj4+bmS5Kcmne+dgH6gpPT9fT713hPJ/fu71vgeZOsofuTTlC67BHXjD1Gf/WccqUhmMvsd8/6S5Q/07P3R1OT557rv8xr/AdbpQGtjDuMQyj8vAO+tE1TbpKAsTDKFrm0gbJ5B2DqXsGUmJplCjgzhbliDu3HtfjvwTdMB1lgqdH0jRSWp9PbiFMbIZXOIv/BEgmkAH3Qx21Tzfk3MbdNpopoGdK4O48Tik93biSyMVUvcTm/A5yEPTCY5BKUyPmDlcrjVFiPTdGgBbP357DOJUewWibVG5vPIsZFYt6wWm8dyDn3c8yuLBceegnQGO5PFOUyaek1TTNbeOsmfzYuRsurfndIJYppepDQ9DdxDaReZqvNPbvPpFzRN0/TKPUCtvWXsw7kPzDRN01+y/rt3SeE9OPAEi46i6Pm3VZmmaZqml4WiKJo0YO3NgT3AnfCJTS3qPVFAepqmaZoOndgchiFhGO7jtxZCRBawxhizYn+yttZ6GsDTNE2HAYAnwDu1a4Vt2yOWMeZXwNHGmJqpLSYmqve/kEr90zRN03RwwTtVxZ0qESulwnQ606WUUh2WZV1gjJmxN4APdLNpmqZpenloAo9SyindIg3JZHJXS8uMjRbQ0do64/OVSuUjnuet0FpL0JORHns3jJqmaZqmlxfAwGTvbqUsksnkYG1tzY5kMrnFAmhqav7p+PjYnNHR0Yzv+wu01ilA7s2Np0E8TdP08oO3CmAtpcwnEone2traHblcTZfWetv/PwDMDffKBBPzowAAAABJRU5ErkJggg==' button_checker_v2 = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAChXSURBVHja7J13fFzFufe/c9r2Va+WZMtykdwxGIxNSWgJpuSFUAOJU997CSE3EEh4QxohISQEQnJJyL0JqRAS2s2ll1ANNsbB4AKusmzJsmx1bd89Zd4/jrTSWpILOIbA/j6f89Hq7Jwzs3POb54yzzwjNE1jEAbweUVRLhVCzBJChMgjjzzeK4gC66WUd0kpf+M4TgZADBJ4ghDicVVVZ6uqiqqqCCEQQuS7LY883iOQUiKlBNgqhHJyIhFvFZqmGUKIVzRNO0LXdVRVRVGUPHnzyOM9SmLHcVAUZXdt7cS5qqIol2ma9lnDMNA0LSt988gjj/cehBAoioKUMiiEmCMMw1ih6/pCwzBQVTWnoNfrxTN4Pk/pPPI4jJIWsG2bdDpNKp0eUp1zoGlal/B4PGmPx2Poup6VvIqiUBAOoygKmUwGy7KwHSffq3nkcTil7SAXFUUhmUrhjOagrQkhjJEOKyEEBeEwQgji8TjOGMzPI488DpMUdhxsx0HXNNKZzN5FVGWItEPweb0oikIikciTN4883kNkHrR9c84rexf0eDxkMpk8efPI4z0GRYh9E1gIgVAUMqaZ76088niv2cSKguM4OSRWxhTXeembRx7vPQILMYrA2hjsdY9DBMfrw6yeSGrKDNK1DdiFJUhdRzgOIp1CHejD2NmCZ8dm9I421Hj0kNafRx7vZ2j/NKNbUcnUTSY1bTbp+kaswhKEbaEkYoiI602T/iDmhDqsyhrSU2egdXbgaduGsWMretcuyE9d5ZHH4SWw1HQytZNJ108n1dCEXViCSKfwtmxC37MTtb8XkUmBouD4glgl5Vjl1VjFZaSajiA9ZQZ69270nS0Y7TvQunejde1G2Fb+aeWRxz+LwFLVsAtLSDU0kZwxH6u0EhwbY2cL3i3r8ezYihLpR9gWwrGRQoBQkB4vdmExmZrJZOoaMKvqMCtrMStqSDUdgb6n3ZXIHa2o/T2osQjCNHEd63nk8QG3i71er/R6vWiahhCCosJCYrHYQanK0uMlU9dAYuZ8MnVTkYqC0dGKp3kDnrZtaJ3tCNve930MD3aoALukArOqhsyEeszqOhxfwLWVI33oHW0YbdvQd7WiRgcQmVSezHl8oBCLx9E0DUVRxiZw4UEQWGo6VlkVqakzSU2fi1VUgtbbhW/TWjzbNqDvagP5NuxYIbDKqjAnTMKsqsWsrsMqq8LRPaixCFpHG3rnTrTd7a5aPtCHsKxB59e7T+bYV39I4ugTsWsmuT8nGce/7CnC118+qlz03KUU/uL7+P78y8PWtsNdp1NVR+efnkFra6H0M6eNWy75iS/Sf/k3CT34B4K3/L9se2Onn4f0BQDQN6+n4Le3oi974gNJ4PheBH7bKrTUDTJ1DSRnHUVqykwAvFvexP/GCoz27a5klG/TCSUlWvdu1N5OvGtfxSqvwpw4lXTDDMzqWjINjWSmNKH296K3bsXTsgltTztqPIqSiL1rzi971gJ6vvWzLHGzP8cXIH7aOSSb5lF25cUoHa053/enM4hUCq/Xe9jaejjrVDpa0TeuI3PEQnqmzKZk67qxCbz4FEQyTvT2GyEWw/zlg6QWn5JTxpw2i+7v/CdFV1yId8PqD7xEHj0P7DjDU0njHFLTSU2ZSXTxaSSnz0Hv3EX4738j/NzDGDu2ItIpcOz93mefh20jTBNhmei7d+J7fQXhR++h8P7fElz2BEZbM04wRHL+YgaWXMTAGRcTO/ZkUlNmYIcLkYryzup/G0fPt27DrpmE2LgOrrgYJgv3uOJi2LgWp7aerm/cimPbo6fKDlc73406pST4xP0AZJZcgD2kLY04nMpaMtNno/zjZZTWrWgXfoHU4lMQbS3DfXnSdNi4FnwB+j91xZj3ed8f+yXwfimvkmyaR2zxqdjFZfjXrCT0/CP41q1C7ev+53iLHQeRSqD2dWNs24h/5fOEnniAgkfuIbDyebRIL1bNJOLHnkJkyUUMnHUp8cWnkalrQGr6YRkJE//+DeyaesTGdcglc/A8/SClJSVUVVZS9drzlH7yJERbC878RfRPnzdaNbrxTjqWd9CxvIPu3z+Nefzpo8pEvvvLbJmO5R3Err5pzLaMLLf7ma3jlhvZ9qF6naq6A67PPP50OpZ3kLzkcrp//zQdyzvovHf5mHV4Hr4bpa0FTj6LZCo1ug2XfBHpCyDv/z1erxercY47xjz5P+hPPeD2ZSpCxadPhWQcOWkqsXg874U+WE9zesoMEkcejxMI4Vu3iuArz6LEoofV9lSScZRkHL2jFc/m9ZgTJroe7AmTsEorXBV74hT0KTPR25rRO9rQejvRejpd7eCfgHRDk9tHf/4vPIZBcXFxzve6rlNy+w0M/O0u0qaJXVY2/OWS88gMvrBDamLP126i5NmH0HV3AOr+/dOY02bl3DN67lKSZVWUfX1p9tze5aQvQPTcpaQch9JbvzFabb3kcgY+dQXqpnWYp8+h3zAoLCyk94/PHFB9AP1nfQLqJrtmRPNmunt6KC0pGVVXYNWLRM9dSvycpQSfuj+XwEefgNLWgvPwPfhLStB/ci1cfwXRaBR/OJztB0VR3LXpiRhmPuT34CSwWVlDYv5i7MISfOtfI7jimVzyKgpS0+BQZPRQVKyyKtKN80geeRyJhR8medTxpGfOxyqvBsVNPiBSCYzmDQSfe4TC+39Lwd/+RODlp9F79mBV1xI/7iNEllxI9OSPET/qeDK1DTjBMAjlkHakObEBknG46xcEgsExy+jLHqcgHKaqsjIneQJ1DWi//amrJn7iZOjuRJaU03vGxa4j5+qbMKfNQtm4zv1+hDppHX8aPR+9MEtGc9osRE/nsNp567chEcdccsEoiWWddDYDn70SddM67NPnZAeexNd+fED1Dbd/Mupt33HLfeajWbLtjeBPrkUk4zgfPjNnaZx5/Omu9rLiOXRdz14fDASoqqzE7/cPO+Guvsl1aD12P0o+c8xoCezsQ5YmZ87HKijGaGvGs2kNIhFDDpaWHh9WxQQcfwC1txO1p2v/6vTIBzBCv7eLSslMmooTLHDLCOGubkZgBwswK2tQIgMYzW+h9nUPX5tKoLc1o7Vvx/faS5gTJpGZMoPMxClk6htJT5mJ2t+L963VeNeuROvsOOQqv6IoGIYxbh9qup79LlvmucdwbryacDiMf/tbRF54nMTHl+KEi0hnMiRnHem++EvmYBgGBWVlqKkI9jc+T9fdz5E58XTSD/2J1LyF7n3//jDqE/dRWFKCfv+vSd31n0QiEeJAlgoTJhK77Oso3Z3IM+ZhGAZFxcVIOOD6sk9v41rsn3+PwsLCrFNsvN/vW/YUieNOI5VKYRiGK31PPguRjGNf+zn8odC416YuuZzouUvRlj2FdfsN+AoLP/ATiAelQpvVE1ETMYxtG9C6dmeJI3WDxDEfInnU8Uh/EL21Gd/K5zC2bUSYmX1MQ2k4/iAik0ZJJUFKzJp6zJp613YdMtyFAEUBMfi4bAcnFCY1byHG1g3o7S0wNM9s2wjHQe3vQUnE0Drb8by5GruskkxNPZnJ00kc/SHsUAH+V5/HaG1+959CRxs+ny8raRQxTDLHcXBKKlyps02SAbr2HgcrqkilUjj+Qcn/0t/x+/1ZSeb1erPEyk4QXvg5d8F4STnaopMpHuEZPtD6fEMn9nRgGMYBebR9zzxM4rRzSH7lBsK/vdkl5pHHoT7/BI6iEAgExrXTI5+6Au31FVhLP4Lf7z+sXvv3BYGdYAH6ru3oe9pR0kn3nM9PeuaRpOYegwyGwbYx6xoAidrXjdbVMcp7ZheVkp7ciDlhIo4viJJKoLfvQFgZHK/fVW8dx5W6QrjDuePkkli6EjkzfRZIB719h+v5HiHNRTqF1rUbtbcb2poxtr5FevdOkvMWkpnShHCcQ0ZgfUczdk098pIvwtP377Ns6pLL8d79ixFep/5clXpkX9k2coQKOeZA6A9iWbmaxJB0GxfdnbDyBTjjfOz/+C72F/9Ptg0HXV8swoj84vvup2WPo25aj33cKSRuvx7lC9fglJTBEw/g8/nGdcolTjsHdfUKrPMW4fV6CYfD5HGQNrBUFFdaJoZtKSdUSPLoE0HT8S97guAT96Hv2oFZNwWrph7p8Y3UL7Eqa4gvPpX44lNJT5uDWVVLenITsRNPJ37MSdjFZYMiSI7Ww+SIc0N/bYfM1FnYRaVj295SIiwTkUqide7C/+rzBJY9idbfS7px7iHrSO8br7jVXfwFMpmxtY7Y1Texe3mHS+K9PLFDE/NjQW1rgUR8eFpq7+NDDUgp3TlwgONO2X+D/3g76lcuRtm0DnnkIvou/uJB15drDR24PRr6+9+gcQ7JOQtJLDoFddM6nIfvGSVR7VkL6Lp3OYnTzkH/3W3Yg+QtLCzMM/ftEFgMOaoGHUgIgfT6sCpqUCJ9eF9fge/15WjtO0BVsYtKcLy+rB1rVtaQWHAiydkLEGYG77pVBFY+j3fzWpAOVmU1mbop2KFCVwofyDshJSiCzJQmpGf/KpVIJfFueAOjZbOrMRwqAt/9C3eapHEOfXc9T+qSy3OcNN2/f5rYuUtR2lrov+VbB3fv9a+BP4B4bA3lRxxNZWUllZWV+H/1IGyT+H/1ICUlJdlBhJPPInnCEneAraqj697l7F7eQfqsS3KJFApRcst1kIxjnfup7KByoPW9k74SPZ2YZ1yA2Tgb8fIzGIaR4/xyquro+eGdOCXlaF+5BPOGKwmHw3nyvhMVGsdGGl6kPwB9wpVuZgY10geqhlVZgxMqwAkXuLZoKoWwTHeiPhgmNfMoUk3zUPu6Cbz8NN6NaxBmhvT0OUjdQ2bSVOzKCViWidL81qD9LEY4ssSwlBUjRhXHwS4oxiqvRt+5fViV3sfvUOLRtx8pNg5KbvgPun/4G2TjbPobZ8Pl38wdPHo6cb7+eXRdx+v1cqAR58GfXEtiwQk4jXPofGDlqHsmbroWEY0SuvsXqKd8DHv6bBK3/JHEyHIb19H361vw3vy7XOm+fhXeF58k9ZFziV57C97brjvg+t6JBRp44XFiZ10EiTjOjV/Fv5fnPnHJF13VGrBuuxtuu5sIEBlqRzJOxclT8hL4oAqnkjg+P3ZRKVI3QEqUeBRj61vYRaXETzqL+ElnYU6ahhKPou3akVXr7OJyMlNngBAElz2J763VCDPjrkYKF6J17sLTshFhWdgl5a50VDVQVdf2VZQRJB7x2TWUEY6NOWESzgFIYccfdFXuQxzkoa5fRemSWYjH7ndV0JF49D7k+cejrnrhbUmR8gsXoTy+l2392nLkFRejtjVnnT9lnzltdLlH70MOepS1MVTdwusvR/R0Yp95IbHiyoOq7+3Cf/cv3ce38gWEEDlTRQCpWUfuV/Hq7Oz8wBN41GKGcDhMfJwIl/4LvoBdWIJn20Z8q19G7et2lxFWVBP96AWkZ80HVUNv34Fv+d/xvvYSSiLmhl7OX0x88akokX5Cj9+L3tE66HWehFk3BalqSI+X9JwFOIEw+o6taLvbRkjhEWJ3LNVaul5t75qVaJ279pnVw6xrIHH8R0nNXkDFtZ/+p3RsNBolmUzm5PINBAIEAoEcezcejxONRnOmYEaeD4VCOWSJRqM5z8fr9RIKhUY5wfYuFwgECIVC+6yzq6sLKSWlpaXZNu6vPtM06enpybn/ASt0jkN3dzc+n2/Ma3t7e8f1Jwz5DcrLyz9QhE0kEvtZzDAUCz2WB3FXK1ZpJVZ5NY4/hNrbhbBMtF2tBJ57GKNlI6iau1po+xZX+kqJNDxYZZXg8YDHQ7pxLnZJOcb2zdiFpUjVDf4QgMikISRcT6huDE8PidGEHWau+1dIiV1YgtrTOe70ldQN7IJi7FAYJRb5p6XvCQWDhMYJ6BhZZ8DvJzAkfQ7g/Lj33et3jFlusMx49y4rLR1Vdn/16ZpGZUXFmG3Yr0YnBOVDEWljXFtcVHRgPpC8DXygUyVbSE+bhVVWhVVWid6+Pbtowdi2EW1XKwiBkkrkrAiyy6uwaiYNz+1qGnZRKcnC4kF12HVYSVVFIEA3XO/10BxwNmpKjsHgER5rx8EpLEZq+j4IrGMXluD4gqg9e/JekDzeXwTeVySWtqcdbU876dJKzLrJ6M0bXAfWYMCFSMZH0QwgU9swaCRqSE1HDu0EoWi5jinHcYM7QkWge7BSSZT+HpT4UBYOMWLEFbk1Df7r+ENI3UAmxzYDHN2DPUhybVdrPhVAHh8cCSzSKYzmja7dWtuAOXUm6urlIMf3+lqVNaAoKPEYqCpOuAjp9UEmM8KTPBis4fEggwXIQBA7FMYJF6L29aB27kLt6kAkY4hMBiwT4TggB1k7eL1UBMJMI1WVTONcHI8PZaAXrXv3oNdZIn0B7HAR2Bbarh35NyCPDw6BAYyWTWQmTyM1bxGZhiY861Yh0uMT2C6tdO3beBSRSmIXlmBX1CDMDEo6nY1zlrqBVT0Ju6wCkXFT6DihIqwJE7ErqlFiAyiDZFZ6u1BiA2DZg0SWQztBubHRioJdUIzjD+AUuPfQ9rRjNG/ACYZx/EGUZBy1a3f+Dcjjg0VgkUqgt7WQbjoCc8JErOqJaK3N4y4KkL7B+N54DLVzF04wjDl5OlLX0TvaEJk00uPFqqzBnNyI1A301ma09h044ULs8iqcwlKcgmLssirsqlrUPbtQejtR+ntRBnoRiRjCAVQVtacL6fWDrg97vhQFs7IWO1zkagC6jjrQhxrtz78BefxLQ9U07btDbmkhBIau73+dpZQ4RaXY1XVI3TP+ogVFwZwwCTQD4diIVNKN0CqtxCmrwikowgkXY9VMwpo0FXwB9B3N6M0bUAb6UGIR1O7dqD2dKLEIQkocfwC7uAyntAK7tALpDyKE4gZlSDC2rMMuLMUpLB4M73MdXMKxcYpKMWsnI31+jLYWjK1vuV7vPPL4F4FlWVmuvi0JDKD2duJ563Ws6jrSsxfg+8eLKDu2js5F5TgI00R6HXAESiyKvn0LSIlVPx2rqtYN1kCixCJoO7agb9/qTu+Aa+vaFqSSKJF+tI427OJSMjOOwAkVIj0+ZCCMXTEBkYih7WzBLirDCRe695VOjpPM8QewS8oRjo3avTtP3jzefyr0AeV1tCy0tma0HVsx6xpIzV6AiEVRuweXGCqKKyXDRTge73DguwARj6Jv24QSj+KUViL9AXeBRE8nameH64QaCtwY6eQyM256WTONmDrTTd8THRgM3SyCgmJkMIz55mrIZNy804jsFJUApDfghoGm0yiRPrDMvBc6jw+WDZy1heNRjOYNmPXTSM9d6GaF7O3E8frJTJ2FEyoYHhKyBB4Me8yk0dpboaPNDZEcGWmVJd7I/wc/S4n0BUGCtrMFZc9O7AkTsVQNYaZRd7W59nAygWMYSFXFnRhTQFFxAkGkx4eSiLvSW9XcWO088vjAEdiy0Ha24Fm3ivjpF5CZ3ITa0eYuIRyMkx43SmakZCU348ZwxNUYoVeKgkjG0DevQ+3pxAmEsMurURJRAn/5b4x1qxCppLu9y7yF2MWDSwyFdMkbKkCoKko66drPXh8ilidwHh9AAgMokT6MLW+SOrKDTONcpGGgDS7MH9ZNxwhcdiRKrBcxZKM6trtzw6gUmsNhktlzioKuvYmIRzAb54Giona1oe3Y6jrJAGGZeF5fjl1U5i4xVFXM2sluaKZ0EKkU0h/CCRUM29vjIHHZN0mefCZ2Tb3bYZvXU/ypkwHouf8VvCtfJHDz1952H8rqiXQ9+Crh22/Ae9ftB3Vt/Jof4wRDhL5z2bhlotffQWbmEZSct/BdfdFSl36J6OeuouzDk3PafSj6EMCefTT93/k5xV++ELHX/L6snkjkqh+QPu5U9/1Ixin46bcxHroLe/bR9Pz64VH3Czzwh1Ft6rvjfzGPyO3H4B/+E/8d33/X+vUdZXYTloW2px3/sieQho45ZSZ2eVXuaqGcZYDuX2Fb6FveRH9zNfqbqzHeegN9wxr0jUPH2hF/h75bi75pHfqGNRhrV6K1b0d6fTihAkR0AJFM7PVEbdS+btSuDtQ97UivD+nxIdJpRDrpauRZNX98giTOvAj9dz9Dm6bDFRdj1dTT89UfIqsnYtfUk1r2FIlE4m33YfqkswCIPHgX6fTBOdVSx5yAFR3Y504amZlHINatpre3910lsPeu2wkvmkBXV1e23dHiykPShwDm3KNxSsrpW/96TrIBWT2Rnl8/6mZRnemHyQL56kv0f+V7pMsnYM492o0g3CtpQfyaT49qk9U4G+227w6Xe/Q+YmdcSDKZ/NeUwOAukPe8vpzUvGMxG5owG5oQpunGGTsjAzOHSCyRukH6qONylwhmPU2Mtp33zv4gJU64EHPqDDfSaldrji1rl1ZiTW7ECRe4ziwpSc9diBMqQO3qyO7e4PhD+xzR4x9fiu+rnyLz0J8JhUIYq54ldu+dJH0BYvWNbrmrbiB2293Ek3EKv/sl9BceI3P2pUT+7VqckrKc0d48cQmRK76NXVOPurOF4i9fiF1Vh0jGkds3k/rjU8TLqyi69rM5EsPz0tMUXH1pTvt6//gMdk099nn1aCueI77oZOIfd9O9qjtbKLz+y6jrXsUpKUdEB9DPvIju627F/8hf8N/x/RxpMqRVxK/5MckPLUEkYzltBOj9+V+zWsjeUidz9qX0f+MWyhdWYJ64hL4f/S4rwQZ+cperdAVCaJ27UOunYY1o93h9mLjsmyTOvGhUH3Y9t43Qnbfivev2rFQv+Om3iXzJTZJg3fMC4vJzsm2LXPUD1NZmnAuOw9E0ysvLkT/7Fr1Xfp9IqAhfVR1K6zYcISgbmep3DE1J+gLY2zZRUFCAx+Ohd2oT4qE/uyuEPvrx7LMd+cz67vhfnLIKpC+IU1I25rN81yRwllyqjr5jC9qeduziMjLT52CXVbkhk4oKYmhN78gF+WIvO3iExp21h5XhhHYjDtc5JVAi/ai7WlF3toDlzkNbk6aRmX8sdmn5YFJ3AZrhTi0pwp1PTiUR0kF6PONLt4+eh9rWQvJ//kRBQUE2x1TwVz8geOOV2EPrVZ/6G9o0HSmhf/5xpGctYODK7+G740bUqRryob/Qf+nlZDIZBr72Y5TtW9E+Mgu7pp6eMy7GqqhGtG6Dx9YAoJ9zNH0nLCFz5CK8S+bCt79E+rhTGWg8Iqd9oTtvcT+cNJ3k0SeS/NDp+L76KThpOrY3QN85S8nMWuAmS5eSzHW3ELzpGpLfv5Lem/+EDATxNHnhpOlYxeX0XnQZmcnT3Syj1/5f1O9+Gbumnt45C4n+27WIeNzVQv565yipo7ZsBqDTX0jirE+42ktpJbGm+e4g9JtbsEorMNtbUX/1o+F2N80bsw9Tx59ObOkVaA/92e3Dt9bQf+nlJGce5ea5XvE86XTaHfy6Oxm486dor6+AR++D8xczMDAwPLgcuQhefAJN0ygocDUusWsHxVdfiveNFWQmT8eePhvZ7ND5yh46X9lD6tIvjZbwRx3vvu4/v4eB1/vpfGUP1rRZyHX/wO/3M/C1H6OvfCHbR+njTiUajWI1zkbGYijHVqPc+9vs+fcOgQG7oAi1vwd92wbU3i6csgoys47EnNw4GGzhdxfPZ1ce7Z1OdqxtJBz3cMY+RDKO2r7DjQJLxBCWjV1agdnQhNQ97j0c18Z2giGkz48wTZR4dDhqbB8L+q2Kati+BU3TRiVs8/l8qNW1qKtXwI1fxefzuT8pOkD8vM+4eyF986fYWyy48HOIQJDoJ7+MU1KGc/1/oO/cRtkx5Tg/uApz4hSc6bOhcQ72A39wB4lEFOkLkLp/OZ7TPkbw6qWkX3wSe8QOj+aM+Sg9nbB9M8opZ6M+9yiZh/5McaQbz8Y1yIpqErMXuF184edQdjQT/9tdhGfMwzr+NKxps0hvSMGzm6C0HCdUgF1agfLsI7DyOYJx1zdgv/gkMhrBmj4L+5nNeCbUEVh6Wo56qa571f1w3KlkjlzkbocCpD97JcZLT5NubUHW1iPXrkLOPirbbm/tpLH78OxPoL2+gswNX8Hv9xNc/xqUVZCYdZSrrax4Fk3TyEyejvLmalRVxamb4ppzfn+WqPbso5G+ANary0bl2xJCEAqFkGUVqPf9Nkd9jtz67VHmjDl9jpsyaajcSdOhuxPrlI+h6zrh/7qJdFkVzsOr3Wfe00myotYdQH95I4qi4FNVlLaWQ6pyHxICS58fKQRq9x6MTetQu3ZjF5VhNs4lM+sozIYm7IoJ7tRSNvG7GCbwyGOIpEOfpQRnxHln8H/LRCTjboz1YBSYNWWG67Ry7MFrHaSqufUqqls+nRpepriftaQyEBqVpDxz9qXYs4/GrJ+GaN6Ix+PB29DopmFduwqnfhrafb/LeSHkggrkhIlu7uPmDQSDQYQQlJeX49TWozx2v/syLPwwPp8P46G7CH3uDFj1Eum6BmI/+QNFs4/MWbRvV05A7GhGbWjCKSnDXr8an8+HpmlYk6agbtuEXV3r2nd/vRO7cQ7qlCbkMSe6N9jL5nN+cBVObT28+QY+nw85scG9dvtmwjd/De8NX0Fu20x6/iISv/qfUTtPiGQcTj4L0d0Jy59FBEPYRy1G/OYWPPOOdtu89h+I6lq33aqKNU4fyklTYat73ufzYVdOcNXcalfdFUK4pC2rQEYH0KfMcAfHNa+Omd1TFpePGoTj1/zYbVNNPbz8DMFgkPLy8uwRe/j1rEROXPZNV1MaHNDLy8spT/Sj9XSixKPEPvllBq78HpqioLz8DMrq5cjtW1FOcHdilI/8hWAwiBMMIbp2H3AGz8NHYFUbjABxULt3Y2x4A711K0gHu6qOzJxjSM9fjDltFnbFBKQ/iNT1wTlgcsmbJeze0ngcySwlIh5zY6Z9AVeaj7yPrruBHo6DiMfATGcJvK9ILL15I878YzG/eqM7Ap+4hJ77XyF++vnYr72EXVsP7TvQdX1YvXrkLyiJGPbCDxFomkvR+Z9GvBkjfNX38Kkq0hdAHHsSia/dTNdz2zBPHEw89/gDaKuWIY79MJlMhu5H1+MsuYCSqy9BW/kCJOL0RaM5zhmrvBqxZxfazm1uEvYFJ6BpmuvhLSmHh+6BhiaUDWsR/30z+AOYp56D6B90Zn3jFsrLy/H88SnUF7dRdP6nsxJX0zTsQdtQHHsSXSs78aoqhVdehLJxLTIepa+vL/dF6umEEz+C8srzCCGQRy5C2bGNzLKnUOcscKXX9s04Q+3WtPH7sHs39sIT0XWdzNmXkjrhI2hPPIioqnXzjus68Wt+7JLvzTegyc0u6qx7LWfAVde96rbrmh/gVE/KErfzlT0Yrz5PdPFHsgPL3ml4S85b6KrDkwWx67+MOXEKYnd79v6Jy76JXVeP+shfsecfi7JhLdZS937O/EWonbsQM49wfzegaVp20B8vhfChIfAB7E445o5pclg6KgO9GBvW4H31BYy3VqP2dCILCjFnzie1+FRSi07BbJyLXVLhbsUykrwjSTrq/FgHKLEBl6SqBvaI6xx7WAKbJkoiPriuGHdNcjI+7n39v7wB7YkHsD77FTpf2UPfj36H/soLyAuPJ1FRk3VoqIoyrF4BoXv+G/wB4o++Qd+Pfofn0fuI/vQ7qL+/DaWtBXn3MyQ/dDqem6+jv6LW7bs3V+N/9iFk3WSSJ52N/5F7iH98KT2runFOOhPvT65D7NiS0z4lHsU6/eM419xE4N474Yzz6V/dR+qYE/DcfB328r9DWSXsacfYtR399VeQJ34U56kH0V96Gj5/lWvHTZqCdt2/MzBtTlbi6oPqqdi2Gf21lzBeepr+b9xC/+o+RHklxg+vcVO6jGxPl5scwbrjJtSh0NU//xe6riOrarKSZ6jd9vfu2E8fBomtjTJw5fcwHr0P8+fX433hcZzaejIb06QHfRD2i0+i9XW7/XjvMtS92lXwo68jgL7//Ydr3x5zAr6rPknffb9HjFDn1TF2sywuKqK8rIzysjJkaTnW+Z8h+WbClcpnXoTnJ9dhvfw0vjdewZ5/LLLZgcWnuPnFIgNQOfy7kXJ4wBp65w/B7oSjcmL5fL6D1tGt8mqc4jLXYbVXAjrp8+MUlrgriarrsCtrcQqKkbhEV7v3oO7a4TqjOjsQeyVn36fkVxSE46BvXIP0+gf3PCJLbGGbmA1NJE6/AKW/F8/ql9G3bwYzA6qG0teNEunf91RSPJ5j7wUCAfx+P1JKuru7KSoqQtM0EokE6XSaoqIiLMsiEolkbdaR1/T392NZFqqqEgwGkVISiUQoLS3Ftm36+vqy9xhydgyV3VtKRKNRUqlUNp/UUHlN0wgEAhiGQV9fH4ZhEAgEiERcuzYcDmevHSofDocxTZNYLEbpYGqdSCSCqqoEAoExy+8tSSKRCOl0mtLSUpLJJPF4POsAjMfj2LadU3cgECAej++3D4eS3vn9ftcZOOikMgyDTCZDaWkpjuPQ29uLqqqj1PuhvhxKRq9pGqFQCE3TSKVSJBKJUdeMhe7u7hwtaORzSafT2f41DAPbtvF6vW5ifimziei7u7sJhUJ49uFA3ee0YzqdkxPrkBD4QOGECrCmzsRsmIE1eTpWdR1OUSkiGUdr2YK+ZT1ay2bUznaXzO90sYGikFpwArHzP4fnjVfwPfsI2u62d20D8DzyeKfYm8Da4axciQ5gvL4CY81KnMJSzPppmLOOJNM0F6t+GubUmSiRPrSWTRhvrnaXFUb6EYm4G3xxkAnMnFAhdlmVu9C/ew9qf0+evHm8r6Ad9hqlBNtG6dmDZ6AXfdtGPMv/jlU7GXPabKyGRszZCzAb56H0daNt34yxcQ36pnXu4n3bGnZg7W96q6gUu7QSkUyg9HW7qnMeeeQJfIhgW64dOtCH1roNfctb2NW1WLUNWJOmYlVPJH30iZjTZ6PtakVr2Yy2bSNa+3bU3q59k1hRcYrdhf1qXzdKZMBNv5NHHu8jjMrIoev6qJ3u/vlS2UFYJkpsALVzF9r2zWitW938zukUeLxY1bVYDU1YE93tV5yCYjAMhG25tvJe6rXUDdKzF2BOn4Pesglj0xqUfAqdPP7FYdv2+Bk55LudJNt2VyWJdGowA8dOjLWvYpdWYk6ejjltNnbFBDJzF5KZOR+1pxO9eSP65nVoHW2IaD9KKgW2hVVVizlpGlLT3PS3fT35p5/H+w45Xmhwt8442FUxh0VI+wJYVbXY1ROxausx6xpcB5V0UPp7Xcm9swVtTztScdPKmg1NaLt2EPzbn1C7OvJPO49/aTiOg2ma408jgTtH5jjOuy+N90Vmw4NVPRGzoQlr8nR3U7NQASKVRBnoRfoCOB4feusW/C8+gb55fT7zRh7/8shkMkgp901gKSW6rucEzr+nR6WCYsxJUzGnznSlcnk1Uijo2zbif+lJ9E3r8uTN430hfdPpNKqqoqpqDoHTXq/XGElgKeUhjdfMI4883hl5h3ZpHCKwcLcnMhVg9Uh1eci7lclksCzrPa9O55HH+xFSyixxh0JYFUXJ8UDrutGvSSnvllIulFJmvxharmVZFpZlZaVyHnnkcXghhMgSd0jyDiEUCrUIwzAMr9f7lqqqDSPV5iHSOo6Ts0l1HnnkcXgJPETioc+D0rdvypSpj2mO42SEECcrivKq4zjlWeN4sPDQxXnkkce7S+IhGIbRW1c36VlFUVrE0CqkWbNmV0QiA3+Ix+PzLcsq4t0Os8wjjzxGktgyDKMvGAy1lJdXbFYUpQW49f8PAOe6+AI7wAjWAAAAAElFTkSuQmCC' button_message_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAB8eSURBVHja7J13mBXV+cc/Z2bu3L67sA0UUUApugiIBStGVATUKMVKXEF/SQysGqPRYMfEhmIvSQQlilGxRQLYFewFUYoiQUAxBrbv3dvvlN8fc+/svbt3YVFYUOf7PPPs3pkzp7znfM/7nveUEYqikIYKnC9J0kQhRIUQIogDBw52FTQDK03TfMw0zYcMw0gCiDSBdxdCLJJleaAsy8iyjBACIYQjNgcOdhGYpolpmgBrhZBGRKORb4SiKKoQ4n1FUYa4XC5kWUaSJIe8DhzsoiQ2DANJkjbtsceeg2RJki5QFGWyqqooimJrXwcOHOx6EEIgSRKmaQaEEPsLVVXfc7lcw1RVRZblnIAejwd3+r5DaQcOOlHTArquk0gkiCcSGdM5B4qi1Ai3251wu92qy+WyNa8kSRQWFCBJEslkEk3T0A3DkaoDB52pbdNclCSJWDyO0ZaDuiKEULMdVkIICgsKEEIQiUQw8jDfgQMHnaSFDQPdMHApColksnUQWcqQNgOvx4MkSUSjUYe8DhzsQmROj31z7kutA7rdbpLJpENeBw52MUhCbJnAQgiEJJFMpRxpOXCwq42JJQnDMHJILOVV1472deBg1yOwEG0IrORhr3U5cOBg1zerHRE4cOAQ2IEDBzsByo6I1HSpRIYcSrz/YAyX2imruExJRuga7nWr8S99C7m5yaldBw6BtxWGx0vomJOJVRyIKcmZ0bd1Zf7P/rudkdqtJ6ndelK46CmUhlqnhh38vAhspq/vi+jAg4jtewCmJKM01CI31KQXighrbRg7iMC6ht61FK2kG4m99yM65DAC77yMSMSdWnbgaOCOIjZgCKZLRandRJdnH0apq/mBXcI2aH9/kMYJ55PoM4BE3wq8n76H4hDYwc+KwIbxg6aRTI8PhMBV/R1yUwOYnbcJQgqHUDb/l0TfgZi+AMiyMyXmwNHA20hhEAJTcYHU1smtlZRj+oJZxNpOBDMMMAyMrmXgcmG6PaR69ML0+JCaQ8hNdVYYBw4cAm8BQljEbTXGNV0qzaNPI3bQcEx/YPtrRjPTcSggyejd96BxYhUIgRQJ4X/1X/jfex2RiP3gpMKX3kzz2EoACv9xD74Hb8wbrmHGo8QPPxYRi9BtxN5Oa0sjdeQoms/4NYkhw+x7rjUr8b3/RruydNBpBJasK0v7moqL0PjziA07GlPOr5m3i3c6+13TBMVlaWWlK80nT0QYOv4lL27X4jbtNxSiUXw+X5tniQMOtbOyubqa8rKyn32Di509hcYpV7Uldd8KmvpWEC3bjZLpUx1mfl8CGz/UqM1MGQlhK9n4wIOIDT0C0+VGXbca9fNlCEPHFFlEzvZQbw8CA0LXMWWZ+NDD0cp2I3LMyfi2A4Ft+dRWw4BBJJJJvK0IHD97CqbXD3XV4PVvz8HCjxqhM35j/bNgHlSd1vJg2u1wykRSJ4yj4eXnKXr/VUdYO9eElmw+6sWl4HIhkgkCLzyGuvbzTh2PSuEQzaecg15Svn0jXrUMho8kcclfYPaMnEfRw45F2rje2paZJnAGesVBNF0wjWTahJTqaggseKKN+Ri+9Gaiw0djFJdalbVmJV1um4a88qNtCqNXHERz5YXEDz+2peLXrKRw1kxcby3KCddw6Y1ofSvsMErNJuKHH0vg2TkEbruihYjX3U/0+FPt362f53VTdO+JUVyK+GYdZtVp+P1+gsH06cWzZ9AgyyQmXUT8kKNJvbUI/dyLaZxyFYFn5yCFQ4TOqWo375k8xY483uo488g1deQo6m6Zje/l51A2fUvzhMmYXj/KmpWUnHscRvee1N80yy5/6zJtfm0tUl01RffcQGPV1eg9eiF/u56u0y9CXvlRjkwycbbu1MPHnZIj39bl2PzaWrxvvWy1oeNPRcQilE48Bul/3+Rv2zuEMa3NYMMAIRCahkglO90zLLSU1ZfI27m/WvoOoq4ac8gwotForknYfyDS+2+SmQLPJkndTbNs8gIYxaWEzqmi4f+uyCFmeGylTUwArW8FtTc9hFbeo8NhjO49qbtpVg55M+HqrruHZNnuOeEyjSsTJvNeOKURiUQsw+ORV3LICxAeW0ntLXO23JH+7xvkb9djlpSjHHFcC3nT6PL3mykYXAh/Op9k1ukT4X2H2OTNznt836H2vUyezKzOMiPXxjN+m9u59uxD6JwqO6zWt4Lqq++h7q4ncsofHltJQ6t3da+f+j/ejN6jl/W7Ry9qr76Txmvvy5FJJs5s8jZOuaqNfFuXAyDaf5AdlxmJUPvZx/mO09nBBM4hcfq3JCzNbJqYbg+RkeNpqryY0K+qCE2ssv62czVNvpTwmDMxgkXfQwVLoCjWtNL2NmG++AwGDMppcNHfTrMa0F9nIFoNC5oumGZpoSUvQW9hXVVnwjfrSJx+vt0RxCuGImIR61km3NJ3MYvLqD/xLAzD6FCY6Nm/s9Jb+HRLmN4CVi8Hr5+G1uFWL4dj+llhHpqZ14Gn9a1ArF4BZ42wwh3TD1YvRzvyeOpPOH2L8iq65wYQoP3jZWqeepfQdfcTuu5++7nP56Nbt274/VlWS//9kZa83CbvTRdMsw5+O+nsljxll/HJWZYsBw0jHo/nxCfPm22FOWsE1FZjjBpvuU3OOd66v2Ce5cdo/W5xGdRsQt5HsfNi7tGb+FEjUe+63ro38xqr/g86iubmZnvoIGIRK0+Z/D00E0xouvRGdF1vSaNnb6RF6fo6uNw+ibLzTOjWGjjP0DbVuz+RUeMxfMEWkmW/m/Yqt4bc3IDn3VcRmvb9nGvbGeqbC0kdcVyOGR0d9gukb9ZhbviyTRFS/QcifbkC49wT8Pl8FBQUwNI3Cf9rLuGqq2meei2+dDym1484twr1xAkUPPMIctU4GhsbicfjxAsKOhQmcNsViOuraG5uRrnvaVRZQivtTrL//tb7wULi8Tixg49CxCKYv5uA+t0GisrKkGbPoK7HnqROGNeiSdKdhjl6f1RVpbC0FDkeQp92PjVz3yA5fBTJFx5FVdW88nK9tYjio/ak/voH0Hv3szVN9PhTkb9dT/Bfc/HMvS/3pW/WYZw7skVek0eyef5nmAMG0dzcTNH8uXR95mHq6+uRb5mFu7CLHadlCwdJJpN4M/GtXo5++XkEg0H8Gz6nbuM6UiVlGH+/HfmDNyktLYV/PUrNmAn2ux6PJ907RzBHD0JWVUpLSwl/voxw//3hhSfQ7plOUVERnqf/zubKqZg+P/F4HPWs32IUlyI9NRtx5a/xB4NWB5Ul38Z+Qyheu9xOw5gyIXeI0Wlj4PbM6FbEljf/F3XVMrTueyDSJnbed2xPtoJcX4tr/RpEdm/VIa+TucMWlLiefQTpgj9hpM1o98HD0fpWIM++A0VR0FuNfU2vH7PfQFhnEgWirbMaLCQajRJ85hEa/nQb5tDDSAA1I8ci1dXgW7yQbulxmdyBMACxee9C3wo0QMsrHhOjuAxqNyN9s5aikhK7x/d/9QWN2aOh4nLL9FxnkgRqWld7eXer0bZDYACXy0X5ny+kubmZVCpF8oAj4Ozfoh8ynMYpV+FvqCO48ImWF1YsxeVyWeTNxPHNOpJDhpHcrRdEG0hOmwljK9HzyNQaxWXV/1dfoqqqreXtVrb2C4LBILIsY9Rtzv9u7WYkSaJr1665CTQ34ff7baJLsQi6149pmui772nFc9pkOG0yzVjfScnp2PfaB/3LZekKiyBJ0lbJu2MJvBVyy/U1FD5yB6bq7tiYWJIQiThCS237GNowQEuBoe+Q4niWvkP0iOOts8ROGIeIRdD/fAn+ggIi2dnoUrL1yAIFmKaJe/5cCr9aTdOplTBmgj2mC4+tJF7anZLLKzsUJnTd/ZZ5uXE95vKPrTS+XAH9Btrv5My8pb/M0W5fmGe6LPd5AK2D1pHdQDd8jj59CuEBQ4k9sojI+Em4n/9HrqXTTodgGDrRs35HeGylZRm8vjBt64fgv1/DJdPb7UTaYNO3OWejt4e8YUKNbT+IkP5pBAq2Loyiri1mdCTc4Y8r7BwCZ8qXSlpOrR0NQ4dUCrbV7O4g3EvfIXr8qSTOv4zUwUchf/wOhiTh8/lyCOx6a5HVyL7+CkYPaj+7ac3g/Xwp6ooPiV4xyXIg3fMU/GI02tDDCYVCFBQUbDVMfOgRVprDe+NyuWwiJP7xSo42FtEoZkk57NUXmuvs+8l99sttvBvXo/XoBRWB9kmcjxxZTrd8HmtZlilc8ynxWATTFyAcDmN3FX36tYlL69nHciBuWENisOUQNG+6HOnxB/B6LWM5ee09pLZZt3z/qcz2Oj7Xlyusf56cBX86v/16Lyraalxbd2Jl1kJ/3yvHbM26J0TLGDR93wgUkOyzL8m99yXZZ4D1f5/M/1m/9943z7MBJHv3J9mrn3Xt1bfl6tUPwx9sSUs3LPLq2g8rW77jhkwT9wuPIdVVY44ej96jF+bSd/C43XnDulavsJwy982jW3k53crLKRt8MMqLK2CdSdElNxAMBKiev5zq+csxjj6RYCBAt/JyipdYHQCxCPF4vENh7HHy1Ksp7tqVYCCA/uDzaEMOzcmXb/FC8PnR7nocvbwHmCbR30zL9TabJp6VS8HnRyz8jLLBB9tl8D3wLKwz8T3wLMVdu+aVm/uDxRaRTxhP7TX35jwzuvWk/r7nrLyuXGqd+2S2OJ3i19xth6195BXL8/7BktxPAR0ynKLCQoKBAOL6+9DGnNaBoZWZ/56ZJ2yH3829n2kfnHQG6tV32jIrnjAJeck6xKowZYMPttpMe/G1c9RVJ2ngVnMppokRLKTp/MtI9upnkTuf00pkObZyCmKArlua1dAtcqbXQmMYmIoLzxfLCM6f27KhwtCtd3YQfIsXWWZcXTX63dNRCwvzhit84EZq7vonxqjxbBo1Pre4q1fQOPNqigoL8S1eSHhsJXW3zG7b6z41GyEE3g6EcX/8NtGRp2JeMp1N+czJtHnne+x+IsNHYfbfn5rnPmrfwp9xOdGDjsLovz/Vz36Qm/+6aqK3XIEIhwkG2mpo15KFuF96lsTIsWgnjGNTlnMsOw7ztqtyTeZoBH3CZDZNmNwq3JV4PB5cy963prvGTKC+1bAAgNJu7GwE/v0kocoqkpMuYtOki3Ktj6dmU7v8Y0qKi7dd67dRwLTsCf4+V04H0vqeEPY9w+1F67YHpteHqboxPd5Wl896lrl8fuvKvufxYbq96ctjxeP2gCTQSsoxPD4rPZM0iY0fVLZ85cz8VtPaxXx/MbIs4/Z48spDWvEhXapORyx9N/fhgnm2Z9ft8eCfcTmupx+2VntleWN5aCbGFefh9Xo7FCZ43QUoi57JTWvxS/ZUB336YZgm4n9f0+WK86xppCxvbWYqJruspacdak1z5MyJv4tZdSbyxq/w+Xztyq3out9Z0y2tyx+NWDI4qDwnDgDeWIh4alZuWhOOtMO5596L++G7rDiy8z7zGks2JeXour719rmVtry1cFt61/vgX/Dcfb2VL9shVg1PzkK/4jx8Ph+ildm8NX4BCI/HY3o8HhRFQQhBIBBosyhhW1BXdR1a9z3wrPqEgqdnIRJxoseeQnjcJEQqSdFd1+BatxpMk2S//Un17p+VXZE1+M9ziodtRqT/Zsx9w7AImi6hKcuoG/6Da/2XCC1F7MAjCf9yIoY/SPklZ22XHjUSiRAOhyksLLQ9j6lUivr6evx+P4EsDVRfX4+u69b0RMYjreuEw+GcOcbW72XSicVitoPD5XLh9XrtcV5Hw4TDYXshBoDX60VVVZqamlBVlS5dutj5CoVC9ry2fMss9AmTYeY1BB65I2d+tnWcHo+HQCDQIUdQPB63PtyVVX5JkvB6vbYM4mdPpWnqVbBgHv4rJiGEIBwO22kFg8GcsWIsFiMcDtteY1VV8Xq9hMNhTNOktLS03TpqamoiHo9TWlpqx2kYBjU1NXg8HgrTFlVNTQ2yLOd4ofO1hfbqPR6PE4vFWuQry1ZnnCXXfGlkl1FRFDuP292ENjNk0/WtbhlUv1yO+uXyTjLhty/8fn/uYoPM9Eh52+Wa+SpClmUKCwvthrEt6XyfMIFAoE3nkCECQMP9z5McMgz/s3PoMuNyq0M6ajSNx5xkBfz4nTbEbC/ODnnuPZ4cYnxfmWejdafVuoxbqqN8dSFJUpuw2WTcWr7y1Xum3FtCvjQ6zQudmaM1goWYirX+WaRSO3clv/WZtx1C5J8K3Ms/IjlkGJGxlUTSWyVt8S15CfP913GVlDiC2sWw3Q92V/+zCr18d5J9BhA6ewrK/74h1bcC0+VCJON2/KYskxx0CFpxubWQI9uEtv1eoh3SWV5CU5IRqQTu5R8i11W3n28hQMjOCR1bcsI98GeShkFixEnQs3fLGO21+Zh/Oh+v14ssSZ0sP3O7tcufD4F/aEP4eAmpXn1J9e5PYsBga45OVXOXSpomWq9+hH51IYbP37IzKXs1lpS1rzh7DNzGXW95tP0vPYOIx9oncJ5DBhzkouivNxK782pisRip9Jy5LMt4AwH8W1nAsSPgeexemHU7TU1NsBPS/1ES+IeeSinVVVMw7yEiI04mtU8F+AIYBUWYgYIcL7Soq0bZuA5ttz1A01s0sE1g0ZbA2b2x1bpA05H/txFTS23RhjbFlkbjDmzSeL148owjd5bc3G43ZemDEJy66wQNDCDXVVMwbxZ6cTkIiB15ArFRp7WcxJFeSlnwt5sxCrq0eJbbcz61pzhlBRGPItfVWIs0tmSKGY4J5sAh8DYMX0zk2k2WMm1uBNPARCCSiRZt3dyE1BlfUNA0hJbCdA61c+AQeNsh0iulTK+PZMVQ0PX0kTrW2FQKNaVJbmlIvbSbdarl9/J5mEjRsOX51jVM1U1yn/0wPF5EKuHUuAOHwNsKdeXHSMedir5bTyJjzyV2XHp9rWFgShKed1/FP/9xRDxG7JiTiB01Kn2+NLnj4rT53WYsbGYt6DB0RKQZEgmElsLw+Kx1s0LgXv5RpwtYH3gwTZfdZJ/EIGIR/E/NxvfAn39SDSk+cSrhM39LyZiKbZZP47V30/XC0xHffe0wclcksFyzieDc+2g+92L00u7oxWUt65s1DdPjRSQTxIaPJnzKryzyQtbZWlshcWYllp5e71zYNb0+umUxiWvjOnyvPN/pAm689m7kDWtRTx5KMpnEvOkhwhMmI2ZemXfRwY8VeveeiK/XUldXR/E2rOlNDToYo7iMhpXL6NKlyw/aDeQQeEdq4VWfUHjvdBIHHG4t8vB4SQ48CMMfRAo3Ex92DJFfTsT0+BCJOO7lHyGizW2OqG3XI20alqMqm8yYmLKCXF+DZ+nb1lxxJ2tfvUcvmPcIqixb3tQ7phH9y8WEIxHij7yMUVpun6/kf2YO/hl/JDV8NKGqa+z77rdfofDSiUQuu5XY0aMt46W4FO9LzyKFm4mMs/bCdr3wDKS6zdTf/aT9bmDOPW20fXvxtw7T9MdbrWN2YhGKrpuKa/FCkidPJPSbK+z7hXdcg/rCYyR790Ns/i+yohC57FYi46zFIPK36ym6/kLkFR8SveAqIqdZB8m5334F75IXCU292nJT/HMxYkrLzqeOlFVe8WHetNqTQfSCqwhXVtlhM1q/+foHiI0ca1tImbJm51dZsxKtbwVlw8rblcFPmsAAytdrUb5ea1WKP0jTJTdi9AoSP/hojEDA0ryGQeDZOXjefqlz9grvSMtjxYeob79C8vfXkxh/LsbXa/HNfxzf4oX4fD5qe/bBjIZRRlagTf49kdPPg9l3EPvjrahvLkAc0xfthgdJnH4ezc3NaL37YWIiXXQ20slnEjvxdFxP/B3/mMFEFnxK/SG/QN1jL0QkgtLXhXbDg4THnN5G2ze1E3/2CRChqmtQ31xA6orz0ed/QsOYMyisqyH0++n4br+K+Jx70P/8VxonTqHo6dnoPfsgLX4R47KbiR9yFL5Jo4gufhF93js0nFpJgWkSrqxCffguUg11JC6ZDg/djrLsPbTvvoWq02hyu+3ljMkOlNV7+HEk8qTlkqU2MmDebMKVVXhuuJj4G4vQ//0JdWPOxKfIJA48Es+5JxBf8hLmyjCNBxxB0DDt8Ik3X0R7cgli43qqe1cg2pHBlk4h2VHYeR/4znx61DAsp5U3AEIiMO+hnwR5Myi6dCLe/XwYyz8m6fXTcMvDRM6egrnbntY5SX/6Naz/kq6vWuZ9pLCY4F9vJlHaHWP+J3D6eYi6amKxGEZpOdLr/4YP3sAtS0h11Wh/ucQ2O83PPsJobkLrV4H+2hrcu/fEX3l8m80pBe3En+N4jEaIjzsX89/L8K9ahvrrkwmPm4Tp9RO56g70/2jWu/4A4dLdMYpLMdavQT/ul+g9ehF9eBGsM2HoYRAsIDxuEvLG9SRvuJjAnDspHFJEYslLGD37oGz+Lz6fL2ctckfKGh9xUt609FBbGcQSCUQsQvzqO3FNv5fAvFmYN/4BMfMqpI+WkJj8e8SqMPj80NxEdMRJKMveI/7wXRQ2bMa9+jNYvwZp4gX5ZZDeZPHzIbAQ1qbtjFksBIGnZ+Nd8uJPhrwZBINBym6YirfyOMTG9UTKdifaewBSXQ36u69SWFiINuhgayP+gYcT+v10FElCeuc1pE/exdywFlmWLZNw1aeWNg0UIGo2Icsyrv0GWwmt+oTgzZfiueFizHVrSBxwGNEHn8tZVB+fOJWmduLPRtdzRiDPm42x6Tsi4yox7nwc0acfyryHc05+NA8qx0gfkGfM/yfGHr2Qr7swJ4xRORKjfDeo2YSiKHi9XtxuN6WDD8IoLsP47MM26XekrO2l5bpuSlsZhGopOboXLJxHqqSccOWFqBddS3TBZ9C7H5IQuGZMa+kIe/WFtatxu92oqoq2197Im7+DdmRg7qQ1Btv/RI5tugx7I7//hbl4X3/B+p5vp6W/4y6ze0+q399M5LJbW06kGH0alJQhv/c6yUOOtjTwSWfC4EOJnDIR14J5cODhSF8sR6scaVXHAYchV3+HdOIZVsNe8hKKLJPcbwjiq9XIskxq3yHWiQ/delD/cR0eWabo4tORVi/HjDTT0NBg5yExeFje+BVFscNEL7iSmjfW0fXxB/DfejmirhqtqREz3Iw+7Gj8AwbRZfy5iFVhCi6ZjveokUgb19tjSP0XYygqLCRw7V2IVWGKR5yILATGnn2QZZmGB/5F/ZzX0Pa2jusxVizFlZV+6qjRWy/rhjXtphVbFW0jg7oZj9Lwj9cpu34K7r9Zp34mfEHrBJX7b0L6yx9ITbrY7hykaBijTz9cikL0giutcN9uQETCeWXQ3ikk2/3aGoF/6Ib+Dl9Za5l9LzyGd9FTkIh3TtqdcPHd1/jn3E1k1HiqP6im+oNqQhdeg//2qzHm/xMRLLS+3HDX49T9fT7KqmUY0/4Pddn76AccivmVAYcfa53wEWqCgQdaGnrDGhSXC6O4DPPbDSiKgtatB+Lrr5A/Wozr7VdonHY7jcsaEWXdUG+6DEmSWg4e+DR//LIs22E8zz+KqK2m5rmPiCz4FOWbdchX/QbXY/eDz09kwac03Pow6oJ5NN9xLUl/ALHhPyiKgv+pWTB8JI3LGomeeCbu266k/vUFeB9/ENPnJ/FF3DKPb/wD4U3fWY3uqbeQstJP7Tdk62WV5XbTyiuD5x5F69mL6g+qScx8FPfTj8CNf0DauB79zrloz72PUps+iXLDGgL//BvGgEGEV4SJjbC2VOrzn8Az94G8MognEp3Trlobsq039Hu93jbjoR3ioS0uo2nqtahffIr/hcfa34jwY58fjcftDeWA1cj9fiJPvA3LP4Irf22f4ujz+fD7/SQSCUKhkOW9V1V0Xcfj8SBJEuFwmJL0tr7a2lqCwSBut5tIJIKu6xQUFNDc3GxvlFcUhYKCghwTtb34sz/QZpomjY2Ndt7cbjcFBQVomkYoFLIPD/D7/dbhfZEIhmEQDAaJx+P2geayLBMIBCwzVNNobGzENE07X2BtfG+9gT0jt62Vtb208skgU6ZMXWTy3tDQgKZpCCFQVZVEIkFpaWlLfmcvQpTvhjl6f0pKSuxDD1rLoDOQSCRyNvTvPAKXdCPZbyCeT961etufGWrfXI/81xm4Z93WaZXvoGPQho+h8fp77U+vKF+uRL7xD5gfvLlNBxD8pAnsIFerONjFSJxlLWQslY4eF9SZBFacqtp5KHFOuNhloSjKj6J+JKeqHDj48SKHwKazX9aBgx8vgYF2v0PqwIGDnYt83JTyDd6dHSEOHOx6yPfRuDYETqVSHf6wkgMHDjpP++q63ka5SkCbhcfZX5t34MDBzidvMplECGFfAEKIlAR8ku28yjxMJpNomoZhGI5zy4GDToZpmjZxMyvKJElCkiSboy6X2qiYpjnXNM1hpmlmMxtZltE0DU3TME3TIbEDBzsBQgibuDmfUgWCweB6oaqq6vF4PpdluU/2KpMMaQ3DcDzTDhzsRAJnSJxtPrtcasPee++zUDEMIymEGCFJ0oeGYZTZayyz7G3HqeXAwc4ncQaqqtb37LnX65IkrReZNdAVFQPLQ6GmOZFI5ABN07rgLLN04GBXIrGmqmpDIBBcX1ZWvkaSpPXAzP8fAOjm4IgR9xUjAAAAAElFTkSuQmCC' button_ascii_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADlnSURBVHja7J13lF3Fkf8/3Te9PFGjnFAWSEIgRJDI2RhjDDgbDM457do/r+31Jq+x1zmtccaBYGxsE2wQmBxEFghljdIojSa+Ny/c2P37o9+MRkKsJdYEe6fOmTPn3Hdv31hdVd+q+rawbRshBFrrRcBlUsozpJRTgBQjMiIj8koRH9iitb5TSnm167qP+76PXf/xdCHEW4UQSyzLmiGlRAgxdKQG0HrkEY7IiLxUIgRi3y0pYLZSyhJCFLTWv1FK3WwDk4CPSCnPt20by7IYrsBD/0ce6YiMyEsmg+ZS1w3noB4qpWYopWYIIaa4rttuCyHeJIRYalkWwxV48EApJdZ+FnlERmREXmQF1ppEKZRS+yiwlHJw29GZTPbzwnXd5ZZlHes4DoPxsBAC27bxPA/bsgZj5CGlHpERGZEXXYPRxuISRhFRFD1nF9u29wjXdX3XdT3HcZBSIqXEtixSqRSu44AQqPpMMKK+IzIiL53Iuu5FUUQYRUYHhxlRrTW2EMIbHvNKKUmn07iuSxSGBGGIGrG8IzIiL5tYUuLYNmEUPccLloMu86ACu66L4zhEUTSkvLpuzkdkREbkJfSi6//VMCBruAILIZDDDxBC4DgOWmuCICBOkqHtIxDWiIzISytimKv8fAZ0HwW26oBVFMckSiGlHHmKIzIirySrvB+YvI+GDqaPkjp0PSIjMiKvbAW2999BKQUjCjwiI/KKVeDhYj/vjyPI84iMyCtNe/fR1eeAWCMyIiPytyUjCjwiI/I3LPb/ypwrBXp4vCww2SsBlgQh6/tokBJG6qlHZERefAXW8JcLN7RGDClwXWkHFVsItJR1fdYIrdAjxn5ERuR/FwL/1SywSkjGTCQ8YhHJmPHguIgohDhGZXNIv4r34J1Y27cQHb4Q1diM+/TjyFKfscT/l2KUUh+i6qPTHirXALb9XIAwiRHVCiKoIdQwoEJKdCqNTmfBsve+QiEgDBBhgPCriEQd4JhM/RhASmTPHkQUoRqbzHh+DTlQBKXQ+QZ0Kn1g4FIICENErWLONzxDIQXa9VD5BhDWwUz7I/Kyu9AqgSQBy0bnG1BNrUaBAx/iCJ3No1wP7XlgO+ZjSmXMh/B/CtnWiCgmXHgCyaSxWDu6cNpXo+PIhBZDz1OB4xEdPotkwlRIp403IzSiUsHatgl7x1Z0EoNlGZ3ya+hcgXjyDOKJUyGfBy0AhahUsTvakbs6IAzAdhBhgH/i2eh8AXftSuTuHajWNoJFS9G2i7N5HbK703hN++tv4JtzzTycePR4yOXrLpoGv4rVuQtn7Qq01EPXNyIvpwJrvffvQGLZxpJEId4jd5N6MIK69d1ndlYJOp3F3r4VsX41slz8v6XEKgHboXzZh6m95QLSv7+bhi9/Crl1A9rbl61ITZpO9eLLqZ15IaoxDzHggOzuI/PHX5P77c8QHRtByyErm8yYh3/SOVTOuYhk/BgI9x6Tu+Va0n+8AblpjQlhKmVKH/lXovlH0fTxy8iuXkm0aCmlf/wycVMrTV/6JN6y34J3ABalKCSePpfqJe+kdsxJqFEt5voAURkg/eh9FK78BKK/Z+j6RuTFsgl6KEQ9dAtcB6KiOQuonvtGVMso7I52Uvfcir3maUQUIWRdQTWodJpw7gL8U8/He+IBUvf9CVEu1V2tv3cRiIEi4ZkXkkw/AioQzJ5P5eil5Fc8BmPH7p3IUmlK7/wHojlHYt93G+G9f4RiERoaUKe9hspZF5IUmmj42mcQtQHEwAD+hZdSecO70WMm4Dz5EOobt6B7eqC5FXXGaymf/TrCuQvJX3UlzrNPmHOl0pCBsh9gA8K2IZ1BpdKUE42MIuz9FFgEPsn0I6hcfAX+aeci77kd/btfoBMFqQz6dZdSm7eI5NNfpek/Pors64YkQVbLaNsGDSKMDBYiBSqVRucKQ665qFaMax4nwx8d2nVRuQJYNiIMkMU+tOuZySgKQQESVDaHTmWQxV5EVJ9VLDm0XfhVZLmEtmyQEhHWj7VApbPoVBpZ6t97rASVK9Q9RomIAkS5hIiioehAWxLteuhsHmwbUS0jygMghTkmjNGWQOfyZpxXlAstBEm+iXj8ZHQ2i9XRDr5xnQG0qANXg8izECSjx5O0jEJLG1FvjhhyIfUB4DIh9nUxD+QZiDraLQ6AbGttgDU9OJbYu89wz2L49uHu7PONe0gzpULnm6id+3pUKo2480HUYdOpnvwq3JuvxUti86wsi3jeYmqnnwftG/B+9i3Sjz+wd5hSP+H8RdTe8HqcJx8mc+uvUDONQgULF8JNN+L9/Nuklt+z95juTqLsx/FPPRn55CnkVj6OLTTCr0ENolrVGHil6tsqhGFAkiTP/RjCgGjOAoJTzkMVi1g//Cqpx+5HYvRAhzWCT3yB4A3nUXnsAXK//QnxrNnEU2YgB/rRqQzJ1MMQkUL092BvXIOz+im06yEqAyRTZhLOXYhqG2smFJVApYy1bRPe6qfQSUwybjLVV78Je+dWVDaPGj8FXAsGyjhPPozd0U7tgreRTJiICCJETyfuqhVYnduJp80lnHskVrEPtCKeOsu82t5enLVPY23fQvW1l6JGj0foGPr78FY8gtW5Ax1WUbkGomNPIRk32YQOSiN6OrG3bcJe9wyiUiaecTjRjMPNxCIlyeTJyIEa3jOPIDat5cUmo7KfD4HWBwIztEZ2d5K691ZE4GNvWIW1fTNIy8RPg8ohTfrIXr+a9K3XYXfugDBA265JLw0qkrSee3/P574PT0MNgt4H2lfKvVZes2+aSwgTp+2/fVh48LzjHorEEcmRS/AXnYju2Iy89Rr0GReQzDuKyoln4d1xowGShCCePA0ZRqitG4iLveSbGkkXGhGVMmrdCio3XUv58vdSnnUE7k2a+PQLCOYdjVy9BnXlJ0m2tZNuaCCdySCUQq14kNoPYkrpLFUhcKMIa9itiHqcO/wdy/pktv8dC61RdVIHnl1Bsn0rqcYm8s3N6GoF/eQDFO+6BX/UGAYOX4R7yzWEJ5xJ+fKP4HRsgigiXLgAAokIfLJ/vhn5zc8hKgNoL4V/5oVUXvMW4rETwaIeQ0vcxx/A+vZ/IDc8QzJzHv3/+l3SD99NYlmEsxZAawESQe7HXydz06+oXPYRgrmHg7IQpV4afvptUtf9N9HCEyh+8kqcjk3InR34Ry2BvIeoxuRu/BmpP15P+dIPEx02G/IeVGMavvl50r/7GSJQRPMWUX7vZwhmHA62gARksYf0U8vJXPVFnGefIDxqCaUP/jOiVkH27iGaPwfZ0UPD97+Au3E1Qv71PE69b77nhYFYslzEbl+L0ApsFzVqDKJURPiVva6GEKAUVl8X3vK7jOuSROh8AW3ZxhVMFDqdQzuOUSZRV+zQR9aq+yqQ1uA4qHQObVuIOAZpGQQ28PctMXM9g6jW3S9Rq0Acg5DG/ckWEICoDtQ9BzMxacuGTA7tuOb6atUDewIH46hUy/jHLEW3jEL99mrcP90Aza2Ep55FMnch8W9/jpUtoJXCvfMm9Ns+BKecifb/jXDXNqxN6/Huvhl7yxayv/gW+s4bKXf3UIsj9NQZCFei1jyNHfrkPBcvlap7QAIhJN6m1RT+82OUO3cTB/4LtgLK9XBXPondvobk7LMQ8XdQ65+lVuwlfcOPkP39FH7+Taxbr6NcKuF3dqK1ca+j+Quwb7wO9wsfI2wchf7Yv1M99TySzetouP771C5+D+V3/yPWM49jf+WfiHdth0mHweUfJZp7FMXz30zjl580bnMQEBy9FPdPN+B+9z8JpxwG7/oU1QvfTDJxGt6TD6K/8FHCBUvQ7/o4A6edj3XLr9BRiAx8oqmzcJ94GO/ycwjGT0J/4gtUz76QqNBE5sFlVP79o8SnnQeXfojySedg3ftHrPFTKL/rU0SzjsD+02+If/FdkDbq/f9E7cSzSbZvpWFXByIKAE0yegzyzzfj/MsHiWo+pd3baYhiXM96BbnQg2mKxmbCGYeTjJmEiHysnR04Kx/FWfO0ccsG0cjAxyqXjCvd1Epw+mtQ+Ubcx+5BlgcI5y0maR2NUAnaSyFqFawdW/GeeNAoGGLIGsYTphAuPpWkoQGrrwctLOzN63BXPWGUTSkQEE2fS3TUCeh0FmvrRtxnH8festHEVW3j8U86G6HBffQerG2bEEkMSYxqaSNcfArJ6PG4zyzHffrRF9bUoTW0jiE44Qzo2o1YdiNuTxfO08tJentIjjuN2twjKXTvIJEWcscW8t//IuVL34+aNR9/4fEkYUBw4hnIjnZkxxbcu24lv30bclQbteY2tA0svxfXr+LlcliWNUR+hmVhlUukdz4EiUI2NEL8At0418PasYXMD64kuex9xAuPJ5g0jaCtlWjOfERvN9a2jdhPLie3ZQMOEAqBkBbqqSdJrvshqUcfwJWgJkym+v++TO3VbyL9mx9jde7A/vWPUHfcjHP/MlKAfOJB4mye6r9/l2DWEdSqVVylEHGE8n3iO2/Cu+92vEc8giOPJ7zibfhrC1g3/BTvmcdxdnRQu/jtJEccSc2ysQMfqRRJdyfx/XeQfvQ+nIZGotNeQ/D6S0gKTThXXUl65ZPo7VuonfpqktnzCdrGI8dNIjjmWMRdy+DLnyazYyuWcUsoz7wG/6yLSP/2x+hK2ZBhdHej7r8D75H78QAlBaK55SWOgQ/KdRSofAPx1NkkE6YgkgSdb0Tu2YG9YZWxzKoeX9ZzkqgEHJd46kxUcxv2+mcBQTJhMvGEqQil0OksothrxnNcM86gVRYC1dBCPH2uiac7t6O1QFZK6LW22Vcb50I1jyKeOQ+Vzpq89JYNRhGlRDc0E0+bi0Bjr3sGi0116ww630A8eRrJhKnYOzajpTTKfahWOEkITziTePoc2L4F0dSCmDoTMekwrFKRcPY8/AvfSu4bn4N8AzqTpXD1t4njBH/yDJgxl2DGHIITToPchchqleycI8n+8L8gCvGFMAa1rxtbK4R0n9Ohoh0H0dhCVpqCGhH4LyxDa1noOCT9h+tRXXsYeM1bSXJ5dNtSyqeeD7kCojpA+pnHyF71JdxH7yUeLOC55dfw0F1YhQINKY/4zt/hX/R21OELqKXzNN78K7jlOkqWgxg/iWxTEzIK8cMq1ZoPUYBfq+EAWA6seZT4qeVkbIt8GFDevI6wCjy5nOiZx8k2NpKKakTFHkJvOn4YkUkSSKVgxaPoZx5DCkGudRTVzesIasDG1YRrV5Jvbia1fQtx53aSCVOIW8fAuEkGJlmzwuADCxaRTqcQxV5qO7YQn7QEP9+MFScIx4V1z6I3r8dxLPKjxw7xV73YRJD2oVoXq7sT+dj92O1rDRInpbGce3YZ11fF9YDeQtuOscbC7JP60w3GQmzbhAx8ZHkA1dhkYlYpoVrGGiia4ocgRDuuQfoQ2Fs3kv7d1Wg3haiVIE6w+nqQfT2IJEI7HiBw163E6ukCnSCKfQYZFeZjFH17yPz+54gkwtqxFVkrQxSh8w0Iv0bqvj8ilEbu2YWoVk0FmesdEqAl/Rrlsy5EZdKwYA589zdUohCRzqAKFsSgJs3Ar9Tw8g3IygDaEuQfuA3rgWXEUhIrRWS7cMp5qLd/iMpr3kjkeDR97TOIJEYkoGfPR65+AlEt7fuRCAFxgigXzSvLN7xwGEUIhO+DBen21YiffAXfD1CeS6glnH0R+oI3UTvmROLeXpq2bETEEYQhWJIUkM1kSJIY7bi4e3biz1uA3zIGtXE14pzX4B1zEtr1KBcaCecsIJk6FYS7F/AcjP4sCy+Xw+33IPT3oty2gw24nouSEhEGoNhLwigkRCGOFHgp14Bv9mCBi4WdziAtiXakwXGikKShGRpa0GnQl30Y3vQeyrZNVUhTxNSagzYIWseS8lLGgMQxlkpwPW+IBPIlzwMfTAmlCGqIziqi2EfSNgbd2IJOZ4inzkBPn4vO5QCJ3NWBvWMrstgLKkGEPnb7WpLJ0wgXn4xOZbC6d2O1r8Hq3oN2XZKxE4mmzkAdewqyaxfu048galWiWUeg0lnszeux+rpRmQzJxGkEi09Gp1LYWzfirF2JrAwgu3eDZROPn4RqaCaZfjh+Uyt2925E1y60l0aLNMkxJ5lwvVarv4AI4hBteyRt40lObMXesh537dOmIOIgP/j4yOMIjz4B0deH/ukvYGAAZdtmjGwezn0dyYJj8BefTGrbWkof+Cy6uZWGr3+ObOceYgGJNqlWUeoldiTVT1+Jf9xpVAeKuCsfJzjpNFh4PPzuZ1DqRzS1mo8vSZDlIqqxhdI/fBEyOXLXXoVoX/OCQDlZ6qdyyTuID59H5oafk3nkAVNIpyAC0Al6zROUv3Ud4dIz8b//BVTgg20hosjgUo6LqleM6UwOEo3u3EH1lFeRXP5xVFMLulwicT3Us0+gH7gd3v5R9P6TphBIyzYsMcMzCHW6JyklCeLAYY9SSMFehpnhx0pp0p+DY9afk/EcgUfugyceRKUzKJWAX4M9u8AOUSsfI1l65lDNv9QaKa2XTHlfWCXW4E1KAa6HamolGTMelcmjU2lU62i0l8ZZtxIRR6Z8EiBRYGmS0eMJFi1FNY/CXf0kclu7ebmWRI0aQzR3IdGs+di7t2NvXodVrZC0jUcVGrG2bgS/is43kEw4jOD401Eto3CffgS7YzOUiyaebWgimjkPnc6aKqIJU+HRe3F6u0jGTUKn0sSTDkM1NCNrVewt67G2bIB0lmT8FJJRY4inzUU99RDOlg1mVv+LiI9x0/1XvR4amhDX/RjxxU8iw2CvBfRSaC9FfMX7CN/8HpIv/wPh8WcQnr0Ye80zpB69B7fYZ3AEraFaotqxiWrFB79GZaBM0323U3nNW0mOOIrw2FNxHr4Dx6+ZD8v1SEZPJDjhdMof/jjsLGJf9yPSL9CNE9Uq4eKTqV1xEUp6FHZuIxWFEAakpYT+LvwooFoto5wUQeAbwNKyYNpsdGsbFHtN+DTzCKKpM5E7d6A62ql++J9JzliCvGUZ1qMPIC0L66E7UV6K6B0f3VvttY8D+PwuqR6eHjzAN6uHGm2eB94dlokQvV2InVtJasC6lchv/9uQoiggaWlDOymcnl1InaCGpSs1L+0qJi+sFrruqtg7tw2lGmQQmhmtXEJnc8gwMAizGpa7tWxEpYy9fQu62Ie1swOrPIB2XYSQyHIJa+d2tGUZF0pYxm3fswNR6jOK7njGHS4XsbdtRA0UEUENTZ34SwgIfaweY9XVQBGnUsJe9QTOpnWoTA5daMBGE0/UiDjG3rQWZ9WTqJbRxm0PfBAWolapI7sHUUFWxw9qC49D1KqoX30PLwrJtTRj27ZpwK5VCR+5i763vQ81bxG+lyV3w4/pmzGX0hUfJ5k+l+y138fauAZUQjTvGGqXfgjyKeS6Z9GA1b4K99F7qL3mzdQ+8BmcTBb79t8g+rpRhSaCcy5h4G3vhwGwfvldSutW4iTRC1pZQ6VSpB69j/CE0/HPvhjZ1Unh1z+C4la0myKZMIXKx7+AGjcW7r6LpKcHCQilUWe+FrX6KcTPv4s6bBq1i9+JGj0a6/abkEqZ3G8M6s+3Yv/827jpDPHp55N84DNgUW+UeRmq9hwHejqxenajyj7JJVfg7txC8y+/g8rlCV53OaU3vBvV1Ezh/a9DaUXpZawutJ+3WOIvXVSSQK2K3NWBWy6Z2mjHRTU2g+shB0pQLqIyOWSlBNqgiVbHZlO94nrQ34PwK8YFSRLknp24tRpO+yrQphEAIbA6NmFpDYFP0joGnS9gde7AK/WBtCEO61VeErTA6tqNiGITgwsgiU1cW6vgrH/WVPmkM9gbViODKtbODmS5ZJoC4hjSadSap01qrFr5y89DJehMjtol7yQ6bj7yrocRO7aScmxcx92rPFLiblpH+uF7qL36FPw3vIum319N9odfoXzyuVQvvJT4hJMRPb0gFDrbSNI6GnnXMtRVXzJE+1FI9prvEQtJdNQSyu/5FMElb0OUK+hCAdU2yUx2P/sWyXU/JlV3H1VTK4wBvLR51baDammD5gZTf30AhdHpDN79t+G1jqH6qtdTfe3bSE49C1EcMO87myNpHo18/FHUj7+KHCgiUmkITA128LrL6Hn1BehMC2rMROzHHib+7yvxtMJ94A4qs+agL/sQ8clnmkKfXAHbtgn7B9Cz5sG4ieClUKNS0DzK5OmVgsSU6TIayDfs/XYF5vsbUwfgvDSqzYGmFuMVJAoQxpUfDRQa9x6bJObY0S660IR37x9xfvp1Bt74HqIPfo7i+a9H2x5q8nQsaaN/8lVq2zYj5x8LbZ65Pts+4HP8q5ZSPqd0wbb/xbbtvasy1K2FUuovz9paIwIfq78X2dNlcq6WDY5pZlBjJxLOXwyWZcAklaBGjSWZOM2kj5LIHBdFaMtCtY5GjR6HamgGaWH195hyu0oFMlnChScQHb7QxJOWRTJ+iskJC7B6u4z7JqSJfcdOIBk1BqTE2rEVq7fbgBdJgho70bjSDc1YWzcid203L1ZKExJMmIIqGGDL6uuGJP4LpkqDlyI66gSSko+6/ic47WvIpjykZQ+5flpKRBRjFXuJUk1EW9rx7v0j7ub1UC4Rp9JE6RSxkyb2UsTFfsT9y7Buvg75yD1k8nkcz8Pesh56utD9PSTpNHE2Z47RimTzBuTvf4l18zVYW9vJNzRgC0EyeTpxRzf69t+T6t6N09xKks4Qb1yPvu92Ul27sF1vv6/DQXbuQOzegSr1o9BEjY3EVorYsolDH+69Deu2GxHLbiSjFJx4JtHiJegVj6I3riGeNZe4GqAevQ/7D9fA/beTSadI93ahw5ikdRSqtQ2VyaG2tmPfeRNyczu6Zw/iwbtIeS4q00Ly2ANYT9yPF/hmfaC2ccQqjbrndpy1T+NlsmgBatQ44s4S+qbrSWUyiFQr8SP3Yq1YTioKEak0KlcgjlOoe5fhrH0a17YQSpFMnka8swd1/zIy7WvxOrcRaUhsh7ChiQhJ3LEJsex3iG/9K5TLOGMnIJwC8WMPYD1+P6koQNjOX784t75KQ1LXy6G/VCqlPc8bWtjMq6NoUXQIbtdgqiebR008jGj2fJLxU1Cto4mmz8G79zay110FgU9w5mvxz7qIpG0s3oPLyPzq+1hdO1HZPOEJZxAcs5Rk0nRkbxfZq7+Js/YZsBzCo0+gesk70LZN+sar0a1jqF5yhUGTu3aR/dV/Y+3cinZdwqOWEpzyKpLR45Hdu/Huu53UQ3eiLYtkzET8My8gWnAcSds4Mtf/gNSfbkBWBkhGjyNYejbBSWeTjB6P98g9ZK+5ClHsOegHXa1WGRgYIJvNks1m91kobrgEQUB/fz+ZTIZcLgeA7/tUKhWSYQisEALXdfE8j3Q6vc/2MAwJggDf959zTCaTwfM8HMepG39Jb28vYRhSKBTIZrOEYcjAwABhGNLY2Ijrus/78cRxjO/7BEHwnHV6PM/DdV0yfoXqh/+V8sc/i/72f+Fc+Umk5xEEQd07dUilUqTTaQM6JQmVSoVarTb0jBzHwfM84jgmDEOam5sB6O3txXEc8vn80Bpe1WqVUqlEJpMhn88PjTEwMECtVqOpqQkhBP39/di2TUNDw9D7GHz+g+9JCIGUkv7+foIgIJ/Pk8lkiKKISqVCEAT7LDTmeR65XA7HcQiCgGKxiJSSxsbGF4WOefAdRFE0ZGyFEC8gBo5jkyqw6mmiYYig8GtYO7aAX8XetBYtJG7raGT3bpNaSmLsVU+SKfaZQvLd2xHVsqnOimPs9SsRvXtQjS2IKED27AGlEJU+rO2bcR+5G1Gr4qx7Br2tnWy1bNzxWgUxUDTVVBrsbe1w5x8gnTFu/u7t6HqjhSj14T1yL86G1eh0Bqt9jSkkcRxEtYrzzKPInk6T2969HVErH/QkJqKQVBJhZdLYqdRzmPSHEJMoxo0CGjNprHQaoTUiifGSGMuSaEvsbYqQEum6SM/bd7w4xk5ipFa49n7H2DaW6yAH0yVCoGtVckKjcjls10XFEVYYkJOgcllsx3nevD9JghVHpLTClQLlDvtspIXlOEjPQ/pldCaHHoMJUYCsFKRdG4REOg5WKoWQEp0kyCggoxWeYw2lfKRtI9FoCel8Hqk1IvRp8FxEKo206vuGIW4UDj3DoWU4A5+MTvAKBdO0EfgUPBfhDXsfUTT0/AffE0Kg/RoZFKlsFtt10UmMFYVk0KRsq05KIRCWhUxnsCwLHUXYoU/Bdcw5XuJ+90OvxCo0kuQKiNA3DeFxvFeB48gUGAwUUa1jSFrbkH09yEq53mCgEZUBZPcutOOZGFcng4XNCL9mOkt833SC1KokY8aTjB4PSuE9fBeivxdRq6BaRiP37DRprTBEqGSfiUT2dUPVgyBE+pUhbFDEEaLUj1QJeClktTxU/il0gqhWsLp3o0v9iGKfKUI5SHReux6Wl8KpLwF5YMRUgOMgXZfMsP20dLFcD3vYMjfD0dX9EVhtWUg7g0yDc4Bjhh+H1mgvhZvO7Pt7OoObzf0FhNe4/ngp7FR6n2V49j+fTmVwVz2Be9W1hI/cC1LiNbfg7ncPepBiyUtjpzL7XP/g78PWwwU7R6quGKoeY2rbxiqY8GCf+61fpzO43XVJDR+rDlTt//zRGu16uKn0vs8jlcbNZIes4PB3opQy7yFXeO45XpEKLITJ1c6ej7VnJ86zTyKiYS2CQpgCjlSaeNocguNPReUb8J54CGvHFkSiSCZOI1x4HKqxBXfNCrzeLqjVQLok46cQT5uNamzG6u1C9naTTJtD7eyLsDevw/7Dr5DlEipXIDlsDv5JZxnAqtRPqthnYnDbRrWOIT58IUlzK7LUj7P6SWRfn2GQyORMc/qUmaimVlIP3lGPwxOU65FMmUE8ez4qm8duX4vV12Xi7IPGGfQ+7uyh7HeolTv7KOnBoMoH+LgO5YP7i9eXzePddxvq5utIohiRyfzFoobnG3P/bQca4386dvh29Tz7HOg9vZBn9HIuvWsfMMd7INRVm2oY1TyKeM6R4LjYq1YY19geFjvpBO2miCcdRjJxmknL6DpZvBAmV9zUgm4cZfolB4nktUEIVTqLGjW2PhGkSFrHokaPRe/Zafa36m2Jtm0aKcLQlGICUmm0UmjXRuULqEKTGdv2jKXXtrmGTB7V2IpqaTPN9XovOZ92HFRjM8mYiaZJ/f8ck8j/tmNG46bTNKYFwnXRL1c66O9V9vN+notCW9bzo9B1sjoRhcj+XlPyGIXGAbasvf6/ZaNdF9nXjbP+WZw1K5C9XSbWq8ehdscm7E1rTZzp10xaSkpEpYws9mDt6sDa1WH4okr92JvXI/fsNFxQAhM3JwlWxyZTiNGxGVRsFDaOEUEN2dOF1dGO1bHJpJmkhNAHlSD7us2xG1Yh+3qGSPpEFCEqZaydW3A2rkbu3IrQjDBqHqwCC4lwXGzXNevbav2KXxhPC4EIaqZjTVqHdr1aG0aaekebeNH01jxL9T+h0LZt4zjO/4hCq3wjpDNoxzH5NGFADlPPZoHtmJuqVRDlEvbu7UMxC7aDKjSiM3l0KmWaFgLfxJpeCtXcapqmgxpW506TQop8VDpHMnYiuqHJ1FrXaqYDKa7zRDmOiZv7e8w5GprBderXJUxXTn8vIvJJGprA9UzCXlgQhchSv6lkymRR+SYDNKnEvIwwQPb21GP1Q6mCUAfoORZDzA0vKAeo1HN5pwYJDIZT+v6tEgcO3qPY7x60Mqm64SVTUg4jhtj/d7G3f3zwt8HxDjS+StC5gqm4i6JDn6y9NLqO4bxYE70QgiRJiON4CDE/NBS67kJHC48jmToTZ8VyU6Y450iSQhOyXiWVjJuAthycTWuw1q9CPHqvUZAkRntpwsWnEB69lGTiFMOZ1bEJa8tGkjETSKbOBGnhrH2a1I1XY7evRiNI2sYRLDmL+Kjj0Y6DvWUj9toVWLs6UPlGwhPPRhR7SP/hGtSoMdTOewM4DlbHZpK2cehUmvQt12JvWkftordDJm/KMUeNQe7ZSequW7Da1xAvWExw7KnI6gCqsRWtNc6mtaSv/6Gx4AdL2iZEncUxfK4HM8gYeShupdb13uYqqqFp31rewDcWoE6igLTQ2dzfntsqBETREB2PzhWG7kGEAQTBMEYXTJlsOgNJYp5N4NcLNTD0PekseCmEHxgyiTqBgqiWwXHRmeze8StlotMvwF6zAtmx2VQQHux7kdKElKGP/dTDz+E7e8Wh0AZF7sTq2o0u9qGaWtFhYDqRLAfQKMetu8DbTYw8mGpSCbJnD/am1Sa32tCM8GvGrfZrWDu3gVZYm9fVEWpd73aqYu3Zge7YZLiOesz5rd07EOUBZM8e00guzGwsKmVT9dW1C6RlKmzqM6+IYxjoNy8yjqAysJdQII6Q/T3I/h6IY+M1RKGZ2Q9hYhXVCrULLyU+eilks/W63hixezfeQ3fiLr8bHQZ7FVyD9lyTWvOrxgoMbfdQzaNI5hxJ7fTzyf/wvxDdnYbqVUF43EnERyxCVEoGIyj1kfntL1C5DDqTQ9SqJlWXb9jbWRVHdRrbwFybLVHZvFGEKKzjEoBro/KNJkwql8w26vvnCibkGCgZlpVEGa8Ghq5fZ7PmfQ30I4I6N5bATELDix2EQJT6SabOpHLeG7F3biV987WoVBrimHjeYoKlZ5FMnoawTe9t6o+/xn3oblRTM/ERi/BPfTVq0lRziu1bSd/6a+wNz+KfcAbJ7Pl4y++CgRLBGRdgd2zCu+dWlO1AUEPNXoB/7uvx2tfi9vUhUw7Ur1d7hv9K+DWT/WhsQYS+8RzDhNrrLydecALOshtIohArlX5JAS37kGZIrbE3roYtG7F6Ok2OdqAfncmbFBKGuAxLYvX1IOokZ4M8VyIKsTevQ/Z2Gvd5UCtsx8QPUQhxiOzcWVdgQNQrsh6/H3v9KnBdU+vc3Yks9SNtB5EkqEwWWW8ESC270UwIxT5ULo/KFbD2GJfcffjP5kMNQ8PeYdvIUh+yXMJe+wxWx5a6MqTNNSpl2uMOxe3VitpbP0A0YRp07TAuXCEHzWNR+Qas+25DLViMaqw3fCchsq8Pq7eLqHkUOt9gLKkQplClXCI88Wyqb/sQ3rf+FTHzCPTo8YiBPvwLLyWeOQ/ZtRvVOgbRtQtn/bOmNLV7N2rMBOIJU7C3b0EUe837SGWIJx6Gah0Njo3wA+yOzSSZHCqXr3NKS2RfL9b2zSQtbSQTp9Y5rRViYAB75zaUtIgXHm/aLh3XYAm2bXiikwRr93as3i7iuUejWlpA2ogkxm5faybOQYkidDpDuPQsKh/6J+wnH8O58efIVBpcj9pFlxMceRyJEOBZMHEyGoG94nHU5BnULnkn/vGnoeLQfDOnX4CQDtlvfo5g6Vn4516C3LAaXWii8q5PkvrtT7Fv+w0i56BbRpvxl5yMXnYEcvd25PjJJE3NJvTq2onVuZNk7ERUcyv2upWoljaStnHI3j1UX/tW1PSZiOV3mCq7lxWFPgiXQZaKZmaqxyGyrwf6e4fCDznEW7UXeR4et6h8A8mkGZBKI7duwNnwbF1RZd3k1OMUxF6rpxJkqYgsl/bGesp8NIABquqxuKgMGAta572y+rvNb3U01Fm/at9YafBatcaqVkDsfA51J0l88LGN1tDYim4bh/zG5+Hqb6G0gtkL4N++RzB2Ipblot75KWqnn2vID3SN1J3LyNx6HZUL3kJ45GKQNjqdJfOL75D76ddR46ZgP7WcYk8P9qe/SnzeG9AqQcQJ1gN3kJT6jeIJ6PviT8jefQupX3yL6MSzKX3wn2n8wsdwHrjdWJyJh1F724eonXMxFFysTVtp+OpnCRafjH/kYtS4SejGLN7991P4j48QHrWE8v/7MrqxACrBWreOhq/+EyrfSP/nvoFV7CMZMx7vgTvQqTThkceB1uS+/0UyN11D9b2fxj/9LNAuYqBI8yfeilz1xF6vqFYhPuZkwpNfhYg1cb6BciZPAaCxFf/083Gv+yHW968ktF34xrX4845BHrMUe/4x1M6+EO83PyP56meIlIaf3UbljNfgXPNddDqD7u0i3LQeNW0WGojWPEMtCMkUJMkRi6idcxGqKUVwxgVYDa0kS04jOOlU8GNSN/2KwlVfJjzrIsqXXE7rFecSLj2b6mvfgqhUiCdNQ80dTTh/Me7Nv36Z00gHI0lsFGCQrCuOhtgwhj7gehyyD7ujVmjbJpk8nWDJmejmUbjL78LetAZRKu1LcCet5wIxSQzxXrZLs3/9gDCox+j1VQ9Ushcw2odAT9RdYrGXvG44IKLiffm5BkEh2z6kSS4+4miU46Lf+k6YvwiKPdA8GjudRdx1E36lTMO1/0287LeEpRL8438QtI6GWfNNDrpUgjtugsUnEZx4NuKRe4lb2xC7OtCXXE5y3GnIH32VePwU9MVvQWzfAn4V5i5APvsk8awF+KPHY/V2Uz3vDchalYFN68lVq3iBT3DMUoITTkcs+wPqjl8T10KKu7Yh3/xekplHIH7+PfTUwwgWn0rtsFm4999OOgyo+lX04UcRv/fTlA+bg93ahm5rJr71tzBlGsExJ2Mvv9uMe9qr8afORk2bS3DSmchlt5L8/ho0UFz9NIUkwbasoT7p4JRXEQuJe9WXCc69mGjeMYhVj9U5zlKER5+Adck78Hq7cH/zI4LO3VTzBbwlZ2LfdzvhL75Hqr+PNMAPvkQlnaW2eyfR2InQsRm9tR2x9Ex0GKAfewDpuMYgbV6L2L0Dip3oNc/gL1qCXatgfeBNxEcsJjjtVVQnTcd59jHUOz5G6e0fQy1agnX/MuLtW1Dv+Dj84RbCP/4G37bJH7D67sWTQ4crpdyrvIPKZtkG4LEs87Hb9r4KNmjvwtCwZHTuwNq5zYBbSLO/45i4yHYOjKJKac5jO3X2SDE8GWa2D6KLtrP3GgZ/G0QlB38b3G47e6/VqqPoQ/fhHJry1gPXeOY8w7wYheiFx8GH3g/nXmQaE266Fsu2ET17sFc9Bds3Q08nqms3wYSpEPiIP/wK5xv/gnvvbcSjxlLNNZIUGqG3C3n5R5A7t2F97bO4P/8Ock8XqjKAkhYqCtH3L8Pa3UHc2II/eyHRzHnIq79NvOZplFaIyOTpdaEB6fcjN29GPvs4ons3cds45CP3Ib71LzjX/wykpNo2jqQ8YFJ+mzfCrq1Q7CMo9hNNmYm1fiP89BvYd91i0Ny7bsG59irklg3E1Qq1KEJn08hiP3RsQq54BLo7hxrvRRgSLTwB/5wLUWMnmIk1nUEfcRQqjhC9nWR++V3U2mdJTjsP3vQeZC6P9/j9WEIQTZmOfcNPkeufxW1qItvSTO6235H93S8hk4O2sbB6BToMsGYeDju3QfsanIwBEq0Nq0w69MEHEV27SGbMRTc2Ye3aBQO9qNHj8VvGIB/+M86qp/Bf+xaigX7E1d/CWn6P6bS76SbEU8sRmczfgAV+wVOFBXGMs+pJ7E3rDKtkUDNAimXzdyNaowpNyFKR5ANvMjHnt6+H3TuIrvoSsqeT9Nz5lD/xnyT5BmOhMxLre9+EiYdBTxfysftx/QqioYGwu9PweuUKyJ4u08729c+jXI9MPk+wqwM/3wijxiA6NqFXPoYT1AjHTyZ62wexdm8n/v0vSCcxTq4BrWLsrZuwdm0nuvw9cMm78e6/jfz3r6SnbSzW9/4TVS7i5XOwZyeRm6Jy0eWI11+BGj0OxjbBkysRj95H8oZ3IjauwdqxCattDGLTOuIVjyBHjcZxXaKdW5FbN8L2nURvfgdcfDn24w/Q8Nl3IXq70XEM2ZyxvhMnQQLB+z4FA2XEqLFEUYQbBmS/fyXxnj3El3+E6KwLCd7zafJArlykXymSYh/ZdArXcUgA2tpI1ypYx5+CdhySLevRbWNg4lTY1l6HXZx6OWmWZMZcrLtuhdnzSRpbCKdMgV/fBx6weZtx8d007s4OomOWIH/2HaJN63Eu/wgOEAQ1UkCuXnn2Uop8yT7qdIbgpHPxz38z/jkXU3vDO6le+kGCk88x+V2t/m4UOG4bC6V+rDCgsGkdmUfvgVFjcI5YSGb0GMIrPkFi2dj/9C7kw3ebMH/tSnQuj2pqxdm9HTFhMvGxJyO3tYNSqJZR8NTD6KYsse2SthzipWeihMTK5pDNLbCrAxEGWNUKesp0knMvxrnpGkR/L17Kwwp8whPOpPaW9yPv+RPeq46Fe28nOnoJlYZWdCZDYtlkbTM2pSLi5HNg6RlYP/4a9pf/H9Q0FPvQu7ahJk2FPbtwggA1YQpUyjgDRURLG9r3EdNmo9//aez7luFctAQef5Bo9nxqSqO1Qvb04J90LvGxJ2P/8gdw+XnwqXfD6mfQCxYT+zX6v/Yr/IuuICeg+epvkrrzD9DQiN/YQlDsh6YW1OFH4dZ8rN49hK96I/1X3URyynnoSdNhoIjs3oNoaUO5KeSOrSZSq2dGkrkLIZsnue23KCEQvXvg0++D1x0PFxwP776A+JF7iM6+mGDREoQfoKbPJZNJI8ZOQPf1YXfuwIKXvJHh+S3wX9uHr3NIJ5MOMyWKcYQaNdoQ1JWL6DVPm1X5/g5WXRFaE81fBKuewrYkHhrnkbvxT3k1nP9G6OsiPvYU4oyHPHwhVncnKgO6WjY8TJOnoy77EFFjM1pIrPtuRx2z1CD8zzyG1b6N5JzXkTQ0Elx8uYntHBcaW2GghB1FONs2oZuz0LGH5OZr8Sxpum5qZvXDZNxEdBJgrZiCjALkjg5qM+aC0qjXXYaaPRd19BL4xfcQx5+GOuF01LpnoXs3or+MThQi34ie3Ip++jHsfIHwqBMQ9y0jVeonnrOAxPOQe3ajjj+VxIrRYyebDrOVT1ArlUj5Psm8o/Df8j5UVyfWj76ObF+LVe9dDt//ScJpc4nnHEl17lFkxozFWr8S5izAbl+LWvU08c4dOLu2E7/xXfiuhcgWCE99DXHbGCqlEmrqLFSisXs60VNmELeOxtrZYT76OgVSfMQiVGMGveQMnHIJFQaoiROh2I3sK2L19KDnHU104duwnniIJFtAv/qNyD9djxo7kWjODOy5C7FWPo6OwhfMJX5Q4OhBKfDBMnIc6ocdRdhb25F7dptlN9IZdK4B2bNrL2nc30PNbJ0vTK9+ClnqR3kO1uYNeBtW4ucK+FGCveZpwlNOJfjCD/Du+ROiox/dYJhM8GuEr7sMpIX7w68gH/oz9rv/EZ5aTtzfS/aPv6b2hndQGT8Z4biI1SsQvd3IxhZ0b7exBP094CvEDT8h3NpOrqGAQKC8FM5TD+He9hsqV3yAeMkp2CtX4tx8LfHsBcjuTtThR1JetAjv0eVw3Q+QxX7U/EUEl34QuasDa9Ma1K4OxOhxqB1F1GP3I/MNSK1JVjyCLJeQ6TSqpxN72e+x/Br+pz4Fs3+GtWEV7veuJKoYUv3o+NMNh9p3/h3RvpZ0IU/aSxGsXUFfbz/hlFnkf/Edym95P6U3v9eQ5XX34v382+jld2Pl8th/vomB113GwKe+BLHCWvcs3lc+Q3DvbYjz32Twlr5u9OELiQb6sTs2Y1vDyOuEQOzYg37Te/B+8xOiWfOI3/8PgIXcuJnUnX9ANbcSWJLMVz5NsnAJyWe/RtDQgiqX0I0uesbh0NCErhTBcV/cb2t/vdq/lNK27X1Ktv6aMbDO5vfyLQ+CYUm8d/WEvxMXOpl7JH3r15AuF8m6phc1GTuRsu+TbNtEYeZcyq5HGCXQ24WTbyCeOgv9D19AXP9D9EN3mZe1YyvpWpnUtFn4SYK/8kma586j1thKtVo15+vajWtZ2I3NqPa1WJYF/3U1lcUnwrkL8Ho7yecLQ+6dUAo1ZgLlphb8IICBAVOW9/F/N0wq//0FVBxBfx/2lvVkJ04hHjuJShCaNYWTGBkGyN49ZOYvov+he2hqbETMPZK+VU+TKRfJzJ3PQBQTb95IfsJEgrFjqQ74UC5hd+4glUSkbRvGTqTW0ERtwxrcYh/5pkaTScwVCCZMpfTMkzSOGkXUNo7K4KofYYDcvYPUQB/pXA5GjaXS0IyfJKaYpFzC7t6NVxnAmzOfSq1mesfHTSRqbMFvX0c2DvDSGZNpbG7Db26l3F/E7t5FetxEapkscRSD72OX+kjl8iSuS/zsU2THTSSZOJXKM0+QnTCZqLkRf9t2Uj2d5NPei2eBMV1RSZLsU0r50ilwvRxwiNFSa1PgMEgM8Pey8LcQyJ49lBNwCgWcdNpUf5WLhEFMnEqRURFBmBDVE1UuUP3w50ne8l70R96Eu/weBpfzdvM5vDgirAVEuRwZFRNXfQYXTFGAIwWO0gTTZ+N/7PPII5ei77qF6HPvo6Gh4TlMG7JSJqzWGOTaVNNmEV69DOuuWxH//P6hSMbOZkkLSMoVfIYW9jPVTpk0qWqNAdchm8tjFXspa7AbmkhHAUG5SuS5ZGyLpFKjVr8faUtShUak4yBqFZJSmcCS2IUGPNc1IFDgQ2mAshRkXAf8EJ991wbyGhtxHBtdHiCuBYTDfrcsidfYhFMtU6sFqGyWtBQkA2UCx8ZrqLNm1IkGVblCrZ76TKGJlKH1HTqXLSFWhKkUWddGl8pUHJu0ABXG+ICdy5HKZF5UL/JACmy/lB/2S10n+rKh0M2jyNWpW7RSpiG+0IQrBC6mf9QTYqgJnFoF5bkEj99PUqviWZJs2+ihZnOlNU5e4NSPtXMF8vs18Mv+PuKjjiM57VzU8odxf/0jsKwD0uSobA4nl8cVAuHXiFta6O/tQqxZgZPPkx1kzaj3uVqZLLn9mtlNqWSOQr0pfvg9J7aNk8kNXa+VzQ9d71APs1JoL43VliEz7AMFzDrFo1JDY4uCGDr/8HvWWkOugJMXuAcgQUhyBbz83vNaaXMuPSxE1OkMIp0ZunYGJ6kDjDd4P4xKk69fmyXMuV+unuCXzgKPyP8c2zS1UI0Tou49pIUmlT7ElIRKIN+I39DEQOdurGIvOdd9Xp6rfc7tesRNrZR2dJCOQ1KDNDMj8oqSl9eFHpH/0TsR1QqxX0N5Kax0Zm9J6kGPIRGhjyoW8TWIlIeXL/zlHgwhTP/0QD81LXDyBSzbHnknIwo8Ioeux891217IGOIF8jPJYW7ziPxtKLB9wLhiRF4mT1r/VcZ4oeO81FVEI3Lok7vWeh/aWjmiwCMyIn87E/z++mnvPwOPzMIjMiKvTPf5QFTFcn8TnSTJwS2rMiIjMiIvmSRJMhT/7m+BA8AbJNMeZKQEhpgqR2RERuTlc5vjOCaO4yHC+0ElFkIkNrBCa33sgXxtpdSIAo/IiLwCFHhQeQf1UQiB4zh9ttb698BsrXXDcL7ZQeb6g1llYERGZEReHOUdHuIO94gty4qz2dx2y7KsbbZtn6W1Hru/Aj/fYCMyIiPy0sigPkopzWJqdaqndDrdOXr02LU2sG3MmLFf9n3/I0EQHKuUkqCGEsX7LEg1IiMyIi+5AgNDa3dblk06ne5ubGzYnE6nN9gAo0a1XV8qFSf29/fnwjCcqpTKAHJ/azyixCMyIi+98tYVWEkpB1Kp1K7GxsbNhULDdqVU+/8fANRQTK2s9sySAAAAAElFTkSuQmCC' button_mass_mentioner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABtbSURBVHja7J17mBTFuf8/Vd3Tc19g7yCXAApeQEIQXBXBKyKi5yB6TJQjxvicxIhGMZ5oYoySeCfEn1HRRAkajURQoyJqjHeRRUUEQUFlV1EJ7H13Lju37v790TO9MzsDLrCwq6e/z9PPzPRU163rW+9bb1W9JVRVJQ0NuEhKOUsIMUoIEcSBAwe9BSFgg2maD5umeb9hGAkAkSbwAUKI5xRFGa0oCoqiIIRACOFUmwMHvQSmaWKaJsCnQsgTo9HIVqGqqiaEqFZVdazL5UJRFKSUDnkdOOilJDYMAynl9kGDhoxRpJQXq6p6oaZpqKpqS18HDhz0PgghkFJimmZACHG40DRtlcvlqtI0DUVRcgJ6PB7c6fsOpR042I+SFtB1nXg8Tiwez6jOOVBVtV643e642+3WXC6XLXmllPQpKkJKSSKRIJVKoRuGU6sOHOxPaZvmopSS9lgMI5+DuiqE0LINVkII+hQVIYQgEolgFGC+AwcO9pMUNgx0w8ClqsQTic5BFJkhbQZejwcpJdFo1CGvAwe9iMzpsW/Ofdk5oNvtJpFIOOR14KCXQQqxawILIRBSkkgmndpy4KC3jYmlxDCMHBLLguLakb4OHPQ+AguRR2C1AHuty4EDB71frXaqwIEDh8AOHDjoAag9nQG9Tz/ig4aTGDgUvU8/TI8XU6r7To0XAkwTYeiIWDtqYx3uzz9B++ozZHvEaREOHAJ3FcnyAbQfNo74kAMxAn0wNDeoLkwhLKJlCJf92V08Ng1IpUj1H0TygCF4Nq/Hu3ENSrjNaRUOvrkqtLk/LqmQqBxI5IhjiY6pIlk5CD3Yx5K+mgb25QZXp89uuky3F9MXQO9bQmLoSCJHnURk/CSSxWV7XK7QlTezbeU2tq3cRuTH1+w0XNNtD7Ft5Tb+/a9P9k99d/FKHDvVzn/TbQ/tNFzkx9fY4RLHTt1n+QldeXNOHen9B7Nt5TZaf3N3r6q3/Xn1CgmcLKskOqaK9kPGYmpuS7pKaV1kfZcyLXlFvhq8t8hR0U30sgqiE44DIQm+/PReR9962DiIRvH5fHn/xb93lJ2FHTt2UFFR0et69tjIw2ltbaVPnz55/0Wrjre/N0TaKU0mcblc3Z6H6ITJQH4dRZIpRChEMOj4nMgnsGHs82mk+HdGkBg8HNOlZRFVgqJYl1RySYzodhU6n8gmRnEZse9WEXzpqb2Ls6EODhlDPB7H5/Xm/NV+3iWYXj801oHXX6Az6UGYWfkvLSd21oX0+eey3ObRfzCpQUMRjXWYJeUd+d8nZTAxM923aSK3fU5FVQU76urA73emO3tMAvcfhOELWEuxpbQIq6qgqB2fGTKLtBQW+4jEmcZnGGAa6AMG732cG9fC5FOIz70RFt2eS+CjT0J+UWstVc0QOGPQGzWettmXETvmJPue6+MN9HlgAa43nrPvhX9+C5HJ0zBKyuww/eb/EmXDO7sVZpf5Hz8R4/jpxJf/DbemdUjF837aEWbSKXmPtl1/D5EpM+zfwSceJDD/6o53f+ypNNy6CP8/n0T3B+2yysZ6gs8uwXfvTRj9B7Pj8dUdncanOuEnHsT3yD3seHw1/n8+SfD6n+aUNXzqWVbHCLjXVtNn4U12WbuSZjY61517bTV9f/cz5L+32mG2v/Qpvjf+aWkEU2Yg2iOUzzohJ0yPjIH3S0fv9qQlbZq8LlfHGNftAa/PatxeP/gD1uXbh1cmDa8fM1C09wVcs9KSUGOriEajOX8lDh6NrH41b2Rg9B9Mw80P5JAXIDliFA3X/5FE+QF24wqdOdtuXJkw9TffT6piYJfD7BLhNpRN62HUWGKxWK5qPWoc8qP1UMDY17D4xRzyAoTOnE39rQ/mhY1MmZFTVqOkjNbzL6XtqJMLZimUTBGJJ2wVOhQKAdB095OEzpxtkxcgPraKuv/3KInDjtjtNNuuvyev7uJjq6i7Y0nedr7IwWPs8pqRCPXr3i205e/bR2ChpwsppCVx1TSB3R7weK3L6wNfmsQZkvn8++bKdBY+P8Ll7h7V5qN1lhqdtQUs+pNfWg3nvtsRncb10fN+ilFShlixDIaJjmvTevD6aZp+LoZhEBs1DtEegUt/0BFmzVuYJeU07kaYr4OybjWUWGp0toaQHDEK8foLSCHzpFZyxCjkpg/g3BOtNE8YCZvWkzp2Co1Tz8lP5O8P5JYTiEyYjL51CxVVFbC1BqIR6/9rLsp7vP28S4iPrUI01sGC63LSxOun6SfXoOt6l9JMJpMkjz2VyJQZyC9qO+IbJuDZpZiDhtIw9+bcuAYPQz6Xfl8TKmxvGT1KYGO/WNPMDumrpAmckb7uNHm9PvBkPr25xO6uq3N8Huted1gJtVdXgM9PfO6NHdbbquORW2vgs805owET8M+/muCYIsw5Z6PevQzfvU+gPb4KDj7cChPsQ3ssZsXl9SMuuBT3wscpO+l0Ki+diedQL8aNc3cvzC7y71pwLaI9YqnRiQQmEJ06E9EeIXXnDShZBTCB9nSnYUw7HO29NykrK6My1kbZLy+C9giJyafa8QAWea65iGAwSGVlJf2efMi6HyginkggpESRIm3TlFRWVuJzazlpxr5bZX1/8C6UhTfRt29fKmNtlF9wsqUBHTKGtlCoy2nGjrSMZsaff4/rvlus+CorqbzxMuQXtegnTCcciXTEF41gXHI2fr+fyspKysrK/m9Yoa3WmzZaqWrHlFGGxJrbUqtVV4clel/66cqMgdPj4O6A64nFyIuvwUir0e4Jk0mNGIWy6A+oqope4Jn2pW/BiFGkgFTBbJoEH19M8zXzMccdTRyoP+VMZGM9vtdWUJkeaypdCNOlMmz6gERajdY0jejkaSjvrsSQElUKsreXGyUVlhpbY5IA6ju/8or+xGIxbJPels1omobfb6m+sqUpy47atXdg+ALWl+V/JxgM4vF4rLikxLW1hsTYKhInz8DfxTT1CmuYwry7SM67i5a8FxQhGo3az9MeQUrZo9bwniOwIFcCu1zgzpDYWtCBon4tgWVbC7JhOyKVQi8uw+hXYj23R4YsHfRUtxXTs2Yl0YlTrP3Vaeml/24u/qIiIgWMP6kRoxBf1GKuf9e6ufkDGDkaTjvbDud+5hH6bNlE64zZ9n2jpIzwmbOJlfWn9BezuxSmK/C99S8SY68ldtaFeNsj1rjwpWdsouRUYYHpstz/A6RSuXXbnVNPWpahLXdSxSSV1SHsKk27Q9gZvH7MISMg2pweBId73AFkzxE4M0WUsTarrg4iZ76rasc0kj0QS1mkbW5A3boF10frULd8CKqL+JHHETvhdIw+xXsghQ0w0mPyboJ7zUqiU2YQv+gqkhMm2dLL5/PlETg2biKiPYI5eRgul8tukPGHXsyTxt4P16B98DbRq39IJBKBPz4Gx08jNe4Y2traKCoq6lKYr+2AHrkbceEVGOMnEVYVZGMdxkN34SkuJtZ5zPxFLamBQ2HUzklgdvNcsYyGrS/Tz4HH7sv5LzV4OLRH4NklMLNrHZZWu5nE2Cq4bg48fHdhkgNGeXlHHmTPbifoudRzSJyePspI5OzfneaEZWsznpUv4l9yH75//BXP6ytwv/sm7pUvoq17GxEJF5D2nRaHZDoNJTvuzL1uJPAzjyAb6zCnnYU+cCjmmpUFpZfdwL1+xJxfU1JSQjAYRL/3H6TGHpUTpu6Z9dQ9sx7juOn2WK7k9ecso1V7hFgs1qUwXS7De6ugajKJIyYi334DRVEKSjvPhjWWEXDFOsrHTrDGjpWV+O59AmpMfPc+QUlJSbc2Ic/71daX8+cQPveSDmv+4hctg+DnW5BSonaRZO7Vr1lfLppL0czZdhmKrr8TsTGM8noNlZWVPU7anpfAZM3rik4LObJXYBVYB620NOJa/w7aB++QGnIQ8fGTcX24FtcnG9MbFQxLFbafy5qvKaTu5FiTun+s7XvtOcJnzkY01qHfOQ+tb9+dqNtvEp0yA3PuPLbPnZcfID295XttBeEzZ9N466L83vixRQgh8HYhTFfhff15YsechAkYzz+OdycdUGD+1UTHT8I4+HDqsuZwAURjHdFbrkaEQnh2p5VEIzDQj/GpTuzu36G9/EyehqAefSKpsUcRvew6opddlzNeNeddgWs3NCrXG8+hvfkiiYkn03b7YjpPlBl/XkBjY2O3d0TfXAnc1Su7EvsUEzthOm2X3UDrz28hfP6lJA8baxHXNEHXc6+MYerrVgvto8UimV7drH4NRVF2KoGLrv8p6nOP59587QVrOgNg+EgMwyAw/2pcy/5irZbKYGsN3L8A4+of4fP5uhRmd7UIttZgPPPoLjWI8nOOtqZVsrHmLcxLf4DyxZYO408XEXjxH5YaDLSMGk+8gKun0kvORF36F2u6KStNfnQG8u1XCy4F3RWK//d8K77sutu0HhZch/nXu3rd8k3h8XhMj8eDqqoIISgqKrLGTPsQzd//CcnhB2P0K7PmYdOLKPD6LCu0S8u1QGdnOJGAZBxUDVNVEOEQwT/fiu/Jh4gdP53QhXM7rIlCdlpXLQvGmWXxQMSiVJx00B6XLRKJEAqF6Nu3r93Yk8kkjY2N+P3+nAbQ2NiIruuUZ42pQqFQTv37fD40TaOlpQVN0yguLrbTiUaj9jyny+XC6/XmkLMrYTpjZ3mtr69HSpkjfTJ5LSkpyTEOdS6Dx+MhGAzaBwfsLI1C92OxGG1tbRiGYXVOgQB1dXV5z0YiEcsNctpgtTdpFqo7TdPw+Xw5HVhdXR2KouxXiRyNRlFV1Vbje2Qt9F7N+LjSxi3TBNNAhNsQ0ShkfAWlUpBMdox7UbIkbJYU3pWk3Yvy+30+/BmCpONxqSqVmcX4WXGXpMmYfS8YCBAM5BuCOj+fk85O8t6VMHlq5E7yWlZauuu8dqEMX1cfhe573G48ZWW7rIuulHV30uxq3ZVn8tWDfFH5xsLM2YiQ2ahPKgWpLAKbplVKWz029+2csgMHPUngzEqs3s1dM+syOlapmKY1j5tKWSTNbIYwDBBGWn3uUtfgwME3k8C9nriFfmd/mhmjVcZMJ635XZkZGjj0dOAQuIdMbmk1OTM9lPO5E2J3vhw4cAjcK9icP+0jOkvqTsR1SOzgW0/gb1Ijzyawaaa1Y9EhqTuTN7uM+8gK7cCBI4G7QtxCUlhkkTpDUsfi7OD/EoF7vZknm5ymsJZNJpPWHHAykS+Z9wCO/HXwTcE382SG7DXSUrEWdygKpuaxNiVkG7gcOHBU6N4riU2vn9TIMcRDrSQP+S6m15dLXkeFduBI4N5LYtPrJX7MSUQuuJz40Sdh+IOFT3XYT0Rueugl6qp3EL342g6VfMAQ6l+poa56B+aAIbsdpz56Ao3LqjEHDMEcMIS66h0kJ0/rsWpvnf8wrfMf3mfxh25YSPPCp/b6HYRuWOgQeN+pwN1EKEXFKC4lNWiY5THC5erYppg3zdQVqbx3+dIHDQUg7PHR3t4OQDTjCzoaof79d3b7/OXkmAkYJeU0b1gLX31G2ZHlNC9dnOfhYn8h9Z0D0f/9pe0ZsruROGws5qcf0drautvPxmbNQR80FNfU0bRfPJNwOOwQuNvRndM06XGwvRk/Q9zO+4q7eMaSqex5lZgDhlhE3VoDlQMxTRNzwBCi086yPB1+tA4hBMn/+G8ant1AXfUO6l+pIXHGLACaFz5F47Jq+7/W+Q+TOGMWbXN+bQ0VHn2N6P/eTtPjqykvLyd+zQLqqndQV72DxmXV6KMnAFD/Sg3NC5+y/8toA9GLr80JX0gbCN2w0A5T/0pNQUmvDxyKYZrEn99IXfUOO//1r9QQmzXHJlL9KzU7LVemvjLSMjsto6QcvWoy8Y9iedpMBtGLr82rw9isOXZdJf/0FGVlZQTSmyoiV91G47Jq+/nGZdVErrqN5ORpOfFk8pA4Y1bBd9T00Ev2/chVt9E6/2G7vvalVtKrCCzbWkBPdheDcyWu7LSFMOPRQ8guqdEytOeHm8VPON36suoVRMUAdF0net4lKFtrMer+jdyxDdfEk2m9Yh7ehTehHKRiPr2EllmXkEgkSB08GjMcRh41APnYIuITTyb+yELUtavg2aVw9jHEfH6o/YSGuTfTftw0vFeeDyeMRPf4aZ4xm/ixp1pk/3gj7kM8sGk94SMnEy0dQHj2pXh+e7kVvricxtN+kKMNRC++lvgRx+K5YCoME5gmtHxvYo6kt0lWcQC+0w5Hvv4CLbMuof2wIzC9fkKrXiUej6P3H4xoqKO+vr5guUKhEG1zb8T0+XFNHY1Zv4Pm075PfNR4TK8fs/YT1BEuWPMW4SMn29pMJg/h2ZeiPv03qw4/XEfLrEuQixagvvGiVVfHDae5ublDa6gYALWf0NTUZHdCsa01tM65Du3VZ614Pt9i52Fn70gfNBQ+/wTlIJXI51tIjDsaz7QxcN0c4hNPpvXgsd9+Aru+rEVpqEMYevdJ4RzyKvnueMTXW6ZFexT1o/f3XH3uP9iStKFWKKsgNWg40WlnoT52Pxw6Brn9S4zv/w+m10/k2j+gf5KCc36E8AcIlx1gNdx7bkJKiVdRkF/U0t7ejjH4QNQdX1n7eEePQ2z/CvPE6SivLCfx9N8obmvAvWkdZsUA2gcOtXxrXXMRLpcLV3sUWfsx8VQK0R4h9us7cM27i8DSBzBvujLHvY5v4e+Q77xO/MIrEBvD1l7tUCuJLN/W+qBhlmueH05F13V8tR8j/AGio46w0l31Mqqqkhg2ErnxPZQDDy1cropBxCeejHz8QcyaTZSdXYV60XSio614uGCqlX8pkfXbicfjHR3N6eeirl1F4reXW3uEN6yBsgrC4TDm0ANRo2F8Pp+9dzqj9ovtX+FyuexOSH9mCSIaJjbzAszla/FvXIv2P2cQnvnDXb+jxX9EVVX6xiKYXj+xZW/hnvIfBH4+m/jrL+T7ov7WEXjrFtyb1yOb6vd+5Vc2eUWWq1q10/Es8uslsLrlQ9yvrdjzsWHFAET9dpQvP8MsKUe/8AqUrbXEX30evH7091djDBtheXzIct5ujq/AOMo6MMxcvoRAIIARCCLqt6MedBhGSRnGurdRFAWjpBwzE/+G9/B6vaiqSuo7B6LUbEYfMAi5tQYhBD6fD6OsAhFuw/VlDaXHDYUVS0mWVhCefRnaz36DN+vspsZl1TBsJFIIXLdbTujNde/kuOBJHnSYHX8wGESvPAD5+RbMA4bY9xVFwSirwAy1ItMnIXQul3K4dWpC8tPN+P1+hBAUFxejDRyaE79RVoHY/qW9MT9DRj7dhNvtxuv1WnnYWoOu65bvsY1r8/xWZe4ritLRCX32McXnn4iydBHG9m1EZs7GuONviOEjC7+jqTOtsmx4D7/fj/b0wwR/dBq88ybxwcMJz3+QfqPH5eT1W0lgpbUR94dr8bz7BuoXNYhUqsCmg90gdUY9VrIkb2ZMbKvQO3eZI9ojaO++iWf5kg7HZnto3BFbNqHUbrbUzP+6EPnWSyjpM4TM5UuQ0TB61XH4DxlDv7MvQGwMUzR3Ht7RR1jSG1BVleTQEYgtmxCHfteK64M1yPGTML1+jOV/t5yoj5+EqqpErroNo6Qcnn4Uhh+CqP3Y9pChDxwKG98nvvBJmv/6MuXz5uD+k3VeU7yh3pZs+ugJViO/52bkjVeS/OHlVqE2vpfjbSNVPgB95GjkLfdb485Jp6As/zv0H4jpC+ByuYhcdZudrnnomILlkpn3MGY85kn/aY+lE8NGFsx/Nilk/Q70qsm4XC47D+rzT6Ccca71zOsvoGb5wsrYBvSivojxk4j85yyrk/jl72l4tZbiR+/Ff9svEI11pFpbMMOhwu9o8DCrLJ99jKIoNDy7AWPaf1Hy8/NQV78G0QjNodBuGyn3Bj3jkSOVQqnbhmftKmR7hNS2regDBmH2LcH0B0DzWBI0h3CFpKeZtQY67Zyd9G97KWXncTL2HLKIx5ChVuS2rbjWrUZbu8ry/7SnKvTAoShfLkZ7b6Xl9LyhjsRvL8d12yLrQDMg+OifaPnFrUSefZ8I4Fm2mNAffoOy+HlL4qa9jeiDhqKsWIaruZEkwGNvYDx6n6Wm1m4m8NgDhGdfRstpZ6N8WYv79l8Rf+tfiDsehi0fWWSZNM1u0IFwK+Hf3kNd9Q5Ipxt7+G5Enz5gmijrV6N8UYt+xyMY7RHUTR+QHDTUaqylpXab0AcPR1m6CP3I42idfg7uJfcTf/BOfFIQOXYKiU1xjM0b7HTliacXLJf7X/+AN18kedFc2tL5abl/AfK/5yA+/TAv/6qi2HkIPHofLb+4lfD6kNX5PruUxJ034PnZbzAa6zA++xhXVp6V9atRNn+APnce4cY6ZDSCuWUz6rK/oJ8yg/on3rY0w7XVGNf+GO30HxD71e93+Y4E4Fv+KOHZlxGZORvZWI9n/q+If/4J7EcXO3k+sbxeb47BYF9PJxn+IEZpBXpZZZrAQcsflu0SpytTO+auLdydpa6QoFtjQtlUj9z+FcqOrxDR8F53XvX19RQVFeF2u6mvr0dRFIqLi4lGo8Tjcfr160cqlaKtrc0eK/n9fnw+H6F0753x2dzQ0EAwGERVVZqamlAUBb/fTygUorS0lFgsZk/lqKpqqXWaRlNTEx6PB5/PRyqVorm5mdLSUnRdp6WlxZYQmXSz0dzcTCqVQgiBpmnE43HKOrm0ycQfj8fRdZ1AIIDH4yGRSNhTP5qmkUgkKC0ttcamBcrldrsJhUL2ODyTn+bmZtxud17+s1X57DrMDBd8Ph/xeJxIJJIz/rXnr1ut8byiKHb5fD4fLS0ttqHO7XZTVFTU5XeU/Q4URSEQCOzUyXx3IB6P5/jE6lkCW6XG8Pox/QFrKaRL27fHiWYT3TAQ7VFkqMVyYWrsP+ODAwfdQeCeX0qp68hwW8HjKh04cNALjVgOHDhwCOzAgUNgpwocOPiWENh0XMk4cPDNlsBdPVzZgQMH+xeFuJlH4MwcoAMHDnoXCm0fzSNwMpnsVeefOnDgwJK+mUUrnQmc6Bw4e/eJAwcOep68iUQCIYR9AQghkhJ4L9t4lfkzkUiQSqUwMqf+OXDgYL/BNE2buJmlplJKpJQ2R10urUU1TfMR0zSrTNPMZjaKopBKpUilUpZnCYfEDhzsdwghbOJm1nBnEAwGa4WmaZrH4/lQUZTh2Vu2MqQ1DMOxTDtw0IMEzpA4W312ubTmAw88aIVqGEZCCHGilPJtwzDK7V0OWfq2Y9Ry4KDnSZyBpmlNgwd/52UpZa3I7EIaNWp0RVtb64ORSOR7qVSqH9/og88cOPjWkTilaVpzIBCsLS+v+FhKWQss+P8DANDb9GG5OrLHAAAAAElFTkSuQmCC' button_role_mass_mentioner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACP8SURBVHja7J15nBXFufe/1d2nzz4ss7IzyL6KIOKCuKIgmivGLRLJVd8kRjFxu9ctxugbd829GtQYNWpUUFyigEsAQcQRRFAGUECYARSG2WfOvvTy/tEzPXOYA87AgN739u/z6Q+Hnuqup6vqV89TT1U9JRRFoQkqcJUkSTOFECOFEEEcOHDwY0EY2Gia5kumaT5jGEYKQDQRuJcQ4j1ZlkfJsowsywghEEI4xebAwY8EpmlimibANiGk02Ox6C6hKIoqhFilKMpYl8uFLMtIkuSQ14GDHymJDcNAkqS9ffr0GyNLknS1oihXqKqKoii29nXgwMGPD0IIJEnCNM2AEGK0UFX1U5fLNVFVVWRZzkjo8XhwN913KO3AwRHUtICu6ySTSRLJZLPpnAFFUaqF2+1Out1u1eVy2ZpXkiS65OQgSRKpVApN09ANwylVBw6OpLZt4qIkScQTCYy2HNQVIYTa2mElhKBLTg5CCKLRKEYW5jtw4OAIaWHDQDcMXIpCMpXaN4ksNZO2GV6PB0mSiMViDnkdOPgRkblp7JtxX9o3odvtJpVKOeR14OBHBkmINgRWMmxuIRCSRCqdPkwSSGjd8kkMHE6y3yC07nmYimrZApFG1D07cW//GvW7HUjJRFO/48CBAwAhSRiGkbFGQ3g8HtPj8aAoCkIIunXrRiQS6fTMtdxCYqMnEBs9AcPja+4xsv7rLt9CYPUy1B3fIAzdqTkHDpoQiURQFAVJktpqYMvYNq2rE5EYNILQaeehdcsDBAiBFI9al5bGUD0Ywa4YHg8gSA4cQap4CMGlb+NfuxKRTjk158BBFiiHO4P40KNpnDIDwxcAIXBV7cbzzSZce3ah1FYipZIYXj9aXiHpXv2JjxqPlluI6XIRmnoRyAr+z5Y7JHbg4EgTONWrP6HTf2KT17fxcwKfLkGprcrQ8lI0jFKzF8/m9Xg3fk5oygUkh4zCdKmEpl6EHK7Hs2kdQnfMaQcOWkM6XC82PF7Ck85GDwRBkgh8towu/3oDpabygCa6UrmbrvOfwfPVFwhZAlUlPOUC9K55Tm05cHCkCJwcOIJUr/4gK3i2biBQsgSRTLRPqESMnPdew7V7JygutB59SYyegOlSnRpz4OBABDY74TJUN7ER4zBVFSkatsawyUSH3iHV1+D79EOkVBJcLmLHTkL3+TtFvtjPfsOeT/bs99r7znqiv7r1oN5dO+dN9nyyB71H30OWMzXpbFumugdf3G+66K9utdOlJp3dKWXUWVfFkm/sMt1fGm3ksbb84RvvO2yyhG+8j4ol39j/13v0Zc8ne2j8w5wfVZkd6DoiGljrmmtpXyHh3rEV197dcBBrqT0bPsO1ewdIMlqfAei5hUekVzNy82m8fDZ1V/3nQb+jsq4+29rVg0ZiyGgaGxuz/i028VT7d000TvpwzeMfYplWjj8l69/iZ82wf4fT2mGZxgSITZhs1U1lZcb9aFojHA7/f2JCG0bLVNJBXunCXiDLIEmou7aDlj6o94h4DGXvdwhds0hc0BNTVg5ZPhuvPgsDRNvr1WetYcC5lxKLRjv4/tbmzCHK2fyumirIKyDx0yvapDGK+qD1KUbUVnVivp14ATTJZpxwOulUqk2a2ISTM+U/XN+A2VI9pom0ZyeFEwth9kU/rjJrT9s9rBo4vwemoiDFoygNtQjz4DWRsnunPYWk5/cApXMd58FgkB5FRZnXf9+B9G05+PxEolE7bXrSVGqeX0xFSQUVJRVULiglctP935uHPvJY6ua8lfFc7Ne3tV/ITV9ALIpx6vQ2C9pjl/2mJU2WfOsf+oedb0VJBTXPLyY9aWpGushN91O5oDQjjT7y2A6n2S+iEcSuMjj93DbypydNRe9djMgif7Z86+a8hdGjb8bzFSUVhO56IuNbW5ex0aMvFSUV6L2LwevH2KYTuel+jB59qVxVif+pNwkGgxl57l26LSPPfb9179JtVL1W0iZttvYQv+yajHaTrQ72Lt1G6K4nCN31BBUlFexdui3jO4+oE8v0+kCSELpuke8QFoaIZNzW4IbXhymkw26WRG66H6NPMSIetdeepidNpfaux0kPHplhFoZnzKL6gRcOSN6a+54lOXZiWxP9/9zSToFCyJtLYeRYEolMR2Bi5Dikr0shEso0pHr0pea+Z0mceEYmYQaPpOaux0kV9LK/NTxjFkZufkaa6vueQSvs3e4039vQVi2HvAKip0zPdHYeNxmptgrj80/aPBO664k2+SbHTqTqv+a1GZ5Ep5yf8a3NZRw6/sys8oTTGtFkqo0JXTfnLcIzZmF6/Zl5/vdcUiPGZ9Zt7+I2acMzZlFzw70Z5G245o6MdtNcB4nh4zK/YegYolPOtzgUjVK9/vPvHYYdHgILCSQJJBnzUKN7WDubwTQw3R6QOjG0wMVXEl4fytBQFSUVhGfMsrJ+6yV7zWn97N9jev2ItSUtpvYzj0IsijZpCnUTz8iaRePVt2Hk5iNWfNDy3OxLYVcZyYuvIhaLtUtUef1qyG0yo1t1DunBIxErPkDap2OLXfYbK993X88cHmwuBa+fuuk/wzAMEiPHIeJRS6bmNGtLMHMLqO1Amu/tiBfOazGjW43Ro5OnIa35GGmfdpKeNJXolPMtS+jRO1vyXTQfs08xNTfc1zaT1kOizaXW+ydMRt+13TKVd5VBLGr9/darsmrK5NiJljnfnOdpQ1rK7Ne3ou+7FmFzaYZsAOmR42zLLXTJr6yyay3bM4+CCQ033Zv5vr4DkN5rqq8JhXb0jQ4R2OgET5lIJcAEw+fD8AUwhXTQ79KDOZYCNwxEKmkPDTvTk9cGm0utCrz3Rvx+P9rIYy0z79syzAtPxOPxUFRURNFzD6G+O79Jk5xCKp3OHAIDqaGjkLZswPzF2fh8Puu5tcsJvP0y+PyErv1Du2R1PXoHIt5iRptA7OwLEPEo2mN/RG5FABPwP3wLwTE5mNdeiDLndXxPvYn6xqcwdLSVJtiFeKJpZsDrR/xiNu4n3yD/jHMpmn0BnuFejD/d0LE0B5BfrF6OsmWjbUabQOLcyzBy8zFWLUfZp6EmjrMcTsbfHsH11/vp2rWrVXZ/ug7p23L006YTiUZb8thcCrdeRTAYpKioiG5vvWjdD+SQTKUQkoQsCRDWtryioiJ8bjWjzBJHW1aS+cJfkJ+818ozEaLgF2ciaqswh40hFA635BmLwrQxqKpqyybiUfAFrEgaTd8nFryKdPsvbdmKnnsI14r3MYeOpn7I2Iz3GddciN/vp6ioiPz8/B/GC+3a+x3CNDG9frTCXpjSwWejFfTEVGTQNOTaKoSmdZ6grXvFJq1ITRXMuQ/16Qfo2rUrPp8Po5u1iMQsXYvL5aJr164tY+g1K6wfA4eR2md8p4+agOn1YwwZBWUmsY1R9pZUsLekgsjs39tEaq8Wdm3ekGFGxyZPQ/78EyRJQslimcTnl0CZiTb1AmJTzifVyoy3/DgmwTeet36PO4HkWTOofvodqhaUovzfp6xG7vO1K027ZhU2rc0wo+Mnn22Zzy/+Bdc+8muFlonP3X8hvSVFw7p6u+yMPsXg92eW2/YtqKqK32+Zs1JDXSu/bPt8MIYvYP1Y+CrBYBCPx2O9S5Jw7SoDn5/Umee3PFBTiSRJdO/eva3haJrovfpZ773oCoxtOuH1Ifsb0mdfYGnr/oNatHA8iiRJGePxH2QM7Kr4tmnaSJAaNCJjjNARpHv0sTzaJmAaKHt2ItLJTndiNWvFrndfB34/PPAMvpPOtCuwNVR1/4tJ9p2+Mbq3Y/VYICdrvKNs8JUssc3o9KSplvZauiCrnKG7nkAbPBLxbbll2i2ab1kVTWZeM9wLXqbLVdMz7hu5+URmzKKmaWzfnjTtkv/lJywrosmMTg0dg/ThImRZxrVPJ2+TaX/w+jH7Dc5sdy5Xp7WL/dWzYZgZ9dw6jlybtIGc78+oa/cWAkcjHQ4oeVgILNfXoO4uB9MkOXQMyWFjrGmljs59jhiH3qU7GAZybRVK5Z5O3ymVoSG+WkvgtWfB56fhzsfsgpXqa6wEo8a1eSbZZOqx7eu2HdlH71omVetx0r7X7IvarSE8L8+xCHDsyUROm25rr2wETow7yXLCTR6A64bL8N/y7/j//ihKz7ZOJ+9Xa8m/+xr8owItY7lYFG3ciYRCoXan+d7GVrEL+dtyOP5UIj+fjZGbj/n2K1k1uFq+xfpx57X7LTuj7GuMTtwzLsWa5p+nX9zWEux7FMSjsGhe+xXZlg0Hnq4cIOAv92TUv9RBa/WwEFikU3jXlSA0q6eKTJlBuveAln2/7SHv8LHER0/AVFyAiWddCVK48bB7oAN/vQ95ywboO4C6G60pAXnjGuTvyqHvAOIv/KvFUfTr24hO/ak9jZNNA7g2b4Cho5HmzLc0fVERBWMnoLy/AcpMut54T4dMJve6T2HiZFLjT0L67GNkWd6vtjC9fsS1vyc3N5dgMIj+1D/Rxh6fkaZqQSlVC0oxTpluWyO5K96zOp54lEQi0a407dbCq5ZB3wGkpsywxrIlS7J2QO7VH1k/rrqBnAtm2WWXc9djiE0R5BVlFBUVIXVivFTPl6usH5dfS+Rn17R4859fbI1ld263zOl2anr3gpeRaqvg3EtQf/9f9jfkXvjvyCvKEJsiFIydkPX7f1ACA7i3lKJu+woMHT2/B6GLriTdf5Dlnf4eJAeNIHzKdAx/EIRAbqzHW7ramlI6Auj+yO0Qj6JPv5jwkKMtS+fxeyAexTjmBHscE7p8tkWSFR/AS3OyVmyXJ++1npv6U/u5qjdWW+bt5g00PPL7DhHAu+J9yC3AzC3AeP+N/Va+Z+1Ki8Q33G3nmzGl1GTe+T56FyM3n9oHnrPT1T7wHGZuAdLShQgh2pWm3QR+6l7LMhg6CrFqGc2HCbTp+D5+D3XlYug7gNBDz7cpc+Nvj1JbW9sxxRKL2vPAicuuyWrhKF98CnkFxK67M6OuiEcx774epYPrEAKLXrXGzv/+24yy03sXIy14lZp2TBX9IAQWqSSBpW8jN9RZq7P6DaJh1u+InXimZRZnqXS9Wx6Rk86i8ZxL0bvlWWmEILDkn8iVezhSkDeuwffu6+DzE/vPB9B1HdfH79HlzmsQTdMTlhOjCl591vYwZ9OE8sY1dL/uEmv6qTUWzcecNhpVVTvUA9u9+q4yjAVz9/tszl2/QXnvjcybH31gjYMBjhqCYRgEHr4F1+t/t76lGbvK4JlHMW65Ep/P1640HfKRbN4AsSj6kw8c8Nu7/8flKPP3ybdphsD8x186ZLkABBb/0zKDgYaRx5LMsuQ075oZVp6xlgU8rC2BK89D+mw5Xbp06VCevqfuxfPYH+1prdbtRr/lSvx+f4fN5gye7RtSJycnh2ir1UeHiuSQ0YR+egV6UW8QEhg6rh3foHxXhlJVgUgmMBQXWn4PtLxCtO4F9jJMhERwxbv4SpYgUp3rvEokEjQ0NBAMBm3P5b6IRqOEw2FUVbU9jel0mnA4bHucZVnG5/NlvKOhoYFEIkFBQYFdObquEw6HM7St3+//3kaYTqepra1tk7a6uhpJksjNzbXvhcNhotEoubm5tjXQfM9uUE0dTUNDQ8Z3RaNRYrGYPe53uVx4vd4McrYnTTZUVVUhy3KGrA0NDaRSKfLy8uwy2l+d7Juvqqr4fD6b/Psro2z3E4kEoVAIwzCszikQoKqqqs2z0WjUCqvcpB09Hg/BYDDDWsj2Xfu7n0gkiMViB2w3+3tfxvx+LJYRUqctgQMBou2c1mg3iYcdTehnV1ubEUwTDB00DXQNUqmW/zcvuRQCkU4TXPKWNZZ2onE4cGAROB7/nphYnWpHC5KDRxI/7lRrPGu52bBzbjajNc2637SRwr15Pf6VH6B+W26R24EDB1nRhsDNK7EOFele/YmeOp3U4FGY/gAoTQ4ew0DoGlKoAZGIQTqFiMeRQvW4vivHVbYZ13c7EKmEE1TWgYOOEvhQYSou4uNOInLKOZj+ILhcoGtI8SiuXdtxbynFVbYFqb7GmmYyTWt86wSSd+DghyWw4fERnnI+iRHjwKWCaaJUVeDZuAb3+s9Qqiscojpw8GMksOH1EZp6EcnBo0FWEFoaz/rV+Fd+gFxX3bnElSSSw8eSLuqNSMTxfrkKKRJyatOBQ+CDCexuulQip/+kibwyUiJGYMk/8ZSusaJpdLaZLsvEjzmJ5KARoOuo5VuPyCotBw5+bOiUhRzRE84gMWK8Rd5YhJx//gPv+tWdRt7kmOPQu+baXmuRSiGF6kHTEIlYRrRL0+Ml3bMfpup2atfB/z4N3O49s83kGjyS2LEnYyoKQtcILpqLuv0rzE4K6JY45kQi589C2bODnJfmIIUbSfcfjJZbYK/USg4chtRYi0iliI2fROy4U/F9shivcyyLA2cMvH/oOV2JHX8GpttrLXlc/BbubV8dVATKrOPqYBfiJ5yO4fWRKh5KdMoMDI+PdJ9iDF+wSeP6iJ55AckR45HrqkgNHoXhCxA7eSpK1W7Usi1OLTtwCJxV+w47Gq1HH5Ak3Ju/xL1pnRX+prPs+3AjvuWLiJztx/AHrODucovIQtcwFRemy0V64DDSDG8yIwzcX39pbT904MAZA2fXjonRx2G6VEQ6aQVhT8Q6XUD3xrUEFs1FikVs8sqhBryfLSf49ksEFr9lBRCQFXC7we3Gs/4z/B++gxTtWKxffdQE6l5cStWqSqpWVVK9rIzY1Xf8j65gfdQEal9fhdmzH4mZ11K9rOyIy1D7+ipiV99BYua11CzaeETzDv/xSeqffBt91ASqVlWij5qwX/k6O9/Gh1/6sRJYkOpzFHpeIQiBp/QzlKrDt9leK+qN4faCaeLas5OcV54guOAVPOs+wbd8EV3/9iDetR8jJAlUN6bf37LyqwNo+MNjSFUVqEPdMEBgvjOPyIVXEI/H/8cSOD1mAkZuAfUbv8D9j8fJOaEX1dXVR7YT6V1M/ItVxIt6I3Zu6/A2wENB8A9X4/r56TSOsALz1S5d2CYwnS1fJ9ZzungwesV3hz1g/EER2FRVksOOxpQVhKbh3rLB3rzfKRAC0+3FdKkY/iDJoWMwVTcilSCwcC6u78ozOgsRjxJ443lc35aD6iY1ZiLpfgPbtfe4tabSexejr1mJLMsUFBRQ8OfbCEwsIhKJUP/k29S+vsrWztGbH7QqavK0jPvNvW705gepWbSRmkUbqVpVSfiPTxK9+UFbs++rCdKTp1G1qtJ+V+3rq0idN5PqZWVUraokMfNaAFLnzbTfWb2sjNR5MwGoXlZG/ZNv23LErr6D1HkzCV1rRdPU5n5Ew1PvkLr/OfLz821ZmvPSR02wZWh+T/WyMtKTpwHQ+PBLbb4xo0307JdhvTRr/ebn9dLPMY8aiqjak7Gndt/vrlm00S6bbDLuT5b05GkZ5dKcb/WyMpRf34K7TzHSrjL4y2vUrqmh7sWl9nPN8nHRVVnLtjXqXlxqp4ne/CCxq+/I+ozepxh270SW5Yx6ac7X7Nkvo90crAVwUATWu+aS7j8YZBnXrm3WIWSdeIyIHuxCeMoMGn96BZEz/g3Dn2Od8lC+xVoUko3z6RTutSuRkglMf5DYORcT+vl1hC6/rl15yhs+Q125GP36P5J8fxOND79EevI0fD4f+fn56H2PwjBBOWskvPos0QtmEc3tQeN/PIhr9Ucog13w6rMkTzrT2m44YAgmJuK3P0N67Tnik84i1ViP/5yjMb1+6o47NUMTpCacYn37048g/+4y9N7FhE6aQpcTe8OuMkKjJhAfPo7G6+/G++S9yIMUzHfm0TDzGmInnW2RdOsm3MM8sLmUyHGT0V/9m7VBfdF8uPBE6wzm3buou/F+4qdMw3vj5XDaEHSPn/rzZ5FoOnok/dZLqFNHYZrQcMxJRC+7htS4E/BMGwN3XkvypDNpHDo2o/xCN/wJTCzrZfal6L2LqRs9kfTwsVZo2B1bMfoOhM0bMrbkpYcfY333+2+hnDUSwzSpO38W4ZsfyCpj7LJrs8oSmn0n6vJFVrns3E79OZeQLuyD6fUT/nQ5ieLBGHmFKIvfxvOLs9EGj6TukqtJDz/Gkq+oN5Eb7mlTtm0CFfYphp3fIA9SiC5/n8is2SjvvGI989V6GmZeQ3zEeEyvH33BPBJz3sT0B6x6OW0IWvcC6i65msivbkFEo3a7iZxz8UFZAAdH4NwCTFUFISzTuZOnaky3l9SAoaQGjiA9YIgVD1qWUWoqEQc490euqrB2L7lcpIeMJnHy2SQmndXufLveNBPvCB9G6eekvH7qH/g70cuuwezZDyM3H+nWX0L5Frov+aelIbrkEvzr/STze2AsWAcXX4morSIej2PkFyJ9uBBWL8MtS0i1VWh/usGOXmGuX5PROIxAEHndp/DSHLxNGsq46zqSySSyJJAqdxO78EpMr5/oHX9G/0az8vMHiPfqb0W5uPUqXC4XrngMqXwryWQSo+9AlMrdeIeOxuxTjFm6Bv20c5CXLST1zit0D9Xg3rwes7AnaV+LDL7K76xp99070RvqML1+Eq+X4J7yEwI3zSK54oOMDijwwmOYVXvQnl4Aj8+12snWTaQKeyOq96IMGmEF4SvfmhG5RC/qhfLxv+DeG/Hu3YV783oIBEmcMi2rjKn62qyyEI2SuOAXmAu/wL/pC9RfnkfktOlWuXz6IeQXIX24EHPhPHwb11j1EcghWdgTUb0XaebVWcu29TlNZs9+mF4/5vOPoygK7ouvQPniU1L3/M7aW7xxLeQXEhs53j4UQJt0JtrgkSS/TsCHWyCvACPYBT0cQhsyEn3pVty9+uKfNaXd0UkPmcDpXv2b5n11lMrdiE4e+wpdtzfwi3jMmu+V5O8N7G56vCDJTekl6xiWDo6Fg8EgBfdci3fWmYhvy4kW9CI2YBhSbTV6yRK6dOmCNmaCFQ9q/ImErr8bRZKQPlmKtK4Ec8c2ZFm2jvHY9CVerxcCOYjqvVb0xRFHWxltWpfRkNPFgxHbN+N2u5H6D7Tev2MrgUAAI7cAsXsn5oDBVrSIVkHRzGMLMXv1Q9pVZoW/8fkw8gsRkRDygKEWadZ/hhg2psWUzS1A37gOr9eLoiho/Qcil23BaCWDq/8gK5rojm9wv/k8wSvPgTUrSfY9isjDL9Bt1Dhbk+qjJlD32DxkYXU0dkSLVR9iFPZEbN+MGG59t7FgboYG1gp6Ir75Cq/Xi9frtWSp3LNfGcXcp7LKkjvrdOT5z2Hs3UP0glkY//UKau9iRE0VoniIpTmb6kPuexRGbgHShs8xCiz5GDAke9m2atvJ08612tnGdVa88P4DYZtVXl6vF72oF9KuMoyefa36mDTFenDfYHx/ugH3Pdfhued3mGVbSR5zArGn3soanvbwaOC8QpCsVVfWOmejUwksherp8ubf6f7UvQT+9aYVLVCWSR813Jpz3l/HMmSUdayLYeBd+jY5T91HztMPfL/G79kvY1wL4D7nIsgrQP70Q1ITT7E08LmXwtHHE/23mbgWzYfxJyJ9XYo2y9LyxjEnIFftQZp+iVVOKz5AURRSI8Yitm9GlmXLZKutgh1bMxpy85jJ5XKRHjQC6etShBAYo4+zYkB9vhIRjaBPPAX/sDF0u/AXiE0Rcm64G3nQcEQrzdbcedBEWmPDWhg13jZlmyNbKopC9OYHMXIL4J25mP0GtMgwfpJVNgvnEV6yFWPaReTedBnK6o8gFqU+HLYbd/Ikq6GmZ52F/OmH6Kedg1RbhRACfego2L0TTjzdyh8yxsDa0FHoR0/IlOWZR/YrY2rlrray/OxqqpeV0X3uU/gf/E9EbRVaYwOJgh5Im9YhNUUT1a+9A3HsydTf/xzKlo0YC+ZiDBsNu3ciYtnLtnV0DL1HX7sMZVlGqq5EnzgZl8tF6ryZJE4+C+X9NxGDhiHKtyKH6q0Hb3uEgoIC3C/+C3lFGbmnTye8PoRHlul6/SVIm0sxo2Hq6+s7gcDtOJ1Q75rXtAFfRyTinX4Cm0inUPZ+h1K1B3X711YnIQTp4sEkjjvVWia574mIxUNIjj0eU0jIe3bhWbkYT8kSPCVLvj+/3TsIvPAY0ak/tZ0Kodl3Enjk9xgL5iIFuiB9W47x369Q+7cFKJu+wLjt/+D+YhX6McdjbjfgxDMQtVXooUYYNd7WoC5FwcgtwPxuBy5FQS/qhdi5HVmWrXiKpmkHgNfLtiBLkqWVKvegqirpJm1vfvohgbl/BZ+f6KIvqX/g77gXzSf85z+g9R2AGW5EURTSJ09r6Tyaw+G+9jFGjyZTVlHwv/YsnHMhDevqSRx3Mu6Hbkc39AwZ0kNG24TzLZxH9IJZ1K6pwThtOp6Hb0fs/MYuP/dKK1Knud1Au+FupJpKzGgYeeBw651rPraskB3fWORtes7s0dfqnPKKCK8PkTjuZDy3/xp921fZZSxZgndBFlmefghRU0X1m58RXfQlyq4y5Dt+hdl/EIRDSKOPtb5l6QLCzy7CNE3Eby/FNXikLZ/n5Sezlm0ykbDl1ZrMbUVRENBUHwEipWEar78bddF80o/9EfJ7wJ5vURe/hWvlYrjqBqpWVaL1H4hy+69p/Oh91JWLabjtERrW1SMKilDvu9mKstHB0wnbhNTxer3fO5iuvel+jC7dkeur6fLi48i1lYd1m2Di2JOJ/uTnVmhPwPvBm3hWL0eEGyxiDx1D7NxL0Yr6gBB4l7yNf8EriFjHzplNJBJEIhFbsyiKgt/vJzpvJZSugdt/idZ0MkRzPKNkMmnHRVZVFV3X8Xg8SJJEJBIhL88K7l5TU0MwGMTtdhONRtF1nZyclsDfuq5TV1dHt27dUBSFUCiELMt2HuFwmLy8PDRNIxQK2eNPv9+Pz+ejrq4Oj8eDz+dD0zTq6+vJy8vDMAzq6uqQZRm3223nm0gk7CmO5u+UZTlDhlgsRjKZpFu3bhnpZVkmEAhkBPHTdZ36+npM08wI+ZKTk0NNTQ3du3cnkUhgGIYdeyr1k58Tuv5uzBEBy0zWNBRFIRgMoihKVhlVVc0qi8vloqGhwa4ft9tNTk4O9fX11rBEkojH43b5q6pql3+zfKZpZi3bjPndJsuj+dnW9dE8hPH5fNTX1+P1evF4PBmx0BRFIScnB1mW93v/gIunkskDx8RqN4G75qJU76HL3/+MFGo4bOTVCnsRmzKD9NAx1hEnbjcoLqT6GpTdOzACXdAKeloWgWmCEKhbSvHPexplz85OkaFmeTnyXx/C/ezDHY7A6GD/iP7HQyQmnIx5ylF2R+eADhH44JZSNjmJhKZn7ATqbBg53YicP4v0wOHg9iBXV2AU9sJUXBi5BaS65bUExzMMRDqFKSukhozGvHw2gZfmoHxXfshy5J1STE1NDXIHw5g6ODD8D96MiMVIHsSpHQ44BAI3L7ZwqRhdc62A2RmLJppPl2/174E6A123HFX7muGGbu3zFQK5ag/BeX/F9AVIHH8a6dHHYvhzEIk4ru1f4V6zApGIE/3JTPSCntY4Weq8sNeOhjg8aDY5HRxJAjedRasX9CB0+W9BYK1FBssj3awVtabL0FucY9k6AkUh8P7rqDu+yfBoS5EQgYWvIMWjuNevxlW+FQwd5dsywjndSI04BrlyN/75z6J8a63xNV0qyQmT8b03377nwIFD4H21JmC6PWi9+1uB65oJbBM3Del0y/9N44COrtip01HmP9MmsobUWG85pJoC4FnzFSl7LzBCWB7fJnhWL8e9frUV8dKJv+XgfxOB233M5cfvE590FqbHZy2UcLmsBRRNZq8VqF0HPW3926yBD2BKaz37kRx6NJ4vStqsq26zKV8IRCRkmdiJWOYxLbqGiIadmnXwvwIZXmiwjpBIJpNOyThw8CODYRik0+kML3QbL4+maR0+ZNiBAweHH81z3BlDzH1vpNPpQzotzYEDB4dH+zYvFtmXwG22Eu27hcqBAwc/LHlTqRRCCPsCEEKkJWBda+dV8x9TqRSapmEYRrudWw4cOOgcmKZpE7d5uaUkSUiSZHPU5VIbFNM0XzZNc6Jpmq2ZjSzLaJqGpmmYpumQ2IGDHwBCCJu4sixnmNDBYLBcqKqqejyer2RZPqr1Qupm0hqGYR9y7MCBgyNP4GYStzafXS61fuDAQe8qhmGkhBCnS5L0mWEYBfYuh1b2tuPUcuDghydxM1RVrevbt/+HkiSVi+ZdSCNHjioMhRpfiEajx2ia1o3Dffi3AwcOOkJiTVXV+kAgWF5QULhVkqRy4NH/NwB4v8twTp6sBQAAAABJRU5ErkJggg==' button_vc_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADM+SURBVHja7L13vF1Vmf//XmvtdsrtJfemVxJSCSE0BSlBEAEpAjIW9KszzIztNzPqVP2qM+M485sZUYdRx8aIisgAShGpgtQQEkIKaeSm3OS23H5P222t7x/73JImKqHOeV6vvJKcs/c+e6+9Ps/zrM9TlrAsCyEExpiTgGullKuklDMBj4pUpCKvFykBu40xD0op/9txnGdLpRJW+ctzhRDvE0K8RSk1T0qJEGLsTANgTGUIK1KRV0uEQBz8iQcs0ForIUS1MeZ/tNZ3WcB04JNSyosty0IpxUQAj/1dGdKKVORVk1FzacqGcxSHWut5Wut5QoiZjuPstIQQ1wgh3qqUYiKAR0+UUqIOscgVqUhFXmEAG0OsNVrrgwAspRz9bEU6nfm/wnGcp5VSp9i2zeh6WAiBZVm4roul1OgaeQzUFalIRV5xBGMSi0sQhoRheNghlmX1CMdxSo7juLZtI6VESomlFJ7n4dg2CIEua4IKfCtSkVdPZBl7YRgShGGCwQlG1BiDJYRwJ655pZSkUikcxyEMAvwgQFcsb0Uq8pqJkhLbsgjC8DAvWI66zKMAdhwH27YJw3AMvKZszitSkYq8il50+W89gciaCGAhBHLiCUIIbNvGGIPv+0RxPPZ5hcKqSEVeXRETXOWjGdCDAKzKhFUYRcRaI6WsjGJFKvJ6ssqHkMkHIXQ0fBSXqeuKVKQir28AW4ceoLWGCoArUpHXLYAninXULyvMc0Uq8npD70FYPYzEqkhFKvLGEuv1eFMiihBRCEaDstCWDVLB7xPMMgYRhog4BATGtjGWRSW7uyIVAL8SLoIx6FQanclilIXwS8hCHhFH8FL52MaUQS7GjjVKEWerMF4ajEHmhpGBX3nzFXnzAtj8frbuWCAYBPgt0ygtWk5c04C990Uym9aiBnsxynrJ88VozEwIMJo4laU0fyn+vCWIwCe1/knc3TsR+rdQCBWpyOvJvr1uLXAcI+OIuLqO4rxFlBYsI2qeTOyl0a6Hs283Vm/XOIC1TqytlOMgNAadrSbOVKHyOdTwIBiNSWUJZh6HP30uwi9ipMQaGsDq60mucUxAnCgLkRtCFoto18NU1YBSB5OBQoDWiGIemRvBeB66ui75PPARgY8oFRDxeBTASInxUphUGn6TAhMCwgCZH0GE4UGRBKMUWDY6WwWWXSEoKy70sXOZhdZoyyJoaiGYfTyFxSsIW6cnE1AI4pr6ZPLqeMzFRkqMUslELU/GuLaB0vylRI2TsAZ6cbdvwu7ZjwgDZLGQVHd4aYJZCyh17Ca97snk82MBYBOD5RCufBtxfSNWdwdqzw4IgkTJjIrWIBXxzPmU5i1ADQ1ivfAcopDHVNUQzZhHNG0WVFWBEYBG5AtY7TuRne0Q+AkAj4Rfv4RJZwkWLieub4JM1fh3I0PI/gNYO7cgAh9jO5WZ/6YF8ChIXg0tbQxGKaKGZgrLTsVfsAztphCBD0JgLAsZ+AmhNXq8ZRFX1WFSadRAL7JUQEQRYeMkCktOJmpuReaGMUKhhvtRA714LzxH2DyFqLkVBJSOX467azuyuHdMUbxcD8JkPIqXXUvuoveQeeQXZP/9b1Cd7QeDJQqhOot//rsZ/Phfkrr/Hmr+758ghCCet4TSmReQv+AK4iktEAA2yN4BsnffTOoXtyLbthz9vYQB0az55K77a0rzF2MamkAnzoHs6cTbuoHsf3wRa8fmoyqBirzefWhzmNdovVY3IgIf46YozV1IcdEKwqmziGvqkYU8YJKJL1XZTU6sl7FtgplzKS5aiU5nsTv3kl7za6zhAaxRckpIdLYaf/Z87I7dpLauxz7QibtrG3FTC8ayiJonE0yfg9XbjSwWMZZ6ec8jFaJYwLvzR+QueDfFU85EVtWR2b8XicGUSTVRLBC1TKN4xtshBv/WG8l3tGO9548oXvPH6Jap2OueRF9/N6avD+ob0asuJXf+5QQLl1P1rS9jb1qLOYTQE8UC0fHLyV/7SfwTTkU9fj/R7T8AnYBdX3MdxVPPJP7IX1Lzn1/E3rMDow0yP4JxHIiiMbfdKIlxPUw6mywBtEb4RUQ+h4j0OHkvwDguuqYWhETkc8n1bBsQiDAADUYJTDqLcVzk8AAiistjJtBVNZhUevxcy0quVfKT3xGg01mwbUQhhwhCMGAsiclWJ8QkBuIIOTyYfD/2TgQ6nUmOsWxEfgSZH06WYUYnzyIhrmv8zUuTigt9iKsXRRgpiBom4c+eT3HxSQQz5oGysLr24e3cTDB1NmHrVLCssgsqyq6zIm6YRGnRiRjHJWpqQY4MkV7/NFZvN+6Lm4ira4nrGglbpuLPW4SzfzdyaADvxc348xYRTZqMcVxKC5fjtm1DFvYCLxPA5fWnvebXpO67g+JVV1I4bRXu/j04hSGwHIgjTFUN4UlnECw8AfnsU+j77yCetwj/yg8TLF8Od96O+4Ov4z39yLiu6+0mzPw5pbPfhlx3FtmNz6IOXbv7RcIFSyi+/Z2Y7TtQX/0Cqc3PIcrEh4gjCguX4V99CYX1T1K1YzPR0pWEcxejDnSim1rQTZMQ2iB6OrB3bUft2pYAW8fEU2cTLDsF3TIJESfrfXIjWHtfxFn7BEZIwoUnEB63BNXbBY5HNH0OQmpEby/O5nXI3m7yF7wb09CMiAIY6MN97ilU517C4xYTzV2YgFBAuGARItQw0Iuz5XnkYD/+ORejp8xAECK7urE3rEk8HJUo+dKqdxFNn41wvERZ9nZjb16P6tiNyI8QHreY8LgliaLIVqGbWpB+Ce+hu2B44A3LC1hHY6BfqccxyiKuqae0aDmFpScT1zcji3nkyDCpTWtIr38SffYlRK1TE22pFEaI5H6iCJHLoQp5YmWhs9UUl52KvXcnTsdevG0bCKfNIq6pw3gpgumz8afNwdvyHKq3C3vfLqKmFkQcE8yYR9AyFXWg49iQWVJCJkv2rh/jn3ke8QWXEz55P/aWPozlIHyfaP5i/Ldfhoki1EN3IjBYF19DYelJyBe2oL/8GeK9O0nV1JBKpxN+YP0TFP8rYjiVoSAEThjiyYPvVRiDth2MMLB9I/GOF0i3tJLyPIRfRD5xH+YXt1JqvJZCXROuNoRvOY/hT3wW95knCVunoVtbIAKZGyTzyL2kbrwetW8XcUMzxVWXkr/6D4mnNEPJgJIgFd7qR6lp24480Elw+nkMffyzuJvWQqGAv+QkqPaQg3mqfvwt7CcfZOTDf0E8eQakbRgpUvvPnyb90+8QrHgrwx/7LPaenagDXRTPOQd8CSam+ub/wt66gfzl1xIsXgH1Hqqjn6qvfo7Urd8HyyKat5jcH/0V/vIVUIxAGcTwCFU//zHebd/H3rQO/6QzGP7zf0Tt24VRNnrKZMTAIPVrHsceBfDrPCoxIUg6Pu2OjVkVEMcIv4QoFZNJUzr0TwERBoStU8mfdg75E9+Crm1AjQzhbttA9rF7SW1cgxgllqRKJoqlQIoEIFGIvX837vaNIJJJFDe3EM5ZgPZSqANd2Pt2I0t5sCx0TT3htJkYx0WEAfb+PchSMbm+myKeMgOdrUkIsmMxBlqjtj6H9fwamD0fv7aJOI4RUiAKOeKaevxlp8CLW4hv+2/cTIZw1nEIR6K3PI8VlMi6Dq6XdPQ1QiCExG17geov/RnqphuI/BLmkIlmLBuraz92Rxecfwnin7+L/sAn8C+4EjnQhygF1H7vX0ldeS76+9cTBGHyzA0Qzl+MfOph1NVnwwfejo5i8he+i8Lp52F0TP6KD5H7xGdR2zZgve+dcM3Z8NGrYOsm/MUnMXTFhyCTRcQR0vcJ5i+FbZtwPvB2+Ks/Redy5N71XvKXvp/MPbdgXXse3PhNsB1GznwHQctURDGPcVzCeYvQBzrx3n0O/NGlMDRA/rRzyb37/5B66E6c958H//EV4kw1+be9E7+hhXjSFAb/5t+JJs/A+tlP4X2r4KqzMXvbyF31PoqnnJW45qEPaUXc1Ip4+leoq8/GfPgiBl94nih644YUj40LHUfoqmqiuqZy6GSUGJowKDpGV9Xizz6e0oITMK6L27YVd8dG7PZd2Ac6EaUixrIQOk4AbNmg7IP0jNV/AG/Lc/jHLSGurUfbFv68JbjbN2Pv34Xd3oY1fylBXSM6W0M4dTZxQzPWgS6cfW1Yw/0EdQ2gLIJZx+FuWY8c7DuCbvs9ZWSQ7E1fZ2D5KfgXXknU9gLW/j3o1mkEZ15AnE2j7vkJpqeTVOtkcvXNGAt4+lGcUgE3m0UpNdbMDKVQuWFSHU9CrJE1tYdNNuOlsF98gdSNXyc+/1Lit6zCz49Qqq4lmjkXCiNY7btxH7gb2bkPBwiNgRj0jhcQP/oG7vrVydN/91/J/+3/T/GCK3AfuRt79zbkT76Nvu2/cdY+hVceJd06jfw/Xk/p+OX4xmDCAKFjdE8X8SP34j77OE77LoJzLyV45/n4az3s239Aqm07ZqCP4qqLiRetwK9tQBQKSEuhd2whuuMm0s88jnJsghe3EJ58JvGvfoH94J2kXtyK7aUoXXQN4dxFlJadgt06mfCk5chbbkH+82fwOvZiAfLLnyb3jVsovP1y3EfuQRZyyWzv2gc//ubY82rHRpB6k6yBf0/2WYQBUfNk8iedgRAStEYreRAghNHo6nqi+kkYJXF2biG95lG8F1+AKMRYNsb1EtIkKCWT1LITgkGIBF9lK2x178fZu5NiXQPCGMLWaUStU7H6urD6urEOdBLOmINxPeLGFqLJ07G6O7CG+rH6eghnzMMIiFqnEzW1Yu/ZUVY66uWPqJsi9dBd5J99HP/tlxI8fj/u9i1EZy4nOPti2LIZ8cvbcaQc6zmGAAZ6sYxGSOewihNj24jaBjJSJHHhQ1+R7SC62vFu/gbR9s2U3n4ZUdMk9MITCC+4ChpqYDhP1aKTyNz2few1jxNKCSPAo/fB+tW49fWJy33j9fhXX0e08ARKLdOoueVGzG03MeKlEdNnka2uxjgeUX6IfJiw337JT9blrgfPP4PZugFbCNJVWfJ7dhDkz8ds20TYtp1sYyPOzk0Evd3EM48jFBIZRQhbwtonME8+jKquomrSZIY79xHaEvHwPQRd+6n2bFJRQNzdQdwwiWDBUuK5x8NIhNi9nVhrUstOwvM8rL07KLW1ESw/ldKs+YnnJYG2rZgJz5tE9/SbBMAvg5iK6xoJ5i1OYprlxIFyR/gx9xIMWAq7ax/p9U/j7tqWuIO2c5BVkaUiUmu0KgNYyrFVuZESggBn1zb8hSegHRedyRJMnYXTthU5PIjV21WOi1ZhstVETa0YK7Hiqr8PEUcIKdHZGuLGFoyXTsgNdWwGVWezpFf/mvCM8ykuPZnUHTcRN7USNbYg7/0f9N420tXVGG2Se4nBLFiKfGEtojB8MICFgChG5IaS56+qKeeFT1y+RIgwQEUR2U1rcPbuoBQExLZDGITwkb+Ak88gf9HlxFFE9a6tiCgCP0b6BVzAdRy01ohMFWJkEJhJKQxIA9ZbzsU573IQhpGqGoIlJ6FbJkOYJNQkNaoky5rAx7YUjmejpUQrK3l1loXluSilMI6LURJijY7jRHmaRBHZgOd5SQM3pRIm23LwMllUXmP8UhKOM0n+AJ4HaYv4jz4NH/wEOcsiLyQiCohba8CB0EsjS35C6ikLBXiu+4YG7hEB/HuTV1pjbBdTVYuJIqzBfqwDHWA56FQq+T5bTVTbgFESq7cTu2MXspBHe6nDXEKhdQJaSyUu+cTvpUSEIVbHbmR+BJ3KgFJEk6cTpzI4vd1JfLhQQE9yMek0cVMrJl2FKBWxDnQgS0V0bQM4LvGkVuJsDXJ48JiFE4ybwn3wZ1gXv4dg0YkULroGTj4L3dGOdefNWFGI7bpgYtyNa/HPPAeWnwZ33AjDg4i6xkRRxTEyN4SubWD4U/8E6SzZm78FBzrH4tci8NGTp5NfdSm6qob0nT8ivf5ZpCUxkSYCxE++SbB/N6VP/QOllWfgNLYkQDACEYWJy6kUOkrCMcZxEEZjDnSRP/Us+MO/RE+ZQTzUjy4VMc8+Sew4cPF7jjgXpBDj3VxG350QCCknZM+VOfJDlJUElFREh5wrlUJIiRmrV0+iEsZLQxjDU7+C9U+jyyw0pQJ07wNtCJ9bjTr5jMSRK7eHklISx/GbC8Avl8AhjlGFHN7mtXjbnse4SVGCiEOC6XPRy08jdj1UqYCIwiTWewTyIAGwSMCrDuXZBOgYOTKE7OuBplaQkri+GV1dm6wZhwZRuWEipRI3uqGJuKYBq7gXdaADWcwn8UYpiZtakvPa247hqFrI3dvwfv4jwis+RPHDn0Cla5CP34/c+Cypmuqxyeg+dh/ykj8gXnwiwSlnYz/1AHapCKViWcFMwz/9XHKf+HPoGML6yXdwjRlfnJT5gtLpq/DPeQt4KVKD/XhD/YmyEwL272a4ax9BLocu5PFLATIKIS0xc47H1DVCPodQimD5aegp02DvTqRfonTFtegLz0HedT/y2SeQxQJy8zqYPpf4Xdck1vPQuYAY976OlIzwUkzrEY4xE5MYhABlIfsPIHe8QLziLbB+NfJrXxyb0BqIJk1B6Bh7sB9SaWJzyPXeBHLs6oFFQrjIUgF3zw7s3i7srnactq04O7di9XQkwLRsjO2WyakjD6LwS+U1qSz/EYdNEhHHWAc6EXGMEBKTzqLrmtCOhyyMoPLDCKPBcdFVtejqmqQaabAf4ZczvaQirk6yusSxdKeMQdc1kr7vNpyudvTKE9BxjHz2CQTgeKmxCSl3bsZ+5lGoq6f40b8lOPdSTDnxwHhp/AuuZOSjfwcjoH54A8PbNhKHwXi1leuhXtyCe+8tMKDJXXQNIxf/AeSGMWGILpUIl6wkuPgaTEstrHsSs2tbkuNRA/rMdxCvugSRz2GAob/4J3RrPWb1Y4i6Jpg2GyIwD9+N/PoXse/6Eeb4ZZjrPp2g5LXCgeshdm3HvvtmUBLxrvfifuCj1NdU0aAg86FPIu5ai/3f91G9bAWpOHxTNpo5Mon1u5JZE47VboqoYRJ2+84kOR+TrLekAstCKJkcr/Wouj08SyuKxrW5kEcm2OIYa6AXoeOE2MlWoWvrk5BRIYfMDyfrM9fDVFVjMlXJtUvFJNwlEkJIZ2swbirJZz6WWlkpZGc7ztYNBOefT7xpLfYTD+Cm06jx7TEgDMj++AZiIQlPfAu56/4S/8r3I3J5THU1unk6YngAcePXiH/yXTytkUKO32s55TT1yC+IJk2lcPmHKF35YQbOXAXSSZTJ5MkQg7r9VqKf/RAZx8hUGgqA51H64Cfov+pajOUSH38C8q470T/9LnZ7G87zqymsOBnzkT8jOnMVxkkhMlXYgY+fBlacjnAcjJdCNwM1dYnXpBMFbLLVMAmoqhl/h7FG1zXApBqwE/JSTyqfC2NRDFNVm5ybzo55XihVPrce0lnsR35B1fWfY+Tq6wg+/SWGL/8AIvKJp85G1dQR/eTblPa0oU84FZqBusaXRdi+toFg8wpnYhmTEEoz5uJuXY/0SxOYVAdjOWUmOUiY56MtqTPZckreIb7VoWut3PDYWlC7HjpbjbFtZG4EUSomD1xmt3UqM7bIl0FpPPnCS4Ftj6UdHsuou3Yc3NWPEN7YiH//bci+Htzm5oPdN9vBWf80aelQfHEL4clvpdTYCNnaZMJuXIP1q19g/fqX0N5Gpr4eodTBY57OoDr2krnl20S+TzjneIpz5ydrQ4C+HtTqJ1D33Iq9cQ2egMh1oQhi20Z0bxfFBYvBD5F33IS844fIjWtwBVgP/RydylJadiJ66ix0oYTa9jz2to1YL76FSBuiMMDbvQ3njgfxVz+KKeQS5jwIsDavxbqtkej5Z8bi18a28R77JYX19ej+XtzOdri9fO6oixwGWOufQtmKePtGTBQk8dxCDueJB4i2biDu2o8sFfF+/E38TBXhyWdQUB44Lmxah/XC83DjV4n6e7G79mHf/iDhY08eFkd/05FYvyuZlRxfHhSpMJ6HkQozMbYahQlgpELEcVIAcMSBNEQNzRjHG9fG5Rpfc+ivli382O/aDkaq8npcJzSJVCDK34lRVrecMyskKCux4K+EN5ipwnphHen1T2PyeaxMBmtijHfUmahrIrV7K2r7Bvzv/RulUukggiUWgnQ6jVtfj1VWbOYQZRbX1KMKOap/8DUKhQLhIfvpxIDlumSqqnCHBwjLb19sXof9pU9hys38NaBsm3RNDbbrIvfuJP3Vz2LyeUqlRPFpIdC2jXfr9ygWi0SA88SDyEd/STg0hHEcTHU1opjD+flNpG/5NsPDw1BVlYxzOkv1Vz5H1N9PFEW4Q324H72aaGgInPI7LBVJ/eRbmO99hZGREaiuxngp5MAB0l//AtHwMEEQoGsT3qP2O/9K7vrPUygUJmT9KVzHId3QgLvuCdQTDzI4OIiw7dew5v3lZWK9chZYlBniOESODI61sBn9UpRL6bDKLW2EQHCEhtWmnMAu1Rh4j5hjYRI3etzVFhNK9w7pzFFWHBPd77HzxljRV+B1lpWFFQZkXQfhuEcnT6IIK46QRuNYEqMmjJ1loRwbaVm/+QXEMSoMSGPQUqAda3w4lEK5LsqyEAZMKlN2T6uwgJSSxCIpJpCui3KchDWOI6wwIIPBK19PSIWwLKSJsW0FXhoZx9iBT43nIj1vbBcBEQa4UUhtJo3luuPjUiyQlUnIzRKAX6LacxET+AERBnhxiMpmsBwnuabWCL9ERkAqk3xutEYGPmkT44w+sxAIqZCeh7IsTBhgBz61notIpd80JNaxdaGVQgY+VncHMggOhoQqh4QcZ6xC5KiaZvS7l2pxK9XBwJ7IiI6GLEb/TPxuNDQlJa9obyxjMMpCZmzUS+zwaJRCWmlkCuwJW92MMqaj5x194pkk9OSlsFLpg7bLOfQ6OpXCeeE57G/eTPj0rxBK4dY3HHacMSaxhukMTiY7dr2J92KP71uLdBy8Cf8HwHFRroddXvePglO7Hk4qPX49+5BzhcAc6VwhwEvhpDMH36vrYXkpnAn116P3qY1BS4Wsqj78/ioAnmABpIQoQg30J1ZuwlrN2A5YKgnO207y91Eno55AdB2F6hQC47qYUZJLxxCWc3yVlSiIsqVPyKLx4n/jeGPWWoyRV+IVxPFvtzXrS4P0GP1eVQ3uY/ej7/4pw2GEyGYP2/nuMG7jaIrnkFanRwsBHSnmeiiIXs65v+nY3/U9vHEBLMTLYKEnVHPEUbn7xDi4jOMmdZ1Cjq9bj/Q7o//XE0A8+m8zfp4RoL10YnUAEYUJwxxFGMtK2OdyYoaIIoRfTPSAjpMa2FHXOQrHWe//Ra1mDAYnlaI2BcpxkwSJirz+5RCvyjpW02Gie2osK2GBRy1wFKJ6OpDDQ+hsLaJYSFIdj8YGhlFiSbVOYo2H/VzSaiKub0qYbUCWSsiBXkSpiK6uQ1fXJUojjpMeVPmRsvV1MV5mLD1T5HNQKiUE1/8a9CYupUilccuuvZ6YHFKRlx5CIZI5bllJ3P41Uv7WoTzUy2WhjesRTZ5O1NmerGWlLIPRIIr5xDqHIYTBkX9DgMznEqZYxxjMEe/J2A7xpCmJqywkYmQY1dcNpSLx1NnE9Y1Jkn8xjxzqRw4NYIQgrm1EZ6rGXG812I8ojJRZ82MoY+7/IdpTlPO6tTloifHa4NgQT3SBR+974idHSqQ52vP+tsePelbykGNHPa2jjcvv8hu/z/v6Xa4dR+ja+sR7C/xXLTQlXjkWOkmn1KkM/tKTMXWN6HQmicmVs550XRMgMW4qIXf8YgLyg7SXSDoz+H7ZbdYHf2+SQdbpNHFTS/KRlAnzPTKUDGzZAiNF4j4P9SOGBkBKdHMLJpNJUjWFRA70JtZZHkMwCYEo5hFBcPC8tW2Ml07cfb+Erqnn9RbMEKXC2BgTR+ClEk/mN1mYcrugpAto+qU7X4YBspBDZ6rBccYAIYqFJLyYrT64GeDob5SKSWeTVDopgDlWVu93vX8hELlhwjPegdq/G7V9YzJGb2gSa7RbZLaGsLqOaMY8cL0kIUPJxOKUByZYuBzVtY/UmkeRueEE6GL8hcnCSNJ25aA18nj7WCybaMpMdE3DeFpl515kbiRpn9rUXAaHgDhEHehEDg+AEESt09FVtUnpoAHZ04EY6k9ItWMFgkKe4mUfIFrxVshkypO2gL32GdwnHiScPhv/lLOo/voXMYX8eFgLMFXV5eYIRUymCmM7iPxIuboqk0w0nYTWTDqFSWfGlU8ZBKJYnPCGLXRtPXKwL4mFZ6rKjRcKSbta20EO9kOcVIqV3vVeTFUNcniIaMoMnKcfwl73VNlqAkpgUpnkd0ffjV+i9M73YJom4d5/B9aOrZjRAjIlMdlsOdstUcjRyrdReuu5pO+4CbVza8JJZKrw33EV0fQ5ZH54A2LfrjHdZlwHlE1p1aWYqbNwnnwAa/3qcmEy4FjoqlpEGCAKOYiTLD+TSSeAlGo8jzoMkSNDEMVJyrbngu1SuvgaSGdxH7gD1b4XnfaSFNtS8bDxNLaDnrOQ0juuxr7lm3hDQzCp5TXZFPDYAFjZWP0HsLesRygbY1tJnFHIBLyjCe6Oi66pI5x7fJlcCnA2r0s062gBAyQVSkeziEajM1UE85dhvKQQW44MYbdtS6qTahsScFfXJs3ORoaw9u1GhAEmU0U8ZdZYwzaZG0J1tifAP5YW2GiK7/so4ezjobdcOTSpEWvuCTA8RLR0JfkrPoj7/esxJ5wCXjrxNMIQa28bJpVCV9ejuvchcsPEcxei65tQne3Eza3J2FoC1dmB7N4/zrC7KeJpcxLPpDxZRX4Yu20rwYmnJ2Wane3oxknohknIgQOI4UGCU8/BZNKI2FB4z3VJAzvfJ5y/GNPeBh3tmPlLMI6FyBVQ3fsRAwfGlK4oFihe8aEk+2rfbnR1Dbq+GSRJC6TOfUmJYpkkNZOmUPiTTyC3biS1YzMqnyNctILCH/wpsRDY99yKmDI9SaWMQ1TvAawXnqN04VXE0+cgdm2DwX7i2ceBksi+Pqz2nehsI/GSk5K0WR2hOtqRfQcST2I0gcfzCOYvwVTXJBGTA12oF1+geMn70FOmYxwXa/MzyKFh5EAv8fQ5xE2t4+DPDaG6Oyhd8l78t51DvHkN1rqncKII/Rrsp31MAKxdD3vvi1Td+aNx12a0oL+cJCFiTTR5OsXTzyWcu5hwznzyF16NTmfx1vwakRsBYQEG3ZAUJRxGkI26z3WNRHPml62mQPZ2Y+3bhSzkCGbMI5o6M3FVgwDV04XavxejFCZbTTxpcrLeVQqrZz/qQPcYc33MPJHaBkzzZOTX/x5z0w1JF8nL3k/03j8hv3AFdm09asMaBmfMR/zdV9Ez5oEyUCpS+9mPEs2aT+m8S8l+68s4a35N8eo/orTqErLf/yq5qz6CnjYTaiTZb9xA6qb/gL6epH/WpCmUrvww+cuuBdeCYhFr4zrqP34FI3/5L7ibnyPz9S8QLD2Z0pUfxrv7x1jPPsHQ5/8TPWcuoj8J/1k//xHxvIWIPS8S5vMEl7yf+LpPoxuzyLb9ZG/8Gt7/fDuxqiTVY6a+Af3wPRQWnoj+xOfRU2dCSqC2vkj1f/4j9iN3J26mkNhrHsXqGCLf2IrKVpPp7iZYeCJxdS32N77EUF0T8m//lXjWPAh9Ur/8GVVf/ChU16C3PI9fLFD64CcJL/8AJuPhPPowtV/8GNGSleT+5K+J5iwEGZD95ldI3fZ9GOwDy0GUikTT5zLy1/9GtHQZ5Eqk7/wJ2X/5FMZ1ibI1jHzsc1AtSN/0AzI/+xGli95D/qqPjI2n/fyzZG/7PsXzLkM3pwnffjnRxmdxVj8Mmeo3qAWWElEsYBXyh+9GMOpWGo3s7UIMDeCv7MY/5SyieQspSoGurcd95jHszr0QlLB3bcdfuAJdW3aDx9xnja5toLT8VKKmyWPdLJytz5W3XlGEs+cTT5oKSiFyJaz2NqzOvaAswpnziFumJusr18PauQ2re98R6fmXA+Bo6cqEEHzoLlKDfbhAsaqGkuNhtCZqbEHs3w0vPEf661+gEMXEs+bDZ/6BfNNkZBgR1zfhOx5aOfhnvRPR30f+/CswYQh/cx3GHyK/aw8MDpBSFkaBGOzDufNHRM8+RkkoeN+fEs45nvzshUTzFqPv/in20BDRtFlEjS34LTMIrlyAURLxD59Cv/M9sOJk9OpfE596FmrN48RLTsa843LE4w9gdm8lvuZjFM+/DOsHX0OV3eL4uCWY5lb0I/eiz78M5h2H+eG3oTRCdPH7KcxdSPa+25BlPkR27IHCCGbmcWggXLiU8NyLYd2TRE8/gvn8DQkx+aVPoS/7AKVzL8K6++bEc/jl7QQz5qFWvQt5z0+JghL+ez/KyHmXE517EfZzTxNf/wX0ez5C8fgTkM2T8Xo6MNqgp87Cf9cHiOubUN/9GtEZF1K4+BrUXT9Gt06HznbMT/4LLr2a0innIB+6G/d/vke4/ml8mYxnMG8RpR0vwP7dkLYwd96Mv30zjhpP1nljroEnsHNHijAZAXKwH3dwNWpkAFksJECcNpu4ph7tZoi3b0x2IciNJG11Jq59y6mY0dSZ+MtPxaSzCL+I1b4Ld/M6KBWJps4mWLAsAX4cIQ90Ym99Pmko19iCv/BE4pr6MrhHsLdvQg70HtP1LxiieYuTpIGzLkDMnIucMR117kWoDc/AlvXE51yI9dh9SKWwdm5FxZrYSSGGcgQD/diFHKq/h2DyDOLlpxFbNvYN/0jw8c+ipISeDti3B9nVjhAG0pmkOMQYRCGH9cJ6RH0jprcbkc5SWHYqIp8jXvcUcamEmTIT3dNBGEboiy/FuucW+O5XMKkM4dIT0ds3YWrqMD2dmLesQkQh6mtfQO7ZRbzybILWaRTCiKqywornL0n4j/wIoq4B1q9F/dvfQX0T8VmXEAhBGIaM0Ty+jzzQAfVNmPpmiudfTlzXiPrOvxE2tSBPPgP5D/8f6gc3oNNVhJ/6AoWFy5PIgeOiF69ADvVjfeXzqJEBTOsMCiedCWecgbWnDXmgE5MbJjpuKUGmGicIUFrjH7eY0qp3IVf/Cuuf/gq1YS3ReZdSWrQi8Q7uuwPnh99AT5lFdPY7KRUL2IUc9pb1BPWNmN4eRLaGYOOzMNCLXF+Eu25GdOzFNDa9wUksIV7Sihk3AYq1ZyepoUFEXw+lt55H1DKV0mlnE8xfjLf28aTY30uPu+Aisb7GdtB1jWPgFaUC7nNPoro7QCqCRScSTZ+TED/FAvaubdg7t2DcFHHzZKI5C5I4tZTYbduw9u+BMEjc/mMZY01XoW0H/upL5CPIe2C37U1AONCHqW+Ctu1w6fspvHUV8fyl0DIlWSK2bUUolaxBT3kbLFiKWvcE8b23Yq+6mPCiq+EH9yLyBbJ//0nch+7E6BgR+ERLVlJ838eJGpsxJ50Mfox66C70zHnI/h50ECAFxFNnoTv3IXo7IZVC/OoeSKdJ64jhzv3J8mV0W9fqGrj3Vsy2zTgLl2GGBsgHAT5QXU4I0XUN0NeLOPF0mL0Ac9/tWH09qLPfQclxUG3biA9h49W+PZDKEi1eiV52Kqx9ErVpHfEffhq9ZwfyBzegslW4aPSuNiIvjRjsR6w8EzF5GvEvb0d07aMqm0H8+9/S98m/Bx8KV1wLV1wLLsiNm9Ejw0TGYMURcVMLUU0t7uMPoKOQmicfwH/gDvKf+CKy/wD64buwgXjJcqJtG9DFEvnP/Atm0mTMipXga9QjvwCliOctQj77BA6GVDaDpeRrkuX1mrWkl8MDeGsfQw31UTztXILjlxO3TKV00hmIOCozxWI88CVl0v6lvQ3v6V+haxtRne14zz2FLOYJp8+ltPIM4pYpkEoju/bhbFiD7O1GV9cSLFqR9CQWCZnmPr86aUJ+rON3xhC1TEG270J/9UbY3w7opEpn9w6sS99LkB8h6uqAv/03vDtuggd+jv7Ip5KmA4GPwmCiEH3qcsT2dpzvfoXiR/4c5i4i/QdnUVx4IuafvkqhtgkZxdhhiXjWfEqXvJewqg77+9dj2i8hOuudxL09iObJgMDet4vwpLcSzV8Cjz9APDwEjZPQQpKpa6T0tgtQ+/fA0pWJRc9kkx0Q3BQO4Myax8jC5ahH753gXBni1qnIrn3oGXMglcb09mAB1rRZFJWFWPc0amKYRUrUgW7UrBqCK67FEQLuv4PYL+JOnUFBJckRmXSG4TPPR/Z2Y+qbEIP9mDjE1DbAQB82oK/5Y4rnXkxqcIDSzm2YT31w1BVEh5po/+7EGJTymFQKarLooUFSQP5T/4TatxunsZmoZz/WyCBy3kJ0JgvFEvF5lyBrG7G/9xX03kuIzrqIuLcbe9kp6MZm9MN3IzvaUU1NrxWMjgLgV1iTGMsGHaN6OpFDg4hiATU0QDBnIfGUmUk8PSgma9XRrpSj1TYde0g9XkRX1SL7elA9HUmcWakkjDIyiOztxlv9KM6mtRjLJpy/FH/lGUl7HwTW3p04G55B5oaOsfucNFkPl52M2LgW6+Zvowp5RiMqYspMWHkmFAroUhFOnEW8/URMuYlfPDSIlBK7ez/R0CA0VGF27cD8+pd4f/xXlI5fhpk+F+qasNp7CHbtICwUcJTApKuIZx9PtGAeavUCxMhwEsYb6Ec2tRK3Tkf96WcIjluGqa5NNkvr3gdRRPyHf07U1YF/2tuwfnoT4pS3IcIQvXUDZv4SWPUuIhkjFq5E93Yhf/E/WGXST8SGYMlK6O1BNrVgpEKMDCGqa9GLV2BGEsVl19UeBGD7xS0UzzwfPXse5tv/jnz6ERwlsNq2UDjtHOLPfYVQWegpM5Ff+wK88xpEUERuXEc0eQbmwiuI0xmCS/6ASAisZ5+EpSfB1BlJGG54GGfjGuxiDlVVjQmKqL5eZCEgfu//IT5hJf4F78b55pfRs+dDXw92GGBWnpH0T8u3YeYsID5hMfLp+eXxdDEDfYhlJ2OaJmFOeity2wZUKYfGemV7Sx8Fk6/d5mYiSehAa5xNa1E9XcjTzqV04unj22BObIJWjuOJIER1tKPYmwDXdpKG6gc68Z76FeGBLtRgH94zjyF7u4lbphIsXkE8c16yX48xuE89jOxsx+gyW34sn9WYZF+erc/jZDJkLImVSkOxQNzcRGFkELl7B0bHyOf24J9+LmLO8cgoRLbtQPlFVDGXtM3ZnUPf/VOizn3U3H87wapLKH7p2xAF2PfeRvzcU0lzhFQVsq8Ha/M6gpUL8N//MaxtGxB93Yj9u1DCYBYuI7ruLxA9fcjnnkb092J37UeufYLCOe8gd6APsW8fevsm5NwF0LYd+dh9qLp64r/4R0of+wzB3h7sb3wJ/fj9ONXVY/PE2A5mTxsilUa0bUf0dWOampMN2tevxhidlPSNFmsIC7V9AzKK0C9uI3rw5zj5EdKeQ/zw3ch3XIV+7x8y5Gu8B35G/JPvIM65GDHYj1r9CNTWEn3wT/FXvhXr6cdwv/OvFGKNvOx9mH//IVgCsWcP6es/h/PkA5g4wtiJK+8882tK515A/vTzsR97kPgbXyY++0JkdwfSL2G8NKazHbV+Naa+CX3xufjv//j4eO5tA89F7NuLufBKWPsYPPUQZKtfecwciRz2PM+4rotlWWN/4jgmiqLDytFeqZsSxmAsG11TR7DwRIqnnU00dyHU1KH2tpH9wdfw1vw6qRMupyEKTLl7gxzT6jqdTYLvURKsF/kccctU8ld8iNKFV0IQYG9YQ/aWb2Ht2l6OD8pj/jzxwhMY2LaFVH6IjOcipErSQr00cWMLhSAg3L2TquUnM+T7mFIpyaX1S7gvvoCz5CT8r9+Cv7cN8fGrSfsFMk3N+NPnMBxpTBDAgS6c/m4yto3jOGhloZtbyddUUxouQjGHlckS7WkjU9+AqW+kIAQUi0l4qbeLFBp7zgJGbJcwl0uohq59pBubMUKg27aRmjKNsGUa+SiAfAnRsYdUbohMTc34885bxPC+vdiuB66H7mzHlQJr5lzyQ4PEbdtpaGgYr2gq95COZsxleHgEvWsbVRg8z8WkMvjT5zASa0wQQl8Pzr42MstPIT9U9q5ap+I3NFEs+TDYj93TiZtOI+fMZyTSGB1DqYTTtY9s5GPZFibWiFSGoLmVvJciLAXQfwBr9w6qTjmDXE83Vvd+UlOmEWWqKPV0Yqcy6CmTKQ4VDhrPbHU1tEwhXyii2tuoigPs0TrmV1C01slOH+Wun0KI1wGAx9jrGBEG6LpGgvlLiCdPx6QyyIFenA3PoDrbfzPZVN7xkDhOGFE7yZE2mSzBghOI5sxHxBpr1zacTc8m5JV4BQLvQiD7esjFYFdXY3veeBZQFEF+hMgPiVIeKb9EQSfdMkYrk6NVlxBf92fQOhv9tS/AT79HbWMjKo5gcJCCGe8l51Rlcbx0cmIcIwo5wqJPqXwtC4gEeLYFQUTA+G9J18FJpVH5YfxQE5Q/N4CnBDo2mKoqHB0T5wv4jO1Wiltfjz1qUYVADvRRiGKUFAht0J6H5SbNBcMwJs5W4aVSB/XxIgwQw4MUY9C2hVdTi1IKggAzMECR8ee0q6tJ+QWKfoRIpXCMJir5+KPJXraF53mIkdxB5wlL4VXXYFlW8v8oxAwPEUTJ8wJYVVWkSwWKYYyorsYxGl3IEQqFJSUEIcWJ4wl4nossJeOsbQu3ugZbqf/lAJ4QhhJhiCiXJJpya9jfe2d5oxG+n7jPo/nIE+qBXzGSTsqj1p9OLIyfWHgv+noZ+cIN5C97N9att6C+9WVkdwfVjY1j9a8Tjz/S9Q/9XkyITR7aJOBI9zDxu9/0/ZF+92B9ag571iPru+Tah9b3Huk5jzZuE+/npcbnt7n2oc9zpPE0xoz1vn61mgO8MQA8Wls81ldY/FYhqpcC8UE51a9ByttvZbzjGDOplZyQFLu6cIt5Ml7SBqciFTkSgF9/M2OUcT6WukNI3gjFrsa2ke278HIFJGBls1i2/abrIlGRN0EcuCJHVLHoVAY7ncV5iR5aFanIYQCuTJjXiSWuvIeK/AbeRE5YAsrKxKlIRd64it06dJGsK83NKlKR1+HqSh+xc6g81ETHcZzsEysqLc4qUpHXi8RxPMZAH2qBfcCdGOMatcJSyoP87YpUpCKvvtscRRFRFB2eNyBEbAHrjTGnHMnX1lpXAFyRirwOADwK3lE8CiGwbXvAMsb8DFhgjKkZRfeoJR412xWpSEVeG/BOXOJO9IiVUlEmk92nlFJ7Lct6uzGm9VAAH+1iFalIRV4dGcWjlBI1lm9tSKVS3ZMmtW61gL0tLa3/UiqVPun7/ilaawl6LFVr4kZXFalIRV59AEPCR1mWhVIWqVSqt7a2ZlcqldphATQ1Nd8yPDw0bXBwMBsEwSytdRqQh1rjCogrUpFXH7xlAGsp5YjneZ21tbW7qqtr9mmtd/6/AQBMatLgnQ7U/gAAAABJRU5ErkJggg==' button_dm_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABgmSURBVHja7J15nBTV1fe/t6q6unt6mX0YWQaHZXAZQEANJhLjRlg0CQJu+Igg7yfBXWJM4kMU8TGYiEQjSvJAlCi+IYrJ6wIuRMWNRQ3KpizKEECB2Wd6mV5qef+o6Z7umR4QGIZB6/f51Ifh1l3OvX1/dc49de8poSgKzVCBaZIkXSOEKBdC+LBhw0ZXQQDYbJrmEtM0FxmGEQMQzQTuIYR4RZblgbIsI8syQgiEEPaw2bDRRWCaJqZpAnwuhHRhOBzaLRRFUYUQaxVFGeJwOJBlGUmSbPLasNFFSWwYBpIk7e/Vq/dgWZKk6YqiTFVVFUVRktrXhg0bXQ9CCCRJwjRNrxBikFBVdY3D4RiuqiqyLKdldLlcOJvTbUrbsNGJmhbQdZ1oNEokGk2YzmlQFKVKOJ3OqNPpVB0OR1LzSpJEtt+PJEnEYjE0TUM3DHtUbdjoTG3bzEVJkmiKRDDaclBXhBBqqsNKCEG2348QglAohJGB+TZs2OgkLWwY6IaBQ1GIxmKts8hSgrQJuF0uJEkiHA7b5LVhowuRuXntm5Yutc7odDqJxWI2eW3Y6GKQhDg4gYUQCEkiFo/bo2XDRldbE0sShmGkkVjKqK5t7WvDRtcjsBBtCKxkYK912bBho+ub1fYQ2LBhE9iGDRs2gW3YsHE4UDq7QT0nn/Cgs4j0Ox3d44P2Nml2xn5sIRC6hmPfXrI2rMX5nx2IeMyeFTZOXAKbzdexIEusVx8aRl+OlltgETdB0tR/j8NBCj0nn8ipg/GuXolnzZtITaGjrjP48zkELpuc8Z68dxdZH7yN96Ffp6XHR4yi+oEnAHC9/y9y77w2Y/nwT39Nw7U3A1Dwq6k43n31oLKEf/prwsPPJ15WnkxzfrIW39L/PWRZG7YGtiZnt540XjTOIq+QkBvrkEMBy+MtJSz5DKQ+VjBNMA1MpxstrxDToRIcMRopGMDzwapj+8DoeTKBnicTPrmMopvHZ8wTGTCIhoYGsrOz2xJy+PnJv6tDTRTE4zgcjoz1NN7zGKGR49qkR88YTvSM4fgevQ/v0gU2E74xBDaMY/IaKTzobLS8QhASzp1b8b29HMf+vcf9lZXpUAmdcyHhcy5E9+fQNPS7eNa91XENzLsb5t+XnnbXQ/CTa9CHnkPVbfdT+Ie7WswfgOpKKCgiMmEq2a8vS/95TipB61WKqKnEzC9KeRi1HUe9/CxCI8chmkKYz/wZfvvzlptzFsEV1xO46qcoT87D5XLZbDgB0WlOrFjvfpgOFbmhFt+7r3QJ8gKIeAzvu6/i3LYBhCBe0q/D28jNyeGk4uKW64kH8cy5AwDt/LEEQ61M9i0fQziEcf4lbTawhyfd0JLnUGM++GyL32+uQHrgF2T7/S0yPDIT5d3XoaCIhh9dY2nrWY+zb/U+4iNGU/fg0+xbvY99q/dR+9g/MU4qafNwSM2zb/U+qhevJD5idMqSYDT7Vu+jcdbjhH92F/vf+DyZL/Ewql68Mlk+eMcDHVI2uYy54wEOvLSx3X4k2miadGOyrspnV9sEzqjpnG4QAjnQgBRoTJI3flIvov1Px1QcndbpaNlAIoPOxvD6kxpMaahDmICqdooM/jUrUbZthoIiwgO/02rmNSJv3QjlQ4hEIummdfkwpM82QrDxkG0433wJ0RSCgcPIcrvJyspKu1/4y8lklXswnpqf9qConnIbke9d1DJeQ4ZT+fDS5HE246QSquf8JS0PQLysnOpZjxIr6pGWHirpS8O1N2O6Pcl8lb95lOpHlqatywOXTab2yp91SNnGWY8TuGwyRn5hu/1IoP7Sq5N16V9sp7qmxiZw5takNEeVVnQSjT+5lvrJt9Jw9XTiPXof07Wv4fYQHH059VNmUD/ldiJDv4vZvHY0ZQWcKjjUThsO95Z/W5OmzwB0XU93dG1YB/mWGZ2q9eJl5Yh3XkMSh/7ppH27yVqxDEr6ENwUpHrxShpnPZ6mrRJa2Zn64DplEMoTf4A+Aq6+EHbvxOxVSvWMOUkrwMgvRKxYZuVJXFs3gttD7SVXp5PklEHIzz3RUl91JfroCZgmKNeOtNKXP2eRbPDw9IfWEZSNjxhNaOQ4pD0V1hImId/y59L6kURJH+SH77HyTBnVrj/hhCCwQYsnuiOv5tPJIMuYkoQJGK4stJ6lGDkFNA2/gPppdxIaMQpDdXZ4+7He/an/r5sI/nA8hi8bU3VhKComwpJPlkF2gOLouD7TsrQ9aJ6cPDRdTyvjmDcT0dRiRptAeNR4RFMI7Y/3Iqc86A5Wv++hX+GZMhqWP0c8r4jQyHEELpvMvtX7qFq8Eq38rLbyLH8O7X9m4Pf7Kd71KbnNa3h90JkEQyE8c3+Fb7Af86aJKI8tI+tP/0B9fg2cMsiSx5dNUyTSUt/Wjei/vB6fz0fxrk9x7NlpzbWFDyHWraKwsJDCF5628np9yf4eadnId85L5nH8+QFycnIoLi6m+P5bkPZUoF9wCcFQKL2NP85O5vP7/ceEAx05pzrdC21pXsm6EpP0y134n11I8JKr0Hr1QeteQmDi9cROPQPP68/j+M/nllPtaEx3WaFp+PmEz78Erag7SBJSsBHPyn/g/mBVyntfkXzAdDrqazEMg9YtO7ZuItZsRquqSvi8McgfvY8hSSiS4Ou+sfZt+4Ss2TcSDoeJRCLo0++CAQPRxk6kes4i8qeNRTmwt6XAtk14PJ6kye1871XLEZblJRqN4vF4aHpuNZSVowFaRid/ynT7YhuqquLxeBIjbeHzz/D5fMiyjFFzIMWPahxVWaNbswk/ez7x2fOpby1cU4hwOEzS5jiwD1VVT0hHXicTWICUYiLrOq4N61ArthO64FLCF/4IU3USGXIOsZPLyHp7BZ5VLyMiTUfUpFbck+DI8URPG4KpOsEwULduxPfK33Hs2nHcnWiR8mHJyShJbU3irNX/IjZkJpEJU3E3haz13BsvHdFEk2UZn8+Hz+eDZQuJRCKEKr8kPuU2aq+aTsG89HfS7ZmRpmnSOOtxtLJyxJ4KzI0fJUnPgIEwdmLGchnr2783LQ5bezjcskaW9xBrFw9m77I0n0NKfHSbwO0SWGrWwK3WuVJjHb4Xn8H56ccExk0mXtIXIzuX4NgriZ0yCN8LTx+2Nm46+zxC541FK+gGkoSIRfCsWkHW6pVIjfXHfeDjI0a3kGDtm8iFhbTuneuZxxBTb8c46/sEFRmpphLjqfm48vKIfI02qhevRCsrJ/+XU3G8+0p63S4X8taN1ACGx0dTU8pDskfvNrKabg9i1w7rwTPsXEsjn9cHh8OB2rx+jj61MqM2Pvi0EEcxpTKXVSu2ERsyHO6+CZY8lpnkgDHsOx0ix7fEiXWIXVaGjrp9E7nz78Xz+vNI4aC1e6vfadTeMJPgqIkYnkN/LELPK6Lh8v9D45grrE0jhoGydxc5f30Ez8p/HoS8ZqcdpQze8QB1d/7OavW5J0nE487oSV6/BoafR+zMc5E+eBdZlpOEORRcmy0nWc2NM2n4+Zw2pGy4fkZSe6aZrZdeSdN1tyUdZ/U3/8aS9aP3k9rQdHsQN/2G/Px8fD4f+p/+H9qQc7rEpHaue9v6Y9oM/OMnW+vf4mL8s/6I2BJEfmcnxcXFSN+AWKtKpxP4EE86KRTA98ISnJ9+QvCSK4mdXIbpdBMceRnR/uV4X30WtWI7IhZNp5/qpGnQ2YRGjELPybe0vRbH/ckavG+9jFxXfYjFMseGwDNmUz9jduYReec1zPn34cnJad/ae+dVIt+7yHL6vfo87sMwn71zf0X49KEYAwbSVNKHpvHXtZVh6ybM+ffhyMlJW1NHb7mH/bfc0yafmpMD/36P8MhxmDNmsz9T3xKv544THO++gvreSmLnXkzjg4tp/cLNWDiPmpoa/Jz46NzXSIex11ndsZncBffjXfkP5IZaME3iJX2pv+52Gi+dRKzPKeg5+ej+XCKnDaX22ltoHHM5uj8HDAO5+gDZ/3gS/0vPHJq8CQbrunUda2zdCIvmYV43iqysrIOuaZ0vPYNUUwm7d2K89LfDXv8WTRlpvYbZujH9xu6d8Pe/YI4Z1NaB86ffIVLzt8rnn3UDyivPp9f39mvWKxuAvgMyhUDtVOTdeS3Kc09au9pSx33e3ZhPz7d8Ad8ACJfLZbpcLhRFQQiB3+8nFAp1eENVM+agFxSh7v6C7GcXItdWfe2ysX6nEbroJ8T6nYYphEUyTUMKNoAJhuok4WSXIk04t2/C+/aKw2ojdPFPCP5wPKbTTfHNEzqkz6FQiEAgkPkB1UyG1psr4vE4NTU1eDyetElWVVWFJEnk5+cn0wKBAKFQiPz8/EO+uwyFQkSjUWIpGzYcDgculyvp4W2c9TjhkeNg3t3kLHmUcDiczO/z+ZL5WrefdLplZaGqKvX19aiqSl5eXrv9qa+vJxKJUFRUlHTgGYZBZWUlLpeLnJycoyqb2u9wOJx8z66qatpDs702uirC4TCKoiT73Wl7oVu5Mg+rDXXHFhy7thMeMZrIGcPRTuqJqSgYvhwwDTAMpHAQx54K3B++jXPHFoR2mIH5DKNFA3dQ/z1ZWXhaETTjWKSaf4pCcbdube4VFhS0SfN5vfi83oz1HJYsibJmelpebu5BZU1rPwWp8rfXn5zsbEgc1GhOl4TosLKH7HdznvbasNfAHW0qxON43nwR14a1RAcMIt6rj+XUMgzkQD3q55/i/OyTNmvjr0/gZhPa/gKFjROZwAbH6Dxwa3/RkS7aaypxr/4XbrA2XZhmGumOtF4zYRWYBt/WkH5mB/1GNmwN/PXQkQ6nhAn9LdbA/lnTke74L2tdm+Ecsg2bwF0YNoEBvF4vXq/Xng4nCOygdqlrYNOwY2LbOME18DHbjWSm19/ViJIgrx3Y3oatgU9A2Jy18U3QwMfa+2jShT2czZrX5rINWwPbsGHDJrANGzZsAnca6ha8QOXaA2lX6Be/T96vfeoNKtceIDx9Zovl3r03VW/tpHLtAczuvb9V42V2703l2gPoA88+7LKhX/yewL0LbALb6DjoJX1Rnni4JZDavLsJjZ9M49irrPu9SgEIurKSh+jDk260oi6GQ1R98uG36vvM8TNHIJpC1LzxcpvAfodC5DvfRws0EAwGbQJ3FrruEeqjJ43ZvTdGfiHGhg/w+XwUFRVR9OyfkfZUECkbSLSoh0XU3TuhuCemaWJ27014zAQrguJnGxBCpEWHaJi7JKnJG+YuSWqe6uWbqV6+mcq1B6h96o1k/sC9C5L5q97aSfy8MQBUvbWTmmVrk+mxH12T/H9Ci2VqqzXaqz8V7dWTap0kZI4PGISorkQIgT5ucrJPCRkT45qwXBJt1j71BnrPUuITpmD+sOXrFvHzxqRZMoF7F1C34IXDliv2o2uoXHuA6uWbqXprZ5e1jDovLnRqGNSuuNvJbPaNH4X20/qfbnXvpb+lHe+TmkJIQhC58MdWwpq3EN26o+s64Uk3Iu+uwKjch3Tgq7RoG5FrbiI27Lu4xgyGu28ieu7FNJwyBK1bd0xMmH0r0q1Xo5WVU3vldMLTZxI9cwSu60ZBH4FpQv3Qc4k0h8Qx3n8TpcxhpV9zI94bxiOtWEbTsHOpv+qGjG2lor36NU07pMwNc5dgerw4T3XBBQPQ8oqovXI6WrfuSFvWI3/3Ihpun417wW+R+yuYLy6l/pobicViNM64HzPLg2PUQMyqA9SNvZKshXOtBi8YQNM/n07KED9tKFJNZdKSiZeWYe7/ktorpx+WXPEBVoRNY9YtSIOyqd7wUZe0jDqNwInjfYbXj+nOOi4fMTsYDI/fCit7FHLFzv6BpUkhLUia3qsU6avdGD1KrPuBBijshtarL+ExE1CeXQSnDUZqFahNaqzHdHuILFuNc+SP8d4xmeg7r6H17of8wv9FrHiWnPdfQ6qpRPP6kR/+DdKH7xCdejtiSxCyPBBoINqz1Iph9etpuFwuK67CssWEtm5ClSXk3V+g1VVnbCvVrM1a8D8Z6089Y5xR5t0VRM+9GK2snOhnEXhzGxQUYfiyiffuB4FGuPqnmG4PoZl/QN+hwRXXIzxegoU9iJ57MdLzf8XcuZXCicNRpl1C+NQzrEAHu7ZTWFiYHG+9uAfiP18gy7Kl1XuVwrZNhy1XzONFXr8Gli8lOzubwsLCLhk3q9MI7NizE6FpaEXdCZ9/6aEjB3YiIuXDrMiVioJS+dWRPwS8PkTV/jTyJpxV+qOzMbv1RFTtR967CzO/CH3q7ci7K4iuehXcHvRP1qURWH1xCb7rx8KH7xEt6Utw7l/JHTgMo6AI3lpBVlYWcklfjPwipE0fEXjxY+gzAEkIHA9a31syN3xoPTh270QIgbvfqZYZv2sHHo8Hvag74sBXOP6+MGNbqfLULFubsf7UiZ1JZs+4SdbN1CDwfQTG/TMwC4owt3yM0afMiqCRct88qxtGc6zp+Ofb8Hg8CCHIy8vD0aMkjahJE7q0DPHFVhRFwezeG9PtQd+5Dfc/Fx+WXPrpQxEHvsLpdHbpiJWdJplr/fvE+52K7nITOXMEWq9S5NpqhKFhGiYYVpQNDL3DD9ZntAiajw4abg9aj94Y/lyQJJwb1h25Q6a0DLHhw+SkD0+fSejyqagL5xIDzNJ+iDWrkCq2oQPG5VNRnnwEvv9DNMB8eSmOvLxkfdXLN+NetYL8OybRcOeDaAXdqCvpb5H9kitQt66n7oEnULZtRqs6AL1KEbdNQtq6kfjCF61KtqzHnHoLomI7DoeD6AWXWtr45aXIeXnoJX2RPl5L7L3dKKteSW8rEKDQNC1NNvBs9J6lyBnqT10uZJI5tP0z6+ZdD1G06Hc0zF2CdnI//I/Ops7twXj3deQfX4U+/Ad4Th2MWj6E+lnz8f1lHvKendQBDD4L0+Wk8sHF5Pz252hF3RH7v0RuRS4jvxt4fbgcDuqaP9VqvryUwIcHcLfqX3ty5U8YTlVBEebWjV8r7G3XIvAxisihVmzDs+JZAhOvx/TloJX0RTu5zGpL1yzyanHrisctInfGvmQhQJJBlnGtX4Prw3eOuE29VylmWTnaxClUAlJNFY6li4g9ci9+n4+GnqXIexejrn/fCiBXXUnsvttw/P4JpD0VGICSOOMMZL38N4KTbyE0fjJSTRWuuf9NtLQ/NIUwL7yUmiuuR9m2GXHrVai7tqPvqUB/+BmMphDK1k3Ee5XCru0YJX0Rn3+GoijoJ5Ugqiut71T16mPFmt7wAQ4hCE25Nb2t/+yA5hA+8sZ1yO3ULxcUHFzmFX9HuWIq8WkzqJw2A3lvBcp//4zGM4ZboXIrtuH72/9S/8vfEVr+CSHAtWwxgT/cg9/nw3Hp1cSnzaCxOb1+0TwcI0ahjR6P2LcH/vzb5G/gXrWC0PjJBEdPsMZmTwUmkPXy0q8tV23/wZbPoGI7DkXp0nvj28TEcrvd6TGCO/q1Qe9+NP1gLFq/0yxTLkHghAZO1cLH0tmV8h1iKVCP69/v49y4Dil0dK8kqqur05wdsiynxWCqqqrC7/fjdDqpqqpClmXy8vIIh8NEo1FyW4WxiUQiybhasiwjz1mE3mcAxsTvIUkSuq6jqip+vx8hBHV1dWiahhACVVWJRqMUFhZSW1ubjMGV2pZpmlRXV5Obm4umaWlteb3eNiFs26v/YDIn6gkEAsnvHimKgt/vR9M0QqEQeXl5aJpGY2Njct2d+nWI1LKJ9ESaz+dLC8oXDoeTsbpUVcUwDHJzcw9LLoDa2lpyc3O7lAkdjUbTYmJ1OoFtHB3q//Qi5v4vkWdMSk40G98e2AT+BqCxsRFZlttEibTx7SOwHZHjBISteW0kYG+ltGHDJrANGzaOO4FNO5SMDRsntgY27MDmNmx0SWTiZhsCJ97x2bBho2sh9dBIuwSOx+MZvxZvw4aN46t9dV1vo1wlSPssLEDa6RIbNmwcf/LGYrHkWfEEiYUQcQlYn+q8StyMxWJomoZhGLZzy4aNToZpmkniJrZ5SpKEJElJjjocar1imuYzpmkON5tPnSRILMsymqahaZoVOcImsQ0bnQ4hRJK4rY9O+ny+CqGqqupyuT6VZblv6tGpBGkNw7A90zZsHEcCJ0icaj47HGpdv379VyiGYcSEEBdKkvSBYRhFyU3SKfa27dSyYeP4kzgBVVVrS0pOflOSpAqROMRQXj6wW2Njw19DodBQTdNysfdJ27DRlUisqapa5/X6KoqKum2XJKkCmPf/BwA1pTpnjv1U+AAAAABJRU5ErkJggg==' button_friend_bomber = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACDbSURBVHja7J15mBTV1f8/t6q6eu+ZYVYQBmfYRFlEBcUoLgSN4BIX3CNq/L2+RjHRxGh81RhjjHEhMWo0iaiJJmowmqio0YgbAURZBFmVGWSRYfal967l90d113TP9MAgCEOs7/P0w3Dr3lN3O/ece+qec4WiKKShAldIknSxEGKUECKIAwcO+go6gE9M03zaNM3HDMNIAog0Ax8ghHhNluXRsiwjyzJCCIQQTrc5cNBHYJompmkCfCaENDkajWwSiqKoQohFiqKMc7lcyLKMJEkO8zpw0EeZ2DAMJEmqGzRo8FhZkqSrFEW5XFVVFEWxpa8DBw76HoQQSJKEaZoBIcQYoarqQpfLdZSqqsiynJPR4/HgTqc7LO3AwV6UtICu6yQSCeKJREZ1zoGiKA3C7XYn3G636nK5bMkrSRIFoRCSJJFMJtE0Dd0wnF514GBvSts0L0qSRCwex+jOg7oihFCzDVZCCApCIYQQRCIRjDyc78CBg70khQ0D3TBwKQqJZLJrFlnKMG0GXo8HSZKIRqMO8zpw0IeYOb33zVWju2Z0u90kk8l9zrzJgVXERh5KcmAVuj+I0DRcDdvwbFiNd/UyRDKRb4dPfOghxEaMJlUxCMPjRUokcNV/gXf1Uty16xBaypkNDvZLSEKgmWaOwBUej8f0eDwoioIQgqKiIiKRSN5N895R/CXaTziVyKETMV2qzZjZ/6pbail8fQ5Kwza7mOEP0jb5DOLDx2BmjHFdynnXLCf01j+RO1qd2eBg/5PCpkksFsv5UiQrinK7oij2t1+v10uyu66919B20plEx07EdLlwb1xP6L3XCH4wD9+qpUjJOKmKgejFZSQrh+CuXYcUi2LKCi1nXUZ8+GiQZbxrlhF691UCi9/B++knIAR6STmp/oMwQkWomzcg5ZPgDhz0YQghSCQSOec0lDxsbv32ARKVQ4gddCimy4Vv+UJC815GSsTs5+qmz3Bt20zb1PNJ9a8kNmYCwbdfIXr4MSQHVYMsE3rzRfxL5iNSnYuQ+7PVdLS3EJ74TWKjx+P+dBW+FYvBdCzrDvZztbovVSZRPRLT7UVKxAksmpfDvBl4V36IumUDKAqJoYdg+PwkDxyG6Qugbv0c75plOcybgX/BWygtDaAoJKuGY3h9zug7cBh4T8Lw+jAVGSnSjkj1bGySIx0gK5heP4Y/hOELguJCjrQjNC1/Q+NRpEQcFBdGINS5T3bgwGHgPQO5rQWh62glFegFRT3m0wYMBpeKHOlAbmtGjnaAqpI6cBiGx5u/TGl/9OJyUFwobS2ONdqBw8B7Gt61y5HiUZAV2qeeR6p/ZaclGTBdLtrOnEGyagQoCp7VSxHJBJ7Vy5DiMbSKQXScci56Yb9cye4P0n7GxWgDDwRZxv3pSqRY1Bl9B/s9un1GKiwsJBwO77MKRccdTfvJ52AGQ0jxGJ51K1C2b8XwBUiMPoLUAYNBUvB+9B6h5x9HinQA0H7mpUSPOQlTdaPUf4F79TLkxu3o/YqJjzkSvaQcEATnPoP/7VcQibgz+g72O0QiETJfjfokAwPEDzmMjilnoQ2oBJcKspyWxAKRSuJ7/18EXp+DFIvkNm7y6UQmfxu9X0laZJtgGGCaSB1tBOc+g3fxu4hkAr2wmNSgakyvD7l+G66tG/Mavxw42L8YOBQiHIns84oaPj/J4aNJVo9ELypGJJO4vtiIe/UylO1bLcbMA71fKYmDD7P2w/4gUqQd9bM1uFcsRoqGSQ4ZSeyoE4iPHo8RKLA+JaVSuFctIfSPP6M01TuzxEHfZeBodP9g4D26GISKiB12NLEJx5OqHGJJdECp24LU0Uaq/yBMSca34N8EX59jq+UOHPR1Blb6DJN5fOiF/azjk2l1GUlYfshpQ5aJIJ2Adbw783eXjT2ArqEXlxE/9CgSo47A8PpBCEQijrr2Y7wfvod75YdI0TBt515B9OgpJA4eh2/Bm7vFwLGLrqb16lt2mMf/xouEbv/eTmkUPnwn3r88vNfGIPyju+k4a8YO35s69hQaf/V43mfylloC817B9+hde3XuZOq0s379b0SfYODIhOOIjp2IVlYBLjcoCigucLmsf2UZhGQxctdoIZm0nqKIpFVtZdtmPEsX4F06H2XbFjB0ALTyA9ArBoEsI8UiCF3/6tub0hAdHQSDO44b2JpIIuJxPB7PXh2PL/tefWAVbZfMJK4b9Pvj3Xt/HvWyX/+rGdjIkm17A+0nnUUsffZZaBpSNGoxbIaJFQVkBSQpl1mzj3tmmDcrzZQVpHgUV+06PEsXoK5ZbnswGR4viYMPI37k8SQOPgzT5QJNw7vg30hN9Xum/c/Nhp9c0eNj0+/v8T2evzxM4ez7aW1txSws3GvjYXb529xRnrlzYOa5uQ9vvh+uuJ7EaRcQeeA2fD5fn6m3I4G/CtVnQCXxNAN51iwnMP9fyO0tWdJUdNGQ80hZ04B8UlOSLKtylrFLG1BJ/IhJxCdMQqsY1LkQGAbexf/Gs/JDhK7tsfYFg0H8fv8OVdbwWTMovvFyWn78K4ziUnxvvIj66SpbhfZkqbLtt/+O6Eln2v8PvPAnAvfd1I1e4IU/ER91ONrwUdYgr/+EgtmzcL3/Wqe0HDWetqtuJjnuKAB8b7yIFG7fpfb5/f5caff4vdSffCZGcRmRSCSHgcM/upvIKedgeq3+UJctouCRu5A/+dBWg5t+9Ti+N15EqdtCx/TLMb1+lPWfUHLpFIz+lTT/crbdpq5tzyB5/Z3UXfaDHtudqUv0uKkYxaV2XQrv/D7Stk05dSl8+E7CU76NNnwU8pZaSs892mHgnL3eqPEYbg9CSxGY/zpKQ92XW4G9PkwhdXfCUD0YXh+ptOU5efDhmG43CIEUbsfz4XukBlWTGjKSVPVBGIECpI62vd4PTVffAunJFN1Ui6bptipbmFZlG59805689kQ8awbx0v6U3DijW3o2tOGjaP7x3fSb9xIulwujfyVNv5xtT2CA6ElnIm2u3a12RP/3ZsySMqQ1H+e4ozY//KK9UNiMNu4oGh54hn7Xno+66qNOGpVDIGuR0oaPov7WBxGjD0cfWJXTxtSWjRQ9+2gn0dGHk6qcnlO26fYHKZx5Hp7VS/IugnZdfvMspdOPso1DAK2nXQiV1daCt2E9TU1NFBcX9ykG3mcnsYxAiMTQQ0BW8Kxbgdy+64xjulTavjOTxpvup+mm+2i6Mf276X6afjKLxpt/TdOtv6X1/91I4tCJmKqKa9NnBJ/9PcU/u4bQUw/i//c/kDra0AYPJXnQGJD20Bnp875Lx8ft1C3YlvML/yjP3tAXQLnkJKgWcNcPkUR3Sa0NH4VYuxIunGzlO3EErF2BduxJNH/rvC6cFIFZt1n5LpwMjfWYxWW0TLvAenzR9zCKSxFrV1h0qgU8NgtjUFXv2zdtOpGV4Zy2tV8yE9FYDz++AlW1fLnjF11NctxRiKb6zjql647XT8v//gQ9W4M6aAzynMdz6m6ccg6mSWcfzZ0DQGLsUcTjWQdyKquRXnveylMt7He0XTITXddJHXtK50KVqUuanjmoiqbrf5nbxspq5N/81Mpz2bdwuVx9TgLvMwaOjToCwx8AScK7cjEiGc/dz/bGaFJSTvKgMeil/dFLKtBLK9DL+nf+Kg7ACBQgd7Tie/91+s26mX53XY//jReQm7YD4F62EKVuM0gS8fGT0IvLvlpLb0oj0vUz3VsvYy6cR2lpKRUVFXi6OFrERx2OiEUwp45BXTrfyhdvp/TmKyAWIXncKbk+3C8/i/S7X1BYWEjFxtX43rVUSCNURDKZJDZhkkXve9NRv9hIWVkZFY/fi/L+G7u/MHv9iFOnEwqFrLofakle808PIT9yl1WneDtll05BNNVjjhxLR0eW1X/tCvQbv0swGKRi42pcm2ssun+8H/HBO5SWllL6z6fSe4hgbruXLMC4ejp+v5+KigoqLj/ZescRxxCJREgceZxNy/X7u626VFRQ8YtrkTbXop94au7YrF2B/ts77HyZNn3tVWjD6yd+0FhM1Y26pRalbguYJolhhxA54TTcaz/Gt2he/rA5OSI4fdJKCHzvzMWzbCHommXwwjJ2iXgUuWk7UjQCpklqyEjCZ1yMq2YdvjdfRIp04F6xmFTVCJIHj0MbeCByVqSPr8SI1dVK2tGGz+fLCeub01/F5dbescYkCTR0eS7K+xOPxztX462f4/f7bStytkQ3DAOjuAwatyNt+ozCkhJbbfTVrqP92JN61758Rqxp58MNv0D/nx+TmPcy3sZtGL6A9eyV5wgGg511kiRcm2pIjjuK5JQzsS0FG9ahqqptO7Cr/tkagsEgsixjpBffTHvIyuPxeHL25Zl3xCsGo5YfYCXe8RCpOx6itZtUiRCNRlEz/9++DVVV9/pXgD7PwPGRh6IVl1vS9+MPEAmLUePjjiY5fDR6WX8rvbcMrOsodZtx1azdqZdRfPwkEqPHow2swrNkPlKkA8/i94h94yS0gQcSP+JY3MsW7hUjVqd1qnWHwfTNnVhzTV8ATdM6Jx70uBhkd52SvoXjy6KbEWvJO7TPe4XopdfSfvHVuGfdnGuSUNX8C5RhomUxYl5VtW7LTtvUY1nAMHT0zGLSE7x+zMHDs9SldrLuDuuT2CcqdGzMBEyPF6WxDvenn9iWX2GaoCjWv735GGCakEqBrmFKcu/Uby1lWa113TZ6yY11FtPqBvEjjtk3A7EDRpI311r72syerevv+CG7FMNM3lwLJeVw4PDcrqkYuPsSIS3uTRNisRhSNH2u/tTzug9F5RCIRWDus72ivdMbQ4aOzPsO0VQPG9ej1qyzEm+7pse+NGrWYGTNvb5+S4mUZ6nqDKvzFf30wmKQJNTNtZaUzTwTIq3+0nt6hg6a1vt6G4YttbPTXTVrkTpaMN3e3WxflwVmRz96ypub7vlkCfj8iFc/puzQCVSUl1NRXo7vkRegxsT3yAsU9+vXMz3y09Me+Ct6+UAwTaJX3pxrne1NnbvkSx17CpETT7XSVy2z3rVskfX/S64hfOHVYJoYFZU0PvmmZUj7fAOSJKF0XcB22Ec9zObDjyZ2ywPd3sGqZciyjGfxu1a+K64ndPYldj+GfvpbxKow8ns1VJSXI3X9XPkV88Mu/fqCCq3UbyMZLCB+0Fj8C95Ezrj2SVLniatemaHNNCPuQmwruzNyj6wkx4zHCBYiNTf0uVU2cO+NRMdPwjhoDPUvfJArlZrqif7qJkQ43Ovrb7LpNbz4Yedqvrm295boadOJTJtOvlPzYu1KzKcfxlVUhPqXh1COnox22ESi195G9Nrbcvac5h3X4dpTauqmGrTpl1E3/bKc/jFvvxa3quJ671XU+W+SPGYK7ff+ia5fvY0/zqKpuZkQ+w+6SeDMtP4qf74l7yMl4hgFRUQPOwZDVdPPhH3iqre0MHRb+vYuv2EZunTdXswTw0aRGDEGDAPPgrd2u332WrEbebuml5470fpEko0lCzBnXoC8eQM+n2+X6BV//3ykpQtyjG7Ggnm9qnuPiEasTzJTx6CqKq70uBZffSbKnCes51l157unIy1+h1Ao1I1uvneZO0gHYOUS5L89nmNFzvSPPxDABIpu+I5Vl8b6nHzMug3zqYcIpPOxi+O4t37dFsuu3kiBQIBo9CuOViHJtJ5/JYlRhyPFIvT73S+Qm7bTftH3iB37LZQvNlH0wK1IbS073s6WVtB66XXoJRUE5z6Ld+FbO/XpDZ9+EZEpZyK3NlH48M9R6rbQfsm1xCadgohFKPrNrbg2rNk9I108TltbG4FAYKdGrEgkQjgcpqCgIMfamaHRNT0cDud86vB4PAQCAdvA0xO9fOmGYdDR0WF/Sw0EAvY7upbPRiqVorm5uce9vNfrtWl1bWs0GrUtx13rnqHr9/tzyre1tRGPxyktLbVtBYZh0NDQgMfjoaCgIKesEML2aVdVlVAo1M0AFolEiMVi9jdoVVXxer12m3uqy75GLBbrA95Iho5v8Tukho7ECBURHzsB/7yX7U8/vVehsVRoQ6fXJ2B13TJ8aRoilUTrP4jksEPANPH+503kui273TyPx9PrTw9+vz8vk/dEIxAI7HBC9UQvX7okSRQUFFBQUNAt784sveXl5V/Kar0j2j3RzVdHSZJy8nYtu7M2fNm6OFbozCeFz1ajbN4IQhD7xhRMrw9h6FkMvAv74F2JY20atuFLaCniR56AXtofkUriXr7Q8QV2sF9hnwZ2933wNqnqEeglFSRGT+iUpqKX9cg8FyK9SehFmbQVWupoJTWwmsTIsSAEnkXzULZs3GdB7R042DMMvBfhXrUE19ZakqFxhE89H2EYILt6L32/lPpuIJIJjFAh4annWV5Juobng3f2iSODAwd7lIH3tj9l4JVnaCsuRx8wGFTVVqG71kMvLEZKxBHxaF4p2c3aqrgwggVIHa05wd5Nw7SidQQLoZ8VMM//8jMotetxZK8DRwLvagU211L4+18SPf5UEkcej9GvNM3EnXlS1QfRfuH3EIkYBU/MQm7sPAvbk8ErctqFxI48Ht9bL+F773VE9jUt6TKuDWvwzf8X6qqlTkRKB/sl+kRgd7mhjuCcx6zjjGnnhGxoBwzGKChE6z8IPdTlxoYeDF6pwUMxVTda/0GYXc7gmrKC3NpE8PnZuJcvcpjXgcPAewQ9HJUTumar1iInlA6doXa6QKSSVn5D7x5+x46vtWea3/znt6hftJ3oVZ3B7MwBg2l4u4b6RdsxBwzebyZEw9s1xC++pld5k6dfTP2i7d3aaA4YTP2i7aSOm7rb9Wl55J90/OyRPtlX+ugJND2/aJ+Obx9jYKPzl8uOPTBcmnHzMXFGMgspV0JnzltL0i75Hu9wINPHD8MeH7GYpapHL7racgGMRmhY/uG+uzB9Fyek6fXTsfAdEomd35/ccck1uJ9/EqpFThvFF59TemQZLXOeRNN2L0SRXjmE1NZN+/yygXxIjZ2AUVxGyyfL9tn49j0JnDnb3LU/RA9MJ8mdDhBdGTizl84uIonOM9d7osoDBluMuqkGKgZimibmgMFEp55jRX5Y8zFCCGLfu9WWyNnSOnrVLXZaZjU3Bwym6flF3fJmI185gMgN9+Sk66Mn2JK15ZF/5n1/pl6tP/2t5ei/cB6p79+Rl34GTc8vQh9YReKcS3F//3aoMWl6dRX1i7YTueEemv/+AWVlZRhnXUrj3E+oX7SdhrdrSJ5+sS1Zm55fZD9ru+9piymOm2q3ven5RRjFpRgfL845SRW54R67XPOf37IlYaa+kRvuyUur4e0aUsdNJXLDPTQ9vyinLZky+fov33gkT7+Y9mtuxfT60Z55F+34aTnt3BPax/7HwPY55XzOCaI7owphRbDMK00z+aXuC4HcA9N/CSROPM36Y+HbiPIB6LpO9KKrkTfVYtRvQ9r+Ba5jphCeMRP3ff+HGCLBkgWEjzyOaMkAwjNm4vn5D+DEEej9ymiadgEdV96EiERQhrvgudmEp51nS/bMopGvXPSq/yN+5CR8l50C1QJ9+zZazpxB4thTrIm2fhXukR5Yu4LwkccR/sbJnfWafBC6xw+N2xFVI4heem03+tlSpvBn11p/nDiCxGdrreH790vIwxQiHh/UfkrzsLG0XXcH3kfuQh6mYL70LK0XX00ymUQ7aDRmOIw0cQDS3x4nccwU2vtV0Pbje3B98C7KcBf6diuwgrFySY6fb7J6BCYm8pSD0b41mua7Z6OmyzDzAiJnzyBS3L8bLdPrp/WjhSTLB1j1Sx8H1QdWEd9UQ+uVN+ftv/Y846E/90eUZQutwAbTv0HrNbehvjPXaufnG2iZdv5uax/7IQNnXAP1/BI1r6osWVK4WzqdqnJOi7Py7wENWu9faUnajjYoLUcbNITo1HNQ/vYYHDwWqW4LypL5eP/+JPFJpyDe2QCHH43UUEdC0xCxCPFbf4PrjocIzJmNedcP0Tva0EaMQn9rPe4DKvHPOKnb+fR85aInnoY+sIroE69BjQmHHw3BELGBVZZk/ckVuFwuXLEoUu164t88HWXZQuJPPEBBy3bcaz+GlUuRFSUv/ez4U6mxExCxCGxcT3DEwdbfP7kCr9eLPPYIRN1WzAuvxPT6idzya/RPNTjvuwh/gHDpAZheP+bv7rLOTssy0uZa4t88A9PnI3XTFdY56U+WIDbXwsb1ORLYKC1HmveK9e7r78AsLiN29qVo61Pw4DOWJL1kZl5aZu06jAOHIuq24nK5bEmpv/ws2jdPz9t/env+8TAqh6Js32pFU4lFiJ99KeYry/CvWob6P6fnLLpfEwZO+/fqPZ1t7nJOWoh03Gi5ZwksddGhpT0rgbXyAYiGOuQtGzGLy9Avvw55Uy2Jd14Hrx99+Qck7/szySOPQ5YErl/fBtEIxhebUTZvoOT4Knh1DqmScsIzrkX9/k8puu8mPD//AWbNehKHHU300Rfpl+XvK774PG85Y1AV8u3X5jqozzgZY0Al0qYahBD4fD6M0nJEuB2qR8Bna3G73aiqinbgUORIB+rW2rz0vV5v7sKVpqkNOwTRWN9Jv7gMc8tGzOrhludPVn3M8eUYE0+wNIlXniUQCGAEgoiGOqSBByJtqsEwDHw+H3rFAUgNdbajTUb70AdWwZbP8Xq9GP0rkdet7O6cD4geaOkDqzDTPsL6oGp7Ieqp/1y3X91tPIpGjctR7/tdMhl5zuMYdV8QOXsGxm/+ulcCzPc9I5au57m4rIuzP3n2tPRkxBI9SHKJPSGCtQOHIjasRa61oj0Y516OtOAt5Ekn25PUGH8sYuE7iO9OQzvzO5Zz/tbPST76D1qemkfZHdfg/sO9lkruC1K/aDseWabwuvOR1q7AjHTQ0tLpmdV239PdyzU2IGIR9BOmUVhYSCDtpF48+VTE0JGI2vW2GqoPrIJVyxGRMPpRx+NyuYhedYs9sROPvJiXfrZhK1k9wqaplQ1A+mSpxRBpQ5jxynM2ff/IsRRNvxSxKkzo+jvwjj7CDmGrKAqpquGIDWsRAozKapRvTCF13FTik062+jZL+mrDDrElZibdqKxGOeMiSg8dj/xeDd5H/o5fUTDz0JImnmiVDxUixk8i8u2L7YWop/6LrYp2H4906B1j5RL06+6k4e0a+j3zKP57bkQ01aO1te4Vw9s+icixw2gZmfPQRp4IFdk3MNj7sSyDVNfIBUKAmb5HyU7P+oy0J6KLDKzC3LIRdel/rHc21pP8+Q8QhxxqT1L3R/PRpl+Gtj6FkpEkrc14/vE02qAq6hdtJzHrKTzPPwl3/RDl/Tdovfl+Wpe2IMoqUH95g+U+ln6n76W/di/39MO4n30MjjuZ1qUtRE89H/d9/0fzvLnoldWYHW0Ws0xKq4zv/QvvXx8Fn5/wig5ik0/tTP/nX/LSF1l9bJSWwxebLYlWOQQz3IaqqrZqbdauI/TsH8DnJzJ3OS2/egL33Dl0/PqnJMr6I9LSENO0rPhbP8fz5G8RjfWk/vwv2q+5DdPrR99cazn8Z6J+HDzOlpiqy4Xv6YcQjfVov36ahhcWIzVsJzXzPIzZs/LSUpf+x5LY199B+J4nrKmxYR0ulwv/32bn7T91/pvdx6O50Rrvv72P7x9PIRrraXhhMZG5y1E21SDfciXSHppjO4rI0c0f2Ov17hXdPe9niTO+Q3ziiShN9RT8/m6kdkvqxI+eTPi8KzG9PgrvvRHXp6usyVYxkLaZt6OXlBOY8xied1+zD2W0XXcnyYPG4v7ofQLP/QGpvdXaG505g+jJZyO3NBB66OcoWzfu/rfThgZCoRBut5uGhgZLperXj2g0SiKRoKioyPaFBctVMB6PU1BQgCRJ1hUq6cHx+/34fL4cP11FUbr5tGqalrdcPB63w7TKskwgEEBVVZqbm/F4PPh8PjRNo6WlhZKSEnRdp729HV3XURQFTdPs9Hz0c77RtrTYPrTZ9BOJBB0dHZSUlKBpmk2/a/tM07RDtTY2NhIMBlFVldbWVjRNs+uT6dsM4vE44XCYkpKS9Lpt2mUA3G63FSQgk37EJPjrW3DhZEKrP8LtdtPW1kYymUSWZYQQdiTMnvov33gANDc3I8syRUVFeeuwp5FIJPrm7YS2qmyvNGZ+Q1ZPn4vo4Rl5jFu74nPcC5SWlub92+fz2ZO+q/9p9v4oMxGzEQwGd7iHUhQlb7me/Iiz99CKotj1VBQl59nO6GejqKgoL323220zXE/0u7Yt+13ZdPOhaxuFEHnLZNLjRx9POBbBXDQPJV2Xrv7FO+u/nsYje7x3Vu+vwR6YHgKn9VTgyzDinmVeB30fnqceJDhxAEKIXoWm3Z/QN4PedjViZZ/Myn5mGlkMnyeCIYCpd6fl+Px+7ZCtFfw3oW9J4IyBR1FypKSZvpwbwHR7Op/Jsn3tgNnlTiMzvdKaHl/OfUc5F4g7cLCfQ1YU5fbMplgIYX0W2AsnSPIK3uIyUlUjMAr6gepGiobRKocQPfUCjCLrVjijfABScyOm10d02gVoBw4DWcYoPwCpvQWh68S+eQbJcRNBcaGXH4BIpZAi7aRGHkr8+GmY/qB1b/CS+YhY1JkFDvYb6Lpu8yp0sUJnDC/7ygptKi7aL7yK5MHjwO2xLvZ2qdZtDbEopsebdRpLdKrEGRfEbOOUaSISMUyX2yqTCRwvBFJHG8E/3oO6aqkzIxzsV+hqhc6RwJZWKude97g3NWjDwL1mOVIsgunzg+pBxGOoq5cTfOpB3Evmg+rG9AcRmoay6TMCLzyJ940XEYaB6Q8hsK5K8b71Ev45s5FbGjEDIVBVpHAH6orFBJ/+Ha7PVjuzwcF+BcMwMAxjxxJYURQMw9gv3N8cOPg6IZlMYppmjgTuZsRKpVK7dWOdAwcOvhrpq+t6t8vWJCCZj9MdOHDQd5g3mUxa57XTPwAhREoClmary5mHyWQSTdMcddqBg30A0zRtxs0c4ZQkKWf/63KprYppmn8xTfMo0zSzORtZltE0DU3TrCgTDhM7cLDXIYSwGTdzbjuDYDBYK1RVVT0ez2pZlodkHzPLMG3G8uXAgYN9w8AZJs5Wn10utWXo0GGvKoZhJIUQkyVJWmwYRlnGgJWtbztGLQcO9j0TZ6CqanNl5YHzJEmqFRk3wlGjRpe3t7f9KRKJHKZpWhF99Zy0AwdfTybWVFVtCQSCtWVl5eslSaoFZv3/AQBJelHN/7uKCgAAAABJRU5ErkJggg==' button_group_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADJmSURBVHja7L15nNxVme//Pud8l9q6ujvd6SX7ClmAJARlRxKCgCAiiOM2uHFnvOqMOnMdl58641wd+XnnjqMzqOOMjru4oCiuoOxIFgiEAEnIvm+9dy3f9Zz7x6mq7iQsypDQDP28XvVKp6q+p77L+ZzneT7PcoTjOAghMMacAbxVSrlCSjkDyDAu4zIuY0UCYIcx5rdSym94nvdgEAQ4tQ8vEkK8RQhxrlJqrpQSIUTjSANgzPgtHJdxOVEiBOLIdzLAPK21EkIUjTE/0lrf6gDTgPdJKV/tOA5KKUYDuPHvWLo4Y+xLPA9nVh9HiLF2lePyEhbTmJ7mCBxqredqrecKIWZ4nrfVEUK8UQhxnlKK0QCuHyilRB2lkV/wxUlrMNoCTjwPiwFgpKqBeFzGZSzoKEOqNVrrIwAspay/tzSXy/+t8DxvpVLqTNd1qfvDQggcx8H3fRyl6j5yA9QvGHCNQTsuUVsHwcRuZBKjgipGCBDyjxxLY4QiyeWRUYh/YDfeUH/DfBmXcXmhrUxjNS5RHBPH8TFfcRznkAMsVkqhakCVUuIoRSaTwXNdEAKttQXvCz2xtcZ4HlH3NMJJ0/EP7EYmCUbKmvlrRrSy4Zn/r+2ClLR1YPwMThzC8EDNpB4H8Li88D6wqivTmiZu4LAmcRx3OEIIf7TPK6Ukm83ieR5xFBFGEXqMEFgiTUm9DCEgeg/jPLYWVRp87uNFEWmlRDhrHqGQiDiGNB0H8LiMKVFS4joOURwfYwXLuslcB7DnebiuSxzHDfCamjofK6YFWtd819rfaVoziaV9P02tCVI3q9MUjK5p6tr/a+/Zl8FIiZEKkaaQJIxz7uPygk/1uuE5isgaDWAhRCOM1HjDdV2MMYRhSJKmyDFGYNV9YSPAKBdq5FPUNYVo8kzcA7vx9m4nmTiJYNps3L7D+Ns3krS2EZx0Gm7PAbxd2xBhgHEAKa1p7vokEyYidIoMqsjhwXFNPC4v7DwfRWg93Vw8gvmp+8FxkpBqjZTyRbFOGSmJOyZRPfUM4q6pICRxeyfVU5YSTp2JEZK0uY3KojMJp87C+D4I01jmBAYjFWnzBMIZc4kmz0DodHwGjcvYm+1HkclHaOB6+CitUddj2cFvvGpmtdNzgMyGR3AP7QVjUP09ZDetwzl8EGEManiA3ONrcQ7tQ0TRiH2iJAiJqgyjhgdIOrpJlWtNczU+YcZl7AG4bi0fA2CwtDUvBgBrg0gi0BphDO6hfajBPmQUQprg9uxHlQaRUQRpYgH96GpEHCGiEIxBpEmDtBJxiBoeQsQRRjnjM2VcxjSAn1IDH/HhWEydbJyTsL6rENYHxiCiEBVWbTxYKUQUo8J++x1lySmn77Adpn5s7XijFCAQSYwIAnC9sXsPxuWljN4jsHoMifWiuQ4pSXN50uIERBJbFlk5T5EOWbtgYYkqWS0jw8BaGI6DzuVJiy3oTBaExEhhx5GScRp6XF4M8uICsBCIOMLpO0za1Ew0ZQZpc4sNITkeCIE5KrdSGA1SWsY6jvD27UQN9BJPnkEysZOktQM1NIga7LXgd+oLwTiCx2UcwM+v5q0D+MBujFLofJG0qQU8DxFUEUli0yqPNjsEaM9Ht0wAx0W0dxHNPQWEQR0+iLtvJ6rvMCabt6SWHgfvuLyIAWzGqv4RwjLMw4PIJx/H+D5JexdpWwfuri3IyvBT50QbDcol6ZhENHkG8fzFpC1t5FbfSeaJh5HVEiJOSPNNjd8Zs/dgXF66LvCLVwObmlas5TJjkEmMSSLMxG50No+slFB9veC6GKUQ2oBOR1UtCWRQQQwNgHKQQRXV14Ma6oc4QiAQupbN9V/O3xCQxtYqCKo2u2vUR0YpjJfB5PI1Eu7F48KQxMjSMCTxkdclJcZ10fkmSwKOE4DjJnQjbRJAqRHfNNWNCSIAnc2StHWCVIgwQIZVjHLQTUXrG2Ozt0gTVGkIb+eTpIN9CJ2StHXaiWg0aUsbOpO1RNd/ReIA4fqkcxaQdE/DFFvs+YNN+xwaQB3ej9q5xS4wQr448BuFGC9DtPRc0gkToal55MPyMKrvMM62TYjKMMYbb+jywgC4Xiw/VlZQITCej843YVwPTIqsVJDlktWq5WFkUCWeNJ10Yhfu/j2Ig7vRuSbiyTPQuYLVhnW/1mhkGCCHB9CZLHrKzMb1mlzehpyCas2PeI73QEj05JkEl11L+ZLXkkyePvJZkuLs30N25e/IfetGZM/+F4+2ShLSmdMpX/9BgnmnoTu67X2Strgks+kxCl/+DO4jD4Drj6PreCi0o9IqRSaTMb7v4zgOruuS8X3SNCWO4xc2B7pm+sYdkwnnLCDunorO5BA6wRnoxd/+JN72TYgkIWnvJGluJe2aikhi5ECvNVE9HzXUh6hWrJaT1ocWSWzLCR0HRidtCIFIE0RpCOfwARtO+mOxW60Qn7OC4ev+gnTuKVAZJvnZ9zDrH7STvWsyvOHPUO0TcTc+SssNH0QM9CD7DtukEimtRZAaTDaDbipaM7xaQSQjJqtxFCZXwPgZUA6iNIgcLmHyOXSxpWG5iGoZOTyMzmQwxRZEpYyslOy1GxBRbM0YKdCZLKZQfOrrCqukM06m9I6/orr81Yi1v0d/58sYre3xV74Zsexy3Afvo3jjJ/E3PIJRCjk4iPE9a3nUz18KtJ/B5Av2/htjr7FSQsTpES6M8Vx0sRUcB1EpIUtDjVCfiCLQgAKdzWMyWeTQACJOar8DulDE5AqIagVZGrSNG5SDqAa1Tiygc3lwPUS1jAhtlp5RAlNowmQLjYIXWRpEhOEIySnBuB4m14TJZOy9HRqoJQIZe70CdMsEq3z+S3pMkCQJURQhpGzUKIxZE9oISdI5mcqiswhPOoW0uQ38DBhNVC2TTOxG+xkyG9fhHNiLKA+RtncTzZiL7Gu14aJDe1EDvfamN5I3sKEmMzrgVK8R1sigAknynMCLEOjOKVSueTvBigvhp7/AuefXuLfehOjvsYnnnodxXaLlryY45QxKU2dT6DlAdfmrMbkmRBqj27ugtQnnyU14D9xJOm0u0cmnoidNRUgFOkbu3YO34WFE7yFEuUS8cCnxwtNwNm/Ce+xBO2GEIJm3mGj+Itx9O3Efe4h44RKS6XORwwOYTI505ixErBEDvThbNuA+8TDG849Nng9DkhlzqFz2OkzPIZwvfJLMmvtGqrAH+qguXEJ09QoqGx7GWf8QevZ8otPORB3Yg26biO7otpVvPQdxtm/G2boB4giMIe2aSrz4TNLJkxFpbdRKGbVnO96aexDVCsmchUTzF6EG+8FokpknIySIvj7cjetQe3ZQueo6dOdkhElgoB//kVWo3VtJZpxMPG8RojKMjELihYsQqYGhfrwNjyIPHyBaeDrpjDkIEsShw3iPPYTavdXejyQhOuMC4mmzYUK7nR/DQzi7t+NsfATZc5hk7nyiU5YiS8OYbA7dOQmhNdk7fw6HDx4XWtR5OgbavMCmgvGzBHMWUl24FFNshjiGsApKYTJ5wlkLMI6DHOjF270dOTyIHOhrJGy42zaiBvsaWVZHUUzPzPQ9F/AaA1ISLzqLyvmvRO7pQ3/2b+DJJ3CzWbLt7bZBQpKQ3vpdSts3E1x6NWUvQzaoUrruL0nmLkT29ZC2TcRMKpK5+Sc0b95AcMnVlC5/I+m0GVZLZ1ycrVtpuvk/8W7/Cc6mJ6ie/0pKH/kouS99BXfVXZjmVlCK+JwVDPyvT5D/+S00Pf4w1XMupvy29+Hu3gZxTLRkEYQSEQbkf3cr8vMfR1RKx65NxqCVg1ESdjxJum4Nuc4uctkcIqwiH7oH8fPvUZn0Xqot7fhCwqkvY+Az/4J//++JO7rRk6Y0rJT8fbeT/do/4Wx+HD1hIsGyyym/6V0kM6ZA1VhryXXw1q+l+aPbcbc8Qbz0PAb/+tO4u7ch9+0mOP1caPIRlYTCj79O5pffp3TdXxLPmgdNPlQSmj//t+S+/jmiBUsY/NA/4hzeh7v9SSoXXwqR/Y2mH3wNb+0DVC5/PcHLzoOWLPLwME3/dgO5b3we44GeNJ3yn/4F1aXnYvJNoAxUAjIb15P/xufI/PLHRPMWMfB3X0Tt2WHpjsnTII6Qj63FO3zwv9wsYjSN2+AOX1iCKkUkic1JHp1/bTRpoUjSOdlqXa2PLGAQgKNIOiaRtHdhHAeBxO3ZT3blHWTWPYAc6j+q+d0fwbQ+ZztHksyZB76Hvu+30N9HzpEUikWcNLHasvcwzuGDNK36HS3//HEyv70FXS1jkhjd1U5aaEJ9+Qa4ajnBl/9/+s9eQelt1yPSGPdv3gFvXAb/8FESrRl6y7uJTjnD/nSqIYEwDKmEo9wfoxEpVMOIIAwxUQiZHPFpizA7t+C9bjm851rM7h1Ull3O0JVvgWzOMvijH5fjoHoP4+3aDue+AvGP30C//f2Er3mLNX0TQ/G7XyT/hosx//L3hNUAg4EmiOcvQj62FvXm5fCGCzE9h6lcchmVCy7DSEnwytcy/NefQh7ci/vWK+01vuPV8OAq4jkLGXzd9ejWdkgiZBAQzzwZs38P/tsvhfe9FdNzgMolr2X4De8id/9tOG+/FL74j6BTSudfQjhtNqJaAschmTGXJArIXrsc/nQF7NlJ+WXnM/zmP8d/8F78P30lfPaTaMelfOGrCKbPhUKR0p99iOC8i1E7tyDe9Vp4/TL48bcIFixh+Jp3Es6Zh6yUwJOkHZMQj9eu9y0rGFhzP3EcHZfy1BfAhDYNH8VksmjPs5MsihBB1fpmgKwXHQhps6OS2P4tpPWbHAehNTIKGsX96sAelNHgeph8EWO09R2jCOO4z02z/hHLoxGCaNY8W2f85BP4xpApNOEmEcGCJZSWXY4o5CEFEQWYvTsRvYdRd/7cFmHkwNz9a8QP/5N8fy/plGmEF12Jae9EfuVLODd/gywg9+wg7p5M9I73UF52Bc49v7GmfwQ6ikhGk2JpiohSdGTru0kSpFKkD68lvenfyay+D0+CnjKdyoc/S/WKN5L96bdx08Sa6/XL8zOo3dvIfvNfSV91NelZywiH+wnbuoinz0IM9qL27cG941cU9uzArVszMehd2xDfuhFv9X1IQHzlBkqf+jzVS67Bu+NWnF1bUTd/HX3r93Hv+y1+PbrQ2kb5X75NtOB0QuVhosiG+noOktx7O9nV9+A2txAvv5Lw9deSFltx/+0GsuvXYvbsoLrsCtIFSwg7JuGUywgl0ft3k/74m3hr7iMPxE88THTxlUSr78W985dk1j+EkySEr/lTkrmnUJ09H7V/F8HyKzEH92Fu+Bv8lXfhAnLXFionLSA6+0KChUtw+g7ZEx/oQX/7i/ir70UC2lEIv/UEsNAnhH0W6EwGXWghmdiJLhQhjVFDQzg9B2o+aIosDeJv20DS1kkyeVqNcFIgLMkjh/vxN63H3bfLZmBJiXE90tZ2ks5JmFwThFWcwwdQPQctQIw+rgsTgG5ubfTg8n0foSN0UCWdNI3KZX+Cbm2C2FoQdBVwHtsGq++2xJUAfvszZH8vhYyHXnIWySlLSDZuR3//P1CuQ3FCG044TPCbHzG44jVES88jmDEXgmot3C2e2uCodV1pdCX5+Q/g93egikWaMz7Jb39CcM3b0AsXUVUujj7KcHFcZM9BMjd/jXTzE1QufR1p+0R0Nk+8/DXQ1gLliPyisyj88Gs4D9xBGaACrLwDs/JO/JYWcrkc8qavEr7+euLTzyKYNoeWn32Ppt/+jEEvC1OmUWhuxWQypFGFSphg4ogwDHC0hkwG1q3GPLoGKQSF9olUtm8irAJbniDauJ6mCRPI7NlBcnAP6fS5JMq1cWvHhY3rML/7ObJYpNDSQungPmJXwj23Ee3cSsaVZJXAHNhtydGJXUQ6RRdzqAc3ke7cij/vVDLFIu6hfUTbNhKvuJBw+lz0wb0212jfTswDI9droXV8mkKeWA2sNUhFPHkGwfwlxN1TLYuapsjyMO6+neQeewinrwejE/xN6xFJQuVlFxDNOsnmMxuN03eYzCMPkHnkAZuIgcE4LuGpLyNcsIS4vRO8DMQRTs8BvE3ryax/EFkeOn5auGbZizi2+M34DbDofBP+Q/dTfPdVDJZKmCSF9g74wb0kw0OUhoZtDbYB/Awe4ChJ1c+QtDTB1g3Ig3vJt7UhhCB1fdxd26ybMHs+STZXs1aexlU5OiwXRaAkGSCfy5GmCcb18A7tIzh1EUFbF/nBXhTGEn5CWN87iVBxRH7jI7gHdhFEEYnjWfPwje+CV1xKdcUVaATF7Zss2x+DrJTxsAua1hpyPrI0BBqiNLHr2eln4736zQiglC8QnroU3TUV4zqgUzv5Tc3FiSNcKfAzHrpm3luzTeFkc0glMa60999odJqS1u+F46KAXCaDTrXlSDQY5eHn8zhpCFEAUQRpivF8ks4p4EJ6zkXw6/UEShFKiUgT0uYitEPa1gW5ZoS2LYoVkMlkGm1hT0gc+PiSVwaEJJo6k+rp5xLOmofO5KxW1TbJImnrAM8nv/puVM+BWt2vRiBAubVkiFr5X61uWYQBRkC45Gwq519CPGk6xvNq8YGUtL2TtLUN47jkHvm9DSkdLyvDGPxHHyRYtgzOWoa4+WvIvn6Y2A5DA/h7dtAc2X5bZvcWhuIYEBZADVZCIqk1V0gTRJxivCzCz+IqZedwFGAmdFh2NAxIqhWkrvn6o9qPWlA/RcN6RyHiGAUo10NHISKoYHIFG77q78HEMUZ5jXF0xySqr3sHadcUcr+4ieyq+5CORCfaguNH/0F0aB/BX32S4Izz8Lqn2dJMQCSxNTmltFxfJQTHsxGBnoNUTjkd8T8/hp55EvT3EEcR+tG1pA+vgquvO9Z31BopGOkYU/9cCISUCDm64cNRsdOahaKUsuc96n1Z74k+uibe1BYIF9i6CX75A7SfbSwk9BwAPYR+Yiu6c5LVD8f2cP5vkImlDcb3CecsIJi3yMbXomCEoPI89MRuKtks7p7teEIQTp9NNOcUaxK7ngWwUqQT2olOWYpubraadaif6tkXEc1fbB9WGFoSRoDJFYhnngxI/F1bcPbuOG6uATrFv+83OCteQ7L0LJILLiXO3oNTHkIM9KJyeXITC+iOSSTTZoPvI6LgGMVpAKMsaeRu2Uw0dTriwlfBw/ciogCyecLzX4meNBk2PAb792DmnWZxWmy2MdI4Ip3QSTxtNkaJI60gpWD2PEx7Bwz2geuRnHQK8cyTkPv2og/txSQx4I+ynCTR6edRfd3lmKYW8v09+D0HR7YAObSX4X07iYaH0EFAGAS4SQwZMLNOxnR0QlBFANH8U0lnzoS9u5BDgwRXvB792kuQv74Ped9tyDjGe2wtcXMryWuvO1arNKrOzDN5M8+y1pqnfK/Rf0rUas6rVeThvYihGHP4AOKrn8OplBq/njS3YnLNqMHDyPaJpPKZf+P5lhPHQhuD8XzSljYLxjgcWT3rL60xhRbiybOoLDqT8nmXEix6OcmEDktcSQnKxRRbiBYuoXLxa6lcdBXhknNtfE4qC1xZu/nIRgdL3TKBtND8hz/h5xADxhjktifI3vJNRBRT/bMPU/rAp0hmnIQYHoZKmaSljaHrP8jAez4GHnBwX22xEUexvi7q0D68daugu4i+9u222CJOSOcspHLRq9HteXj0QdT+PShjrCk4Yy50TwGtSU45g2DJWRhXjNIoNhXVXHwV+lXXIoZK6OZWqq+7Ht3ZiXh8LcKAdFSDyTa+j9q1Ff9X34f9AZVLXsvQ694JYYCJY3S1QnzyIuIr34iZPtn6qBsfJRUS8qDPXk5y+RssURkGDH7g70nmTIcH70P6WcSseZCCeeAOxL/8b9wffhU9ZSbm3R8Fp/YMX4jAplI2EeaJh3F27IBzliM/8n9o7eykDWhecQXul34Mv15H4Zo/pagTTnQrtacmsY4TmSWiENXfa821fLFWbEANcMqW+lXLhHPmQzZL0t5VCyMZUDUz2nHBcxsZSOHis0hmnoRpaQO3zn1G1AsYkBLS1LbbGR6sXRvHb0LEEdk7foYpD1G65HUEi8/GzJiD7D9ozf9iC8mUmehd25A3/hP6Vz9CBAGmtR1agEyuAWDZ34P/6x8QdXcRvfwCBm/8EbJaQXdNQmebkD/5Mekt30KmCdldW0nvf4Bo6TkEX/sp6XAZEKjSMEkb0NI2skhEITgu4dVvpfeK12BybeiuqThrHiD50g34URWRzx2RumeUg7/mXgpf+gylN/9Pgsuupf/0s0DYRVN3d2GEj/OLnxF//6vIMMDJ5iC0vmn0J9fTf/m1gCE95Qzk7bejv/Nl1PYncR9fS/XQCvSb/gfpKYsJvQyiUMQxmtQDlp6NyOZtSm2HB61t1opIbbaeyRWgEyi2jFqkUls+2umBn8EYg+5Q0Np+BDdgCkVMJ1Ao1ho/pCAUpnkCdGahqYjas5PCl2+g/88/THrlmxhedAYyqKCnzYHWiciff59wzX1Es+dDF9DWcXxI4acYSzmO83eO4yBr6VmO49iL1fp5T6UUaYKstb1J80VMNlfTrLWWN4f2ktm83jLJU2aNVLUoaX0m17XvOa49TghMsQXdVMRftwp1aL9Nbctk7YIgBSKo4G3ZQHb13bjbNyKS5DjbNArVdwi5bg0EVXQYEGdzJM2tJI5PEgToh+5H3nYL7s3fQG55gqznoWbOIRksY37xU7wDe/CbmiAKEYcPIA4cJPV84tY2EscjrQzBvb9DffvfUI+uIuu6ZHUCfT0kjkvS3EyiJcnWDbh3/woqDvqBO6w2P/1skrNfgXlkNWbLBpKTF5BUQvTqe3B++l249zfkMj6ud2Qus3E95EAvzrZNJFpjqhXi7qkk0iFxfdKwjLn/Tpyb/gO59n6yJkUsPZvgFZcjHn3Y/tbkaSSOB6vuQn7rK8hVd5INq/hRFRNq0kIe3daJdjzM9k04d/wC+gbQ+3YhfvtTvEwG/Akkq+5BPbKSTBwhMll0oUiSZNB334a7cR2eoxBak06fTbKvF27/KW4UoFqnk6y+G7nyLvKFgt26pLWdpCLQd/4Kb8dmXJMisjnSYivJgV70vbeR2baJ7N5tpKnGGE1UbCHO5Ej6ejH33oa88VOwdROqaxKyaRLpynsR9/yGfKHwPBp4doeUtIbLxmt0LrRSqsEUHq9caJEkxJOnUz7vlYQLl1pNKgSyNEx25R34mx+jeu7FVnNlclZTKtWI/TYA7NRMaiFRvQdp+vfPQqqpLr+CaN4im4+axDh7d5C7/Raya+62TOoJliAICIKAOI6PIDTqe09ls9nGhnKDg4NUKhWampooFAqN7xtjiKKIcrl8xB45ruuSz+dtuKr2gMMwpFwuk9QWKs/z8DyPcrlMzhj4wCepfvAT6C/8H9wb/gbp+4Rh2Bgvk8mQzWaf8dlrralUKsRxTBRFR3zmeZ49p/IQ1Tf+OYOfuRH5za+iPnw9wvMa33ccp3HuUkqSJKFcLlOtVo+4Pt/3CYIAYwwtLS0YYxgcHMRxHJqbmxudVMMwZGBggHw+Tz6fb2wTNDAwQBiGNDc3o5RiYGAAIQTt7e2N+1utVhkaGqJQKNgwV418KpVKVKtVisUi2WwWYwyVSoVqtdq4v6OvOZvNEgQBAwMDSClpb29/3vzgei50HMcNZXtic6G1tmmEzS0k7Z01cFJjlgW4LrrYTDx1FmlbjWF1aiaxkjXzWY2AV7k101tg/Azp1FlQLmMyOctSK2vaGddDT+gg6ZyC2rsTmSYjYYfjHfFOYjyd4AgbzDd1ykFIpOMgPa/Ri9sEVXI6xWsq4GQyIw++1j3TS2KkFGjPGWGrPR/Hde3xWtvfS2OUEmhpFzjpuEid4GYzOEGVSqGI7gKyORwgLwVZz7Hn5LqoTOaZF26jkXFEFoMvGTkfA6jaOTkOspYOSxdQaMYBsvXvC2mv3fMQdRcnDsmh8evj1e+RSfEcicnkUBiIAoq+h/AzIzsVxDFeHNKSy+LUz79+T9FkCgVcKRFhlaLnQiY7cn/jCD+JacnncGoLodEaEYXkjLahJc+zTeSikIxOcZW097d+npksjutikhgnDGj2XWvynwAS64Rq4KRjMsGCxcTTZpO2d6Fb2jCZDEgHYTSq7xAijkkndtuKmnqlkBT2b+WA59W0b10DA2GIu+NJRKVM0tZpjxVAnCAqJZxD+1D7duKvW4X/+FqbVvesWdHPn+lz9F7LoxnPo7fKqK/+Rz/8o7fAeaYxRn+v/rkQAlEeJlhxFaWLXkX0i5+Q/fXNTOjubhz/VOM923UdPUcax5eHic5cRumaNxPdcTu5H3+D5o6OY85r9G8ds7H8qHO3gQxT28q5sVfus967eqipPlb9/3/IsfXrG32ez/YcRn/2fIaQnk4DnxgAG01anEDlnBVUl5yFKbTYJbuuSb26f+vb9+oZ2/Xfl9L6tMqx33Oc2pYqclSMGUhSGwet9YtuhKiUXeXdJx8jf8s38Teus6Gml9rWKUIgk4Tq4ADDcYKfy9Hc3Hx8YpVCIJKEaHiQgTAmm89TeB59wpea/GEmdC0U8nyzZyKOiWaeRDh7nm0cp9MRACpV823rprEzwh6LUdEuWcuBrpvH9eNrW4Xa6HzNVDcOiFE7K9T2D06mzyVYeh7qwF6cg/tekm1fDAYvm6UlKxCeZ5MWjuN9cPwMLV4G6fvjbXaer3DlCU/k0Cnx5Bm2DUt9kZC24brVvLXwkFPbrMxx7OeNihqOBHC99Ws92V6aRtG1zZeuARkxkv9spA3hzFtEuvIuVM8Bu52olC8h9Bq0VIhsDq9mGmpjjo8jYQxaSkQ2hz9GNoh/1lMWws4Jndbm4tifG0fuTsjxqwc22fwImSVHadI6w1xnmZU7AtDGamNGtHX9+3Ut3Yi3jbrZWh6ZuFAz40kSTFPRdloYqw/HjFqMGg9GPq+TyRhDOrrL/3G9nCN/64Tfy1oW2R/kLmmNyWRteWoSW3dsrO3M+UwAPu4sdMOfHV3bO8q/rYP4GACPmsT1F+LYmytrjLbQIPVRoDBHzdQx6P/W8mttJ8ukwQUY18cUmsZN0D/WBw8DCAPLOvvZZ61GE1FIOmUmunMyas92xL6dtUjIi0QDn5D1ow5aoY70aY/QwkeZ0PVj6+AV6igTe1TCev1l5FMA2Nhjj7veeY5Stdk94QWXkixYjMi4MDCEu/pusj/9tm2XG9cJOsBz0E0tdsO2WnWPfaoSXSgitEYMD9VIPF3LVKNR8GDyeUwmhxgeQITxSI+o5taRiSslolJGlIdHxlcC3dQ8sodUzU2SpWFbxSOxaZ2+b/tUDQzYTDpj0MUWZKVsz8EArrLXUCuo0MVWC77SkH2Ofsb+DY1eVKaplgQ0ysoSQQVRrdaIS1u/nLz8QqLTXoZ332/w1q7GuPa+oBzkYF8tk8tOBZPPI6sVyle8GSolsmsfwCAY6zTnC1DQP1qTjgZv7e+67yHVUQA2jcSNRoO6owFsjiLjjgGwHrt9mI1BpCnRhZdTveo6Es8DmcLEqbjzF+H8/neICe22SVs2Z2Ou/X2oPdtJ2zpIp86sMfgaMTyMs28XWiqSJWfbrWdcD9nfa/eEamq2sdcDe1B9h0kWLEW3tdlwXprgbN0I5WF7XlFIOnk66eTpR46/dydUyyPPRrnEC5ag2zvtDo/GoAb7kf2HCZeciTCW83A2Pko8e77tsCENcmAAtWsraXsnur0TZ9dWSBKSBUvsbOnvIV14OijH7uscxzi7tyH7e2yThlorI909jbRzsu0sGgZ4j64mPuN8Kn/yP0gndkHGByNR+3ZBEhOefZHtPAKQhDjbt5J2dFO96g2IJzfi3vyftkDfccYBPGKxjspPVnUQjyKmnFF+sXgKv+WItjpPYUIz0nnyGF+oXlZWH3usra1aI3IFgmWXQc9+Mh+5nuDgfnjPx0iuew/DF1yGt3AJweIz0ZOmYVry+PfeS/FT7yM6/VxKH/4spsXml6tNm2j+vx9FN7Uw8PF/Rg32k3ZNxr/vdkwmS7T4LDCGwpc/Q+5n36Xyro8QXPRKMB5ieJAJf/0W5OMP2bK94SGqV72V8vv+dmT8zZtp+cxfI9c/aJ+h1jChg/L1/4vwlVche3vQvk/2zl+S/eVNDHzhO8ihCngere99PaV3/hXR2cuhIPAeWEPxk+8lPOcigqvfRutHr0eXh6lc/zeIsELmzlsZet/f2yq0zskQBBT/4QNkb/mWzR/XKSaXJ1p+JeXXv5N02mwYHKDtvdeQ5vKY8jDBVddRffs7cdc+TtM/fxyxfxdDH/8CetZJNTelTPMnPkj1VdeSTukAv0C47FX43/5XdCYzDuAjNGO9PrVBStW0rRyliaU6krQ5whcePcZo03x0+KvuPB6lhZU+Kjw1xsgrxwHHJZl5Mlx9Hd7OrbjbNsB7r6U8OAiveTPpSacgvvlFzMxZhC9fRnXWyXj3/oZsFFIJKpiFp5O86yOUZs3Hae/AdEwg+cXNMGM24ctegbPyTsRtP0Uvv4Jg5jz07AWEF1yMvO0XpLd8FwMMPrGOYpriKIXJZMg8dC/pJ/+Sali147/7I5SmzqHwyCobjxwepPzOD2LmL0b+xz+RFifAm68nbGom6Z6B6SiS/vA7sH4Nw697O3rh6cgv/QPpKYsIL7yS6isuI5k6i1hryrt24E+ZSrRgEerB+6metIh0xkmYe34Dt90K17yVyvmXolbehVsatJtgTJpO+fXvRPb3knzzX+HTn6d04eUkp54Bvg/f+AJmUhfRuZdTmT2f/Ko7KfzLJykJSRoEcONNlOcvRgz2I3bvw9z2S8KVdxMot8Ggj2vgI7SuPJKwUmrEbD6CqHoGAJtRABaMaFgzqm+fOYrIknIkh3qsiVKYoEr21u+SnryYZP5i/GVX2PrYu36JV62QdE5CrroHvvB3uGctJznrIiodk1Clu3C2bUSGEemENhjsJxwcwJxxHurJLaT/+c84r7iEdOESzB0/x922iXjWySSVMmkcY/JZ1OAA6e5tyN7D0HsQikW7XUre9qV2tm1ERrEdf7hEcPggOZ0ijYOZ0EHwqmuR61bj3vAhxNnL0UvPIS0NkU6bC4/vQNz4adyBHsL/759wfvlD3C/8b9T5lxKfuYLqGedb3/7RNUS9h/AXnoZubUOuvofwgkuRO7eiv/cV/Lt+RXzGOcTt3QSujxeH6LZO4rOWkUyehve5T+DfehNi6kzCKMLMPAmxbjXOlz6DXHQWyeILiLwMnnJwdm1BpYY0SWCwj7ivF29oANU1jfTXP0JsWIdpbR1J1xyjcsJmsmkAU4wAWYgaITX6/6P+PuJ9Mcr0FSOZWqM1cl2zjy7IPvp45YwissYWa2pcl8yt3yP7wbchv/4Fkv5eSstfTfXvb6S5owPT0Y386XegNIjfVMA5tI/Uy1C+5u1Ub/ga+rt3wD9+GQ7sQay+h7S9C7FlA2rvNlRHF862TaSPrML4Pq7nIfbtRO7cgtqzj/hN74SfPYTz+e/SMmMWCjBxhGlpo3rVW6kcNb5ceZfltIwtD2TCRJKffAsBZLsm4e7ZidQGOX0W8vG1cHAvmavfivB9zI2fAiDT0oK3cwupl0VncsiDe23TuykzLfO+9gHExE7k5scQ61bhS4GTycDOLeg9O9HaoNu7iV72CuSm9cS33oRbKND8r5/EvffXNiz06x+jyiXcU5cg0wR5cB/h+ZdR+tgXSL90M/z8YZjeibj/tySFZkDjADkB2XoLoDEsJ04VuZ41Z/yMrXmtv3J5yNZeuTxks7UwkjwKlKMAfowfLCAjIa8gO/rl1F4u5D3I52xPX8cdcz6wHOpn+K8/Temv/gG/o5u2+24n/50vQpIQzz2F8sz5mGyOVDnkHZfkvIthaBDxikvhvBWor/4Tzmc/bHsqD/Zj9u9CT5sJh/bjhiF6ygwol3CHBxFtHZggQMyeh3n3R3DuuQ33mnPhwfuJ551GVRuMTpGVMtVXXUv08gtwv/a5kfGHBmCgF6fGapuObshm0eUKTi6PWXouutiM0iliQhvi4H4cQHRPtUUr+SI5ID37QrRykGkCza2oQweQQPXSaxEH9pBueQIzdQbacckc3Ee67DJM5xTYttGWWtYsONPUjBECCbiLXs7g//023pKzcIf6YaAXF3Cmz8aUhmF4gOStf4Ha8Aju+94EO7dA2WC2b0J3dsPuXcgdW5CZF8fWMM7T+mPPs3ZxDuxFFzbaZnP1vGc/Y1+uD641pU2+ibR7KqbYeuymX0eb0nVJItTOncjS4EgG1tHXIoV1gw/tR/T3gEnH1pOIY0znFKqvuBRRLODdfyd66kzU0ADs3EL19HNAG/TVb0XPW4Beei5864vWXD3nIvSmx6DnAGKghEk1oqkFM70ds24NTlOR6PRzEPfcRmZogGT+IlLfRx46gD57GalKMN3TEXGIXP8Q1aEhfGNw45hkxlziJWfhrrkHeg4iBsu2vavRKKkwWiO3bYTew/C295JufoLkgktJD+5FBhVM52TUHb/AURJn6xNQrWL+8m+J928lOecizK9+jAwC0j+5Hn3Fa0knTUEvPhPx6Bp01xRMWyfi5FPRf/kJkuVXIJ58DLnqbut7Oy6iNIjasRlz4WXwjvcTnfdKkvmnQaWMiGNkpYyYMBE9bzHm0H7Sfbvh7PNIdILonIwsDaMDjXBcTPdU0rYC7tQZOAd2jy3t+zSYPDGbmymFv2Ed6uDekSQNpWoMdI2Jljbmpid0UL3sWvsQ3Myzx2sFiKBK5o5bcbY8MdLTyDyFDy4VcqgPtWfbyNaYY8S/Mdkc2Vu+Rdo1hdJlr4FLroFSGe/Wm1A/+y7p29+P7DmIXriY0hln4K9eCTd9BTk4gD7tDMLr3ovcvxu1bQN6/25E5yT03kH0mnuRTc1IY0gfWYUsDSGzWXTvQZzbbkEFVYIPfQjmfR21+XG8L95AXB4G38M4CnfjeqKzV9TG34PavpF093ZrutXutXrwPtSqu0kveQ3VM87DtHciHl6J3rEV0XcYdm6xDfQe+B3Oo2uIl7+K4byLu/Zh5Pe+DBM6YcWrSc49H73oHOTG9YjNG1AXXEqKzeYK3vsxRH8f3g0fxN3wCG42a2PUfb14999O9exlpB/5Ryo9B8l98R+ozpmHyOZRAz3oSVPRcYjY8DBm/27cJ58kWvRy+PhcnH174Mn1iNZ2TO8h9JnzMCctRN7/u7GXOPMU53NENVL9laYpSZI8j9VIplbf64zSnGIktDRKo+rWdsrv+jDROSts+uXoxeSY7Cw7hjp8gMKnPoD76BrLRj/ddp1CQJrYbolpMrYejtZQbCWc2EVJ2m6PJAmi5yCe52E+9jlS5WC+9Gl0EsNAP86OJ8lPnUHSPY1yGEFQtX5eFCL7DpE77QwGfn8XrS0tiAWL6X98HbnSILkFpzEcJyTbt9A0ZSphdzeV4QBKQzgH95JJY7K+j9AppnMK5eYJVOIYggCpU0QYoHZvo7mlBRDI3kOYKdMZMpLg4qvgPR+DH3wV92ufw5s2g+r2zRSiKn4mQzrzZIaVS5wmMDiIs2Mz+dZWmD6HkhSkYQKlIRQGecnVJG9/P+b9b4JqBcIAsXsb+Sggm8tZgkkITFMzQecUSnFi78HenWTaO2yf8N3byOZyqGmzKR3Yhzm8n8KSMxmME3QYIaIApRRm51byc+dTzXnET26maXiA3PGq1HrOU0STpmmj/PHEFfQL29pGHFP5clR6oxAYL1Pbr7eWeFEvCXwmn7WWNif7DllgPm2yhgW3cd2xl9ChFKLvEN6OLeQNVvPUSApxyhKCkxYi7/gFYuXdjSIrJ5/HP3wAZ/tW+4CxBVgCELks3j23k/VclE5R999OzoDT3Ira/DjZUoXY93D3bEdueqIR7ZOOxC+2WAZaKeSebWQ2rLfW0ejxm2sNAnVC5S3vRnR0owf6YOl5OJsfxzxwB+rwfrI9+xFK4TRbsLuPrCIXp8S131PZDF5YhQfvI2d3h7GbJTY1ES1YhOw7jL7/t2QbqbjgtUxAKNVo/yoP7SezdbNtkVM7PjPUi0k1aTaHE1SRD/+erDaQzeOuvIt87bdqrQ8xmQz++jWIRBMBsrV1zBdfnNgwknIw6tmBbov8c8cyy40ewBwZPhJgvAx6wkTbKK+2AdqLTmpWimifSHZ0E4CgSpzNEvQdQmx4BLepiXwmg6i1kjHGoHJ5CqMK5RtD5gsUa4XqesJECrVjUsfBzRXs9ifGoPJNNB11vKlZPjqTw8nmcZ9q/FqxQPyyCwjOWQE5DzE0jPza55GPrMTN+KjmFtvKp/Z93TIBXwgyRxX20zbqutME3TwBXSnDyrsQxRaypLi1ThrGGAve+qKfySIyWQqjwoP186xfIy1t+PXfzGaPuMejr7l+bi+G6qkTC+A/IuvDuK41n3MCUmmXfTmKMxf1ZdOqBB0V7K55AP8NavSPmDyuh9y7k8JHrmd47268egngKNPumSbbaBNQH3XMH3L8s36uHApf+jTc+Cm7eVqaEg32k0ti/HzhKU3QpxtvpC+zhNIQ2X//LOVyGRFWIZslfZaeZs9m7v4h1/xiAe6J9YH/GDu/2EJy6stIu6ZYU3d0d47RpvToTvvVCt6au+22jmn636vThhDWFx4eoGoEblMRNcbyc2V5mKgSNMxiBHjFZlzff+5gMAZRLhHFEeSbcDyPl1j/lD/IBx5zACa1faxEFD8zAT36M4mt8fX9/x4q+OmAMspsHnvrzFP3iXo+xj1ae44D+GlIrDExOZSDKTT/8cV+L4H+VmM5K+h4zZ1x4B67kMlRvv7YA/BLBIzjMi7PxyLpHL3Cj/Xcz3EZl5eq+fxU7Ybl0So6TdPjsq3KuIzLuDx3SdO04f8erYFDwK83pa7viwQ0+s+Oy7iMywtnNidJQpIkxzSOF0KkDvCIMebMp7K1tdbjAB6XcRkDAK6Dt45HIQSu6/Y7xphbgHnGmObR20YYYxpqe1zGZVxeGPCOdnFHW8RKqSSfL+xRSqldjuO80hjTfTSAn26wcRmXcTkxUsejlNIWXdRaRmWz2YOdnd0bHWBXV1f3Z4MgeF8YhmdqrSXoRqD4j9nwalzGZVyefwADjb27lXLIZrM9LS3N27PZ7GYHYOLEju8PDQ1OHRgYKERRNFNrnQPk0dp4HMTjMi4nHrw1AGsp5XAmk9nf0tKyvVhs3qO13vr/BgBv4qitCbBJjQAAAABJRU5ErkJggg==' button_image_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACCTSURBVHja7J15eBRV1v8/t6p6XxLS2UBAQAmorIqAC6KIIDI6iuL+ioA/HXVwZnydEXF0XGZcRtxHceYVREccVFxRXBBURAEBZZWdsErInnR6r+X3R3V30iQRkAjRqe/z9JN09a2655663zrnnnvvKaEoCknYgeskSbpaCNFDCOHDggULrQVBYI1hGC8bhvG8rutxAJEk8FFCiA9kWe4pyzKyLCOEQAhhqc2ChVYCwzAwDANgsxDS2eFwaIdQFMUuhFisKEpfm82GLMtIkmSR14KFVkpiXdeRJKmkQ4eje8uSJN2oKMo4u92Ooihp62vBgoXWByEEkiRhGIZXCNFL2O32RTabbaDdbkeW5YyCTqcTR/K4RWkLFg6jpQU0TSMWixGNxVKucwYURSkTDocj5nA47DabLW15JUkiy+9HkiTi8TiqqqLpuqVVCxYOp7VNclGSJCLRKHpjDmqKEMLeMGAlhCDL70cIQSgUQm+C+RYsWDhMVljX0XQdm6IQi8f3LSJLKdKm4HI6kSSJcDhskdeChVZE5uTYN+O4tG9Bh8NBPB63yGvBQiuDJMQPE1gIgZAk4omEpS0LFlrbmFiS0HU9g8RSk+basr4WLLQ+AgvRiMBKE+w1PxYsWGj9brWlAgsWLAJbsGDhCEBp7QJGjz2BulOGoOYWmrF0mnLvzWkwQ5YRiTjulYvxLl2AFK6z7rAFi8AtBUOWQZJTI3JEIgFG8yu8wr0HUHvWBehOF0JTzbG5JKXPz/hrGCAEutNF3aBz0XLy8H/yNnKwxrrLFv57CGw0Y+MOFYl2HYkc19cko2FgSDIiHsXz7SKU8pJGgbPwiadRO3gkhsOJo3gDjq3rkGJRDElqZHkBhGFKnijsQKTPQCI9+2Modvxz30SurjgsykwMOpfyh6bhWLGYnJtH/SI7TPiGOwgPPItEUY/0MceKxfhm/gvbFx9ajPqlWuBQv0FEuvfJsMAAelYOWbNfQYqGze8uN6F+ZxDqfyaG3YFz0xr8H7+JXFt1QPW4Vi5Brqmkbsj5RHv2w3C58X46G/uubT9o7VsSMU2nqqqKNm3a/KI6S+1fniE07KLG7e0zkFifgfievh/vzCkWq44ogXW9RaaREvntiHXpDrKM7vER69gVZBmEZJI3+Yl1PYHaEaMR0TAgUPMKSRzVGUOWcX/zJd4FHxy0G+xZNA8pXEdw+CXEuvVEzSvEsWG1eR3DwKDBVFlzbZVlbHt349i6HhGLHuAYYd/vv5zpOK3HyYSGXYSIhDBm/BMe+N/6Hx98Hi4bT/CKG1BeeAyn02kx6+dsgWNdulM79NeogQLTzU0RVkqRV0p/N2x2In1Pre/whgGqimfZAryfvYcUCf8oGVwrlyDFogRHjCaRfxThU/JNC6w3+Bh643nvBv8LTcW5bgW+z95Hrqn8UXJUPvMWsb4Dyb/+Aqpue4BEUQ9EJETWtMdxzXiG8G8mUTt6HIbLg7yrmMB9v0NeszSDOLVjbiF62tD0MdvGNWRNfQzbFx9klEtdP1VGLishetpQfG++iHfyxHpLes+zGZZ039+bQrx3f1M98+cgPfRHfH4/brfb/PHJP1PWrgPqoGHUXHA1zo9nEbnqZqpv/jO+N19Eqqul5poJzcqekik8aBiGywOAVFGG7/2ZuJ97IDk8GUH5w9PwfPwWSsmutM5sG9eQe+056G07Uvng1HT7G7bpUM5NIXLVzYTOuTBDv/u2o2TeZtxffGx6nMmHXf7VQ5D27Pj5EDhyXB9qh16E7vUjhYPItdUNLG6SuLLc4DvmX0DoGvbN3+FcswylrASRiB+SLI71K7HtKibWrRfRniej+bJAN0DX6smrG43Mp9A0dLcHLTtApM9AhJog6/2ZhyRL6a1/heTNN1weqsf+gZjHRyTZsQG09p0pu+sJ8i4ZiCzL6G07Uv7gVPRAXqZ3U9SD8nueJnDFYOylu5sslyjqke5swYQKoRBej4fy6XMzxq8AwVFjiOS1Je/2Mc3rcv5sxLg/YPQ8CbfLVU/eJPJuH0NNbS3hcJhYTk79tY/vC917NZK9zYTLcH63HKBJmfRAHjXXTCBeXUn2zOfqh2Idj4EGD59EUQ9K73oaep6E1r5zRpviu7aR0wLnph5GTd2Dhu0ACHXvDR27mPc5FKJs5TLycnORJOnnQeDgWRege/0oFaW0eesF5KoKhKaRmRFAmIQRAkOSM84XaqJFXU+prhbX8oU4Vyyuj2Dvz/c1DISuU3vupYQGnEm43xmHTGDcXuzXDCe+8GN4+jUYOZrItb/DPms68T+NhYFD4Kn/YHToQmW3PuRtXk34qpvQA3mIObMwfju6/lpzVkL3XlT+6kryn3+4vtz6VRg3jYZtG2HSo3DdrRki1N32EImiHkjrV6Pf93tYPB86FcGzr6MOGkbFuZcR+PDVpvW4ZwfuObMIXTyGutV1xDauwb5tE1JdbdpaZfn9ZPn9ZqdPndi9F9KCj9GvHZ4he/WNk8i76ULUC6+pl+m8Xo3c8kjvgTinP4Hc4Hry69PQbh+f1pk24hKkncUo1wxDXTg3rd9Y74FED/Fcp9NJ7eU3mEOHd2fCHdeZ15r0KFx5A9W3PUDemKH1yTA6dkH6YBb6zeb9EskUVYfNAuuHGIU2HE4QAufG1UhVFaBpqG0C6B5feqoHIcAwkCtKkSKhDML+UN2G04Vhs6O7vRgOlzkVFQ0jYhFEImG627rWzCBOBe0g2gE4vltOrOsJqAXtDkgnxg9F9J9/DGPJp+Tl5aEv+ICKkaNh/SrifxqLz+fDs+07qtavJHb6OahZAVRNwzN5Itw7gWAwiPLMLOyyhJrXlnjSohm+LCLRKOH+Z5gd7KbR2L/fRnZ+PtK0R6hofzSJcy+u9456nISIhNDP64XdbicrLw85Wos26TrKZnxKfPAIYu/+G7vd3mT7fI9OhPdmErpkHIkBg+st/KgxKBvX0GbypAz3H4AdW9GvHY7b7cbv98O44eydvRLjuN7UBoNkz55BzhsvUFlZifzwVBxZZuAvnLKUXh+xeBxX6nrrV6HdPj6ts4qdW0nk5qP/36PISz4jLy8P3vk3ZSNHt8i5jB6PHshDem0a4s7r8fh8eDweaKDfqm59CWxelQzTh9BvHo3H48Hn8+23T7fCMbDZbaVwEKGpJI7qRPUVv0HLLQRFAVlJ/3WuXIL/lSlI+4kwazl5xI7rS7zoBLRAIWpuAYbdYVpKLYFUVYFcU4ltxxbTbd6++ZDdb9MbUE3HQbEduloWzsXn85mucerY3j3Y7XazQwByg4Unuq4jyzKR17+Coh6ogNqUtg0DPZAP5XuRdmwmu4G75tmyjuoMt7TAHGNuNYgDZfu2t6At0Wi0WQID+DaswH3fzYTDYaLRKNqNk6BbT9SRoyl/8HkC141E2bur/oTVy7HZbCZ5U2P4HVuJ9x1IvF1nCFcRn/QYjBqDBjQV8cjIRLFlQ4bO0o7d5nX1+q3Y22Lnakcdbf5/6Ti4dBxBzPyuGe50p65oG75NPiVDSJKUJu/PL4glBEhy2jXW/dnovmyw2TMJrNiI9eqP/u6MZgmsZQeInnQ6kYFnoea1TUfJpWANcnU56DqGzY7WJoCWk0e8czfCpw3D8d03eL74ENuOrc1b5APyvyWTvHLLqKlBDu6kT1vb+Ng+gR21qAdiZzHGqmXmwQ2roVtPGDm6UcBb2Y+7Zuwzbm38uxdVVffbDlmW8fl8Zied9X9Eo1FCpbtJjP09lVfcSO5jd2SUb+6BoOsa4Stvom7UGNODmD8nrRd2b4db72vyPJutiQdqya6MnG7N4WDP1b3+/d/Y7Bw0LdnPQnWHNSnkT0RgKXOllGIDm62eDEkii3isWQcj3vUE6kZeTrxzESCw7SrGtnkdyp4dKKXfp11vQ1bQ2uSi5RYQ71REvKgH0V79SXQqwr3wI9yL5iGikR/bGFBkU96fCD90s6MnnW527MFdsNlsaSLEXpqbYY1FOIyRW2COZ4MVGTrMIN7OYtT2naGHt3kS25r2Nsqnz0Ut6kHg9nGNIshOpxN5/SoqAN3jIxKJ1I87j+nW6Fpqx2MQFaUY2zYS6zPQrPfB25FemYLLZTq88b88TaIFdfljz7VtWG3+8+rU+vFvU0TPzm7w3D98WwxaviZJSkaXTRJLNVXI4aC5gEOW662wLGPfuLrJ9crRvqdQc/UE4scej4hG8c55lazpT+B/5yXci+dj37oeZc9OlJJd2HZvw7lmGZ7P3id75j/J/vc/sO3YgubLIjjycoLDLzmwp+gPjWqPYJpdw+VB/PYuAoEAPp8P7bm3Ufuekhkf+3wOuD2oT76CVtjBHIr9ZlL9ODJFtDXLwe1BzFlJft/+FBYWUlhYiPu5N2Grgfu5NwkEAk3K4VxjRlorbv4zNf/7YKYLOWgENeNvTXsIGW5r915E734q40GgB/JgyYLMFMYDBpOdnY3P50Pc+wzqyEtbxTyrY/YMpIpSOP9y7Hc9kdZZYPRY5AVbEWvryO/b/4jNff80Fjj5MSQJ2/fbafPPh9CyA8kgVsqyKSh7diDVVGfOIfc8meAl49Gy2iCX7ML37gwca78x10Lvr+poGMe6b1FKdhIccSmxXicTHjQcoal45s/+cZsbWmhhy4+Bc/lCwsMuwrj1PkqacieTDyb3jGcJDR6B0b0XZW9+3ez1vJMnEj75DPTuvSh9Y0mm7ipKCT80EREMNjl+806eSPiEE9G79STSsQuRi69trP/1qzH+cT+2BtaIcAht9DhKRo/LqMuYfCdOpxPbisXmHPfI0VTuMyww56cKjziJve+/Su01E4iP/R0lY3+X6dW8No3ylcvIzc09IrL9BLZeNJiuEaDryGV7sG9ag33zWuyb1pr/r1uBVF2ZsbzRcDgJXnQNWlYO8t7dZM14FufqpY3Jm3LTG7rqDZVaVU7WrKnm1JGmETpzJPEu3X6E+TNA00HTjsjN8d9zE8oHb2Qe/PwjeOzutHuq6zrSnh3kTByPWL+qvtz6Vabbtw/yLzsV6YNZmQeXf4Ux4QrknVvSAZ6mkD92GPLr08xr7xNp5tWpGMnodoY1+nQO4rWpmXWNHpSuyznjGZzTn4RwKFP2x+6G8lLILagfXx4huJ97AOdT92a2u7wUXp2KNnE8Ho/nsLrNGVRwOp2G0+lEURSEEPj9fkKh0I++YOmfHkH3ZeH7aBbuxZ+a87oHiGi/QdRcdRPoOv5XpuBcsTiTvJKM5ssi3r03auFRGLINKRTEsX4FSsluRDyaYS3VwvbUjr6OeKciXEvm45vzGlJd7QHLk2jfmdrR40m070zh/151YOckElRUVOB0OslOWqLq6mqi0Sj5+fnpG50q13C6ASAYDBIKhQgEAumAS+pYukO53djtdqqrq7Hb7eQkF05omkZNTQ3xZPpR+eGpaKPHwWN343vxiQxy7ntNp9OZjsTuD6FQiFgslq4nFRxyOp3pOqKpxQ/vv45n4lgkSSIYDKbr8ifzjqcNdThMXV1d2v222+243W6CwSCGYZCfn9+szprSr67rlJaWpu/DoZyb7p/RKOFwuF6/sozb7c7Qa2lpKbIsNzsUOVSEw2EURUnL+hOshRaZFuwAr2U4XYTOvQTDZsf11TzTbW5AfsPhJDzoXMKnD0Nrk5sRJKsbMRrHd9/iff8/2HZvT9ep7NmJa9E81Ly2RAaejXPttzjWLDs4C6xqpgU+wHbYFIXCgoL684HsrCzIyso41lQ5AJ/Xi8/rzTiecawBUudXPvMW8b4D8b75IjmP3G4+IM44j6oh55sFl32JLEnN17Nvm/cDj9uNp7mIdnqN+QGc06Aut8uF2+VqPIxwONJlm9NZU/qVhMgoeyjnNpQlLU8z7cjPyztgPbbOMfCPDPrEi3qiZuciBWtwf/FhendSesZl2CjCZ4zAcDhRyvag7NiCFIuiBfKJH3McsR4nYThdZL30FHJVefo817IviPU6mWivAcS698ZWvAEpFDxwAhvaEXOhD3isvGop8b4DqRs1hrpRmcshxYKPMBbPx3aExmgWDjOBD3UlVhMx3ANCrHtvDEXBVrweqbIsI/NevEt3on0GmnuDv/sGz5zXsO3cak4jKTbCZ/2K0LBRxI89nmiv/ri++qR+IYdhoOzciujRj9jxfXF9+THiAAlsYGBo5qaH1ryvyPXc34jpOrGzz0+vw6W8FObNxrjjOlwuF5IsH9Y2GIfQFywcaQv8I6B5/aBpZmBrH4sX69UfLVCAUrIL79v/RimpX+kj1ASeuW9heHyEzr6A6Emn4Vj1dYYVlmprQFXRvT6Mg1mUkUrh8zN4L1T2vx4k8uTdRCIREsm83rIs4/J6fzAw9ZN5BTP+AVMnU1NTA0egfovAhzualoibq6aacL8Njw8UBfumtc1u67NtWYd06tnoWTlm+QYETkWrhaYf/FsWf0Z7el0uV3ohRKtw7Z1Oa2/wT4zWk5VST07XNGXtksshDYejWQtqOJ1mzq2mnDUrz7WF/xoL3FKJ3Y2DvJaayFy33DD7/O5tiGiE6Imn4Vi1FMfqZRlldX82kVOGYjg9KBvWmGurG9abToQnJb1i4yAaYT0ELFgWeP9Pkt3bEfE4an47DFvm4nfnt4uwb1mHYbNTc80thIZegFrYHj07h/hxfai+4Q7i3XrVR7BrqzOfDfntzOj199vNNdQWLPxSLXBLZaU82OvYN60lPGi4ud+1W08c33yVngcWtdW4P5yF5stCbd+Zul//D6FzLjIzZ3j9IMkINYF7/rsoW9dnRLC1/HYkunQ361i9FFFTyY+wv1YU1YJlgX/wSVKyE/vGNSAE4VOGouUWZPxu27oe/8vP4PnoDWzbNoHNhu7LNldirViE/6UncX36XqOdR5HThpLo0AWpthpb8QYzF7UFC7/YMfARhHvhR+YyyY5dCA85H99bLyEauLzK7m0ou7fhXDQfLb8QQ7EhherMed4mNvBH+w8mOuAsUBTc895F2Vls3XELlgX+6azwLhzffYtQE0T7n0l4sLnyal/IFXuxr1uJY/UybFvXN0neRNcTCA8fhe7LQtlVjH3dty2SpaMlUTP5ZUoX701/gvf+snIqV015p8XbVDFrMaE//t1ibmskMID3/Zk4l3yGSMQJjbyc4BU3ogUKDuoakUHDqR3ze9S2HVF2FeN77XmUPTtbVTuD905B7XQszvN6QxcBE64gMnwUNacO+8V0Lq3jMSR276CuruXeURW4ZCCxO64jHA5b7KUVvtxMxCJ4Z7+C0FQig84l2u90Ep274v7kXRyrliDCdQgtc67YkMzlGVphB8LDRhHrPQDDZsNWvAHv61Oxbd/c6qaBYv0GIX29AHXzd+Tl5SGWzkftF6CyspLKN77CyCtMpzr1vPEinkf+hNHuaKoemoaaTCYn7yom55bLCF91M5EzzwPMdKyuj95EqgsSuthMVZNzy+VIFXupfOrV9DW9Lz6Ne8pfM2SqfGkeeqAAPZCH540XEXW1hC4dl87VnDqnaso76HkFGC4veiAPx8K5ZN12NYnB51E74W609p2RdxWbG/dXfo3UqYiq+6eQ6Gtm31A2riHnmrMJ/fHv+5VbXl2/vzkx+DyqHn6BvFH9qb7rKSJ5Ben2+P9xP+FhF6EW9TDza18ysFl9ie+3E7x3CpHho9LyAGmZQhePSZfPvvcW5NVfUzP5ZWKnnwOQbq9lgZsjcSKO990ZeN9+CbmsBC1QQPDy66m46ymqbn2A2itvJHjJuPSndvwfqbz7GSonPkq03yAQwnxfz8vPmAGvVjiH635vJuqIi1FXVlP76AzCN/4ZRVHIz89H73gsugHK8B7w6lRCF48hFGhL7a1/AwPs3R0w4Qq09p2p7DWQeJduGBiI312J9No0IoOGE6+pwjOyD4bLQ+WAs6i9YSIiFEIpssGrU6kbeRmRSGbAT+vQGbZvQu6qEHrjJerGTMAx+U7EMRIs/4q6AYOJRCKo3Xti1NUhndIO6bVpxE4/h9qcQmr+9HdsSz5HKbKh7d1jEnP1cqL3P4ueV4B9RE+YcAVqUQ8qL7/xgORuuBdY69AFqaKUshVL0zIoRTZY/hW1l9+A41+PoDxxj6mXrr2b1VfdH/9OrN8gnNeem5ZH37KeiusnEh1wBu6xI6CLQNu7h6qLxhC+6rfETzrV9Jbu/i2x08+hpntfi8A/CMPAtfBjsp+9H9fnHyDv3Q2yjNqhC9FThhAZPML8nHkesd790XLykCIh7BtW4X/xCfwvPN7q3OYMAk/5K77efnh3JjFdp27MBCrveRaj3dFmGtM7rofiDeR88jYAoawAnhefwij9HvVfs+Hp/5ideuNatNwCpPnvwZJPccgSUkUp6t9uTaerMVYuRQ/WoHbrgTZvI46jOuIZMyzDDTXaHY3h8mBMf9p8kGxdg+uN6UTPGIH4bAucdCpSWQnRtslyzz6AJEm4ZBlpZzHRob/GcLtJTLwOp9OJd81yxM5iKGyP2vcUpEfvQt+ynryv55nyte1wQHI33HOc6HoCYvsW5GOOy5DBJknISxcQfWcGDllCREKoX87FNf3JJvUV7X8G8qfvkfjyEwKL5yJVlKLv3oF+zoVo7TsTfuED2GrASaeCz0+8qgLD5SE66yscw36N97YxxBZ8dMQTDfx0LrRhtFiCdrmsBN/rz6MVHEWifWcMrx81vy2Gx48hS4hYDLm8BClch1y6B9uWdS0WrBLNLe1sIbhcLlyPTyIcDhN5eDpq567UduqGVFGG9tUnBAIBEr37m4ntgKqnZmJb/hV6yS6k118w80Ytno/eoTPy1MdxuVxoXj+irARJlrGd0MesaO03+BZ9THjdSqJnjCB28unEn3uL3EsG1Lv0yb3Dxppv8Hg8BO+dQvyEvsjFm1Aev5vYX59D/34nyqlDzHLvzcSbk0PE6zPra98JsWMruq6bG/ELj0IqK4GTT0cDEu/MMBMPHNUJPZCPtG4F+mXj9yt3wyySan47RMluSLqyKRlq8gpg83c4HA5odzSivBROGULN0682qy+RrFfq0MWUZ/Uy9OtuRb7nFrSXnk7XqQOyy4Vv+yaC19xCrHNXYpNfpM2mtch7d/7yLLBht4MkoRa0M5PYtRDkvbtxLl+I6/M5+F6fin/642RNfRT/y//A8+EsXAs+xL5+ZYtGmtXcQgyPv8WVXjFrMZUvzasn8rHHQc8TUVYvRz3lLNMCn38F9DmF0IVXY3v/dcSQkaYVGjMcedF8tCEjkSpKEb+63LQsCz5CURTiJ/RFbFmPLMskjj/RTMhW2J7KZRU4ZZnsP1yOtH4VRihIVVV9Ol+tbUekncWwbSOyLBPrNwix6DPE+JGoF/2PmQxv93aM4/uY5TDT5CY6FyG2rEcI0Dt2QTntHBKDzyN6xnDElvVIO7aYFfz2LhRFoeqhaeb4uKJ8/3InZWkYFGPDamggg9zxGHMc/OU8pGS/E9s2IYb8qml9CYGIhNCO642iKKabnXT1RSSEdtZIsrOz8f7lKcTaOgJn/4rYgu3o511K4LarUJZ8DuEQVclMIa3PAh9iRg7btk3Eu/Uk2vdU5GAtyvfbM1/CbRjJl4wZmWulU8nuxA98AEMIRCxan61DCPMtDQeakygtA/u83MyoX7+tqRguN5GBQ9Cyc5Ary1p0HO1/6j6qJ9xF6WIzibiIhHDNmUX8zusRT85E2lmM/uQrVACOj95Em/T/cJ06lMhVN2Bs0VF3FSOV70U3DETv/hAJYWzbiC0317Qmu7ZhUxS0wqNMl3Pp58gL51I96VGY9CjyrmLsd/7G1FmyXWpBO0RZiZlaCXAs+4LI6LEweiyOhXPRAKO6EuPk09PlMAy0Dp2R58zCOfdtIgPPIvHSR9TuLMZwedB2FuP55G1YOJfErfdReut95lr1Sb/BGHwuxv7klmWzWxhGemhB8Uakk05Ny6Aea6bO1VYtw26zEel0LGLRZygLPiR+5fWN9CXLMs7XplI35haqLxuPvKvYzLu9bSOe1PFvqpAqynBMvpPK+e/jmv0fQtfeQujiMUgVZTgn30ls+yb4idLmHJSXuG9OLJfL1Si4cVBTB21yqbvgauLH9wG7I2kRhUkWTQVVNXcdqQnzu66bxBE0SFYnJ9PQKmZe5lRKWmEmshOpB0DaPMsYP7hRsMGDQ9PMjRApOfRUyhw9LYswdAyHC8PpQgrV4p39Hxxrl7eo4lVVJRgMphOpCyFwu93EZi2GVUvhzuvTv6XyLmmaRlVVFYZhZORFcjgc1NXVpTMjlpeX4/P5cDgchEIhNE3D7/cTDAaJRqNp6+n3+zMsXCr/VOotCqFQKD1OdjqdRKNRsrKyiMViGeVS9aXydKmqapJLVfH7/Tgcjoy67XY7Xq+XRCJxQHLXP3sNysvLadOmDZFIJC2DqqpUVVWRm5uLEIKqqiocDgcOh6NJfWVlZRGNRgkG2sL0D5AWf4b05xto06aNeTyZu0uWZbxeL3a7vdnjh332IhbLaEuLExjMXMahoRcS7zMA3d/GJKeumxke9SRxNNXMN6U3zAEi6t9eKJlveEBRQMhJIifzTUtyhlVudqVyymqmXiWakkFTk8RV6481tMSSBAYoe3fhmT8b27aNhy2SXf5ZMfI/H8ExdXKjNwBaOHREbvozdWNuSX+3L5yLPu48HA7Hz0Lfh4XAFg6RxA0skYWWR0NrmvIuDte7jFqawIp1O1sfcq0EdD8pfkmZQiTrdlqwYBHYggULR5rAhpU2xoKFn7cF1n8GKVQtWPhvRFPcbERgVVUP6wuKLViwcGBo6uXrjQicSCSO2JvWLFiw0Lz11TStkXGVgEaLhxvuALFgwcKRJ288HjfXcSc/AEKIhAR80zB4lfoxHo+jqiq6rlvBLQsWDjMMw0gTN7UEVZIkJElKc9Rms1crhmHMMAxjoGEYDZmNLMuoqoqqqhiGYZHYgoUjACFEmriyLGe40D6fr1jY7Xa70+n8TpblYxoubE+RVtd1KzJtwcIRJHCKxA3dZ5vNXnXssV3nKLqux4UQZ0uS9LWu6/npRdIN/G0rqGXBwpEncQp2u72yY8dO8yVJKhapTQw9evQsqK2teTEUCp2oqmobrHXSFiy0JhKrdru9yuv1FefnF2yUJKkYeOz/DwCMSzs3bRbgYQAAAABJRU5ErkJggg==' button_status_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACMxSURBVHja7J13nBXV+f/fZ8rtd3fZRpHelRZFkVjAFgy2RBQ1asT2+xq/gN+oiTFqbDE2jEnsJhI1asRuVCxYwQKigNJFOkjZvnv7vTNzfn/MvbP37t5FiAHRzOf1mheXs2eeU2Y+53nOc855RmiaRhYe4EJFUc4WQgwVQoRx4cLF3oIIsFRK+biU8iHLstIAIkvgfYQQr6mqOkxVVVRVRQiBEMLtNhcu9hJIKZFSAqwWQjk6Ho9tFJqmeYQQ8zRN21/XdVRVRVEUl7wuXOylJLYsC0VRtvXo0WuEqijKxZqmne/xeNA0zdG+Lly42PsghEBRFKSUISHEcOHxeObquj7a4/GgqmpBRp/Phzeb7lLahYs9qGkB0zRJpVIkU6mc6VwATdNqhdfrTXm9Xo+u647mVRSF0pISFEUhnU5jGAamZbm96sLFntS2WS4qikIimcRqz0FTE0J48h1WQghKS0oQQhCLxbCKMN+FCxd7SAtbFqZloWsaqXS6bRZVyZE2B7/Ph6IoxONxl7wuXOxFZM7OfQvSlbYZvV4v6XTaJa8LF3sZFCF2TGAhBEJRSGcybm+5cLG3zYkVBcuyCkisFFXXrvZ14WLvI7AQ7QisFWGvfblw4WLvN6vdLnDh4rsLbW+oRLpbL1qO+SmZzt1QYlGCCz8ksHg+Sjy6I4OCVO8BRH94NKle/dEa6wh9/B6+FYtQUkn3ybpwCfyfhFlShvR4kZpeWIGGWix/EMsfQKo6Zmk5ZkkZlteH5fUhfQFA2n50QCoKSjKOSKcww6VY/iAgsPwhzEAIKxhG+oPZdAnZxW8lEUeNNjv/d+HCJfAuINl3X6ySMiyfHxAgBJgmvi+XInXdTlMUO13Tkf4A6e59yVR3RViWQzyp62j1NejbNiM93tx2FZusmoZZVoFRXkWm8z4IKcE0QVroNVvwfbEEJRFzn7qL7y+BJY6y+48iPmIU0hvA8vmRPj+YJsIyUVsabc2oCNA0m6iWhRkIkRw4jHTvAWAaCMNAqgpS96Bv3QSGAdKyHW6aZm9GsSyMkk6kBgwl1W9fkBKRTiEyKcyyCrTabehb4rvVSRe9/BZiY4/Dqqhy0oKzXiD019tQtm4syNtw7/MAlE+esMvlfJN7v/GzvOi3xEcfSWbgUCfN9+FblPzjbtSlnzhpmcN/TN2tfyc46wVKbpjssm03YI85sTJde2FUVGMFQijxKFpTPVpTfatGVDX70j2gqiAlaqwFrbkBraketaURrbEBrbEBtbkJJZWwD1iomq2xNR0UBcXIoERb0BrrUKPNSK8Ps7yaTLfethmv7L4m1z08i8iESQXkBYiNO5maB18iM+RAJ83q2pPUD0aTsSSNjY27VM43ufc/0cbmc6YWkBcgeegx1Pz5nyQPO7bdPbGMQSQScdm2R0xoy9otGkqYBlL34Nm6kdAHs1BaGm0N3FhPavAIpNdnk1cIrEAYtbmR0LuvYPkDWZMgWydFRYm1IEyTxJCRyHCJTeBgGBkMoa1YhL5xNVL3In1+YocdS2L4KFAVhGXaZvVuaF/8F1eRGTgUsWkd8varYOYM+w+9B8K0h5EjD6H+oiup+t+f2qe+snVwdrztSp2+yb3fAC3X32e3sb4G+cLjcPPlBW1k5CE0XnEble+8jK7rhaacuzz53Z4DIyUoCmpzA/qWDSix1hFZq9uGd80KzEgzIpPGu3YFSqwFJR5D3YGC8Wxai7lqGUoqidLchGf9l6iNdYjsTjKp6Wj12xGKAI8XxO7TvkaX7naZzzyMPus5Sisq7Jc42YI1+WRqZi5B7juClkgE3+SraZp8jX3jyENILk+Q+c356O+/hjn0IFomXULy0GMc2fqqpZROvxP9/ddInDW56L2pg8cSmTCJsntvwv/Eva0m/a9ubZce/dWtBWa+vmopne64qsD8beeEHHoQsXEn2+SdeDjqpjWESkoIBAJOG+umPYZ5+DgafnE1naffXnB/+rKb2HbG/0P6gyj1tYRnziDwwM3tBoj44eOQ/qA9VrfJlzl8PHW32Sa5GQw7fdSRvMZpjxXkCc5+lciESXgXzaN88skFfZTfH95F8yi76f8Kpjzb3l5N4P1ZjkUlEjGqzz6q3bTo+0tgkXVcFRmF1brtBD6ZjVlWiRJrQavdhpJM2Pl3MCDo2zbBgvfxbPgSJRZB37LBIW/BqK/pjnbfXdC/XAbjToaRhxIKBm3y5uYpikKXE0dQU1tLWkp8xUzTeIKK6n1ovGV6OxM8M3AoddffTcXPxhY3a+MJ/Nl+bUqlEckkPl9hKbl045o/E5kwqZ382lseovLC49G2by5aRuqwH9ld+tbLqJvWUFlRgZI3HVEUhco//47m6XeSnPMG8ZISnB7oN4j08RNbjbyKKprPmYrx+SeUzH3TbsMjb7Yzy3P50k0NlM14oGBKUizfjuRZFVVOu1OWRWNTE53Kymi5/r528lL7j6bmzzOonji6oI2xwSOgZ1+7H2Ixaj//lKrKyoI839s5sE1gxZ7f5hFJ6h6kz4fa0oT+1Xq0+hqQEitUghUuwwqXtl6h7JX77fWjRprRN61FbahFqhoyn6jCNrnR7Hkyu7Gj/U/ci7ZoLow9lsaFjTROe4yW6+8jcVar86a6qorO1dX4n7iXspMOsBMXfAR9BcycQfznU7AqqhCvPmun5a6Vi8EfpOGEM/E+dnfRe3cWyaEjEYkYTP1Zq/wFHyErqqk/4cxiZ04LLAyWLSIQCBR9aZWtGylduYjqqipbM+cweDjqa88WtgeIjRpLJpMhdeJZZAYORVm5pLDdT00HIDFiNMlkm7X9p6Z/rTxRX9Pazqk/g7qawoHr8PHExp2Msmkd3Hltq7yZzyB79KHuslsKy+zZFyXXjlGdnegYe5UGtnaTFxpFAUWxSZZXRrpHXzK9ByKQkMnYeTxem4iK0jr/zZ9DSQskCGllvcxppNeH1L1o2zair1mJEm1BIuwBQ9VAVZBCsDtnYZWTJ1B32kUYA4aQzGmccSfTNPkafB++Rdmvf95q/udpaJ/PR1lZGfzxt2g3XkIkEkG791k8qoJR1ZX04OF2s8OlJJJJfEXujeYPinn9K4usMEh/EHHuVDwnTKTkuUdQp55CU1MTyWSSRM4sLrI6Ydul9ei63mE/CkVBtF3N2LgWc/JEgsEg4XCY1Av/oPG3d0CohFQ6TfDlJyh/7mEaGhpQb5uOt7ST7VfIacZQmFQ6jT8nb+Vi+O2FhMNhgsFgO3nmyEPtOj96D+rrz1BWUYG+4D2iTz5IdOrvWgezg22LxvrbH9Gf+ivBsjLbcvnDJdQMPxDzqBOI/uGXBIPBrKMjhpXXDnYXV/ZKE9pZ5y0csdKDhhM/4njbGSXbaGtFaSVubsnIWRPOpmdNc+nxIowMvoVzUetrUaItdp6c6S6UrErevah8+kGSySSZK88jFovBLQ9B/31tL+3Ds6g+b9wO70888xEMHIoBGEVnDt/slQk/9wiNv70DOfIQUkDtsRNQ6msJzH6VLndc+fUCOlXsesy0dV+i67rz0itNDXZ6l30cjZ++6k6YMAkTiBfzvOdbBmu+wOPxOMRy5GXzGVVd7f+88hThcNiZzgTee6WAwEbnfewfN95D5sZ7aGr3MGLE4/FWAidiKIritOO/y4nlELNNBWq34v1iMVYg2H44E/mqwyruJRfZgUHTEIaBtnmtbSK21x3sqcBePp8Pn89nP+i/XEMsFiN+z7OYh4+j7tjTqHzj6Q69vEbOk734UzvxiyUwaBjkzSG/CbwvP0HpmpU0nzzJkWlVVBGdMIlkVVcqfzOp+IuyLTs3HrI/8tUnd2ymnzUZX54jjWhLgU+gwDlmmiTPmkx0wiREIoZ851XnHr7aAJfdWNzn0IG8do5Oj6fDv1mB0NfMi4LIXgMhnvWkxqJ7XcDHPe/EatMB3mUL0Dat3bn5qdyB0aLYSzNKrAUlGmllbIEG333N2/72akQ8TvWJw9v9LRgMImu3EgWMcCnpdLpoxydHHma/xGP7ouu68/Kl/vFmUW1cFPv0Kpy75rRM/nu5fAGeJfOJ56yEu5+GI4/DGHkoLS0tlJSUtB+U/vU4kYnnI48+kfRj9+Bp2FaUuM3nX4r//VmQTKIWPP6OX/zkD0bbj/eW36D88378fttYTl93N//OyXRnD/0Jp8PTD7Zae0edWEjudV+Q3n80XDsFHr+3OMkBq7q6wFm3N0HZ4wRuy0lR3LTuyAq3ZeRdBQ4rUXz5yjR3+xqkvnIJVkUV2//+BsmzCncdxX9xFfGxx9mWwStPFZqDwUItIP1BxJTfUVFRQTgcxnzgRYz9f1i80Lx77SkD8MMjMbr1dpZH8pejAGpeXkzNy4uxjjiBcDhMly5dqJjzml23RKy9syjPQeWb8wZUVhN99A0il9/a+pJ37UnTtMec5a3k7VeT+XeCQhw8lrKyMsLhMOKGezGOP+3fcyjOed3+ceq5xA/7seOwajnjokLl8fFs+8eFl1FyyiS6dOlCly5dKLn+LsSyKOqctXTp0mWvI+23Z0IX82726Edq0HDQ9fYHDdqSvtjGhezfpaYjLBN9/Zd4vliMEmlu1b6WBdbu3UhQev/N1N3yEHLwcJoGD4fcWm0+CZ7+O2LjajyVlShbN9radvBwkgvqsM4+Ct+CD4iPOxl52Y1sK2Y6hkocMrW7N6che/Yl+soicue4lC+WYA0a5ogIzH6V6IRJ1N/29+L124GmLL1hMqneA7AGDSN2yiRip7Q3t+X9tyHWf0GwshJzZ6ccn82zB5rjJ9JQbKpQ1WWXpwnqhEmYg4YRveNROjrTpr//Gp4P3iR92I9omfYILW2179/upL6+noqKCpfAHSHdfz8Sh/4IKxhuM19VHM+1Q9SOdh7lXjrLxPfpB2hbN9kEzre95e49haQu/YTK44ZSd919yFFjoLLV7GLlYnj1Wax7fk84HHZG9OBrzxKdMAn8QWrHn07Vtb8gbVoY409pvXf2G7DgQ3su2G+Qo73b3fvQbZRdP4XGyb+z1yrjMfjng1jhUnsOnRsD7riSlGWROeL41jpuXAuzXsS6+fKvddBUnzeO2kv/gHnwEc6aKGAvaT1yN8ycQUlZGYqi7DyBn7gXXzBM8rQLIRAs6DPOmQKVnTFNc5eeR9V546i59VGsMVmnYV0NvP0ynH5BQb7yK86h7tKbMY7M649s2fKxewiXl7M3Q/h8Punz+dCyBwJKSkrsedF/eo549V+QwRC+pZ9S8tITjsmXGnIA6QFDkF5/HjFF6ymjnMks2vukCkxrRQXDQF+/Cu/yRSjNDUhVI37MT4geewpKLELJ03/Du3yRbVLvRkQiEZLJZMFL5/F4CAQC7TZYxGIxZ59wSXYJJxKJFDyDQCCAx+OhqakJj8dDefalKnZvJpOhpaWFTCaDoiiEQiGklEQiEcpyyyTZe+PxuFNHXdfx+/1Fl5CKIRazze18U9nn8xFss4klk8lQX19fsPSSn+4soQHxeJxoNOoMUrk+i0QiSCmprq7+Wnlt01taWojHbb+2cs4UrOvvhpnP4Pv1OU65xfqj2POqqalBVdVvVSPH43E0TXOUwB7bC13giMpb0/Uu/wzP6uU72CW1c14/KezVRyWVAtMoNLuLXXnOL5k9jph/bPGbIBwKEQ514OFs07fBQIBgPmmk7PD+Lp07F8godq+uaVQU0RpOvo7u7aB+HaHD+9vI0DWtXb07Sg/4/QT8/vYa2ustaN/XyYv+6laiEybhWTSP8v/9KSXhMFbXXjSceREWwNZNBfvRd7Y/qquqdqmP/itMaLOs3PaUCqWNmSvylp1EIZeL9Z+qgbRQ67ej1m5DZNIFWaWqItUi41UgiFHZGWFZaNu/QrjRPL7z8L/+HLHxp5LefzTb5hZ6y8WmdcibL0ct4mn/LmLP7cRqq4Rzc+DeA0geNAbp8YFltm7OyG38yJnRO/BSC2nZp5kMA++ST/B++r69tTK7wQNAbay3zeo8s9as6kpy2IEYXbojkkm0zWvxrFuFVrvVZcF3GMqS+ZReN4Xm8y9FDs5b1pv5DHLqac50QX4fCbzHNXBlFzJ9B9tOrHzyqmqWwGrr/ukdLaILgchkUJob8CzNboJQVaTuRWluRF+9DLW2dTSWqkamex8Sh43DDIQRqQRKz35YJZ0IvfWiy4LvOLzvv0and14iGo2SzvskSTAYJBQKfW/a+a0T2LNqCSKVtLdCSqvQdBZ52vdrpsJSURGmifrVOpSWptY50+a1qE116F8uQ4nHQFGxgiFEOoW2ZQP6mpVY++2P1D2Y5VXEDxrjEvh7Al3X6dSp0/e6jd86gfX1X6Kv//KbC8pp53wHg2mgf7kMkUqixKNIj5dMrwGYnbuh1m5DX7uC4Nv/QqRTpAb/AMvrdc6iunDx3STwnoicIFuJZnTvQ6bPQNvBZOXmp6Jw66Wz20p0MAeWdkgdy0LbvA59w2pEIoYwDDvyh2F7pTO9BxIf82OMfXqhbfuKABLPysUEZz1vk3jgMNSmejdyhAtXA+8sMj37ET/8WKTuRTjLP8LeFqlk576qSsG2yXYDgmWHnzUy+ObPtj3RSTt4nTAMpNdHuv9+JEcdQTobvscsq4R0KmvGL8O38EOU5ga0um3uW+Hiu0vg3RWVsqMypO5BBkJIrx9pZDcF5PZGK0qrM2tHXmjLxPIHEKaJFQgiFbW1DUKQ7juY+JEnkO63nxMwD0UhPeQAzKouBF9/Fs/yRfi/2mAfTXTfCxeuBt7JOfAXiwlFmpGqirBMWtd8RYcnmNoNCLmgdopA25R1YkmJ1D2khx1IYtQRZHoPbBfSR+oerFCpvdRkWXkWgAsXLoF3rgI1W1Drt+fr051Q4bJgTixMo90OKhkIkR40jPiRJ5Dp0RfnaGHuPmmhRJrxrliEWrfNjlbpwoVL4F1DetBwUsMOtHdSmWahwyr/qGE7LWwHq5OKivbVerwLP0Kt3epo3uQBh5AcfSRG157tyasoqI31+D98C8+ST1Drajo87BC/+BoSR5+A2b2P3WGrllJ+ztEA1D87D9/HcwhOu2Kve7Dpk84mNn4inS7+CcmzpxC54DKqjuy7W+R3BHPYKJquu4vyS05HbNmwW9rZ8I+3MQYOxf/G84Svu7hduQC1z8+n02/OQ5/96i7Lj/36dqxQ2JFdDJEb7ic9ZH8qTh39X0DgNprSrO5GevgoZydVK3kVULMbOQrmwK2RJqWqojY1oDbVObu4rLIKUsMPInnIMWSypHMOL2QdYmrNVnyfzsE3712UpvodPrzEEcfhue8PiMfuxTj2VIzbHqL+8lsof/IBzO59SN5xDSIe3+lDAHsKqZGHIpE0NzejDBiCsmIxtbW1VFVV/cfll5aWFs2TGTEKq6KaxqWL6NSp0388mkXy7CmYPfqg/3gYiVVLEYEAoVCooFz/JdciEjEan3mE8vJyNG3XXvnkwWNQ5r1HNBrtcANIesj+iCULaWhocA6afI81cKGbTMQiqLXb7CB2ptm6gUMRILLkVXPxrLImM9ImvJRoq5fjXTgXtb4G6fGSGnko8SNPxKzqkj0HbLYeSVQU1KYG/HPfxv/Rm4hYdIfaI3bKJPyXn0P6pX8SDofxfPIO0aenk/AHifYZbOe77PdE//wEsUSMsuunoM9+lfjF1xA77XxnTTn06N0E7r+J2nfXoq1cQmb/0QXpmbHH0TL1WszufVA3r8OqqKb0T9eirltF03V3Odo/+NyjBKddQWbscTRfcbsdwTKv3IKB51j7kyvyxvtQqrthVXZGLo1Q4w/i/eBNSn91tqOp2sovIGGRstKjjiiQH4/H2rVX+2o9LVPs+FPGk7NpUhS0mi2Er7sY2a2XoxWBHbYlZwXFTzjDyVP6p2uxSsoc+Zm//ouqiaMRQpA+6eyCcq3cHoP31tDQsy/q5nWORdB4/7+cZ5FvWeVrd7N7H8xT+6DNfZfYIUc7Z6DVzesou+ES1CXzsSqqEZFm9BPOoO7qOwm8MoPA/TcVlZ9TCiIRdZ53zlJouOsp51nk3o2vw54LNdDBHNOz4jOCLz5G6PlHCL3wqH09/wihZx8m9Ox0Qs/8jdCMvxKa8SChGQ8QenY6gZefIPDKkwRmzsD34ZtoG1cjvT6SY8aTGHscZnW3QgdYdk+1vnEt/ndfxrvoI0R8x0cmkz8+FXXTOhIvPEZpaakT3ib0wB8I3Xwp5tCRdsZZL6IN1JESmg44jNTQg4hOmor3jqsR/RRY8BHRg8cSPfRYpD+IsWoZ3n19sHIx0YPHEq/sRvMVt6N/PBttoI65fSvSH6T57Zk03DodTzadqT+zD9FXdKVl6rV43puJOkBDblhD4/FnYBitDrjgtCvsCBt3Xov5mwswsud2tZ8ejHhqOqnDfkQkEqHx1r8XlZ+PYmV5b7msVf4LTxRtr/nU3+wwuzOfgYmHYvTsS+arjUSjUTIHHg5A4ycf0Txlx23JjD2O6KSpaC/9086z/HOazp6M8vc70d5/05Z/RD/nEzOelx4vKDdR3RXiMcQdV6P+8izM7n1oGD6a5jseRwZD9rM4ahBGeTUNZxSayeHpf7R/HDWIxKixJI4Yj//yc+CoQZi+II0nTyI99CCkP4iUkvTVfyR0669J3HQpDdMeKyo/3XcQEglX/g/q9Zc49YlcdCUiFrOfxVPTiR5/OolEYi/SwFktaJZXYXTtidrcYCvUdBq1bhsdR7QrvF+YBqLtkUEhSP1gNPGjT8Ks6mrPZ50IHAJhGqjbN+Ob+xa++bMRya/vGKNzN1j/JZqmtTO7/H4/RrceqAvnYt58Of5wmKgAIs2Y82fjf+4REmPGo5z7f8gefVDen0W6R187isZvL0QPhbASccxtm0ke8xNkIEDmygvtWFBLFxDr3R95/GlQUU3ilHPhlHNbtWtpBVosRvKUc1GGjiS4dCGZq/+HhKo652DNYaPs0DwLPiQ8ZH9aKqpRbjwT1n2BX9NI1NeQuOBXUFFVVH6gbotj7op4+7Jio4905JesWEC6SHtTqRRWz/5oiz5GHzycREU11ufzUVWVzKDhKJvWYa1fhRLfcVviJ56Jtmgu6d//knA4jFy6gOhp5xONRpF9+qPNfQ9P1nR2ZmnZcj2BAKk+A1DemYl87RmCPz2bFsCsr8XMBqo3VrSePrPCpaRSKbzZ44uZ/Q5Aqa+x63nMSajvvkL6pX9SXlpKbOXnpDt3Iz7sIFs/nX4B6sK5xF58nJL9fkDj4eOKyqeyM8o7r8DH7xLqug/NgDnnDbShB2AMGop4exXeDavRJo0jHo878cG+dQJL3dZgmZ79iZ5ynv1Rs9yyjmHkEVi0MaOzDqxswHaloRbvJ3PwLF+EyG7EMLr2JD1iNFZpeZa8VuvBCEVB27ga/7uv4Fn+2S4dF5TBcEH85pzzRl23ikyfgYjPP8Hr9eLrN5iIP4hY/AnJ2x9BDj0Add2XaH+6ltRND2Bt2YSyTy+UjWuxhCAQCJCo6oxYvRxy6ZZlH17vsg/KhjXI7r0RXyzBHN8+SF7p2UfQdMXtmNX7EDtlElowRNn1/1sw9xSJGHLuO8gLLrVfnpefpKy8nEQo/LXyrYoK+7wsUH7O0dRffktBWYHVy0ln5Sfvfw5jyP7t29t3sP2Fic/nI394pFMHPVsHUbsNTdMon9Refn5bjN79EXPfw+v14vf77f7ZuBbTNJHd+6Au+1NBzCrZrZdTrqqqtpm67E82EXr1s/ulU/ZAft9CJWEBVl4wALPLPogNa1D77YtZUQVLFxLw+9E0DaN3f9S572F262HLfGkG5oln4Om/LzIbb7qYfC64FHW6XR+Zq8/6VZRMu4LIis9IjhlP6qDDSD/wApWnHrz3mNDa1o2oDbUoqQRmZWcyPfuR6dmfTO8BZPoNJtNvX/vqn/dv/yFkBgwlM3AomcHDMXoPAI/HPuubZ5IbfQeT3m//7PeCW81mISWe1cvxz34V72fzUCJNO71NUl+zEuuAH5K5/GbHlKt/dh6x8RMxF3yA2aMPfLUBXdcdk1C+MgProMMRc99DXHA8xsk/h0AQ8dUGZL/BiHWrnGgVZvc+sOwzhACrsjPagCFkxh5HcsyxiO1b7PSefdF+chZVPzgIdc5a/Pc/R+i6u2iYs4HyJx8gePtvEPU1GM1NRKOt83mza09EXQ1CCKzBI+wvDwCaptkDz5qVHcqvrq52yBu/+Bpq313brqx45+6O/MyBxdsr9h1hv7RLFqD0yHq/ew/EmnCu3cY1K+HKaUXl57dFqd2OOXosuq6TPulskmOORXv9edSTzrTbOueNAgvJGDDEKVeMm1CQx+zaE2XjWkTOcXnVH6mursb7j1moc9ZSXV1doPGM6m6I7VucUMXWQWPQNM32TFdUw0tPQr99UVYsRvx1GgSCZH50MiIXp7qN/E4Tzy1enx8eRe3HNfhUlbJLz0BZuRgZi+zUlyeVol7ijqJYfIPL99k8vMsX4Vm2CO+iuXiXfIp32ad4ly7AuyzvWroA77KF9r9LPsG7ZD7eJQvwfPYx3o/ewf/WS3hWfG5rXymRPj9G1+7Zj4TnmdtCoG1Yjf/NF/B+Msc2m3ehvoH7fo/2+nMY5/+SmnnbabztYfR5s5GnH068c3ekP4i59gtURXFMQgDvpx9gTDwPY1UGLRdwr6kBq1c/ZKTZJtGY45wHGXj0bkQ8Rub1JbRMudaWu+JzPA//BVFXg/Gnx6l9fj5K7XYyU0/HfOohRF0Ntc/PJzbzM7SNa1GvuQhFtIbQFdFmrB59EA+/hpWn7ZDSGXh8j9xVVH40GnXk+F/8R/Gy8uR7P32/aHu1xjr7WTz9Pr4PZtmfOXnnCyI/n2K3fdM6vM898rVtCT35IARCRBdHaL70RjwznyFz1w3ofQag1NfA+lXo2bYhJUpDa7myp63hcnnSfQch1q5Cn/U8+gdvwoWXUTNvO0bv/mhX/4KGhoaCd0CJRTDGn4L161sJPj0djp9I08JGkgePwTvtasyP3rID7m3/Cs+W9eiL5iHH/hirA/nNA4cXr8+CD/B88CZNV/2RpoWNiOoueG75tW1ZdBRJJmevto2J5ff7d2ryvKswy6ucT4jK/DO+RZEfAD7nhBKIRAK1disiHs07DNGb+E9+TmrEKLAkat1W1JqtaFs2on+5zD6NFI/+2/XOxUpyHETBIIFAACkldXV1dOrUCU3TiMfjpFIpOnXqVHCPz+cjmUxSWlpKNBrF5/MRCAQwDIPGxkYqKysBaGpqwrjiNjjzIjjhAEoatjlxsHJOHa/XS0lJCVLKoukFTrhkkkgkgs/nswPMmaaTp66uzvaqdyC/0PdYvKy28ou1V1VV+3MpqkppaSnNzc2YpmlrH9Pc6ToYhkFLSwumaSKyU5BAIEAqlSIWi7VbujFN0yk3GAwSiUScfm5paSlIz4XR1TSNkpISx/pw1nizeXJz8lwMMk3TCAaDeDweGhsbnS9FtLTYsd5KSkqKys9kMkSj0X+7PqlUqiAm1h4j8O6C0as/iaNPIj1oBEq0GW3zOrQNq9HXrkTbvK51bXkvhOzWi8a7n3aWDtTN69Af/gupR+6ioqJir/sKgIu9YH3/+0bg7zraarj8kd2Fi68jsOZ2ybcLIcT3PmqEi924Out2gQsXLoFduHDxbRNYukfqXLj4bmtgy7LcXnHhYi9EMW62I7BhGO7yhQsXeyGMIkui7Qic+yiWCxcu9i7tm9vI0pbA6baZ8yPZu3Dh4tsnbzqdRgjhXABCiIwCLMx3XuX+mE6nMQwDy7Jc55YLF3sYUkqHuLntlYqioCiKw1Fd9zRpUsonpJSjpZT5zEZVVQzDwDAMpJQuiV24+BYghHCIq6pqgQkdDofXCY/H4/H5fMtVVe2Xv3E6R1rLslzPtAsX3yKBcyTON5913dPYv/+AVzXLstJCiKMVRZlvWVa1s0k6z952nVouXHz7JM7B4/E09OzZ+x1FUdaJ3CGGoUOHdW5paX40FosdYBhGJ9x90i5c7E0kNjweT2MoFF5XXd15laIo64A7//8Ah8oQvFoopzsAAAAASUVORK5CYII=' button_nickname_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACEzSURBVHja7J15nFTF2e+/dU7vG7MzIDvKoqACEpUgGFEUjOYmilHxqqifqwYxRs17E181qDfGJL5GFDXv1agxmqgQjHpxQXEjIIqiskT2ZUCG2Zfe+yx1/zjdPd0z3cwMmgjm/D6f84E5XafqqefUU89SVc8RDocDAEVRXEKIq4QQlwBjgCA2bNg4JCClDEspN5im+TTwGJACEE6nE5/PN1hK+TYwVAiBEMLmmA0bh47wIqXEMIzM9YmU8rvAPjFu3Pi+e/bUfGYYRl9FUWzhtWHjEBVi0zQxDANN09B1/VMp5Ymqz+dbHI/Hj1dV1RZeGzYOUQghyChYIQRSymrTNOsdsVh0gqIoXaQdwOvx4PF4UFUVW7Rt2PgXalzAMAySySSJZDIrk4qioKoqqqpimuZsUVFRYQBKrq0thMDv9yNNE8M0bW7asPGv1LZpQXU4nbicTgzDoD0cxkzLopQSTdNIJpNJpbPwmqaJ2+1G13VbeG3Y+Lq0r2mSTCaJxWIoikIoGMy6uBkzWgjhVnLNZl3XcaiqzUEbNg4RGKZJPB5HVVU8bneeT0yu9jVNEyklDqfT5poNG4eYEKc0DVeOAGfQRYA7B7Rs2LDx9UPTNNQC1rEtrTZsHAYwi8SjHLk+cPo/Nrds2DgUUUA2HT2eAXwBkoOGkxw6Er2qP6bHixSHkwKXHf9ImcMMidA1HK3NuPbuwL1zC46WBoRh2APGxiGPHglw4shjCE+dgV5RjXQ4rUFvSmvB6nBS2BnBzQqwBFOCNNHLqkgMHYEy8VR8n60msHYlSjxqjxAbh7cAx8ZNInzqdzFCJQjTwL1rC67d23C0NoNpwOG0/VKSP+OYJkiJdLtJ9R1AcugIDH+IyLemYoRKCf39ddRwqz1KbByeApwachTh087F6FOGGm4j+MYS3Ds3oyRiYOiWLByueyxzhVkoeD7/FOOTcsLfPp3E0FHERx+Po7WR4PvL7VFi45CFUmhcZ67oCVMwSivA4cC/8nU8/1iL0tYMyQTouiXE+mF6GToYhnXpGiKZwFH/BYFVy3E21AIQH3lcHj86X+GbfsW+lftoeGJZ0TK1b26l7rlV2b9jF/+IfSv3Ebv4Rwesu1A7vXnmm3ClTjmL5t88xb6V+7JXwxPLuvAhdcpZ7Fu5j7ZfPPSN50m3ApwLbcAwcDhRW5pw7dyM0FLf+BnNWbcX574aQKKXlBctF4lECGu6xacRY4hd/fMuZerq6vKYnkgkaE32joe57fw7ofXGX9F4z+Mkvn16/pgcMYbWubcSuelX1t+aRmM0bmvgQoEe6XSBlCjRdpREomsQ6Bt6Kck4wjBBUYqX64T2WVdgVg8sUibn3sK7KB1fiveZh3pGT3eBuG/g1fzDq4mfd5nV3+f+AMNEx/XcHwAI/+AytMlndeXRN50/vdHAwjStQJWUyH+n84SKaglvD0Ps4uNVSK+f5l/94YDlPB4PJTfdRcvaFuKz5+ZPAPMfpnZVLbWratm/fBuRm+85cHDxmluoXVVL45NvYPYbROTme6hdVUvk5ntofPKNbF2NT76BdsqMvGeNMRNp+e2fsmUKlcvUF589N4+2DF3aKTOof35Vlt7O/cnUUffyuuyzzQ+9gNlv0AH7lUgkSF58rcWvu26g34Jb6VddTb/qaoLBIPz8KnjsPqv+cy8uyJf9y7dRu6qWupfXEbvmlq6T7fyHs2UKldNOmUHtqlra5z+cx6di9UVuvievvvb5D1P//Cr2L9+WVy4+e26372b/8m20z384y/P9y7cdkGcHjkKbaT/RNK1o1UEsGUm3B72sCqNPKWYgBEIgEnHU9hbU5kbUSNuht3mkl5F1+e5rKAK08ZOIXXMLvt/fXXRwFjKh655YhjlybEd9Xj/hH6Q10B3zupqXF15D/NJ5KJvWU3b56cTi8ayZnX0ux+Rs/o9f03fFqwDofQfQ+KvHkOVVXco1zX+QqktOI7bt82x97ad/L4+28A8uw2xvI/rDK8Hrz9LbdsVPcL/1MkptDQANty9EP+u8vDaS406iccGzVF0wqSgv248+ASqqUDevp/TV5/J+C/j9KELQdvdNuPbVUPrac2i5/B18JMb073cM3/JK2i6dh3PjJzjT/e/M69xyItyG48n7aYxZJnk0p65i9TXeeDdaJ55nnhM5y5BtF15LbO6tBXle+eOLUDesoa6+3hL00cdjDhxq1RGLZXnaMxM6b6o2rWCPadBr6VUUUoOPIvydc2j/7kW0ffdi2s88n/bp59E+YxZtM39I+5nnER9zAqY/eGiFswW9osehKJg3z0E01VumdDdaJhcNF1xtDajGeph3kWUm3nc7Ih4lMuP8rrP9pOnEr7oZZdN6+l4xveve9VgU7rvdqufiadBUj1leSfKc2ZimSdNF11rCu3RRnmkqNq1Dev0kvndJ/qAdOKyjvvtutwbo5dfD7u1Fn2096XRLeGt2dDw7TKC8uhhjwNCi1oVhGBjjTwbAt3FtwTI+n4+ysjLKX3uu6/Mjx+b3a9M6a+I4carF6zMvsHi9aV1Bszxx/EldG8w14TvVF4lG0WZeYJV77D6rzGkjs+VyJ+7YxddY7yanPpG2JFpuvjsviGwOHApLF6Ee5aDvOccefBQaaVjCa+i9ipSZLjex4yfRftYsoidPIzVwGEJL4di/F8e+3ShtLRjBEhJHjaH91LMJTzodvbQCKcQhEu0TWS3ck2igz6Gi7tkOLzyN9Ppp+tUfupQp9Fw8kUAfZw1Y77uvUP3xO5SUlKA8/EvE2BB9px2Zr8GqBxC+82FEUz1VV0wvWKf7lUVUL36UyspK1DXvwpsvW4IYKiEWj2P+7Er8YwNU//J6fL9fgu/3S1AWr0SOsgaKEQgVrK+kpAQW3mUNwniU6ivOpLq6GpfLhfz7m9lnU5pG/MRTAfA/9SDVix+luroav9+POXcWyp6dRKfOLBx11rSC47Dz5XK5Cr4LZc9Oqn95fZYu/vx/s3QlUyn0Pz6Aa5Sb6ivOJHDvk/h+vwTHw4vhh1daPPIF8uvbvJ7qBbcWrE8CkctuAJ8f52t/pfrx31JVVYVr3y740SyLT2n62s69BCqqcL7yfLa+UCiEuOeniHdeRRsxBn3MxGzHRTxK9S+vp7KystsotKNbDazr1r89NXOFIDHmBCKnfw8jVIra2oRn/RrcWzegtLcgDAPT40PrN4DE6HGk+g0mdvwkpNNF8N1XUKLhHpvmRiAEqqNb2qSiILQUaritd5H0HprSSjqDSfvdN6GMPwk9bUpz5w0HfC6VSkHAyt7r+/C9rJ/s8XgKlo+fd3mariqMMRNRN6zpUsZbtxcAVVXx+XzkctPv9+P3+2l88g2iI8b0qG+Z+jweD4qiYAJKLJbn16faW/P7VD3A0tS3/o7orb/L1+idTMuvEq6a7R3mdiBAc0uT5TZU9sPlclFdXW35q51M3qIxi93bCtaX0aryiMEWX7d/njY6FUpKSmis2YbZWAeVfUmlUpgDLHNYO38O+8+fU7AtfegIYGnWbO6x9XfgkZ/2f2XPM3Po1QOInfgdjJJy1JZGAstfxLPuQ4TRsRSiAs7aGlw1OwhPmUFyyAjio8fhqtmO5/NP88oWQ3z0OBKjxyE93nSgjY45yjTz9jpLpwu1vRX/2r9bL7m7TCMHYc37fD5SqRSJm+cgFq0gPOsKxFOPHDjE0NuMJ431iA/fRc6cRdu1t1A29/u9prP+tgcxR4yxzNv1H1s3N6+HkWPh7Fk9m9fikRxPSeliBmcmpaLDyuvH7DeosG/30UpLQMZMINANHYnZc1GfvL+DlpzJv1CCxpYLryH5g8ss7fj2K2mfpB2+2A033tnNXC669rOg52jlrMq8WV3XIdine4UUKinI3y8pwDl7hnuI5FFj0fsPAtWBZ+PHeDZ8VFQgHY378X+0Ar2qH4Y/RHzUcbi3f46Idy/ARlU/9H4DrKWujMBKa1+zZW+kJx4pQVGRLg9GoA9SUa3o+j8BoVAIbc92zBeeRl51I/z6sR4s9IazflUmMFJUwzzzCKkF81FeXUdq3EkkZs/F88xDPaYvHA5jTpwC8Sj+sy2T2el0omka0SeX9SI+0M2ktO1zmDAJbr8Onu5KX1VVVcFz506nE1a/hdizE33EGJLnzMb98jNd3/2YiTTdtgAhoCRHgLuNbh9n+bjue/8Tx6LHssLW+r/vPbgXHm6zrI6jjiHPZhoyAir6pkVIwsZPOvzpn1/VpZqSkhI8Hg/t3fG3t8tIBwOjvArpcqNEwzj37kSYBz7Vo7Y0oLa1ghAYJeVItWcHpHxr3iP06vOElv2V0LIl1vXGEkJvvEDozSWE3vwboTdfJLT8JYJvvUTozb9Zk4Ou/fNWnxTFSgZ4900oa99HTpiUjdQWK8/HlsaJTZ2ZXVIw+w2i4flV7F9Vi3b+FXm+tsvlwrzjBkQ8Svh7s3tFXyKRsAaI14/zmp8RDAbxeDwkHl5iCdxXAKfTCWmfWP1fN1E+aw7V1dWW3zf/AcTGCE2LVxceC6qK0+lELnrC0pg/v5f2+Q/nR6lvuoeGBX/BHDiU4IvP9JiuVKrDdVJPmkowGMTv9xO95T4458KDWKgQcPdNiHiU+CnTs8tLRvVA9AV/Bp+/gx9PP4RoqkeceyGh+Q9k+VE+aw7qeztoW7m3V4HPnmvggwngJmIIw0Q6nJihEqRQEBgHNqfc1vylJOKIHprraksjaksjhxo6TOnL4fkVUFFVXKO6XMQW3oWYeT7mqGNp+vXj+X3cvB7n4sdJ3NLhR/bp04emD9+Bd17FmHE+kZvvQRRYaiqK1e/C2bNonXsrdFrWADADIb5MVjSXywVLn0WZdTnGlDO79Akg9KfiVoPf76d14V1Zkz42/fvEpnd1FVyvLcHzzEP0ajr+eCVMPbNonUZl316950gkgnz5WeQFV9J+6TzaL51XkB+qqmatskLl/H/94wGXinIDewepgXvuFLp2bkZtrke6PSSOmYBRXlU0GCTdHpJHHo1RVmk9u3srIpXkcEcoFLKi0n97+sBBEo/HiqjOPM5a/sh9Ma8upnLO9IJayuv1Ys6dhWiqJzrjfOTA4T0Lyng8MO+CLm3x7uvZJaLUkKO+tAb2+XyYl59lmYyN9R0/blqH/8E7C5rFuTT6/X6Lzvtu77Ikw6Z1OJ+4n7I75/Z+Yll4l7XcE4vm1cd9tyOa6jHLq3pVp9/vR/7sKqufuXU+9wcrxpBb7u6buvansR7n4icI/tfPDl5hVlRUSNM00TQNKSWBQEfooPHa/0QPleHcv4c+Lz+Do7mxW39YujyEZ8wiPnEq0uXGvXkdgTdewFG319oUkiO8sROmED3xVKRQcDTWUvLi0zga9/c8QqwoyEKTQwEShZTp4FX3/nz4tHOIjZuMFJLqewszNxqNEg6Hs/5LZ8RiMdrb23E6nZSXl2dN2NbW1i7PhMNhotFo3gsPBoMHbKehoQEpJRUVFcTj8YJlCj3buS2fz4fL5aK1tRWXy0VZWVnRNuvr61FVNduf3D5lTNLctmOxWDbY43K58Pl8RSPshcz9WCyWZ/q6XC48Hg8+ny97T9M0mpqa8niWe9/j8VhLYOl3EolEssHDDE3hcBgpJVVVVd3W1/l+NBolGo1m6wwGgyQSCbRPWlCb66lMb1rp3J/MKkEuzwrxt/OE0dbWlg2OJRKJAiZ0wf23dGSy6EYARDKO/52l1sL+cSeSHH082pCjcO7agrO2BjQdI1SCdsQQ9D5lYBqojXUE33wRR1Ndj5erjPIqUsNGYfpDVrAqG8hK/9/soFUKBUdbE65dW1BiPVjCkN3wA/D7fPgzA6lAGZ/Xi8/rzfvd43ZT3bdvl2eCgQDBQKDgeyjWTmVFRbe0FLpfsC3Io6tYfVWVlV3uFetTXh10z88umtjtzkujWqwOp8NRsP1C9/PeSae2MuV6U582ZSbhXz+OuncnVddfiFK724pLPrjIWh/+ZHveuy/Yn2742x3vvnIfGEBtbSL018dx7t1B9DvnYJRVkhw7keSYE9LH99LH+ZIJPBvXEnh3aY+0e4d9qRKdMpP4hMlIlzu93VPv2DmWOeaYswSmxGME/v4a3vUf/VMDWTb+PaBpGk2LnkBcdyvGwGHUL/kgv0A8SvCPD/zT6XAcUPl0VsA9rFR6/Wj9B6NXVIOaPhiQa+pKmU4IkM6GccQQ0HUr+0VPZmjTwLVtI0aoBOkLpLd7pg9eGEbHv5lTVQ4namsTjv1fZHeV9RR2ij8bBQXH6bSW4C6bAb94AKae2WGFfryKkkfuRtn40Vc6fnq/EyvX3+xJA04nyXGTiJ1yFkZVf6TbbUWhdR0Rj6HEIqBrVoTa4UACySOPJjVgGCIWxfOPtfg+W43a2tStILv+8QnOrRsL0Ca79lSAMEyElrSzbtr4ylBSUkKkbg/xOWflBeECgUDBHM7/Eg1cVHi7kWH9iMFEzr4I7cijMQMhRCqBc8dm3Bs+xlmzDaW9FTLbGIVAur3o5VWkho4kNfhIjGCI+IRvkxo+Gt+H7+D5/BOEXnxDh9A12xS28bVCURRCoRChUOjrswS6kd7Mp9IOWCp19DiiMy4gNXw0KAru9R/hfe8VHF/UoETbraWhAppPrd+Ha8cmTF+AxDHjiR9/MnpFNZFp38MsKcP3wTvfiGUlGzb+dQKcK2hCQCb3cyYC3UkQtaEjiZw1C234aIRp4nttMd7330Rt2N+tuZrRoko0jG/12zi/2E3k1LPRK/sRPWkaIpnEu3ZlwQMI0uG0zherjhyzuXNy+k7mdPaYoLUEJfQUSqQ9b3mri7dhm9w2DhX0OgqdXmvtEoTKxJJ8AWJTZ6ANPgpME9/ri/G99bIlFL01RxIx3Fs3IPQU7TMuwCitJPrtM3A01OLataXLAYT45OkkjjsxvRdadux9NkzrEIaR+dtIR6KFFVATCjhUcLgQmob/7Zdwb15XQIht2DgMNbAsKMBq19+A5NgTSB15DEgT95qVeN95BRFp/1KRN+fOLfg+eIfIaedgBkLEx05EbahFSW8cz8DwhzBKK5Bub87po/QasNEpIm2a+X1xOJBON0oqgenxYSLyXHxZjB82bHydCrjXPrBQcvJD5Wtg6faSmDAZ0+NDRCN41ryHEmn7Sgj1rPuQxHEnog0cRmLcJDwb1+KKhvO0sHfNO7h2bEJmPofa2WzOPUmV+U1kzGcBimqlkq3d0+2BCxs2Dh8fOM+uVXJM6E6zgaoiYjFELIJ7w8c4vtj1lfmLQkvhWbcGM1SCWeQ0j1pfi1pfe1gxO3HJdYSvvJHK7ww7rOhuWrwazwfv4f/tfxT93bXxE4K/uPYbIRQtj7yId+UbeJ5eWFgT9h9Mw5IPCS28q2iZQ0OAs6lluvq/SjyK753/h3PrBpy7tvR8E0YP4d74MSCtVDy1Nd0fwj/EkUwmaR82Cuem9YcV3c3NzXhnHpu3/zjv9z6VGAOG4uzm4MbhgtbSKrRxJxF49r+LxJEkDZOtdV/3Wy9/7fQq3clvdimpS5IniXPXFnwrl+H8YtdXHgRS4lG8H/0dz2cf9DjNzqGE2LW30vD2DupX19F279NomoZSfQRmZd+8+5kZvfmp5dSvrqN+dR1Ni1cj+w9GmzqT+tV1tDzyIvWr62h4ewfa1JkAhO94JFu++anlND9lfQImde4lNC7dkC2fOtdKNNd279PZ8pl2c1GsreD3LyGyLozsPziPzoa3d6BNmYk+wsrwqO7ZQezaW2lavBpt6kxaHnmRpsWrs7R019foT39D49IN2fLhOx4h+tPfZNsyxn4LIHsv82zmfmfeF+JBMZpyhTP1qjXBts5fiOw/OMuPDJ9TqRQcMRgRjyL27abt3qdpfmo5sv/gorwv1q42dWZe+cy7Le4E9/ZAf3r9V2RTyx4Kbvs/HyKbA+zgMmVGR48nctk85DP/jXPBfJKTz0CfMBk5+EgMUyLPHo9j0RMkJ5+BlJKmG/4PumnCMIF6w2yMAUNJTJhMy/jJ1ot+4WnEtFGWgH7rVJpvuof4hMlw8TQcP7kEfcQYnDu3ED/mBFpvuBNzwR2I4QqupYsIX3odLRddS3L8JDhtJK47f0xy8hl5A1/X9YJtxb81lZa+A1GaGuCLXRadHh9i2ihEY72Vl/k4KxlbZOIUoqedTWjuLGIv/QVt5FjMSBhzYlW3fQ2Pm0RsyFGYSMx5F+JY9ASJKWcSbWlCTBuF9PpJTp5O69W3EJ14itXvEU5EQx2xTjmmIt8+k8hl8zBf+BNiuIK6aR3hS6+jra2tIE25aGhoyB4FrDh1KE233o9WXgWnjczyOXH5T6DfANQ9O2n845topqT0f55GorSyIO+LtavrOq1zb8N88yXEcAWlZgexcy7utTQcOLG7roM0Md1upMPBvwtMtxvZi8TuuTAMg+j5V6Ds2Umfh+5EW3AH5RMrMPbtQZZXUbrwLgKN+9BNE6WpgUgkgvrYf+FurMP51DKM+62zssa2zyEQwvHJ+1S+/jzs2mIJ295dGCdOxfvuK5Rt+RT9xWesbA+1ewmfd7mVCeLOhcjtJsnzL8f0+tGbm8DnRyxdS2rqTPr89HLU9R9mabaS63VtS3xRgxh1LGrNdsLl/TCnTCf40jOoe7bjPusYPHPPg34DLcE/fw7eD1fgrNtDqv8Q8PkpeeJ3BAIBdNNE3buzaF/NbZ9DZTXed14hsOFDDNNENNZT+eg92Q/Pm+vWoJ1+DgwaBn9ejr5FQx93UjolccdEFDt3Nura96l67NdW9pK1qzHLq4rSlItAIIDSbwDumu20jRqHOX4SpQvvoqy9Mctno/8gxNAR6CPGYI4cS5+lf8E0zYK8l95A0Xbb29ut5H4/vBKWfoZY9xF9br7kqzWhHbU1YBgYJRVog4b3ON3N4Qy9qj/6EUNAUVDbWnr9fDweR1QfgdpYh9vtzuZ/Mk4+DQDne1YyNRHsg1qzHffJp6H99xJ0KdG+qIHn/mC92DXvoQwfhXvHFit9y5ARSK8ffecW5KBhuDevx+FwoA4fjSyvwli3BoaNzMs7rB7loM8ZI5F/WoiYPQ3lo5Uow0bQ9tsnkf0Hd0xYplmwLXPXVkR1f9T6fSSGH22NiT07KCsrIxgMWmd9h4+Emh2oK5aRGjsBKSUy/T0j57tWX5VgH5SGuqJ9Nd9/K9unLG8a6yzijhlvTTIb1iIHDrPybKX75z3Glzfo4/E4YtgIPDutCcjlcmH2G4Bas7MoTZ0nXzl0BErdF6SOOzH7vnL5LDd+gkznbVaa6kl961Ti8XhB3pfPPKZou4qiYM44FnXR4ygNteiz5hC+45GvVoA9n7yf3ZQRm3QGqeGjMP1B6yPfQunYqfVlrrxI95d4tid1dCmbDtKpKtLlxiivIjZ5OlrfI6wgRedsED3UwEKAMWh41v9pfmo5HDMuO+ObpokYNhLHjk20nWQJtnfueXg/fBdOPwelqR5d15GDh6HW1uQJhfHSnxHxKNrIY5FSYqTTtpr/+BQ1FkX99mlUHj+R0lmXY65rw7ziRpQ1daj/4xLElWdjrnqrS1rXYm3x6iLk4CNRt2zo8JWPHp/1l1OzroJBw3F88C7i41XoI8aQ6jugS1/prq9nWgnsnR+twDRN5NgJuHZstiaI4yaiNDWgb92IiEdxT/8eVVVVBH7xAImPGvJcAU3TUBr2kzhxihU4PO8K+M5MXK8vKUiTa8fm/DiAplkpkL6ogZ1bsysHUkqMB59F2bMTo6nBEpxlL6CsWUHixCnoul6Q99HZ1xVt1/XzexEbIzifWIDxi3mIpnqUSO9jPQdUqa6tG/C9v5zYydMwyipp//7luLduxLX9c5T2loP3i3O/fCAOZORLuhbiy7UpukbWpduNfsQQkiOPQy+vBC2Fe/N6vOs+OLi2/rgQec+j1K+uQ+zZiff2H5GYdWV2xs8IjLlsCXzwHmL21UTWhRE1OxANdQhFoE2YjPT6UffssAZWeiCYQuB89jGic35M9LzLLO23dyfK7q2YTy1E3nY/DUss89i1+EmiC+7A4Q+RmvNjmDUHmuoJ/e52xL7dHQO3SFv6gGHI8irUmh2w9FkcF8whcpmVz8m9+ElS770Ov1iAs3YP8QfuQFz9U2KXzkOp6t/jviKA4yZmg0KpVMr6tEptDZqmIfoPQq3ZjhQC9S+PkrziBupX10FTPcH7bstzBVRVRU/zoH51HcSiuJYuQnnstygLF3ehSX3zb10mX2JR4tffbvnZK96g/brb4LrbEJvWE7xjHm1HWxaBe+tGUkJgnHUeyoxZUID3xdrVly0h9eJfUKZ9l8Qrn1kTwtr3iy7THXBYd06p0yVjgRAkjj+Z6NQZmMESy4w2jXRq1py9x90tIWVPNeUIT8ElqgL7mYsJcMF0OrJwOaGAw2FtTFHVjp1Z1tSIzHwnOJXE8+n7+Fa8jtreexNa13VaWluRUuJwOOgTChFPJDAMgz7pUysNjY2EgkEcDgfNLS3ZsplUq8FAgKbmZspKS3E4HMRiMRLJJGWlpcQTCcJha6Z2HHUMxmMv4ftwBe67f0Jbe3s2hU3A78fn8+WVV1WVYCBg5YfKGbSF2iotKaGhsTF7PxwOE08ksnV7vV4aGhvpEwrhdrtpaGzE7/NhGAamlD3uq9vtJhKJZDOMZMq73W4i0WiWb931I8P7DA+EEPh9vmzKnEI0uTtlyGhqbsYwDMrLyojFYtn+ulwugoFAtv7KigoMw6C5pYWy0lIryl+A98XadblctLS2Wjmj0zzo04MTTT6fj0g6HVImpU4XAfYWSDmCEBh9ykiNPJbU8NHp1LEeerfpUBxAoIsI4Fe1rpwxrRUV1BxzOk2T0JIorc04dm3BvXEtjn27D9mjivEf3Urksus7tM6KZZQdRPDDxuEHn8+XzWfWOwG2cUggkaOFwDo8nptgzca/nwA7bLYcPjjQd5Ns/HtCsVlgw4YtwDZs2LAF2IYNGwctwNJOH2PDxiELeaDDDJnvn5qH+bE9Gza+qSj0TeI8DSyEKPrhYhs2bHyNprKiFBdgIQSKoiCEQNd1WwvbsHEICrBeIE+6IoQwcwVYCEEqlbKF2IaNQwQZxVoAYcXpdDVlCjkcjqwvnEwm0TTNOh1iB7ds2PiXQkqJaZqYpmkdc+wkg+m/NzqCweDOpqZkZUZwHQ5H9sHMZcOGjX+txu1sFXcW3vT1jKOqqu+W9vb2IzUtVZYpnHnYhg0bX68QF0Jaqe6QUj7qUBRl1+DBQ97avXvnNE3TSrt72IYNG18fTNNEUdT9pim/Y5pmUh0yZOinDodjZGlpWT3IuGEYbtM03di7tGzYOJSgOxyOpmAwtKKqqu+Z+/bt3Qfw/wcAvDvr4Il4O6YAAAAASUVORK5CYII=' button_embed_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAB0xSURBVHja7J15fBXVGfe/Z5a73yRkT4RgQEEqoLggFQELCiLqWxeEKhXRbop0sfrWulv7qlXrWqtdoFbFgiguNOAKShHQCiqCRQSCqCzJzXr3ZWbeP+beubkkIVgDBDu/zycfyOTMmeecOb/zLOecZ4SiKKThAH4gSdI0IcRgIYQfGzZs9BQEgfWGYTxlGMZfdV1PAIg0gQ8TQiyRZXmILMvIsowQAiGE3W02bPQQGIaBYRgAm4WQxkUi4e1CURSHEGK1oijDVFVFlmUkSbLJa8NGDyWxrutIkrSrT5++x8iSJF2hKMplDocDRVEs7WvDho2eByEEkiRhGIZPCDFUOByOVaqqjnA4HMiynFPQ5XLhTF+3KW3DxgHUtICmacTjcWLxeMZ0zoGiKPXC6XTGnU6nQ1VVS/NKkkR+Xh6SJJFIJEilUmi6bveqDRsHUtumuShJEtFYDL09BzVFCOFoG7ASQpCfl4cQgnA4jN4B823YsHGAtLCuo+k6qqIQTyT2LCJLGdJm4Ha5kCSJSCRik9eGjR5E5rTvm3Nd2rOg0+kkkUjY5LVho4dBEmLvBBZCICSJRDJp95YNGz3NJ5YkdF3PIbHUobq2ta8NGz2PwEK0I7DSAXvNHxs2bPR8s9ruAhs2bALbsGHDJrANGza+CpRvSkNiRw6mdfQZGA4nIBCahv+tGlybNyA07YDLE73oSppm3thlufILRiDt3P61nhX85Z0Ez5tOr0d+i/vpP+63Nn2V5yRHnUHr1B8RP3aEdU3dtB7P6mV4/3Snzbz9RWAj/XOoIVlSju7xY6gOEAIpFkXEY6DpB6U9+/rMXY1NlJmnS772M5viCYjFcLlc+7VtXT0netGVNHcweSUHDKZlwGAipZUU3z7LZp9tQmdaIaHlF4KsgBAgBHKwGaWl8eBPR/NnQz/R+c+2Td+4QdU69cfmf2oW5Lb1r/dBoI7kGefTPOI0m337xYTW9UNuGUl3ukkVFGEoCkiSSeCmACIe7RFt8fv9+LzevZYJpc3Tgkd+S/LIowmPP9e8d+Hf8d17HclRE2madRNa72pENEz+nPtxz32kfT0PzqfplNMBcL39Ovn33dDORG+99Y9W/W2f0Rba4BNpueJ64sNME9j76vNIodY2JkbHy416RRV6UQli+1aMWRfi83rx+9PJXebcQ6MsE5/xM6LDx+BdvpjUpT+neeaN+Bf+HSnUSsslsyxzO3/2faj/WtJO9sio8Rhusz+lhnr8NfPwPHZH2nSfSOB3c/C++jzKri9onXwZhtuLumk9xZeejl5RReOds0kOGNyu7V/nXsv6uHgm4dO/a5XpqB273tiM51+vAhAefy4iGqZ02tj/ypX6RvjAWn4hui/fJG+awEprIyKVOuTa0jzuHDhqaNbvPG868ZZmklN/YA1aw+2lecYv4JWFuAM7szdfcCnJqn7ZuMDI04hX9ad08gjLRA88/po1uNo+I1pSQcmvplskDNw5G72oxCoTHn8u0ue1XRtDO7cjf1GLVlyGcsrp+Dd/lPP3wr/cReTBm2lpbSXu95M5wBr81rCcdicHDCZw68P0mjUF18drOpVdLyqh5ZJZJJobKZj3WFbeqv7QZpJKDhhM3U0Pw5Dj0XpX57Q98cU2Crvh3ujFM9u5Dh21AyB81DGQfldGOEz9h+9RUlz8lV2pb4QJrRUUmsGrDIEVBbm5EZHqAVtCp1xO8MNWdq7c2e6n9dYOAkFV/VEeuNU0Oe+7GYDEjJ8hbd+KdIRsXt+4DjxeWs6ZlnvErLgMefb9ZpmLxsH2rRh9qgn80NQSoWvuIjlgMNLGj8y/9xMwdiBsXEdq1HgazpgCQOTiK00tunGd+fe0+av3qd6nJvd6+HYQkHriVeqeWUnrrX/MaavH46GivDzXKjlqKNLyV7Pm9sZ14PbSfMX15rnYsy/Oyt7WLJ8/2yTPMSOIxWI59ckL5mT7IlCHNvECDAOUS8ab12sWABDvpntbp/4YEQ3nuk1/vQ8MaL7mDrS2wdSqfkhLnjXLDC+zDup/43xgQ1HQnS7Tt+0EqV4lGKpqlpEVhK6jNNSBpmE4nBhd3H+wEE6mCAaDuRcXzUP/w+30Kiig4tm/mAMiEkabOBRVUagoLyf/3bfMvvHn5w68RfMw7ryG/Lw8KrZ9TK8/3G5OcMeeRCQSITb4eEQ0jH7mUJxrV1BaUkJFrJWS638A0TCJMROJJxJEho9GRMMYV07GuWMbZaWlVMy5ByVt9nUF9V9LKB7dF7F4AVooSHj8uYTHn8vOlTupe2Yl0Ytntr9p+1b0SydY5K64bAKioQ5j0DG0BoM4F82l8IQi9DOHIv9uNt7HFuJ9bCFMudy83+fPPW63cR3ary7H7/dTse1j1M+3mhr7L79HvPMmpSUllL74ZLfdGz/7YnPSWzQf6YYfmfeWl1Mx5x7U5S9jHDWU5oHDss+IhNFnTsbn9VJRXk5pSUn3+MB6D4pCa/58wiefhrrjM1wbP0R0csgiWVppklSWQZZR6nciQq0YQKqolPCpk3BuWIvz47UH3qyePxt+/YPOJyivNzfy/+VneL1enC5X9lo0jCRJ9CosxABEsCX7vgwjW27F63i9XtweDwbgXPGyScSScuKJBFpRmWmGbzWIA3V7yCLKKojFYuhFpRDYjbR9M/nFxQhJwgA8tZ/QOmq8FWXf2zhRVJWy3/6UYDBIMpkkcdwpcPFP0E4aQ/PMG0k2NeBfPC97w0drUFWVvLw8q151+1YSw0aQqKzGiDSRuP4+OG86GhDuKBait1lx2PIJDocDb7p/rel783/w+/1IsozesLvb7k0d1tf8/4WXwYWXEcRMI9kWicOPJPXJ+znv1Of3fy2+9VgfOF49kPDI00mW9Ta1aSet1D0+tMKStO8rgSSjNNQhEnFzUGoaySOPJnb8SDxvLsb7Zk1uMOYABbG8XQSx2qJtaiNTVYf2OU+Zw+HoeDLUNAyPZ+/WjsdHKj3BGQYo6QSHX7ftAGz7GO03MwkNOp7o40sIXzAD5wtP7JPsuq4RuehKQudNNyekpYvTEbtW+PIzuPo3HVsCqtr+4q4v2vdvN9yr+/K67oyCwqwZ/RXe6SFFYN3tJXLCKCLHjMiavqlUp/N9qrAU3e0xy0kSyLIZgU6mTSJdM7Wu6iBy6iSSffrhe+U5HNs2mRH3QwT7RKRTToPVr2Utk1ETMdxexLZPzYnh81pSvathsK9zEqtqttzhAyDYkO3r8t5dihC65i5C503H10GEVpZl8jd9QCwaxvD4CIVCWFNK/4Ht321Vf9OM3rbJ2hBi3PkrpKcfxe12m1rtlof5qpGOr0Oczu5VP/lonywuvaDgq73TQ8kHTvQ9kpZzLiZ8wmgMl9uKKLOXhmq9ikBVLfIiyciB3W1MZZGuQwYhSPY9kpapPyY05kx07zcsd/24swl9f5ZF3uZZN5mDftMGVFXFtX4NeLyIxR9SOmw45eXllJeX43lsIWw18Dy2kKKiIqtc6sGn0cr7mC7bT64n0iYy2xmc75j+eeiMCwjc/Id2S0yNjzxvTirr1+QeWz1qKLGbH7J+DTz+mhkFf2d5bqbUk8ZQUFCA3+9H3PYIqUkX9oiudy6ai9RQB2dPxXHTA1bfFk2egbx8K2JDiNJhw7t9k02P0MC620tk2LeJDhuJ7nJbmzHaLgt1SuDisvTuK9OEloPNyI31oGsWf616ZBk0Dd3rJ3zqJJJV/fG+tQTH9i3Z8vsjCj3l8nb+kGVVPfJbXB2s5/5XiISI//QWdv30lqzG2PgRxh2/RMnLw3PvdUROHI1+1FDqnnsnV7M01BG56zpEMIi/Tbn6he9mZ/vPa7uMRKv/WoLzlYXEJ5xH6ozz2XXG+e21WEMdxr035prMkTDa5MvYNfmyPcrdgMvlQv1gNbGRp8GkyTROmtz+wSXlB30c+2rm03rJLBIzfsauGT/LtT6emUPgw/coLi7uXsvs4GvdI0yte9JY0xTOEE1Rsv+m9ze3l14mVVSK4cwuIcnNDUjh1pwyKGouiWUFFJVE/0G0TPkhoTET0T3eg9L+5ngiN5L8dfDs40hrV2Z/f+sVjDOH4nA48KT939IpJ5vLF22xZiXGrO8hf77F8tWLfz41t675s9FXLt0nMXrdNhPHg7fBmpV7TDBhqFmAcWJZzrMAWLYY8czsXJkmj7LKueY+guvxB8062kSLue9mCNRBcVnuMs1BgOexO3A9dJspl2VK1MH82WjXXY7X6+0WszlnMnS5XIbL5UJRFIQQ5OXlEQ6H97/WdXmIHD+S6DEj0N3erNaVTVMXRQFJRq37Ev8/56F+Udtu54/Wq4iW82aQPOxwi+ju91fhq5lnBaoMh4PwWRcRGTUBQ1ZAS4GmmT+6ZvrBuo6jdiPepYtwfLYFjO7xjWOxGM3NzV3HNgoKcLlchMNhgsGg9XsGdXV1yLJMUVFRu7ozAbK298ZiMWtS8Hg85OW1D7AEg8Gc9+xyufD7/TlBGl3XaW1tterKBKQ6krGz9reVJeP3ud1uq65YZvNDzQK8181AkiRrac3lcpGXTm9szQGRCKFQyFr/zkxOwWAQwzAoLS0lmUzS0NCAt+0uMKC5uZlYLEZpaalVp67r1NXV4XK5KCgo+Fr3tm13JBIhkV6akmUZj8eTM2F19E73yciKRFAUxZLhwBNYSCQr+xA6ZQKJysOzhM1oyLSWFJqG+/1VeN5+DbmlsVPt3frdS9B6FZta1eHE9/oLeJYvMQ8ytI1qHzOC8PjvmmQ3e9+cENIERteQgi14VryK+71/IUVC2Nj/2JPAbUljo2sCH/C90KGR44gOHWGarJ1p3R3b8S5fguPTDQgttZeIXpEZqU4TX6SSKLu/RCQS7drg/GAVau0nhMeeRWzEWHRPJhKb3tObSqEXFBE64wKSVf0pePJhe7QcCOw51Ox0Tj07iBUZdjKG052z7JMhrxSN4F67Es87y5DabFboDKmyw8wtlOm6pFArUnNDpwEpqaUR//NP4Ny4jvD480gMGGxqbgzTT04lQZaJDz7eHhk2Dk0C7++dWCKZwHB50ks+ac0pBI5PP8bz9quon9eCrnUpg+FwkiqpwFDUdARaIDU3IMKhLu9V//MBedu3EDv5NKJjz0YrrTBnfkkGKQnpnUc29j+cc/9A/ux7aWlpgfTOJxs9WAMLA5Da+LyKitTciHf5YpQvP9tnE0p3e83dLxkNLiRzA0cssk/3S+EgntdfQC8sITrunPRhCDk7sdg4YHC5XPs9CcE3FQd8pBrpzRYZ8qI60A7rS+v3ZxEbMdb0afeFwL2KcjdiCIGye0d2B1ZX5ndlX1ov/QXRU8/M+tGKAqoDnPZgsmFr4I6R0ZiZNV7VAQ4Hqar+tF7+S5zHj8RbMx/ls0/3utUxVVyG4XCYGlsI0HXkht1dHiE0XG5iJ44h8p1JaBV9zOcbRm4UXLI/pmrjUCXwfk7s7lv6EtGTvkOyTz9TA1skdoKqEj95HMlBx+B5+Vncr7+IiHS8pKUVFGNIchuTuBWppSm9b7pjJPseQfg7Z5EcOMQMpCUT1g6uzI4vkUzgfmWhHQ21YWvgDv2d9WtwbN9CZNQZREeebp7jVdr8yAp6SQWhi64k8a1heF54Csem9bmRZUlCzy/MElgI5MYAUlOgY3Pb6yM6YizRE0ah+/NBN8yIsxBm0EqWwVBQajfhff4JHB+sskeGjUOTwAciK6VobcZbMw9l+2Yi50wj1W9g2nTNDSAlBp9AqrIvvtm/x7n+PXP3FObRLS2/ILtPWgjkwE6Ix9rJrnv9hM6/jPiAweYOK00DyQBNAlk3ryUTuN9agnvJAuTALqsfbNiwNfBe4PzoPZQd24meOYXYqRPTOZ1zzXndl4deVIYhyVZ+Z62gyMxCKQTmaSMJuTHQof9reH1oJeVmWU3PugjpH+WLWjyvvYhj3bv7HACzYaOn4KCvl8gNdfiefBj/n+9G2brR0rIZ09hkbO55YK2oFNQ2ObAMAzmwq+MAlqaBnmq3v1kkE7hXvUHen+/GuWZFt5BXGzKcxifeoG71bupW76Z+2VYiV9z4PzOYwtfeTfC2R3u0fA3Prj4gz4pccSOBmvX7XdYes+DpfOdN8u79Ne5XnkPEolkCp8/x5hClpCJ9Aslct5UiQeTA7lzy7+kXWPVJKHU78C+YjffFp8yjh92E5lseQqrbieMoJ/QTGC/NIzT5MqLR6P8EgWMnjSYVbCEU6pn7yFNllVD7KY2Njfv9WVr5YYjPNtPQ0LBfZe1ROxbkwG58f3sA/8O3oWzfnLu8kzlOKElpAruzB/gb680IdIfkNbLk1XXca1aQ9/SjONe/161ZK7Uhw9F6V6P9ewWyLFNaWkrp/dfjG1FOKBSi6dEXaXh2taWdw9feDUByzJk511vufcqagQM16wnUrKdu9W6Ctz1K+Nq7Lc2uDRmOUdk3596OtH1n9e+J4G2PtqunftlWYtOuMsk57Srql221tEumbMOzqzEq+9L4xBtovatJXjADY8L5lqyZMtqQ4VadGXnql20lcc406/eOtPee/RabdpVl5WQ0VGdtzMiVeVZy0LGIXV+iqmqn8u2pBf/bNiSrByB278BY9H7O+9aGDO9wHOxN1kOGwGZLdFMb3/0rXMuXgADDkc0qqecVoJX3NpedFNVModNYb0aVO/TyVQzVgdxQR95zf8NbM79bta41+Xz0Lo4Vr6H94jbiL2+g5d6nSI45E4/HQ0lJCVpVf3QDlAmDYf5swudPJ1xUQcv/vRv1nbdQBqgwfzbxU04nGAyS6DcQAwPxs4uQnplDdNQEEi1NeCcdi+H20njSd2j98XWIcNi6NzRpSjtt31n9e5p7sdETcF79fahZQGjSFMKDjsNwewmuepN4PI5WUYUI1FHv7UVo+ixct/8cxg5EKyylYdL38P/192ZlYwcSHT6G6KkTcf/yErOMy0vTudOJp1P86G8vRRmgYhjQPG0mvivPR1r8LNHjT2mnvVNHDcEIhUz516ykdeqPcf75HpQHbkXrXU3jkcd02sbmmx4CAxxHOTFemodeVIL+xTa0a+4kdtJoPDMmQj+BtnsnTedOzzlPHLnixg7L7GsbtD7VaIOPw3n1NOQ591vvu+muOTgyss76nnW9M1m7yt/VY/cMyoHd+Gf/Ht/fHkCu+9Kyg7WiMvT8XtkD/5KEXL9rrz6s6503yZv7x27Xunui4JppuI/2oK97j4TbS9Pv/kb44pkYlX3Ri0qQfv0jqP2EwtdfMGf4/CL8f7qLeEkF+qK1MOVyREMd0WgUvaQMaek/4Z1lOGUJqaGO1P+72kotY3z4b/RgC6mBg9He2ITzsCq808cTieRuJc3rpP62iI47C/mtl0m8OJfCW36C59RqokOHmwnkVi1FURQS/QYibViLrCiIaJjYTQ+g/uYP+BbMxrjjl4QHHWumlNm2Cem0c5CX1ZB46WkKWwM4N36IUVZJNP1VCePXP8DlcpkLCM8+TnjjRzhkCXn7FuLxeHYur+yL4fZi/PEOJElClSTkfy8n9uJcnLKEiIZJvf0a3sfubN/Gsj4kh41APHYXAEXpPtcXzSN12jlovauJ/G0JbDXg+JPBn5fTL9FxZ3VcZl/aUGHKzT3Xk9z8MfmrzEQI4UtmoReVED3/UlKbkvDwP8zr/QZ1KmtXBO7ZX2bQNNxLF5naN20KayXl2QwcGZ/2i1orC2W7iaB+J566HQdMZL/fj//2qwiFQkSXrCdcehj0G4TUUI+28nWKiopIHpMmxwkjab3iVyhrVmK8/QaEg+iGeQBc612NvOF+3G43mi8PUb8LSZZRjz7WfNCGtfhXvUrkPx8SGz2R+ImnkHjseYovOCnrk067iuDlV3dYf1voRaWI1hbcbjeKouDz+RBV/Yht34ouBLIso5eUweaPcX5Zi/fUaupveYRkv4EkTzkdZ0sTUmUftM+2IPcfhFZUAuvX4knXlzr8CORVb6JV9kFK1+k+YhChdMI9r9dLpLQSsetLZCU7JJMnjDKJ/M95+AoLacnI4HRCZV9EoA6uuolQB30ojR6PDiRfnEthYWG2z7dtQu9TjXzrT9GeyB4Z1QEjnSgPMPu/gzL67+Z02QbSebqMf84jr7CQVObZgPTJR+gTh+YOmmlmnuyOZHV0kS/60Ni132ZXVKrqCHC4Ld9YaknnwOps59QB2FFlVPbN8WcAnJMuhOJS5FVLSYw41dTAZ38Pjv024e9OQ61ZACeMRPrPOlLTJ5gD5LiTket2IJ011RxEy18xtd/RwxBbNiLLMslvHWdquvLeNL7XgEuWKfjFVKSN6zDCQZqasrGA+LEjOqxfUTo4Bl5+GKLvkQRq1hO+9m5SZZUYHp/lL2q9q2HDB8QffZ6mJ5dS+purcP75HvM5gXoSJRWI3TtQvthqJo8/cTSKohC+9m4zz/RL/4D+gxC1m1BVlfjYs81B+k9Ty2hV/WHn5zmTS3LgUOtzLnJVf1OGt99AkiRSZZWIbZ8iOulDORMTueom5Kr+hL87DWn7VoQQiGgY7TuTKCgowHfLQ4gNIYrGnZWTTKCzMuKIrttAOkc0iz9EDDvZet8CMKr6ofyfiyk59kTk5VtxP/ocveLhzmXtIoPmIXfsRvflIaIhpJZGRCKBum0TIhw8qDKJHZ/h+/tDhCdeYAUnWmfdjO++m9AX/QPJn28mhHvwaRr+sghlw/vo1/8Q5/ur0Y77NsYWHU45DdFQh9baAkNOML/IsM0cKHpRKcYX21BVNR3d3IL877dwrHiN5ut/T/PaJkRpOY47r81JP+P8oOP699TA3mfmwOgJhGs+QN6+hdh1lyOW1aD3qSaxMU58yPHWhOJ+cS6pPtXUrd5N/L4ncT33ODz1CFIkRGri+ejX3mXWN2kyzWubiJ00Gue9N6CtfB2jb3+MYAuKolg+tRACuaq/6fN9+G6ObKmySkT9LlOLH3m0KcO693A4HKQOP8LU2O+v6rCN6mvPo654Da7+DYG5yzDcPowtn6CqqinfmAk0r20ictZUnPfeQOPSmhwfuNMyVf26bAPlh6G8/BxAzvv2PPEwIlBH6v6nqF/4LlL9bpKzphCveaZTWbsce3um1PG63UT+R5Y9uhvRWIxQKGSlS1UUBZ/XS2jeClj3b7jhR1bidI/Hg8/rJR6P09Jq5u9yOBxomobb5UJIEqFQiJJ0FsP6QIA8vx+n00koHEbTNPLz8ggGg0TTOacURSE/Ly+HBJ3V79kjyXs0FrOCW06nk/y8PBKJBM0tLda9iUSCkuJiNE2jqbnZaqfP67XyUkVjsZzcWW37weFw0NDYaD0/EokQi8cp7NULwzCoDwQo7NUrx0IIBoPohkF+Xh6pVIrGpiZKiosRQtDY1ITL6USW5U7bmJEp8+0hp9OJz+vNaa8sy/h9vnaJ5Tsrsy9tiEajCEkilUqRSCSs920YBk3NzdY4yPR1pq0dyZqzVBeP7z0nltvt/p9ZtzxQCLxZi/yne3DOvrcdcWzY+CqI70Fgxe6S/Y/iU6sJBALIdsI2G90Mm8AHisTdnNDbho1DMohlw4YNm8A2bNgEtmHDRg8isGGnkbFh49DWwPoh9M1cGzb+l9ARN9sROJVKdcuXw23YsNG9SHWQsLEdgZPJZLd/AtGGDRtfX/tqmtZOuUpAu3N4mc8i2rBho2eQN5FIWIcbMiQWQiQlYG3b4FXmj4lEglQqha7rdnDLho0DDMMwLOJmvq8sSRJS+ltiAKrqaFYMw5hrGMYIwzDaMhtZlkmlUqRSKQzDsElsw8ZBQOZggyRJyLKcY0L7/f5a4XA4HC6X62NZlvu3PcWSIa2u63Zk2oaNg0jgDInbms+q6mg64ogjFyu6rieEEOMkSXpX1/VS65hSG3vbDmrZsHHwSZyBw+ForKo6fKkkSbUic4xw8OAhZa2tLX8Ph8PHpVKpXtgHHWzY6EkkTjkcjiafz19bWlq2SZKkWuC+/z8Ar8Y5qjZRM5QAAAAASUVORK5CYII=' button_avatar_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACAdSURBVHja7J15mBTVuf8/p5beewYYZhh2GGVRBhA3QEFccUMTUeICCUa9bmh+CV41UaOo0bjFaERJ7o37GgGXIIqioGhgFJEroAIKw6YDDLMw093TS1Wd3x/VXdPdMywSB5DU93nqmZ7qc06dc7q+9S7nPW8JTdNIwwNcpijKBCFEuRAijAsXLvYXNAIrpJTPSSn/bllWEkCkCdxVCPGWqqoDVVVFVVWEEAgh3Glz4WI/gZQSKSXAN0IoJ8Vi0Q1C0zSPEKJC07Qhuq6jqiqKorjkdeFiPyWxZVkoirK5e/eeg1VFUa7SNO0Sj8eDpmmO9HXhwsX+ByEEiqIgpQwJIQYJj8ezSNf1YR6PB1VVcwr6fD686fMupV242IuSFjBNk0QiQTyRyKjOOdA0rVp4vd6E1+v16LruSF5FUSgsKEBRFJLJJIZhYFqWO6suXOxNaZvmoqIoNMXjWC05aGpCCE+2w0oIQWFBAUIIotEoVivMd+HCxV6SwpaFaVnomkYimcwvoioZ0mbg9/lQFIVYLOaS14WL/YjMads357ySX9Dr9ZJMJl3yunCxn0ERYucEFkIgFIVkKuXOlgsX+5tNrChYlpVDYqVVce1KXxcu9j8CC9GCwFor7LUPFy5c7P9qtTsFLly4BHbhwoVLYBcuXLgEduHiPwQtnFgyfexLSFVFev2Y4ULMgnaY7Ysx2hdhhguR/hAyE5ktBMJMoW6vR22oQ62vQavfhtpQjxKLIJLJ/WA0LlzsRQLvOwgsnx+jpDPJrr1Idu1FqnMPpO5xyNrqXyDVtVea+TZZtdpq9E2VeDZV4vluPUpDPcI03F/bxQEH4fP5pM/nQ9M0hBC0KyggEo3u1U6YhR1I9OpDoldfkj0ORnq8uUTNP5ze72CPVPY62Zbv8K5difebFehVm1wiu/hRIxqLoWkaiqLsewls+fzE+w4ifuhhJDv3BEVpSdZ0R53vFAUQrUriHAJL2xgwuvbA6NyN+IAh+FYtx7d8MfrWKpB7Z3fVtqfmYnTvTcmEE1GqNrT59WoffRWADpPO2Svji115E7FhJ5DqW+6c8/3rXQqe/gvqisXNWtLI09l27xME33mVgilXu0z8savQqc7diR51HImyQ5GqmkvY7M+KAkJp+bk1aZyRvBkCS2kT1bIwO5YSLSoh0WcAgY/fx7/iU0Qy0bZjHHm6c2NvPf9ySh68yXlytskDsXMPEkOGoXy2iLr6etq3a9fmD6ds4mYQP/Zk4ocPp/1t1+D7aE6uBEkZiMZGwmE35doPgX3ihY73G8T2U8cRP7gcqWk2IVW1+dA00D3g8YLHB14f+Pzg9dt/sw9/wD4yn/O/92bV8/gwOnen8fRxNJ4wBitc2KbjbDrpLERTFDasRZ54FrGmpr2j2eyFSLqGKY+R6luOqNkKf38QyoR9nNgPliwEf5C6G+8l5cbV710CWzR7on/wQ1GJHjachuPHYBSVNEtVVbX/ahpouk1cbxZx88kaCII/CIHQLo5gunwgh9AyGCY24lQaRo/FKCpps/HGRo5GbFiLqJgPHUuIXvybnO+N8qOoWlhF3f3Ptqhbd/+zVC2swig/yimbOZc5qp+aS3Lk6Uigafwktsz82P4RjziG+JdNzne7qiuBxv++h6qFVSRHns6WWcuoWljF9imPtTouo/wooqPPQdRsRY4biXrvDRQUFFBaWkppvIGSSeegfvgOFJVQe+XNLVY2EpP/wOb3vqFqYRVbZi0jeuVNLa6xfcpjTpnWyiVHnu70MXtsO2ovv0xmvDWPvppTrvG/73HGn/ne7Nwjp8zm975h+5TH2D7lMaoWVrH5vW9alGmrY99JYKEQGzKc6DGn2JIvX+rqHvvw+mypm03cQB5Z/cFmcmYI7ZA1/TkQaCa5P014fwD8GSL7iB85ksbRYzGKOv3gw4389z1IfxD54Vy0Jx5CNEWxTj+XeDzulFFXLEbdVEm83yAaGhpy6if7D0ZsrKT63VkYnbpR88fHiR97ck4Zo285NVMeIVnStdU+1MSaSJZ0/V51aybdglVUbNu3GyppbGxs0W5ixCm2pfLuLNSNaygqKiIQCDTfVIpC0UO/x3fxaVh3TSYWizVXPqgfqV/+GukP2gKjqJiGX1xL4/BTclTz2OhznDLZ5eovuDLXBh99Ts7YdtRefpnI2In2PFsW9fX1jlYRGTvRGT9Acsgwqh96qUU2jFj/wcRG234GGY2y7fNPW8uYceCo0PG+5USHnogVCObatxl1OUNen7+ZZA7xssiXIa2jOgey1ORsVTrQsmx2W2kSJ4YcQ2zEaKxQwQ+rPh99nC2h7r4O/+YNaCuXQ/9BREadmVPO/8kC6FhC/LxLmgly1nisomLEovnouk7859fY/785o1lVLROwcpmtqo65CM+zj1B49uF2A0sW2t/Pfomm3aibc+MFQmi/GG2Xufu6nDxpDvlLu9kfvlhKIBBo1a5XqjZQsHIpxcXFOeSm/yCUt2bk9gOIHj2KVCpF4qzxGH3LESuX5/b3H4/b99HgYTkPQcD+blft1WyFay+0y1x7IWzb2sJfERt9DsrGSnjw1ub2Zk9Hdu9NzeQ/5l6zR1nzOI7u5CSbOyAJbHQoIXr08Vj+QC55db1ZZc6xXQPNRMtTf/F4EYBIpRCGiVCUXJXbkz68/lzbOdtOzpbgPh9Nx55CYsARSE3/QcabOGs8ZrfeiE8WoKoqgUCA0JwZ9lyc/JMcu9A/Z6YtFU4YQzKdMqXpuNPsc689j8/nI/TAbwkPLkBeMw7t0RkE/voKnpmLoP8gWwKEC4nH43j15v77fD5KS0sp/NPvdquug/dmIRfNo7i4mNLS0lzy5aOuBl3f8ZwpitLyAbBhLdakcQSDQUpLS2n/6jP2+VAByWQS76zn6XBkEfKMQaj3Pk7gr68Q+OsrcP6l6XJhZ54Am7C/u4xwONxqe4kjjrXH+fRU1DnTKSoqonTJ+4Re/FvubzZ0lD3n//sn9L/dQ7t27WyT4K5foWysxDxxDNHs5dVYNGccxcXFB6YXWmoaTYOHYubbvBl7N+Osykhhj7eZ2JoGqmaXFwpq7VY8ny1EX/k5ak010uPF6N6b5BEjSB0yuDnow3HiSLAkaBIsCzQTTBM0A4xM2/bRdOzJaN+tR9+49t9fqzvtPPtmOP08+Npgc/aXJ5xB/Ldx58ZXVyxGW7UC46gRxONxPB6Poz7Linn40jdG0/SF0LccA2htJXtne7i/V93G7QQCgVYlbwu0L/r+KYgrv0bXdccLrdTX2udLuzqaQPKmB2HsREwg1pqTLltjWLMKj8dDMBjMbS9dzijubP/zxj8Ih8POvAfef4PItb9vFjKd0qbEHVNJ3TGV+haTGCUWiznXoSmKoij73JvetgQWglSXnsQPHWKTK1ttzkhex+71NpNX92SRSwVF4PlsIaFnp9qT3asvRlk/MA20DWvwLppH/KSziZ11ETKUN6FK9pKSCqYFlpbXvkqqzwAShw1D3bYFpWnPA1mszj1I9R+44wKBILHfP0z4oVuapeUXS4j0K6fpkuvwJmJYRcUo781CSyfab5jymK0GbqxELvvUrrRqOfQbCGeO26W3+HvVbajfJSm1zZvsDwOGIN98ceem0/hJ+J5/NMs50LBDqW2aJvHxk4iMnYhoiiLnvenU4dv1MPmOVuvtTAvIhsfj2fHvFgjtvLI/iOzZF2J16ad0ZL/In96mBLa8PuKHDEF6fDsnr8/fLH013Saxqjl19FXLKZh2N2bnHkTGX43R51Ck1wdSokQa8M2ZQfDVZ0DTbBJnVPVcMWMfimUTWclyoKWvkzhsGN5ln6Cs/2aPxxwbfzXSH0Q8eCty6p25X/bqC298hhx2AtFo1Hma++fMJDJ2InLUaUTSDw/rtecJ+nw2CY4YYd/Qo8rQdd25ERPPzGVXcWV7UndXtpzv9edoHHcJ8qSzSD47FU/t5laJu/2S3+D/8B2Ix1Fznus7vvHjhw2zf64/3ojywjT8fr8tlW97hD1ZkFJiEfvDmPPh5Wa1OXniWbnkrlxFcsgwuPUaeO7R1u9nwCop2e15+tHbwGZhBxK9++Wu9WbU5mzy5tiwGRVac1To4PTHsQra0Xj5jaTKj3DIi5RYgRCxcyaSOHIkvvdmoW6qzMsqIuxDKDZpM2q5nqW+e33g9WKU9cfoefC/NebYqDNs59XUO5vtqMwRb0BftRx6lBEbe3GON1pbtQKOOIbUiFMQGyuhYh6+NIEB+6Fwze8pKioiHA5j/vU1jCHDW+9EMFeafK+6u3PTVG3At+Bt6FhC5Om3abzunhwNpP7+Z6mfZGsY8ftu3rO14KGjaNeuHeFwGHH7oxhn/myP+upfkA4kOe9iYiNOcxxWDRdckVPO+/EH9ofLJlNw7kTnNyuY8hfEFxHUBWspLS3dL0i7cwlsWT9YSh2jU9dm6SuETRwtjziZvxlSZ6SisOso2+vQ1n1N4sgRmMWlabvWyo22QpLqOwDP55+gVm/B6N3XJqsTkqlkSWQBSnaopmgmOZAqOwT/B2/tGXmvvNlWf19+AkVV8Xm9Leay4KX/oWbIMMwxF5D853OORAxUzKehnx3VJBfOQ9d1VEUBKfF9+hGxU89BTr6Dza2pkaECWxv5br0tbfsPIr5kG9b4E3e7bqvayk5QOOVqEr36YPUbSPTciUTPndjStp52L2LdKoJFRZgtDe/WpfvSCnvJ58xx1Lam4heX7sDZ0np73n8+hzp2Ima/gUQeeJrIDsajL3gTz0dzSY44hYb7n6Ihnxb/+yA1NTUUdeiwW9c9ICRwqksv0LUs1TmjPmeirPIcWNnkTZPeatcBs7Qr2pqVKA11Nnmdw7T/mhb6l5+DwF5jtmTzd5Zlh1NmT7SiZKnQmt3H9EPFKOu3586rk8bY672/vZRAWvVr7UZRN1bCIYOJlnTLUUtFxvZ+/QWb/BnST7kK7a2ZuQ198La93JFeW81EXwXfmuHYbNVnnE/o1it2u+73RcnFp6BOfwI25Dn+liy0l2qm3klBOPy9pJbv+an4nnwYYtFcT/ODt9pLPx07YZrm9+pn8cWnoCx4p/nEtq3OslQ2Olz/c7TpT+YuMaWvLZ+dSjgUYn9Di91IoVAod+H930Dd+EmkuvXKVZm9vqz1W1+z9NWaHUr59qtnyb8IP3I7Ru++RC+8AqNHWTpkTCIScQIzn8T/5ss0jbmA2NkXIf2hNElFyzjq7BjqjKSxTDANSKVQtm2m46Vn7PGYa2trMU1zl8sKmXJFRUXODW5ZFjU1NViWRceOHVt4giORSM5Sht/vx+PxsH37djweD+3bt7cfJNEokYgtawoKCvD7/btVN1OvsLAwR33f5YMrGiWRSOSoyj6fj0AgkONgSqVS1NbWEgwGCWWRIXPe5/NRWGiHtzY1NRGJRByPs8fjccYhpaS4uHiX7eWfb2hooCkdzqr84hqsKY/A7On4rv+Fc93MeJqampwHReba2XNSXV2Nqqp0yJfIbYympqa9txspx/OckXYZFVrTmpeLHGeS2nKTgpQkhwwnfvJP8M98ksKVyzC79sQs7QapFPq61WhrVpI69DDix55iq+yWaavaUgEVkOmNDkI6qnLONRTFdmypMif6Z0+wuz9oa+UURdkp8UOhUM4NmU2WHBM4GGxe7vgedVurtzvY3Xq6rtOpU6fdOu/3+x0H1o76uzvtRa6/l+jYiXiWVtD+6p9SUFCA1bkndRddgQVQtbHFg3J3xrOv1n33+jKSbWeqzUs2zhpvhrxKjs2bQyzLQl/+Kf43XkCr/BqjzwDMki52eQnSq2J07YVUVdRv11Pw0O+JnT2e5BEjkD6/vYSU6UeGxMhWtiIqdllFsfvp4oCBf85MYqefR3LIMLYsyvWWi42VyLuvQy0o+NGOr03vViGtrMgrNTcwQ9Psc4ra7OTKcWGbBJ9/DN+bL5MqP5zGX91Gqqy/LUFNww7IoNmRpX+5lMBb0/F9+DZm9zKMbr2bSWop9iKAELR4T6pD5vSDxM2JfUBBXf4Jhbddw/ZLfoNMR58BdojktT9D1/VWJf2Pl8A/YGJ3ddsWjK49kdkOo6zgCUe9pmW2jdDf78c39zWiF11FfPQ5dpijaTY7pzLkNU1EvAnj4ENpuPoWlIY6pMeLiDYgfcG0eiyby2f+5j8w0tdXt2xySXyAwbvgTdrP+yeRSCQnDDMYCNhmxY/4925TCax/u47EwCNz459zyNt6qhzf/Dfwvf0KsQsuJ37aWKTmsYmbs1HfPjzLF+Ob/wYilUIGQkivF6WhHikU4sefQeqwYUhfwL5Wpp4gl8RZf/W1q9w7/gCErmltnuBgvyDwD5mVUt3yLSKRQIaz1FRBs0e4FckrEnG8b04nVdafRMYpZZr20pCUudLXIaSCVBRIJhCJODKVsr3b2ctIlmI7seQOJLB9ddS1q9w8li5cCQyg1VTj+eZL4h065gZV5Nuf2XVWfo66cS2J0WOxCts3p8XJUYOb6ycHHUWq3yDbLnacXxJUFen3246yrICPFuZCVh+0davRVi937woXLoFtadqEd/liEoOHIoO7t2tDqa9FWCZmcSdb3c5EXeVHiKWJp69ege+DOWAZtmoOkEwgvT4Sw08idehh9vm8yK3WpLCn4n20Tevcu8LFjwZtG9gpJfqGNfiWLkSkks3SNFsC5sEo60/sgisw+g1CZhLVWXmky8Q1K2pa589rU0qEaSIydrOjRueFYWb1QVu1HO9HbyMiDe5d4cKVwI6gNFL4P55Pqt8gjFCBTTgrK/NWntfb7NKDpjEXAla6rNn8fStOp1T54Rj9BuYR1baZZWbZitakb5YKbRj43nwZtY0cWLGrbqHppDGY6aUtbfUKOvziJABqZlTg+3gBwftvOOBuLnPg0dTd8wRWUTEFU++k8dLJFJ9QRs2MCvzvvUFg2h/2XDZ06Un1K5/Q/sZfon/wZqtl6qa9jv9fc/E9N9WVwP+WM2trFYG3Z6Jsr2teCsp2TOWrxmraySVlrtma7c3OSGDda+ee8gfsw+dHev32jqVMUIZsfQNEBv43XsT7r7ltkmY2ev19xMZcgP7kw2h9dbj2Qoxuvam57o/ILj0xu/Um/uE7P1j46v6E2Hm/RGzbgtpHo+HBWyk4pivV1dWY3XrTtLTCCWvcI8Hw3XqKh5ZQN/0pDMNoleCpIcNoWrOKRCLhEvjfhXf5YgKzX0I01OWu57bmVW51LTpvW6CqpqO48pamsmOfdxZEn27f++Hb+Gc+iVJb3SYSKHruRLx3X0fqmamEQiFKFs8j8PLjWJYk0ru/XW7ynUSWNVI9fy2pUWc4Urt6/lq2Vmxha8UWYlfZ2/Oq56+lbtrrLc6nRp1BzYwKtlZsoWZGBdXz15I8e4IjiTLla595zym/bfYKtlZsybluvgTLtLm1YgvR6+8DoPaZ95y60evvI3bVLTltJc+eQOPt02g6dSxmv3LkX15Cn7mI5D1P0O48e9eSuexT+NllLertbh+i199H7cyPKSkpQZ50ds7YM9IZIHXX30jc8hA1MyqcNmtmVBC9/j6SZ09ga8UWts1e4cxBa9fanbk64AkM4P/XuwRnvWCTxTDSJDZ3voVR0DLRu5onhZ1zWTHVWRv1HVJnq9+A94O3CD7+J9Q2clzFTzsPdWMlTa8+S2FhobN1MPTXuwjd/RvM8iPsgu+8htZXR0qoP3wEifKjiEy8Fu8DNyMOUmDJQiJDRxE59lSkP4ix+gu8h/hg5TIiQ0cR69iF7Tfch/7xB2h9dcwtVUh/kO3vzabugeeQwZBd/sR+GB1KqL3gKhquvRXP+7NR+2jI9WuoO/OCFpLM7HGQnZHo1HL4x+P2tsGizpjde8P6r1H7aETfn0Nk4rVo/3zBbuvLz6mfMAnv7y61E8k9eCvWpHEYHTuR+nYDkX6D7cRxpd2ITL4T/7S77Xr/fIn6CZNy813tpA9WKAyVX1NbW8v2G+5DWfcN2qnlmN16U3PmhQRmPm3vkioPES/u7JQFbK1nw1qi6aT01pRfoQwqpO6Ge5055NoLnWvtzlz9RxAYy8T/7uuEnn8MrXIVpBJgpNXp7KUiaP0VK4poucMoeyNEhsTOzqO8HUhp8oqmGP5XnyE07W7UDWvabLhGpy6w7ms0TUPTct0Nfr8ftUt31M8Wwd3X4ff77e41bsf85AP8M58iftzpiPfXwBHHoFRvJtm9zN7v+7vL0HUdvSmGUrma+Mk/QQYCpH57mZ0Eb8USO6mAlKRGnILRt5zEV3GYtwo6lthbLqMR4udejHxjKcEvluK5/OwclVZ26Wnvbf7d5VC5ig7vvmZLvrJDbJPlqUfQNA3v+ZegLV1E8s5f28n7ViyB4k5Eirsii0pQ1n9DwYAhyO69kcsWI7t0R1RvRplwFdIfJHrLnzG/NuD8SxHBkLOLaqd9KCwiOWAIYvO3iEn2Hmzr9v+HvmktxUNLsO6aTLKkM+r6b9A0DbWsL2Lzt+i67khPc9ZLECqw53/2S/h+dSsUlRA/92KM1Sl45EXnWiIa3elc/ecQOCP5KuYTnnY33g/mIOIxm8AZtTrfHs5RibMlbmb3UiuvXclOl5O3x1hbv4bQY38g+MSDKNVVbT5WGQy3yNmUPHsC5sCjSfXui1izEq/Xi++g/vZOqGWLid/3FMmho1AVgf7nW+0MiN9thK49UTasRQhBIBDAKu5ke83T5y3LIhAIYJZ2RVm/BuW40fYFs9OzlgmsuyYT+NmxqNOfwNr8HdFzJ2I99EJOgjajzwCUmmrMhe9SWFiIMfhoe79y7z72uFZ8RjAYxOh1MHxjj8Hv99vX3rAWc9gJ9jN71otOBkxz2afQqQtizUoo62fvvc3qlzyqU06CvR32oWIeVlEJctM66NoT0RTFXPMVoVAIIYStVvfu45DW7NYb+cVSVFXFTD8EWbcaq/xwxJbv8Hq90KUn6qrlLeaKinkUTjh+p3O1fxE439nTRoe27mvCf3+A0P/ci75sMSSTLZd48lXnHNs2W6qKluGaam7WSbVmC/5ZLxC+9wZ8c19HNMXafIz6mq+wDh9O6rq7QUpSx9k2VvT0cZiffmirot+uR9c0UkeOtInxxktYR41ELHofcemZGOf8HAJBxLfrkQf1R6xdbT8QpLS92l/8HwKwOnZC6zOA1HFnED/uVMSW71C3pxOw3fQnSoqL8T7zDuqCtYRue5hIRRUdXphG8L4bETVbMbbX29Iv3ffk0cfb0u+sC+Gw4UR/OgF99nRE1562CrxuNaqioFRvwRw2Cl3TSJ49gfhxp6LNeQWlfIhdDrDKD3fqmP0HwbfrEbEI5rDjCR4ymPbnXYz4IkLB5DvsjBe76sPwE5H+INYb/0Ag7JRBw08kdsP9VM9fi+zcwyG4OMpOF2sWtEMcOZLoTyc4D0GrqAS5cpmzndDqUYb2k/EUDz4SdcFa/NNmErrtYWoXrN/pXO3VY1fLSBZ78ZXYsQjeua+hLVtMashwkkcdR2rIUGSosPX3AWeTNc+etbcE5sg+e4CVq9GXfIRn0Xy01SsQqeReG5//sT8Q79QV45Jfs/WSX9vax4ynMG/6L2JpiWuuXYWiqiT7DULZWIkFeD79iPi4X8K4X+L9aC4mIOtrsXoehLLmKzRNI5VOEG8ueJvgko+IDDue1JzlNGystNv96nP8c1+Fj+aSumwyWy+bjLqpEu3mK4lv/hZx4llUv2q/PVBfWoF1yxUIn8+ZGzMUtvvz8AvUAN63X8G86b9QHp8N1Zttk0AIQi/+jfob7yWyPIJoiqLPnk7qL7ejPTodK20+GKXdENWb0foMwPAHMRd/SGDjWmI3PUB09v8RTc9L459vg3DYlog76YM+6RZSTVFk5SrCzz1K3dBRWM+/R1PNVjz338y2ZUsQsSjmb25HueQM1FXLMSffQaRmKyIWhTWr0I49hZQ/iFW5Gk3T8Dw3laajj8P483NUp+ckde35cPChu5yrfYkWGTn8fv++0e+FQIYKMMr6kRp4JKkBR2D0G4gMF+4GecnKrmGgrl+D/tXn6Ms+QftyKcrWKjuQZB8hGo3mLBMFg0ECgQBSSrZt20b79u3RNI1YLEYikXCyY2Tq+Hw+4vE4hYWFRCIRJ9uFYRjU1dXRsWNHAOrr6zFuuBcuugLGHE5B7Wa8Xi+NjY1O8nZN0ygoKEBRFLt82hnj9XopyNoXW/fMPFi2GG6+3CkTCAQIBoM0NjYipXTKG4ZBQ0MDpmk66n0gECAajWJZFuFwmGg0immahMNhtm3bRocOHZBSOvWy52V3+pBIJGhsbKRjx45IKZ2xqKpKKBTC4/E4WU86dOjg7ERSVRUhBB6PB5/PR21trTP/2e1kz8mOzu8LJBKJnIwc+w+Bc/QCHStUgFVUgtWpC2aPgzC79cbs1AVZ0MF2VmG/LE0kE6ibN6Fs3oi6aT3qxjUoW6tQttc2q8kHMGSXntQ98rITJKJuqkR/8mEST/2FoqKiPc5dvO39StS/3Y/38Qd2/naGNsT+0If9DT8OArv4fiTOkxCaphEMBneayHy3CLRtG+EslXafkHg/6INLYBcuXLQJgRV3Sly4+PFCyVfFXLhw8SMlMLBPXlLswoWLXaM1brYgsGEY+8Vb11y4cNGSm7skcCqV2u9e4OTChSt9LWedPZ/ALSIc8neEuHDhYt+SN5lMIoRwDgAhREoBPst2XmW+TCaTGIaBZVmuc8uFi70MKaVD3EwUnaIoKIricFTXPfWalPJ5KeUwKWU2s1FVFcMwMAwDKaVLYhcu9gGEEA5xM2GgGYTD4Urh8Xg8Pp/vS1VVD8p+yVOGtJZluZ5pFy72IYEzJM5Wn3XdU3fwwX3e1CzLSgohTlIU5RPLskqcEK0sfdt1arlwse9JnIHH46nt0aPXPEVRKkUmhLK8fGCnhobtT0ej0cMNw2jPXshY6cKFi90mseHxeOpCoXBlSUmn1YqiVAIP/v8BAPZB4wjg9XlhAAAAAElFTkSuQmCC' button_server_cleaner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABncSURBVHja7J15nBTVufe/p6q6ep/B2QVkGVEgDoyKKAZwVAQR0FxQDEZeicT3VS5qYjQ3LlxFk7hcDUpegRgXVCQuIKgEjRBcouK4gIqoqMgoaIDZp/ellvtHTfdMT/eAC8sMqd/ncz7dXX3qnOc5Vb96nrM9JRRFoRUqcIkkSdOFEBVCCD82bNjoKggCm03TfMw0zQcMw0gAiFYC9xJCvCDL8hBZlpFlGSEEQgi72WzY6CIwTRPTNAG2CiGNiUTC24WiKKoQolpRlOMcDgeyLCNJkk1eGza6KIkNw0CSpF1HHNG3UpYkaZaiKDNVVUVRlLT1tWHDRteDEAJJkjBN0yeEGCpUVX3T4XCMUFUVWZYzMrpcLpytx21K27BxAC0toOs68XicWDyecp0zoChKnXA6nXGn06k6HI605ZUkify8PCRJIpFIoGkaumHYrWrDxoG0tq1clCSJaCyGkc1BXRFCqO0HrIQQ5OflIYQgHA5j5GC+DRs2DpAVNgx0w8ChKMQTiY5ZZClF2hTcLheSJBGJRGzy2rDRhcjc2vfNOC51zOh0OkkkEjZ5bdjoYpCE2DOBhRAISSKRTNqtZcNGV+sTSxKGYWSQWMpprm3ra8NG1yOwEFkEVnKw10o2bNjo8lAO6Y6/LBMefgqRyhGIZBLf+n/g+nwzQtfsK2/j0OgXH8rKBU+dRHDkmWiHFZMs6Unz2RcSPeZ4TFmxr7wNm8BdmrwjxxIeehKmQwUhQJIwVZXA2MnEjzoGhGRffRs2gbsiwsf9mPDwKkyXGyQJZLk1KRi+fFrOPI94v6Psq2+j20NWFGWuoijpHUgul4tE9oqPboPYwKEEqyZi+PIsyyvLILUSWFFAUTC9eSR79cPxzZdIgWb7LrDRbZBMJjN2Cx5SFjjR50iCVRPR83pkktfhAIcKqtNKThdan3IC50xHK+lp3xU2DiELrKrd0gInS3oSGHcuWmnPbPIqDlBTBFYtMisO9KJS9B6FqDWfIkXD9t1go9tZ4ENiOFbvUUBg3BSSh/fOTd6U9U39llodD10nfsIogrEIec88ihRsse8QG90K3Z7AhstN4IzJJHr1t0grSdanorRaXstlTpNYUSyCmyYYBmhJoqPHIwea8a5ZsV8tceia2wlXTcAoLE4f865Zie++25F2bj+0LMXoswid8zNiI89IH3N8thnv2mdwL12Qka/+jofwrllJ3tz/tBn570RgU5YJnPEfxMsHtVrdTsibSg7VssKpKSRDh6QCQiI06QJENIz31ecR8dg+l7X+4bUkj67IOh4eN5nIsJEUXvsLHB+9e0jcVKFrbic4ZUY2qY+uoPnoCqKlvSmYd11mOyQ1RDCI32/HUvwuyBrEMrC2LnWHFKyaSGzQsZiKo81tbk/ejgTuLLnc4HITPHcmkeGn7HM5w5ddT/LoCsSOGrjiAigXVjp9IGxYj1lYQsNl16Hperdp+85S9MLZbeR98sE2XcuF9RuIn/dzWk4emz4n/UC2017TXgncXRAecTrRyhGYqrPV8kpt5E25y7nImiK22i5P6tPtIXL6OftcVq2st3WDLluMY83TFBYWUlZWRlksQMnsyYiGWszBlQSDwYzzAnMXsmv9znQKXXN7lqXbtX4nydFnUbtqE7vW76RxwUp2rd9J851LsuRovnMJu9bvRK8Y/oPqCMxd2KmugWmXWl9uvByuuwS/32/pWlZG2fw5qIvnAxA550KSe9j1Frrm9nR9Kb2Mw/tk1zd3IbvXbU3nq121ichl12e46CmZU/rnyvdd6t29biuBuQvTbbd73dacsh0UC9wdEK08ifCI0zHcnnYLNRQrqSo4ndmkTbnPiqON6IrDOtZ+emk/LPBQP//I+jJsJF6vF4fD0XYBJInSsyuRK/MzRv/rH15LZNzkzJtrygzq73gkq/yG2XPS/erEhvWIHTXEBg4lEAhk5EsMqkTsqKHuH6vQdf171xHZXpP1sAHQK4ZjFBYjtmyCxxZQUFCA1+vNyFNw/+24f3cVXDyeaDSa+yEwdyGhKTMyxgoSx42g7p4nMsLKpOQ33W11GIXFBC66guZpl2WUGRk3OaM/nsoXPHnsd64XIDKoMt12ZjhM/Qfv5gp5YxO4I+JHVRA8dRKGxwemgZSIA6LDVFEOi+twtJK8HdnTFruNxFJy30+huZYuQHnvTag6k+aNTTTfuYTA3IXELpydzlNcXExJSUnaCmhHVyC2fAg/G9Pmbm/ZhDZ6HI3jf5pZgceHctE4K9+tV+N461UoKiF23sy2djv7Qotcb76Mw+Eg+ts7f1Ad7QMgpq1d5YnWDf3BO6iqiqqqOdsj/4UnKCgoIC8vL+fgV2TcZKQdNTDvxjb3e/UyzCP60/Dr29L6pOXP4abHKkcQi3UYy2jv0m/ZZHlyJ1aRTCa/db1p9ClHemG5lefE0nS0SJvAexrZ7N2PwLgpGF4/CIH74/c47PFFqN/UWGRMW1JnO+KqrSPPreQVkjXVJIT1XZbbkVjF9c5r+0X2otlTUO6ZC6uXERt5BpFxk2mePSenuxurGIaIhjEnDEXd+DrFxcWUxQIUX38JRMMkqs7KnKtftwrzzZesfGVl5K9ZYVmZ0yal80VPGW8de2YpLpfrB9fh8Xj2qK/T6dyzV9IJueMnVVly3v9HHPfdTo8ePSz3+w9XIu2oQT99EuFwGOeqpRScUIg5YSjyHQ/i+fMKPH9eAT/9hVWQz58p/5ZNGS79YSsfbc2XRyKR+Nb1tpngMMbsqXi9XsrKyiguLrZHoffYjywsoeXMqej5BSAE6tc1+F77O3JjHXmrn6SlRyHJAT9q18dNzft2IG/7p6QQ1qidDJgmzg3r8D67ZL/pUPTUfcRiMZLXXmzdDLc9AAMGExt5BrWL11By8bhW967Ucgu3mSSAug7liNLDicVibU/fYAsejydtFeXN76B8uhlt+ChisRiqqqbdZ7P6JVzFxYR/YB377TqX9rK+3HIvyVvupTmr/xQmEong9XpJXD8PpsxAByI5yspwab/4FFVV0y691NyYkU//DvWmfkuSdNBHzbuFBdb9+QTGn49WfDgIgVK/G/+ap5EbrdtO2bkd/zOPotTubO3rtre6HSxvirgZ3yXUjzfif+Au5Lqd+1UXl8vVNrAzfw7+meORX1uDMXAI9Weeb7mge7FupseHprXb0xxozgrG7/poA3i8RGdeneU+y7K8T+roCMcHb1tfKofvtR3adx8ySOfx7flEtxez79HELpxNaMoMRDQMq5dZ6ckHLfe3M/najT1833rbRlFDXeIFCF2ewKbTReDMqSR69wdZRg40k/fichy7vs50ybZ+jH/lI8jNDW2bF6R2pO1I3Ha/lZpP8S/4Pcr2L/aLDrvXbaV21aac/3m9XtytDw3Nbw1kyTtqIBLO7Nu1T6cemR3crEP/y/33p632qxpPaPSZGe4zsE/q6Ah58zvIX9fAoKFEp1yc+2FcMZy6p9YT/MmF2X1UQK35tG0UuxPZjG2fEK08ydLvtt8i/XIa3msvxvv7X+Lo0//7DTR+y3rbW/WD0efdO4ENoy2szkFOpiwTGHMOifKBIMuIZJy8F5ejfvV5TjmdG9/At/yhzpdE5ggXJO/+F/6Fv8fxyfv7TQ/Hlg8xCovZ/dCLxH42O+O/yKXXE6maYFmSvz2Joeu4NlvWUzz/ASXHnkhZaSllpaV4Fq2AbSaeRSsoLCjIrVtrkj98G+XTzTDsxyRHjbXmoKtfwuV0gmnukzpyJf8zS62H0U3zabpxQcZ/oWtup37+4+i9+8PyhzP7lKm+81uvWl8u+TV5516Ulivvpj8hPgoh/3MbZaWlbdbvpCp65Ofj9/kQNy9Am3j+XixC7pBR37ZeqaPVPdC86E594NDo8cR+NMxaqIFJ3pqVqF98bJG3M0/n5b9h9CggPO1SjPyCNissBIjM/psIBfD/6Sbr4u3HOGD5i26l/rYHMAcNpXnQULh8TvaT9KmHENu3ohYW4rrzt0SGn4IxaCi1K97KlLmhlsgd1yJCob2+7sZT/TKBgdbqL3P9S2n3GcC3j+rIHnG/F3XAYBLjzyU+fgq7xk/JyiOeX4b+p1vw5+dnu7n/fB719bUkRo0lcOcjBDral/vn0dDYiPe9amtaaOJUGidOzRakuOw7yf1t6816qHU1C9xVVmKFT6wicvyo9EIN/0vP4dz8DmjaXs/1rHwU9+onEaEW0DTQNYv0ht72JNM1/At+h/r6Gkxj/66Akj58m8KzjkE8vxzqazMbfMsmmHcjxrW/wOPxICQJEyg+/2RrmqI9NqzHvOIC5B1f4PF49rqKyfnsY5ZlB3j2rzidzoz/90UdudJhN89GnX9zeqomQ9cH5mFefj5erxeny5W1usgEDvvN/0FZtjizrVrbyVxyLz6fD+fSe3Eunm91Azrkob4WikrRW1e20YkO36fePZV3MFZiCZfLZbpcLhRFQQiBz+cjEokc1KdKrGIYwTE/wfDlgyThfWMN3jfWfrc1ypJE4LLriI2djOnxtS3gaB3Q8i36A56nFyOiB1bXUChELBZD1/WMKRW3253un3bM397VdLlc+Hy+tCUNh8OEQiHy8/Nznm8YBg0NDRiGQVFRUc5R5B9aR6fXMRYjGo1mTOeoqorL5cLtdrdNDyaTNDY24vV68fnaBpPC4TDRaDTdVrnaKRqNEgqF0n3TVJ5QKIRpmhQXF3da/g+pt66uDlmWKTjAFjkajZLa/tslCRwfVElwzE/QexRac73vv4nvpeeQIt99l5Dp9hD4v/9F/NSJmF5/msTeJ/+C99E/IUJBbNjoTuhI4C43Ch2tHIHhzwchcH28Ed8rq78XeQFENIJz43pEUwMkE6Alca96HM/j99nktXFIoMsFdtfzD8NUHIhEHNfmDUjh4PeWJ9l/IOHxUzE8XkjEcVa/hPfhe5Aa6+wrb+OQQJezwEr9LoSuYXq8hKsmoBV/v5hVWmkvgufNRCsug0Qc9f1q/A/O2+8LNWzYOJDIionlUNU9bvPa70+UcIhknyMx/D0wCkvQS3vi+PLzttHUbwEj7zCC515Mst9R1kKNb77E//B85K+32VfcRreGpmldOyqlY/tW/M8/idzSCJJMYvCxhCddgJF32Lc633S6CJ41lcQR5aBpyLU78f31zyhffW5ffRuHvgVWD7IFBpCbG5EDzSQHDMb0+tH6HInpdKNu+wSxB9lMWSY0firxwceC4kCKhfGvWIzzsw/tF7bZsC3wgYTzow141z2HiEdBSERPm0hk7GTrbQudIHzqJGLHWCu3RDKBb/UTqFs27XHl1sFC+Df/Q2317ozU+Oi6vZ4XvHkRLXc9tsc8TYueJTb98i6hpz7kRBqWV2P27Guzb390ObuycO431uJ5+W+IRByEIDzpAmIjTrfed9QBkZPHEB020vrPNPD+4xmcH77bZd9EqJX2RH5tTdti+Z+NQevdn4arb9vjecn+R6Pv/DpnRAwAs2dfkseNIPrFp8Tj8YOuZ7LyRIzCEpo2v2e/d/rfjcAA3hefxvXmOovEQOi8mcSPHZHxhsHY8SOJjB5v7W+VJLyvr8W9cT0i2XUD1Gv9BiB2fYPb7aakpISSbZtxvvYi+pATiEQiGRa6YXk1+hAr2oV+RH/45itkWaZp0bNZ1rtuhbWlL/mH+5BlOWc5Zs++NCyvTh+PzMpem52smkD96s3UVu+m7uVtJKsmAJA4Z3rG8cQ50616X96WIU9k1hwS50wncPl/Y7q9aI+/mrH9rmnRsxkyxKZfTuOj69Jyts/XUcfO5I/MmpOha8rqB29elD7eXpfIrDnUvbwtXXZt9e496thZ+TaB9wTDwLfiEZzvvYlIJjEdKqGpl5AcOASA+OBjCZ/xEytKhyTh3vAG7up1luvdldUqLMH86L2MpY1KKIgkBNFf3ULspFPwXHwWlAv03TtpmjyDRMVwTLcXfdUTxBaswPT6cA52wekD0QpKaJw2C+/Tj8D2bVDho+myG3KWE7j0WkQ4jHK0A558kNDEn2bFpwpccSPqK6uRj1Iwv/qCponTiFcMp+WqW3AvutU6/twTNE+fTWSU9fDUPvvIkmfLJkInVaE/eb8VSmj1Mpg6kpaWtl1i2qAhmKGQJcOG9QSmXYrzL3ei3DMXvXd/Go+qpOWux3LqGMohf6SoJ6EZV+D63a/g9IHoBSU0TLyAyKwbiJ8wGtfPx0O5wDSh+fhRxEafRWjGFTjvugExZhBaQQliRw215RU5dYyX9MpZ/sH2KrpFRA6RiOF/ZD4YOvFhozH8+YTPmop2eB9ix45ALygGw8D91it4v+eyywPqVlZNwHR7MV5bg6K0XYJE+UCkms/Qx/4HZu/+RBa/0HbSa2uIDBluhcExTbTRVjA27ZO29eGGP594SU/kr7YiFAVz/GT0HOXou75BG1iBWPcZzq+2oswYRyQSyVifLCJhYuf+HKliGN7NG0ne8P8I3f1XTLeX8Jy7Yc7dVr6GWqK9+llyXXcJDp8PIxpB3/U18Xgco88AlPfeQvV40uuNzZ59LW9p4a1IkoRDkjDe+SexZ5fiuvJG9GgY7Zuv0Ebl1lEPBrLkjyYSiGiY2H/fg+O0iTiXPUj41qsRPh9SaS/iM69CLHraqjfYQmTM2SjvvUls8Xx69OhBdMsHJAwDafosjBw6huO5y4/5fBntZhO4o6Xy5ZHsexTC0FC+3Epi8HGY/nyS5YPReve3BpdNA6mxHqV2J8m+A9pen5LewN9uU5xpgmm0vZkh9RswJRmlYTfKzh37d2DniHLrhq/5FEdrLCV9yIkkjxuB46rpmOPPRZ57Jfqj/7+tHQDjjoeQtm/DGD3O2plSnrnZzwB4dRtS9StW4Lre/XOW43S7UbZ8QOyUs4gPH0XizyspOu+kjLIKLhpDw9W3oZf0InzuDBSvD1E+EGXZYrTftgXLMwHz9gctuYTA4/EQLS5FbP0YuXwQicJi+ODtDE8jecJo69y/PYGvoICW4lLY+rEVR6tnX0R9LexBR6ffj/TJ+9nyn9qfupsWkCwfSHLUWJwtTUSmXISIhJF2/wv5zutJ3Dgf84N3MEaPRdr0Lk6nE1VVCfYbgPzmKxhDT8itoyxTlKN8918X2hZ4j6O1p59NfNgoTJcHJGFtShDCek2o5LG2COo6RkExoUkXgNz6dobUZ4rIpgm6lRdNAy0JehI0vZXIRqu1j1P0x+v2L4EP74P0ySYMIRBCkKyaQOCKG3G+uIL4s0sRt96HftpEejy3BO2XtxA+fyYFV04jMGAw1HyGHGhCA7j+j5Q8cActdz2G1m8AheeNoK6oBPPrL5FlGREN5yyn4f5V9Lj1alxXTSPwwPMYHi9NTU3pnTWRWXMInz+TogtPIxJPEKk4Dq2lGTkUxBhxKt7BlagVx9E89178D84jetSPMGs+S4es0Xv3R/7obhhcaZHuww0Z4WySA4ci7aixwpH1OdLK/8YcJEkiWdoT8eXniJZG9Bw69rj5ypzyN9y5BKmsFyUXjaHlx+OIz1tC3OOH3v2Rf3Uh0pZNJO9/zhLgo41IkRDGkQNxORxEZs2xZPj6YcSRg9Bz6Bg/dgRNJYdnll9fRzwe32sAvwPbB+5CETkwTWtBRzyOSMYR8ThSS2NrakIKtiCFg0jRMFIyjpCt+TEhQBgmwjAQmo5IJhGJBCIRb00xRDJhHdeSCD1pzS8LgRSL7HedEuUD0Y8/GfMLg9rq3TTdsRhH9avoV/wUj8eD96kH0yFoI5Om4bzrBhpfWo1RVAr/2oG6diWO19fCJb+mtno3Wr8BKDdcRmNjIyISQb/qZsQJozstR319Lc3X/5HmjU2IkjLU235j7W5plc/9zKOI+lrqVrxNePX7KNu3Ic+5FPWxheDxEl79Pk13LMa5ehnBu29C61OOGWxBURSSp1gDRPo/X0RpqrfuqadeQ25XvlbaE1G3C0VR0AYcY+Xf9C6qw5Ee3FPXrMipY8urf88t/8olaEf0p7Z6N/F5S3AtfxhuvdqKKHnPUrSV1Sj11iAVX36G//G/YAyuJLQpSHTMJEuGVU/gWroop45KrvIfW2D5dgcxIkfWdkK3291pwG0b+w6BQCBrmsfr9abDtcZisfRUkSzL+Hw+VFWlqakpvTc1GAym40opikJeXh6yLNPY2Iiu6xQUFJBMJnOW09m5bT0Nk+bm5nRgO6fTSV5eHpqmEQgE0ntlUzI3NjbicrnweDxomkZTUxNFRUUYhkFjY2PW3tlgMIhpmukyU/mFEDQ1NeF0OvF4PJ3Kmet4SubUwFJKtqamJjRNSy9UisfjFBcXo2malf+hFxClPTEnDKWoqAhd13PqmM7fofwDiXg8vuf9wDaBbRzq0Kom0nzzvek3Oiifbka+9WrMt14hP0eYn64Em8A2bECWNVVVNSMKSXchsGJfShv/jlAUhaKiom6vh2RfShs2bALbsGHjYBPYXmxuw0Y3t8BGF9x6Z8OGjdzczCJwar7Mhg0bXQsZL5vrjMDJZLJLvLTJhg0bmdZX1/Us4yoBWZtmM16MbMOGjYNO3kQi0bpMWKRJLIRISsDG9oNXqT8TiQSapmEYhj24ZcPGAYZpmmnippaMSpKUEQ/L4VCbFdM0l5qmOcI0zfbMRpZlNE1D0zRM07RJbMPGQYAQIk1cWZYzXGi/318jVFVVXS7Xx7IsH9lxMXvqKWCPTNuwcfAInCJxe/fZ4VCbBgw46nnFMIyEEGKMJElvG4ZRkl4k3c7ftge1bNg4+CROQVXVxj59+r0kSVKNSG1iqKgYUhoItDwSDoeP1zTtMOx10jZsdCUSa6qqNvl8/pqSktLPJEmqAeb97wDdhFrawDFecQAAAABJRU5ErkJggg==' button_hypesquad_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACH1SURBVHja7J15fFTV2ce/d5k7exISkgCyGJSlNWBdUFyACm6A6CsKLsEiyltLEbWo1aJV0WoVt7pCqwi1bixaLYJVBBUVUERl0YICqYAlZF9mn7u8f9yZOzOZCSAawLf39/mcTyZnzpx7tt95nvOcc54ryLJMAgowURTFcYIglAuC4MeGDRuHClqAjYZhPGcYxtO6rscAhASBDxME4Q1JkvpJkoQkSQiCgCAIdrPZsHGIwDAMDMMA2CII4rBQKLhdkGVZEQRhtSzLxzgcDiRJQhRFm7w2bByiJNZ1HVEUq7p163G0JIriJFmWr1AUBVmWLelrw4aNQw+CICCKIoZh+ARB6C8oirLK4XAMVBQFSZIyErpcLpyJeJvSNmwcQEkLaJpGNBolEo0mVecMyLJcIzidzqjT6VQcDocleUVRJD8vD1EUicViqKqKput2q9qwcSClbYKLoigSjkTQszmoyYIgKOkGK0EQyM/LQxAEgsEgeg7m27Bh4wBJYV1H03Ucskw0FmudRBKTpE3C7XIhiiKhUMgmrw0bhxCZE2vfjHixdUKn00ksFrPJa8PGIQZREPZMYEEQEESRWDxut5YNG4famlgU0XU9g8RiTnFtS18bNg49AgtCFoHlHOw1gw0bNg59tdpuAhs2bALbsGHDJrANGzZsAtuw8V+CLCOWkQg2bNiwJbANGzYOpARG1+1tJBs2bAlsw4aNAy+B9xG1E6ai5RUk/mvrtvBBukUsiaCqlD562x6ThSsm0zj5Vvyv/BXfAzfnTFO1bAtiXTUlY08+6J0V+tU0QgNPI9673IpzfrYa/0t/wfH+G4fsIIsPGk7tfc/gfevv5N3x631KHzj3UiKnnG7FOb7aiHfpq7iff2K/87UJnAatoCO6y53gqWCG1p9/JGiJqxAM4vN6c9dVN6itq6NjUdFBK2PzHU8SPPP8rPjoMQOJHjMQ/2N34XvxyUO6nYNxFaGlBb+/bX+JgRvupWX0+GxS9y6nsXc54dKuFD70u++c73+NCq2TskTvKaBrJlFF0QySBLIMUiLIjoMe9lqHVthbGuMgBbV8AMEzz0cIB+Hph6CnkArzZpuT0CVXEY5EDloZ97Wt95QmXDE5Rd55s3PWM3rh5TSddMZ3yvf/U/gB18BCisCSlCKtopjBoYDiPHjBobSLFKxauYvoqIqs76oXrad60XoAauavZPeyLeidu1M7dylVK3dRtXIXgRvu3WO+baWLH32COUiXL0G890by8vLo1KmTGR65Ffn9t6BjCc3njktpDeUDsp4dqZickX/ghnupWrmLSMXkLCnYOl4rH0Dj/X/LKGft3KXEBw3fY31q5y5FLyjct/a9+Crzw21Xw+8m4vf7M+qpzHnEXEqcW0G81Y252NQ/sHvZFqpW7qJ60XpCv5qWs1zJNG2l271sCzXzVxK44d6MtLn6rnWa5juetPo+HZGKyRl9kavddi/bQvMdT1ptlxw/7aZCJ/x9gCilpG/ysyiCIB48dbqdLmS4ly0idOb5NJx8BoUvz0FRFGtw60XFiPOfoaamxpII1Q+/CN17pjp89HgixZ3peFNKRayduxQ1bU2bK52yfBHCFb/B6Hccbrcbj8eTkb7jTeNpbm4mFAoRKyxE7nEkdX+cjV5UnJGnuHmD+TmuIgSD1neN0RgFkQgulysj32S8UtY7Kz8AtXc5dXc8RuElQ1Cqv81ZH7V3OY3jJu99SZZoQ2HTeoznnqCwsNBq3yQKn7qXpp3/JjznT4Q9HtzJL47oQ3zkmJQWWVRM8y+moK1bg3/V0jbbOZku1lhPwUuzUmXpWkaga1lWn0R1naKHplnkDbRS9UPJJU44SHV1NSUlJUQSdpZc7VYw5SJcX65N/b7v0dZ4MYJBatd9QseOHRFFsR2s0OnSV3akJK7TBU43uD0HP+wrLrqSlnXNGdIlGQx3al3seP8NpB2VMOBUIpFIyhh29gXmgNj4aYpcbi94fcjXVZgq4EO3QSiIOuhMGgaebg0CtXc5wqYNcOkwM93QPrBpPeqgM6k/+yKzk3Ztx7NkIXTvSXBDgNq5S2m+48kMqZCUyoqiEKr4tUUGhvaxVFC9T7/9M54l81uyMFOt3bQe3F4azrkUXdeJjqow67OjEqZcYqaZcklGG7ZpuEpqGevWoChKFnmTyH/jJQoLC8nLy0tF9u2P+MbCzHIBwROGEI/HU+XatCGnWh45emBGfwJmHsl0ixeYZSw/jmBi4gsOv9BMl1zSJPrNmr3TtAohHMxcEjz9EBjQdMM9aJqWSty9Z6oeJ5RaHijbZxspKX1lGRwOk7wuN7g84PGawes/eMHjaxfh7n3ndfB4CV93V4rAJwxGqKuG557A4XCkEv/1cYzF8ygqKqLTwqdwLjEHQvTEnxOPx4mUH4cQDmKM6I/y6QcUFxfTKdJM8bSJEA4SGzKcWMIPkv/Bm/FOGA6LF6AWlhA683wCo8dbKplWPiClsiXz/fUYlP/8m5KSkpSqvR/wPXAz/qPzMK4eg/zEQjyzXkF5eRX07W+OV38+kUiE6HGnmP8vmIPjrZfNeq99F8/rL32n5zmdzj1+n0Xu7dvQJ4/B6/XSqVMnOvz92UTB84jFYjgXPU/h8UUYI/oj3Tcbz6xX8Mx6BS66MpHOb7WzOWMFYcTRKIpiqu93X2OS0OMzvURWTMZwexGWLIB7rjcnz7R+swyMoyrMiW/RPMRbfplaEjxzP44V/8To25/GPsdkPDe9HsXFxe2pQgtpKrRsSmCny/zrcJhxSQPXwVCh02e2vWHebPjdxNzfbQxk/OuZdQ8tY67AOPV0Qo9Px3nCELSuZYhvLESUpMzB9fo8/H6/RWrfmhVEL7zcGlh6UakpnbYZxICa1k1c2plIJGLl6d/8OZ47JxMKhYhEImiTpkGffqgjx1D7x6cpmjgSefdOtG5lEAoibt9CQZoK5qncTPOgM/erScMLVkLvclRAzdnkBmpxZ6veXq/Xqrd35duELr+m/fq78mscDodlhRYb6834TodZnhxj0x6C0ePRgFCOLDI8PtbuRhRFCgsLc9ezczfz86YNeL1eS+uSqnYg1VWjFZaYqvhhPcy8x14BY6+gBfP9KBmax+G90DZ/Zqneoih+J2v6/hMYIdP6nK5GK0rCGi2Za+EDz+DvRmDA7/fjzbGNtFvItv6533+L0JnnE+4/ED2pPq96F2+rNWROaZE2YAzPntV8w+NDVTPpIkkSfr/f7OSFTxGJRAhWf0t8wnXUXzKJjoktFgPTh1K6Cia2NO238S6pGhvrPzEjN2+APv0gbe25L/VuC451H5sfjh6w17SRism40vaDCTRnaj7pa2tNI1IxmcDo8aZWsnyJ9Ru+/Qam3pnzd+k+0vdY7lzPTZh9dF/e3jMoKEyp0cHAd36pwveTwOlSOKFKexc9j9b9CCInn2GSuR0lsGPzepwrlxE+52K05Oy/PxJ4P41Z8ZFjMY46DqGuGuO5J3C2nrFPPQPeWpBSqU4cYn7YtcMcJDsqUbuWQXnb6r7hcFgGmKKbrsg6sOFyuZA2racO0L1+wuFwKt/De0OwIWWp7XVU7ockJIVlZCk9LJMwx51qDv4hPXE4HBY5o88uzZDGSuVmYscMhHMugvl/zlrf7gnSxjVIOyvR+vYnPHoC3jfn5zR01d9mWqKZ/SBSxnBse+BHfjbQbMs/3oT4wkzcbtP8Fbv9MfbH+5sYaDY/tLIp6J27oxeVpI3PDXvX8AC9oCBtZfrd+CLmEA0pK+6egiAktpKS20imKq326EX+/TdT9Ntf4Fq1zEzTeo/WoXyvIO/8N3l/uo2iX48GSUYvKMqxDyzvQz1yWK5bhxzWbceKJaYxa9go1D7lCB+vQJIkFIcj8zcTpxI96ngwDCKXTiY4/EJzLfXCn5EkCdfGteDxIixZR8nPTqBTaSmdSkvxzHwFthl4Zr5CUWGhmQ6om3wrTdf/MaN88UHDabpyqiUVdV238tUfe4l44vmhq6alrKSJuogtiYF40mmonXuAYZjbTWknoJL1MdxehKt/T1FhIX6fD23Wq6jHnJSRzvnRe+bnX1xN6NSzrfJZ20N7aWv/q8+bE8jtj9Bw2xMZ3wVuuJfaR15E61oGC+daxqTvtPtw4hAK8vPx+3wI059AHTk2+/dtlTN9GTXzbrMfTxtBcMrtYBjonbpT/8fZ5pIokdz5j+cQ66ph1MUov/+T1b9FYyYgrdiG8EWAkp+dgKv1mn9PY/aHU6HTpLAgmFJYFImePIzw8DG4l8yn4LZJxMuPJ3jpr4icNMxcG6frGMk89lVd+PdXeF/6C66lf0eIhIkddwqh83+B4ctLVU4QEpOQRHvCvWaFtY3QlvpMx1KaZi8mXXEV5s9G3L4FV1ER4v03ERowGL1vf6pf+SizaeuqCd13M0IggP/+mwgddSx6n36Eu/ckfMHl2V2xaQPG43fhyM/HlUzftz91Ty1KpQkHMyzCrteeo2XsFRjdexJY/DnJ1b64eUOGxdr1yQeEzjofY+qdVOVSOROqomPFEpQPlhI79QwCD/zVyk/aUQlFezfIuJ5/HOXInxA7+wKiZ4+m6uzR2fVcsgDt0Tvx5+fvc1+5PlttTkojx1CfS+Uv7vTdjZlvLCQwejzxCddRNeG6tg2Ar8+jefwUYhOupWrCtZlax/xnqF3/yfc64bf/J7FykTgRWq66CbXr4RiCgLzxE/KnTaTD1EtxfrgUVDWVQ8YEILYZ5J2V+B++hcKJI3AtegEiYXSHQstV09A7lmbPTIk8f4gTQrSRxnv/TeYsXGtanxVFyf7NTRNh+7aEYaQann4I4+aJeDweBFHEAIrHnmRuHaRj7UqMKZcg7diKx+Mx011+BtKCZ1JbFWkWWObNNi3ZioLT5bLSiyvSrM7vvYnxj5cy6iLs+oaC269OlTFknvTSP/84I53/jknIb7yc+dz33jS3xhL7sLphYAAdbrwMecGcjO0Ybca0NtuxdegwfTLKI9Oz67lpvdl+V4/F6/Va9Wwr3wyr9vOP45zziFm/9Pweus3sl46laJq2z/kl+9+xcE5mnvNmp9oykc49625cj7aqT201zJuNdvOV1ljY1/bJmtBcLpfhcrmQZRlBEPD5fIRCob0yv+amB9A7dEztuXr95l+XGxwKzrUfkn/n1QihTFUndvSJhC6+iuiJPzclcusDH2kSWf5mC+4FT+NeMh8hnFmmlqtvI3zeOAzFmSl9BcH8X9cpPa1s7waRSISmpiZ8Pl9OIxZATU0NkiRlWCVjoypomPYgwpIFiNdeQseOHVP9s2CVqeoN7UNhcy0tLS3E43EkScLr9VprsIyDAoFAhlrocrnw+XxZxpRgMEgsFsvY9nA4HDidzpzlb25uJhwOm+153zOoYybAvNn47r7OSh+Px60yiqKIz+dD13UCgQD5+fnWAY/WZXS73SiKQlNTE4qi0KFDh4xyBgIBy6Dl8/mor6/H6/Xi8/n2qV/C4XBGPRVFweVyZbRfPB7PmW8y3uVykZ+Q1uFwmEAgYFmcFUXB7XYTCAQwDMPatsnV323FB4NB8y0miTyFLwJQuxvhtF4Z20Ct6yNJEm63O6PP2npuxm5AOIwsy9Za+fup0G1t4QDRE4YQGToK1z9fRlBTpgJl3Uco6z4yiXzpJKIDBmcSGZB2VuKZ9xTuJfOyiAsQO/ZkIj8fiSFKoMazLeO51jNtqVcuV9YJpCwNK8d+XMuFE8zHvPHKHn+/tw6xVC2fb58GttfrbXOiyYW8vDzr0ENAEnNuATkcjpxlbP2ctsqYq/65yllaWrrvau8+9Euy7LnyzRXvdrtzTp6tn9PW/msyPj54BPX3PYO0s5LCay7Gu+sbABofeI6o24tQ+XXWxLu/46wdt5H2QmJDp2XSrTjWr0HevjV7myFB5ODFVxH8xTUYPj8IAs4P3yZvxm8R62tyZ604CUy8AT2vAOKtXvYkioCUWGO3j1MCS7oC4qcr0Re/lG19tvH/Go4VSxB3VKJ1K6Omle2CcBBj1gxkWT4gZRHbtOTtLezJthWLgqZiuFwmOV2eNvPxvjgL5bOVEI8jNNbjf/xO03LXRvpgxWTTYhoOIQRbIBoxiayp5taRpoGh73s9vmOQanZbayj9hgm4nE4crS3e+9um7R4O1XL9+ELRtRchrngzy3bBlecifvQOXo+nfZ691zWw17tva+CbH8y9Bna6cK5ajvfvf0VobgRBRN65bY/7smr3I2h48Hl8zz5iqtzxWJtptc7dQNcxZJnQqAoig8/GcHtSe9Gyw9zSAkpP79Uus15TUxORaBRFUcjPz0fMYUmvr68nrqoUFxfn/P5gIRgKEQgEzDW/x2OL0+8B3TAIBAKWjQHA5XTmtF38UAhHInteA/8QXimjg85C73QYnhdm4fzoHYy9HKqQtm+l4PoKpP9sBzW+x+eLu3YQ/8nPCJ53GbGjjjHXzfGYSVxRzNinbi/PXnn5+eS1arPW6JCmVh9KHsY8Ho919M/2fPb9IAhC6lRcDh4dCMjtVDPifY+mafqTONZ9jPf5J1DWfbRHKZxrnZwlqXv0Ivg/lxHrNwBDkswtKcMAI2EEk2yHfDb+u/D9jlLuKT7xN15+HI3TZ+J853W8L89F3r7lO5NMLywmdNYFhAcPx5DlxHpXTVmcRSl7K+lH5tbHho0fxoi1r9gTCVv7xxIEoqecQcNds2i5bIp5bnkfCGa4PIRGjKX+948RGjrKVEtiUVNlVuOmRE8e/cxxoORAIDTpVuoWrqZ69W6qV++m/tll1nd1C1cTvHHGIdnxyXKnI3buOGre2fbD2wweeM5qn+rVu2mZPrNd6xYfMoLq1bsxumSe8W6ZPpOGma/ZBAbIf2Emylcb96AWJ89Kp05ZGQ6F8GnnUD/tYQKjLkX35bc5AUROHkb9rX8icO44dKcrZW2Ox03VOf36V/rJLUFAqtpJ3n2/bX+D0I0zCJ1zMY45jyD3dsCUS1C7llF3/R8xuvRA61pG5P239skoeKChdToMqquor69PDfw+/RFqqy2vIj8EWqbPRD38SFwjjrYu+IfPGk3TyWe2H4F/eixiXTU1n6/JeJdu7KhjMLb8i6amJpvAju1bKJh9P3nPPYZUtTNFqNaqrOVeJ+X8zvD5CZ11AQ1T7yZ8yhkYaf6rYr3LabhmOs0XX4VWUGRK3FjUJK6mmltE6fknXfiIIkI8hmfhM3SYPBrXmy+3LwH6nUDwgvE477me+LOP4/P5KFmzHM/82ei6QaCsr5lu6l0E1rdQ88424kNGWNKv5p1tlkQKTTJdrtS8s42Gma9lxceHjLCkfN3C1dS8s43YuePQ+p2QIf2T0j4+ZAS1izdSvXp3xnMzBnlZb4StmzKspWppF4R/f40w7cEMSRyadCu1izcSvHEGtYs3WnmnaxvBG2dY5ahbuBqtn3kDKXr8IIQNn6Ju+ZLi4mJK1iyn8Pgioq8+R2TQ8Kx6xYeMIHjjjAztIKnJGF16UP/ssoznJKVsy/SZVnx42DkI32xFkqSMW0p6UQnawCFE/xXJaN9k/ZLtFUv4FmuY+ZqlLRhdelC9ejfxISMITbo1ZxnaaoNDU4VOwLX2QwrvmYr3lb+a+7Kt96ySJJazPVVqJZ1pGTORhim3Ex44lObLptA08Ubih/cyJXtSVdbT9nYRMp3oJYJz7Qd0mFqB76kZqQvd7YjI2Rci7agk/Pe/kZ+fb12x8826G989v0ErP85M+NaryL0dGAY0Hnsq0fIBBMZPwfnALQhHiLB2JYEThxA45SwMtxf1qy9w/sQFm9YTOHEIoY5daPrtDBwfvYfc24G223Tz07RsMfX3zkZJxDPlEoIXjCdY1JnmKbehvLsYqZeM8c1WGkZenHWvWOtWhjpmgjWYq1fvJnrqGQhV3+L44lMMt5cabweMLj0Ijr0C+R8vECruhIEBd16LeO2lqL3Lqb94EqFJtxI5cTCeCcOhp4C2excN549H0zQ8r7+EOvwC1HWNND/4PKFJtyLLMsU/G0Dg5vuz6tX4ySpipV2g8mtLO9C6lhHZvo363/wBDFD6OmHKJWhdy6jvP5DAjTOIHj8I1+VnW/FG1bcZhym0fidguL0YlV+b7ZXW7oHxU5D/8YLZXl+uo3HcZGKxGFr3I4h/u51AIED8+EEmqdesJDB+Cq67roOhfdAKS6gbeQmhSbe02QaHvBVaCAfxvjIH55r3CI6/huhJp4NLBEFKEU5PEC79umKC4GqPXrR065mKT1ePM9bSYpbzAKm+Gt+8p1A+fm+P+8c/NNTSLvDvr5FlOevUjdvtRu3SDenTVWj3XI/b7ycgAC1NaB+/h/vluYQHD0e8/FqMbmWI779FrFtP87bQ7ybi8PnQwyG0qp1ETj8Pw+MhfvNE8xjgxrUEDz8SY+RYKCoxbyal3U4K5hchB4NELrgcsfw4vBs/JX7LLwknHAEkpYnh9iJUDMNYtTxV8I0B1A1rcb39KrFwEOOU0wkePQCxrpr4H36D8O5WxNdewFgyn/z8fBrrqlF9eYSGnoPetYzQnLS7yu+/RTgcxjfzDwgP3ULLtIeJdu5KdPwUIqVd8Gz5MrteJZ0xKjejH34kwqp3cTgclvagLXoJ/4Y1hCZch/qXRTDYVMG1r74gcuVvkN55nfiHb1NUUEBDXTX6pvUZ2kX86BPM9r38bBxuN4IootVUETlvHPJnq4jddR1+vx9j41oCY68gUHyY6cRv3cdIkkS8T3/EHZXoifEe+f2fcJw2EueC2QTvuZ7Qu1vbbgOf79CVwBmzwY5t5P/hOvLv+Q3ytk2gxQEjpeo60rx2uNwJB3iulBtYUTJD1i0lKc1lrek4TwC8i1+kcNpEnB8uPaDktYxsXn+WR4akaptUUZ1OJ64j+prX+NavITJjLrEThyCJAo6HTUd3+n92wGE9ELdvQxAEPB4PenEpQqDZitd1HY/Hg9bpMMRvtiJ2PRxpcysnbT0FWL2c/HE/R1rwDHrVfwheMB79Ty9k7FVGh44yB/Oq5RQVFVFSUkKHMZebd5M/fNuclDZtQDjqGMIjLsQx5xEkScLoWALvLMHj8SB1PwK9qARxwyfo3cqQ7rgmoxz6+LOs9afb7abk4Wn4rr4Q6Y2XUQ/vRai0a3a9aqqQZdmUoF98hiRJaImJjU5dCTyxAEkQEHd/a954CgVh9XL0bmXoGz/D7XYjdutpluubLRl9o3XubrWv3+8327dqJ0ZZL9hi9pPb7TbLsX0b2sDTTLV70Ys4HA50nx+hpgp55zY6/rwMliwg3rGUwPhrUK69fa9t8KMgcBLOD5fS4ZqxeJ95GKGpIWUlluQMEpokdqfInHTH41AyL/9bvzHTOtd9RIfpk/HOe8oc5AcBjq2b0I89ifj192SsU4PDx6Ct/cD0S/XtN6YUSahfxusvoQ8YhLDqXYQrR6Kef5lJmm+/wTiiL0LlV9ag07qWwRefm9ebO5Yi9zqK+JARRAafhbD7P2Z8957I51VQ/LMBSCu24Z75Mr7bH6V+xTcUvjgL74ybEOqqUZsarZtBycEs1FYjCIIlpZJEMSo343A4kKv/g3HuxQjbtxGd+yiucy/FcHvRzrkIRVFouPcZ5M0b0Re9iBAOop02koKCAny3P4rwRYCiYecQe/OLjHWy+8ifQL9jkTesxcAwy3/KGal6bd2EeNJQszx5BQgDBhP8n3Em8YaONNt5/FlIq5ajDR2JWGfWQQgH0QYMQpZlmqfebREvXQLHevbJ2b5iTRXawCE4HA5i544jMvgs5H++gtgj4Q748N7ooy+3yqfPXkzD35ZTcufVOP9yvzkh1ta02Qbt/baIdns7oRAK4n3+SVzvLiY4/lqig87CkBPO7lo7hFcTQXaYhqr0MiQlsMOBvGsH3vlPo3y+OuOG08GA58m7iJR2Qb3iOqqvuM60ByycizrtfwklJK62bTOSKGaoX85PPiA8ZgKMmYDzg6VogNFYj97jCMSt/0KWZeKDE2rjijfxrf2AlhN/TvyfG2jeUWnm+691uN5+jejA01Affo4awPHZauJTLoIjf4ow9BxqXjHv9Do+W41+61WILpfVpmppF8SNn5rtn4jTOndH/Nd6dEFAANMw6fZivPAXHA4H4uFHmgQfNoq6i65E3rwR4dpLTBew82cTGH8NjZ82INbV4HzgFuqXLyavoIjma26jevVua6nlXrKQ2C2/xNXrKMIDTyP+7Jupeu2oxPXph2ibN6BNvZNAXTViKIixdTPyijdRK67C2Kqj7qxErN2NbhimZ5Pk80eOQdpZafruAuS0+unFpbDly+z2DTQR/N39BNa3IISDKIsXEHt0Or4hZxM4rwJj+WZadlSa6XdU4lq1nPDds6w6uRbOJfLcEzjLehGZcG1WGxR26NBuxyohx1lot9udcbbzh0Js4GkEx1+LekRfc12s66ZxStNM0sYTxipVTTNYAYKIEI/ifmMBntdfzLpffLCRvA+aRNJLoWEY1NbW0qFDB2RZJhQKEY1G6dChQ8ZvXC4XkUiE/Px8AoEALpcLj8eDqqo0NDRY94wbGxtRf3sfXHoVnHMsefVVKIpixicMVE6nk7y8PAzDyBmfsb3T0oIoihlX/kKhEKqqkpeXR/3LHyFUfo06/izy8/OJ3/oI0bLe6GNOQRRFNE1DURTy8vIQBIFIJEJLi+lzUZIkfD4fiqKgqiotLS1WWZJLhGQbNTY2oh4/GF5YBpcOI+/LT3A6nTQ1NRGLxSxLcvIucENDA4ZhZJwHzs/Pz3h+0iaRfj8ZoKGhAafTmdW+mqbR3NyMpmkZ5dM0jaamJjRNM1V7TcPv9yNJEo2NjZZ6nOzzttrgh0Q0Gs2o+wEjMJhXAcPnjSN80f+i5xemDFZJIif/JuMFAeeqZXhf+rN5Tvq/7Jik0aUHDY/Nt64vSjsrccx5hOjcRykqKvrOHgz3yTg3ZCQNM+aYkuzKUcg7tuL3+2mc9Q+Mqm+RplZkTQbf26J/2RQCV07FOMpHYWFhu0qsHzsOKoFThwi6Eqr4NdFh55p7wNbWk26pz/KWL/H+7TGUz1cn3PD8d6K1NJVlGa/X+4PP7BkkTkgnWZYpKCiwJorm5mbLq0h7DMyWlpYMzyY2DlECW2r1MScTnHgDaq+fmutcQGhuNL1xvPY3hEjY7jEbNg5VAidECuFzxxE+rwLHv9bhefZRpF077FtFNmz8KAhsw4aN/Saw2Hq9ZcOGjR8Psv1Ctz7GaMOGjUMCubiZRWBVVdtle8KGDRvfD2qO3ZgsAiede9uwYePQkr7JgyatCZx1CyDjZcc2bNg46OSNxWLmue9EABAEIS4Cn6Ybr5JfxmIxVFU132NrG7ds2DigMAzDIm4kEjGlrSgiiqLFUYdDaZQNw3jeMIyBhmGkMxtJklBVFVVVMQzDJrENGwcBQuIl7aIoZnkY8fv9lYKiKIrL5fpSkqQj0s+gJkmr67ptmbZh4yASOEnidPXZ4VAajjyy1xJZ1/WYIAjDRFH8WNf1EuuER5q+bRu1bNg4+CROQlGU+u7dD18uimKlkDyBVV7er7S5uemvwWDwWFVVO9BeTt9t2LCxPyRWFUVp8Pn8lSUlpV+JolgJPPR/AwA7Wx4mp7es5gAAAABJRU5ErkJggg==' button_reaction_adder = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABvSSURBVHja7J15mBTV1f8/t6q6ep8ZZhiGHQYQRAFxQ4KyCG4sYhQVFV5x4Rd/ESFqNKIxiiYaRdw1Go2KxjWCvhqRIC6IiLggIhgBZReQWZiZ7q5ea3n/qO6e7pkBAVmGpL7Pc5/puX3r9Dm36nvPubfqnhKKopCGCkyUJGm8EKKXECKIAwcOmgvCwErLsp63LOtvpmkmAUSawO2EEHNlWe4tyzKyLCOEQAjhdJsDB80ElmVhWRbA90JIw6JRbZNQFEUVQixRFOVol8uFLMtIkuSQ14GDZkpi0zSRJOnHDh06HSVLkvRrRVEuU1UVRVGy3teBAwfND0IIJEnCsqyAEKKPUFX1E5fL1V9VVWRZzmvo8Xhwp+sdSjtwcAA9LWAYBolEgngikQmd86AoSqVwu90Jt9utulyurOeVJInCggIkSSKZTKLrOoZpOr3qwMGB9LZpLkqSRCwex2zMQUMRQqi5C1ZCCAoLChBCoGkaZhPMd+DAwQHywqaJYZq4FIVEMtmwiSxlSJuB1+NBkiSi0ahDXgcOmhGZ03PfvHqpYUO3200ymXTI68BBM4MkxK4JLIRASBLJVMrpLQcOmtucWJIwTTOPxFKT7trxvg4cND8CC9GIwEoT7LWLAwcOmn9Y7XSBAwcOgR04cOAQ2IEDBw6BHTj4byWw5ZS9KtGLrmTrx1t3Wn58cznaFTc2C12rH32N6kdfa6R79KIrD5pO8VEXsfXjrdTd+ugeHZcceMZuHbe77Zp72W8eOH54X6r/ZzKx3sdj5WyKOFSgt2zNjvMmEjp51H6Rb5aUUnfxZHZMvOGg2mm26Uiib39SpkVNTU3ed7WJJPF4/KDopQ0/1/57zImEw+E9Pz6l79Zxu9vu0A2hTbP+VtIelMjxg0i27UzdGeejHTcY0+PbKzkHoyQ7dKF25AUkuh5B9NiBeycng1eegi6icXnlKQASZ15IVNMOrs1Q/6SdZeF94VFaHNMCHvnjQdHHbN2BZI/eSKtXQMtWRG9+cA+Ozw0f90W7Zl4aQNlXI4Gluu2/ikJ42GhS7cvxf/YB6ub1YDXPnUymP0i0Tz+0E07G9PpBCCyX62fLDQaDBPz+/MoHb2b7gKGYJa2IaBo+ny/7VWjaX9BOO7v++NeeJTBjat7hRq/jCU2YQvzEU7J1rjUrKXzqPlwfzc1rmytPxDQCc2cRmDGV2LhJ1E662W507ADi/46RuuEy9I5dqJ10M0WP/gnPC49mPXXdtXfk/Z7/ndcpmHZl9v/UwOFU3f00/ndex/AHs22l6kqCc17G9/idu9Vf0XFXYnn98OITiCl/wOw/hIimNe7DBra51qwkOHtmkzJ3t13kurvQBo/ALCkFwL1sCUV/+g3Stk3ZNj++9z2+j96xPfhpZyNiGq3GD81rc7CwzwjsW/EF4cHD7fBZkogf0Zdk+WF4Vy7F8+0yXJvXIwy9WRDXKGxBomtPor37kWrdAWQZhAAh8Kz+er/8ZuS6uzA7lCOqK/KepKmaOZ9U9155bcPnTCBW2obSGyZkyVT156eyF1mWQN17UTXtYUouHIxasaVJeZbXT/icCcRNE//2LY30qorGCJpWNoQW8ThqeXeqHnwZo315fvh52tnEevalbOyARvVNTRf05Z9T8Mn8nw5rB4+w++Xvj+AecDKJ088hes4lBOa9mq9rA9tS3XtRM35SY5t2s13DgRMgcXR/Kh54mVbn9UeS6gNU7fCjoGMXu081jcrlX1DasmVem0N6Fdr35SICi95BWCZIEkgyZrAI7RfDqDnv/1E75lKixw0iVdYOxIE32vQFSHTtSejkM6k551JCp5xDqm0nm7ySBLKMe8Magh/O+Xk/NPZywstDbFu8La+Ez7HJaL3+fHb3V+S6u0h174W0agVcNMwOtYf2gFVfow88jeozxmY9lFlSinh7Vn5Yvupr8PrZMeoiTNMkNm4Sqe69ENUVMPlCu819t0BUIzXifIwnplM0+hhbz6WL7e/nvNx4sLliKkb7ckSuXpMvhE3rMDuUU3H1HY3tzp06rLIHQa3fYFI/8Vx9bNwk27b33kKWZYLvv2UPsqMuyNs+lzhznG3b5vX1tk2+0PbcuQTczXapgcPRTjsbafN6u48yus95FatDOVXX/jlf0Y5dkOam+79fWTYzRrPzwOZOVrt+Eqkk/sXzkWuqiAwbjV7WziYHArNFS+ItSoj3Og65phKlcjvKj5tQKrYh11Qha2FETEMkEwjD2HtrhISlKJgeL5bXj1FQhF5cit6qLXpJa4zilpgerz2ApD0ukoQwDHyffYhv8XzkUC375UHSVV/D27PgkT/iLyjAAmK9jkXENMwRfVBVlcLSUuR4COOmiVS+8AHJwcNJvPl3/DOmwm2TCYfDKI/OQpUl9NI2JA/vYw8KwUJi8TjJvv3t/9/9J/K/XqWopATXrCeJP/8woVAIDWiZM0XweDwUFRURl0TeXYjYsSchYhrWleeibt1g67V0AbGHb6funpkYfY4jommoubbdOJFgMIjf7yfx+nPU3DgDAgUkkkmUXUxLIqf+0u6Dx+8m6POhfDQXefVKjJ5HoZW2Q62rtBdJjz3R1u/VZ3C9M5uCkhJcSxcQeutlopdMyeq+2+1OGGxf70/ei+uVJ/AXFeHxeOCOKVT0OQ5j6Cgid1yNPxPGRzXMSefh9/sJBoNZOf8xIXT2ovh2Ga5tm4j2H0qs/1DMQE52WsWFUdYeo7QNie69ELEoIhlHJOJI0YhNYF3HEgJZi+D/+B2U6oqdd5UQaCcMIdmhq+1FhcBSXJgeH5bbi+VSMT0ekNIhcvqYDHFBoG5Yg/+Td1HXrULo+yDEf+UpuHGi/XnkBXD9HeALwKN/Rp3/Gr7MhQKYJWW2Z1hnkQQqG5pX1oZ4PI6qqsReXQzde6EDTWlpWRamL2D/s+hdfD4frjRxPB5P/W/uznqGzweV25E2fU9RTpjo/XgeoZiG1bEriUSinsBrV6OqavZil2p35KyJ7vwXUwOHo2dC3fdXE8bOnZpB8tLfYN53E5JkD1gAvPUKfr8/a5t/8btZYgK7366snf3h9kdI3f4ItY1CA41oNFpP4JiGJElZ8jYXKPtDqFxbTfCd2XhWfE7shCHEjx6AGSxMT0ANe1FLkrEUBcsMQDrrgL3KVr/aJsUiBBbORSSavrWR6Nwd7fjBmIHCenLmkrTh/6T/mibq5nX4li5C/W4lUlTbp/ZnPBFLFxC/fQq1D78Cd/8NXyyM599L84mySyIF0HWd0LS/oKfDQuvrL+wvV6+AHr1h5HlNHquq6s9blASUdIbSJm+7NRjsXHux+BcbduaudRh6JrE7rqkn0R7atqt22cFuZ/D6sTp1h2j6VpsWaZbJHvdfEG+auLZsoOC1mZQ8fCuu7VtAcYHbDWq6uD31n1U3qCq40kVxYRSWYEk7v6dsBgtBVuo9qiSBothFThfFZReXastXVYLvvUGL5x/Bs/zTfU7eRhHJv5cS+MdT4PNTe8tDGDlTBHnzeohqTd926iJgSFcsyyKeCWkHd8F17Tj8Uy/F/8x9KG3b55/MaMT+cNIpP0tnEY1CyzLo3L2Rx7S8fsSmtfukb2IDT7PnoE3ZPudVaNkK7ZJrbDKuX20fNGpsvk5H9csn7Z62u+Wqnfa/ue7bvAiiOcx5DxyBc0dSWcEMFKQJlCarx4uQJORwLXK4DimZQDJ0JNOwM2DKCuoP6xD6zhdBXFs3IofrEIaOSCWQUgmkeBxZC6PUViEl4zZ51fxBwwoUHNCFtMBf/4y8egV07MKO395VT+6VS8HnR7y9nFZH96N169a0bt0a3+OvwToL3+OvUVJSkl1NFlf9gZKSEoLBIMbj/4t+9C/yB4uvltgfhp1JbNCI7Ap25T8W8+PibSTOHFff2L9zD+RZugh8fvQHXyR15HFZ8tZO/oOty/LPyXmjx16vylteP9a813G5XFnbM6VkoX1rzBw+hng8jvvTD+0DL76K6ElnZHUKXXBFntw9bjfxWgrGTMj+bsG0hxDfRJAXrqN169bNkrT7PYRuNNfp2A2zsEW9t7QnbYhEnMJXnkCu2o5R3ArL68WSZCyPDxGP4v52GSKV3LnyVdsp+Nc/0Evb2ETXDYRpINftQArVEB49nvgxJ9r3qDMeWkikuvXE/GwBciJ2wDq6+N7fU/ngSxijxhKe+yrB1V8RmDGV6PGDMA/vQ8XsT/O9YHUF0bumIsJhPEsXET3tbKxrb+fHa29vYoQosIn3wqPIp5yF0aM30XufI5orb9UKap68l+LiYtubH96H+NIqzPFDmxhw7iLesy/m4X2ofvKf+XptXod140TcP3MuGM3cOrrzt3gLChoPzh/NRVm2BP3o/kQGj6TlR3NRF80nedKpRGY8SyQ3ism5vebai3ahe2YSahjdPXkf1dXV2QG0ueLAeGCvr37+Kcs2kV0qZlEJCIFcU4X6/Te4V3yBZ/mneD/9AM/yTxHJ5E/Kdm3ZiPerJXhWLsWz6ivca1agbN+CFItieX32IpHHmy4+8PqwgkW2DgcQ8srP8b09C3x+ojfcnQ2lW40dYN+eyMXSxViTL0TevBa/30/BtCtR5s7Ob/PhPPv2B0DXHtlQr/TS0xrLm/MqVnqlW1VV/JnvvX4qh49tlP9M2raJkt+MRVo4r7GcwV1xuVyN5qV7gniDW0e+nawFBBa/a8+3TzmLVCpF8e8uRnn1mbyVfWP6TY0Hyz1tV1WRf7fgvluw/v5Is1uwanK64/F4LI/Hg6IoCCEoKChA0/btvDB2whBC4yZh+YM581MZEYtSfOc1uNZ+u1+ygNRdPIXYL4bZc21ZtlejZRn3ssUUPHUf8o6Kffp78Xic2tra+kWsJqBpGuFwGFVVKS4uztaHw+G8fvd4PASDwbxk+w3b+Hw+VFWltrb2J+Xl3v7I1QOgIJ0DvLa2lqLcVXLTJBKJEI1GdyonlUpRXV292/V70le57XLl5OquqirBYLDJ39qTdtFoNDuoqqqKz+fL9gNARUUFsiwfdI8cjUZRFCUb2jcmcCCAFo3u2xC6fWdqrvwDZmlrex6aXqRybfiOFnf9FmlH5X4xVht+PpHR4+w5r6JkCex/4+8EZs9EZBZ9HDg4RBCNxfIIfEBCaNcPG1BXfw2JRPo2kgVC4P5sASIS2m+/616+BLm2qt77KgpSLIp72ScOeR38R0BWFGVahtFCCFyq+pOPv+0VibdsJNWhHLO4JcguPJ9/iH/W0/uVSFK4DikSRu92BFagAGEaBF58DPfnC6GZPJftwMGeQNf1vLeHNgqhA4FA3pxnX8IMFpHodSzC0HF//RkifmBWgVOdDyN1WC9cm9ehrP12lyvbDhw0Z8QahNAHlMAOHDjYtwR2cmI5cHAIw0ns7sDBIQzHAztw8J/kgXeW/c6BAweOB3bgwIFDYAcOHBwiBLb3+lqKK69kMmo0B2jXT6d61pJdtql57A3Ctz222/XNDdr107N6Vs9agnb99H0q08E+mgMfbJheH2agELOgCKOgCEv1YPr8WB5fPWlNA0kL26l4tDByqBYpXIsUCSFSqQM6izd69yM2ZASWz8eOwlKK65p+rtvo2BVr2RIikQiBQOAn65sb4icMQlqygEgkQsm5/dmxYwfC49npTqI9ldmcbXcIvDtEKC4l0b03yfLu6KVt7WwbDVOY5P6f81mkkkh1Nbi2bMC9+mvUA/i0VWTCFNwL5hA/fhDG6edgvfI4QghSg0cQmnwLRvty5B/W2ylhl38Gp4+h+prbmqyvuulee5tdTKNo2lW4Pnw777eiv74Z7fzLshkWA88+jO+xP+W12fHce5glZZglpfhnP4tr9deErpialVt4/y2obz6/U1lW207U3PW0ncInrUf48t9itC/HOLcc5ZMPqLj3OUrP6Yd+2JFUp20E8M9+Fv89v0O7fjqxISMQsUjWzuIpYxFbN+bpmStTGzAMbYyduVP+YT1Ft01BXvHZHttf89gbmKVlWZ0KHvkj0dPORu/eC/mH9ZSc2x+jdz9qb32okd6pwSOo+930RuegbsbzJE46FQD3ovkUXjc+r58yOmdsDN/2GLHTz7EJtmYlAMUXD0O7fvpP2nhIhtDJTt2oO/sSIsPOItn1CMyComySOnv/sFyfKkdJp8mR69PmWB4fRlk74scMoO6CK9BOHmUnat/feo8eT6pnX7jlSqSN3yPadyaZTGK17UTd76bj+vRDlO4ujO3b7OhixVLiN81ouv7q21AXzEE+TMHauJaakRfk5Z0yevcjMmEy7hm/R3SVYOliIicMJhbLfxzV6FAOG79DPkxBm/0cddfcjvexO225b75M7fhJxI48bqeyQtfegeXz4zqjN1bldmpGXoDvyRm28KE9iLXrjFRdQWVtHXW/m4604XuU7i545Sm0MRPQStqQ7NIDCwum/gp52hSM9uXs6NM/Lx928Kl762X2G0xsyHC8v70YhvbA8PipOXtCXvqh3bVfP7w3ViRi67R0MaELrsD9xD0oD0yz9TjsKGrueho1fQ6YfGFW79DkWxqdA23cJJLHDsAz4ii45SoSJ51K3eFHE7r2DrBAPdwNky/M2hi5fjqJ4wbiueQMmHwhevdemGtXUf2rqcRPGITv0uHQRWBs39bIxkOTwEKgDR2N3rpdfsbIDGkzea0yubIyubPc7vySk08rOmg4qc6HNfbg+xjhi69C/eeLJJNJPBXboFtPDMMgMfRMLJ+P1NSJeDweAiuX2nmKR43F8vkb129YgxTViI+5BOutZfi/WYb6q9F5F6e84jO8s2cSHzQcsWAtHDsAqfJHEolEto3VtpOdpmbmwyiKgnfCJCyvH+3m+zG+02Hs5Qh/gNhH7zQpK96mE4mTTkWa/SzWulWUntcfZeIooj37IlVXwIY1eI7si9i4Fmnc/8fy+TAvHY7L5aLk3f+157VdemKWliG9/xZ8+gEBzd5tZiycl7dJJnXEMVmZ0imjkT+YQ/LNFykOVeFetRyrrO3e2/+XO5EkCZckIX++kPgbL+CWJURMQz+6P2ZJKbExl6CvScHDL9l6F5YgtMbnIFVTjeX1E5+1GPdpZxG4bgKJhfPwznwQq2Ir+hP/zMow1nxDvN8g5A/eIvXxu5QsmY9UXYG5ZRPmqb/EaF9O9Jm5sM6CYwdAsKDRAHQIemBhJ67L5GrOkDdD3Nw8WrnJ8HZVVLctaz8+URb99c0Y7cuJX/IbjO90tDETsHr2IZVKYbTpiLRpHaZp4vP5MFq3Q6r8Eal95ybrFUWheMIw5FefxvxxK9qYCZgPvJi36Tx822MkTxiMLAlc99vJ2s2tm/M2/CeG2lkerZVf4vf7SZV3tzNO5CRqs44vw3jgpSZlSUf0tcn1/Wr8fj9CCIqLi3G164jYuBZZljFatUVs34po2wGRtiUYDJI6qh8ipsE3X9qh6Tdf4fV6sTp1tes3rMnLXGm0bmfL7NoTs6QUY+WXeL1eFEVB79wNed3qPO+0O/anjhto2//WywQCAczSMoiEcLvd0LYToqoC0a6TnZ+sYRK7Je9TOH5Io3NQ9PbLBC8fCZ8vItGxK5EZz1IwZgJ1D7+CLATS9i12H0c1WPI+ZodyzJXL8Hq9SB26YJa0QlrxBVaHcuRpU/KT5k04PS8qOTQJbJkE3nsD5cfN9qKyJKc9rqve47o9dkocr50SB0+D4q5PlyMkCd9H83Bt+G7/qdy2E9r5l+H549X1J2RoDyyvn+Sp9qs6zI5dUE48ldTgEcQHnY5Yu8rOaNtEPVPvofKDdRS/9Dj+6TcgqivQ62qJROq3WiaOG4j4ZAHi8pHoZ/+PnQxvy8a8C9ho09HO8rhhDbIsI7QIRv8h+HseRYvzLkF8E6Hg2tsRJwxuUpaUiViOOh7rlF9SsWQ7ydHj0dOkVRQFo2NXWL0CEQlnbTF690P75XiUD/+F6HVM1uMqipIdzIQQeWlZszJ/WGcndj9+EIqioF0/HbOkFbz5Uh7hd8f+VI8+tv2A3LGrPZB8/J6dV7qsLWLDdwghbL3PGkdp3+ORF67D+9hsArc+xI6FGxudg8o5KzBHnE/JdeNQPv0Qohqh9ECRmnA68ifvYwwdiVRdYdsY0zB6HoWiKHaYnZ4iiZiGcfJIioqKCNxqJ84rGTbqZ6ftabyIlc3PfOCgrl9N0ct/JdW+HL1NB4ySMswWLbHcHpvI6RQ8dogt5S9gmSZCCyHtqELZtgnXd98gb920y2yWP3vh6oqpuBfOIzHzIYoKC+38w1oNNcuWkDrxFNRnHyLWbxCp5+YR2rzefkvE5vX43nuTWP+Tm64/9SwqX7MXNFzLlmDefAWSx5M9F+4vPiJ23qVw3qW4F83HAKzaHciSlG2jl7VFpD26AAIv/ZXaG+5Gm/MVGuCZNZPw/beidDuCVBOy1PfeQF80n9TEawml29f+7T5cA89AHz4GIiF70W39GgLvvUGk/xBSz82jGlAXzceccgHK1HvQYxrWhjW4WrZE69IDsS7tfXOuK0kLkxg+BrFtM/5/PEVkwhRqR56H/MN63Pf8nsTid3G3aLHX9uvdjrQHkq+/QHW5iHXuhvhkAa5nHiD5i5PR73+eynRfpyaPhW5HIIaOanQO5GgY7dKr0cZMQKquxDPj9yRWr4DRF2CtNdF/WI9UtR3TspBlGU/GlrGXI/+w3s7lvWFNvY1f1iBVV+Ke8Xt2vD+H4hYt8gahPY5fG24n9Hq9Pzsu/29AJt9Uw3xOoVDInn96vdTW1qLrun1B6ToFBQXZHFa7qgdwu90UNMjWmMndBHbOrHg8TmFmAMmEmuEwlmVlj9V1nVAolA1H/X4/Pp9vl7LC4XD2PcGZ9pk6v9+Ppmm0SF94uTpn8njF43EikQgtW7bM9oksy436KiMz44Uy+asURcHv9zdKzL6n9uu6Tk1NDS1btkQIQU1NDW63O+/c5Pa1ZVlN1sfj8axusiwTCASQZZmamhosy8rb3ldYWGi3L2kDM+ciLVmAdPMVtGjRokk5e5qAP5FI7Ho/sENgBw72DrErbyYyof71Leqi+ZiXjcDtdv+s++UOgR04OEDI9bK5Ucm+QkMCK06XO3Cw75D7IrkDAWczgwMHhzAcAjtw8J9CYMtJpePAwaHtgXf1QmYHDhwcPDTFzUYE1nW9Wb7I2IGD/3Y0fKl6kwROpVLN/p2oDhz8N3pfwzAaOVcJaLRxNpl03lzgwEFzIm8ymcw+T559rYoQKQn4MnfxKvNlMplE13VM03QWtxw4OMCwLCtL3MxjrZIk5b0XyeVSaxXLsl6wLKu/ZVm5zEaWZXRdR9d1LMtySOzAwUGAECJLXFmW80LoYDC4Xqiqqno8nn/Lstw1d1dEhrSmaTor0w4cHEQCZ0icGz67XGpNt26Hva2YppkUQgyTJOkz0zRbZR+Szom3nUUtBw4OPokzUFV1R8eOnd+XJGm9yGxi6NWrd1koVPespmnH6LreAuc5aQcOmhOJdVVVawKB4PpWrcrWSJK0Hrjv/wYAPllHpHSNE/wAAAAASUVORK5CYII='
theme_name = 'Future Bloo' theme_author = 'Lucas.' theme_version = '1.0' theme_bio = 'Bloo' window_theme = 'Black' button_colour = 'black' attacks_theme = {'background': 'Black', 'button_colour': ('black', 'cyan')} banner_size = (600, 100) banner_padding = ((75, 15), 0) menu1 = 'cyan' menu2 = 'white' rtb_icon = b'iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAALEZSURBVHja7J13uBxV2cB/s7u3pOemkUASCC3UGLqEIkIAASkiIsWPjhhFQAQLREEMWEBUQEJVuoD0KkjvvQZCKCG955a023b3fH+c8+68c3Z2701yE26SOc8zz96yO3umnN+8/Q2MMSQjGclIxpowUskpSEYykpEAKxnJSEYyEmAlIxnJSICVjGQkIxkJsJKRjGQkIwFWMpKRjARYyUhGMpKRjGQkIxnLPzLAN93rWjeMMcu1JSMZyeicowdwGzAVMMDH7m/rNLCCYNz45NZIRjI60yIeO2ZH4BZgSwC2GwXvvgJwezBu/A862VxXOdB8cTMZyUhG5wHAKcD1AqrgW9+xf7fA2oMgkJW8zurHyUhGAoqxY4YBG7lfRwK93c8bqb/7YwrwYjBu/A0dNIc7gKMBOOhIglF7278/do+85cUCsIIgCq11BGAJsJKxLsCoRkFoJJAG9lBw6rmCu94TOM6MHcPKQMuMHTMEuBY4gB41BN89Djbb0kJp2mR4+SmA2cDPzHmnBUAgH9X7CcaNX+uplQArGR0FhQxwlgPBi8G48ZetZhj5EOrtJKOh7drR4GHQf5D9ef3BUNXFQqBXb+jRK/4zixsw//q7qGo3rIi0Y8aO2Qa4DtiVwcMIvn8y9OlnYbV0CeaO6+WtfwPqvDVr1IYD51oNrQRYyegIaFwF7I0YieEQM3bM4cG48aM6AIJxENpouWDUowY23RK6dIWBG1gQbTDUQqFPP6iopKBqhfKK96v7felimDUDM30y/O8BpaqlfIGnTXCZsWNGAw8BXRg+guDoU8K5BCnMfbfColqAu4C/AxXexPJuM+p1rR6JlzAZKwOUHYGLgAMAayTeeXfMc/+FSR8AbBeMG/9emc+L3ai3p7KlgN2XC0YAwzazN3X/9aCqGrr3gG49ysNI24TiXusWwsypmCmfw/tvQEOt3lGjkypv9KSewmspiSdiXN/nYIK9D3LfGUAqhXnlWXjodoDXgUOBZe68pBSscupVfjarU8pKvITJWFNgFS44UWVq+jrpIPK+bwIbAsNWSDrablRETQt69oaevUIYabgsL4wCZQ5yKhgL52Hmz4EvPoE3no+b0XTgFeBF4AVgMlDlSTnyauLUNDN2zDnApQAcfjzBDrtGYMUXkwRWAL8EWoEuTu0N3L5z7u9ZTzVMVMJkJEMtth5YA3Hozdpp91CVqVsIn3wgb3+3XXYjp6oFVdXQb4Ddz3rrx8CIKGDa80rgIKr+HgTQ2goL5mFmTIFZ0+DLz2DKp3Gz/Ah4DXjZgapWQcMA1Z604/8csS1pT2BwwpmhcZ0A0mmor8Ncf6l895nAJKC7W6tpJV21EjW+59eF+y8BVjLash+lvdf+wJZF3iwHBvPMY+FOhmwC6w2Cmn7Qq8ZKRz16QffuoXS0IqpaWzDyP1O7AJY0YObNgc8nwicfQt38uMOe6QD1MfCmU8fybmLypT0VrLQ6llWbVg+NOqcWVj1qCI45FYZuXLBXkUpBYyPm6j/I228E7nOwqnL2KzGUZYEmNYesN8cEWMlYZ4DUtv1IAhq794iqMrkswV4HwHePh6oqbYgAk3evptgYXQ5GpUAU97/WFqvSTfvSSnpTv4APXi91FEuAicBbDlKTgFnu+GXxd4+BgPEkKVHNUjESj+zHRGD1w5+HnsAgZSWrbA5zz7+gYSHA/cDvsak4XZwUl3H7ygPNClSpdQFUCbDWDSiJy19sSCMJDdttxx6J/UiM2eJZW2/9KKhSKUilnaG7ZxQixkBewUp+LgWrOAkplVKv7v+zp8OiBsycmTD9S5j4PtTOK3UkAqNJTk391AErpRZ8CuirRL04UPmSVauClW8MT7mfhwBXAQeVhFU6g7n3FpjwNg6gF7jr090Bq0pJVy1uv+kSc0yAlYxODSUxZo90C24PB6URKwWktuxHQRCCKp22P2cy9neBmEhX+bwDVT4eWBFQeb/XLoBF9Zi5s+DTj2D2DPji41JHtNRB6X1gBvCF2wIFlZRTr/p6sAq8rRyotArYHAOrnILVbcDX6VFDcNo5zjHhzk86Dak05ulH4PXnAD4Dfu7WZXcFLFmnrUpy86W9dSLUPQHWmicpbdpuKInLv09f6NUndPe3FXvUpv1IS1YOVOkMZCoKi5BUKpSwcjkLK3ktAlYKliyygZhTv7CQmvI5vPNyuaP7wElNAqUvsa7/tAJTGhjgQakcpPwIcgGBDh/IEhq8895+NOQ2AG4GdinEWFVWhefOSVZ89C48djfOJnW2O4beTsIS6Spw35uPAWNOgcskgaPJWN02JVHZRgJ92rQniadN3P4bDLVQqukbIyUFxZJNKSDFST/6M3rRCawqYoAlklUuF0pX07+EOTMxdQtg6mR4/rFyRzgZmOOA9DEwF1jgYCRqURro5mw+6RhVr5wEVU6SEjuR8eCVVeqgbNroPgj4V1lYZSrg84mYGy+X7/8VMB+oAXq546l2c8+p7291amGL+1n/L1EJk7HKpCWtwm1EubgkX1JqD5RKwaiUh01UuFIGbW0/0qpgOmMlrIoKJ2Fl7N+DFMydBXULMTO+hA/fhhlT4JP3Sx3lPLdNdFCa5rZ0zDZIgclX95YHTFql8jcd59TqgUJvzeq1FVgP+CewM1uMIDiqBKzmz8b842KZ0wVYr2QfJ1mJsT3tzafZbU3q+7WUlaiEyegQMG2kfu5Z1qYkMUmivsXak1YASqWM2nFAKgUp7YIXu1U6A/kczJ+L+fIzWDgPPvsIXvpfudPzKbbSwXwHpc+VCpdWMNpA/Zxup81Jq3SG4oDOvFrgOeLDEuJA1Rrze4t7n/zeHxuOUAJWDu6L6jHj/yxzvQ54xsGql1IFM26OAsImpy4uw0bYN6nvzwP5JPk5GR0PJpGWtArXo2f5qO1ysUbtgVIBNsr+VHhfKgooDSUfXgKwhfMwn3wAH78P778J82aWOj0LgcVOcprqADVfGY+NAlMqRp0L2gEmU0ZqioOSD6hW79VX93Ixql9rjAS2mVMDhzO8DKyaGzF/+53EgT3ujPJ9nCmgF9DVOQU0rBqdQ0E2AVbWs20lElYyInASGInhu11gCnrW2Ajuvv2tsTsCpjKBkaU8Z8sDJYFMud9LwSqVCoEmf5s3B3PhmTB3hj7aJqfGzXE/L3GSgNxfIoV0cepcq6fGaKmJGAM2ZYAUFxflS0zl4BT3e9z/9D5z3utw4GmgC9uNIjj0qBBWYtOrqIB8DvPvGzSs/gT0U7DqBrgbpKBqLnPnc7HbRMJqVbAy64J0lQCrPJyGATs4MG1f0vi9ImAqGRCZKgEgiqWgUhDS4PH3U/i/e10w16aCzJ4OC+cRHHYsVHdVnyMqgc2bjTnvNIHVB26TVJVuTjqQQMc+hLFDvg0oSzQHrpTh28TYlXKeQTxXAjy+WpcrAaxScMt77/ElNJnbFsBzQJeiJGYNK5PH3HI1vP+6nLurHKzEyN5dwUpsYsscpBYpWC1bV2GVACsKqB0dnARSxUbw4SNg8Iah4XuFwBS07X0rZz/ywdMWlFpbYN4cmD0D07QMPnoPZnwJH6s0v91GE/zol9CrpgTsUtDchLn2UpgzHWy80OuE8UxVbqt0m857y8VIS6Le5UrYl/Jl1LhSIGrtADj535fzbF55T7rbCnipJKyUQ8I8+G947zWB1SUO8DVOutKwanWwWupAVe9el7i/Natj/ErsVl51VglKhmhNMhlaC/kAeA+bOH4T0TSmBFjtANRebtujSLUbPAyGbkKw4SZWanJ1lMramOIkpiAov8WqaN7PqVR5KKVSMH8uNNRhZk2zhu+5s+GJe9s+EbvvTzD2MqjuUlpaa27GXHwOPP84TqKaCKxPNN4p7RnG8woErZQOA4hT4cqFDrSWsTFl27Hly0ApDk7GUz8FENtgk6LLw6qyEvPkg/Dk/WDDMf7g9tHXwaqHg1WgYLUEaIiBVZOae4fBStlhfQBtRLRsdM+V/KoRbjsOG3M2YnmhlVnHIDUaOCFWgho+AjbdgqD/IBg02ObJxUlOvvvfl5pSqbbB5NuLNHz0+9NpIu7wRQ2wqB7mzMAsnA9ffgrTp8DH75Q77GZnW5rvVI2lSJ+7U88hOPIkCysBrD+flibM786EZx/BLZ7JzhtGjCcuryCiIdTiedpaykhILSU8dHEG8VJQysXYs/wo9HyMdOfDqSAVaji4KqGvl4VVhY1LM08+CA/cJtfh127//RSsJO1G1MDFClYNCljLZWQvA6GR7rt7055siLihq7O6UJuC/2eDDaPv7dPP2fOw+Z0L52HeewPeeWVLtw6fTYBVfPGGAOOBg4oANXgjKz3JSW3T+xbjPYtT5doCUyoVLy0tWQQNDkpNjTYSelEDvPp0W4c5193c85XRe54nAQ0H9gXg1HMIfjCmxPEKrJoxvz0dnnkYt785zk7l59M1Uxyn1OwBp5loOEBcWEBLOySp5QVTroSBPs67iA+nmHtpG+CNIlgVwj1CWPH5JxpWP3XXpb9TBXsQBoa2erCqc68NyivY4qawp3vt5ZxAWhJqf+HDODusB6BIeeiS2REQW5117kyYP8+GusyaBm8XZS1MdKphohLGDAurHjWw7yEEw7eJl6DKwUnnx8VJRUUwKgGm1laYP8eqWbOnQ+MyKyktXtQeKMlNLFCqVV6juADLfkptGyHifXDZzbD9rjb6XMNWzocx1v3+258KrJqwIQpip8oRBi36bvdGtenAypYYqJWLGI+zPfnqXJzUVMqLWFZqaueDbzlgNQlz+W/0/VcKVlnlIewD7OTOXQ0w0B3btixvE9VSEOo/0FbSqKwqEXhcAkD++wrVMebDgrmYhnoLpnmzYNoXpWb1obNhvYTtu4iydcY5YNY9YDnR2GbKn32hvVA+pEoatcvYjArpJ+pvSxbD4gZIBfbJEqSgdr61Jy1pgNfaJf0KlOa5RTvHvdYrY3ZGQamLu9njAivl7hvhbn6CP90I2+5gbzYZMv+0KdyM5rLfCKyaiTY/0ABpdFJBvZr3EqKxQi0xklRboQRt2ZnKwalIauoIW0/7YVVpg2gvHysf/Zu7Rse518GEOYJ9l3sikrCu69NLFVZoO3G9LQjFvdYutNL2zClQV2vv6TdfaGumrzg4TXPG9leUvUri7zIlHiqGsEjiOmx0nzYZ1h8C3XoWgyit8t8ktSSVgjkzIEhbCE2bHEJt0ofhDWsXdntHE7ZlU7OyKy10i1GgFAem/kQDK/3gypi7kjS2McRABmxA8Idrof9AaGr0YOXSbFxSsrn1anjgVtzc5isI5hWolrj5LnRbndsWK2A1Ew1jaC2hzrVXajIro86tFlgtasBc8Xv98bPa/IJtd4Ku3cLMBmMIevaypXqWRx0rByHfc01M7fqWJsyMqfb+mDnVplZN/azczBc7qekDbOnoCe51WgnhKF1CNc97jpqSEtY60YQi0qBy1Y6FTk1LYZN1A2WHyLr/V7gt417TMXAqB6ZSxdr8BVwJbAfU0H8QwYV/h37rhZUSvHpMVFRCJoO5+19w419wN85kdbMFSv1b7OC0wAFtgTu2eqLBjVqiyntwao86F+edM6sKTCWM1jtgG220DavmJsy4c2DhHLuT/Q+37xu4AfRfD/J5gvU2gLR7SPToBS3NVtrNZm2KUy4XLXK4MhDyw2qWLLY20gVzME1Ntvrq0iUw4a22TsfH7j5+HZtSNdMBPKe+OC7L3pS4N3MlbI3+vWD8JhTrTNcc1zRhL0rFWJUeUqA85QyFIm1MVqCZrgBUqX7WcPKBlKE4HcVX5col70J8wm7eqRu7Av3YfjeCk850T2sT9QZKIm5FBVRUYe65CW76O24/kqVcrZ6MzUqymk+YsDzfgbpBAavF8xh+ZepcO6Ckm2RsHGu4bgtWlVUWPPk8DN7I/k2kdqkJ1tpiAdXcFL4KrKSaRaxgEZQvFa1/bmmxhQwXNWAa6mDWdFi2pD3miInOafOGu74THZhmqHueNgBV6j4tlZFQyoES1sP3iLUuqYQ3YrPoUwoYFW5xV6vXau9vYmiuJhocqX8e4IEqo3R0LTHFlT4ppc75C7lUxLd/8XsBuwH9GPl1gpPOsIuqudFTATPOiWDNBebuf8ItVwqsxHvTzVPjljooLXBeybkOWAucxLXIwarJk6xW2ju3kkDqHfPa7lpiwaZbFtdf17CqqrZbrxr7WlnlihmmogUM86rMTj4fhY3ArS17krx/9gxrV3IVMVg4DyZ+UKpWvYxZDkCfuGv1toPTJErnb/Zqx0OUGGO5iXF8aCDFNdHwv3sdt2GFJ13gISASw7WklnRV8NLgkq0iRoJKL4dKpy8ilE5JyVE+R84PAegDnAxUsO1OBP83xi6MlubQZmfSXgpQGnPfLXDrP8Sg/rgsWc/43ehu8oUOUnOVhFVLGC/k57nlV7U658AkGQqlpaQyUKJXn9B4XWS49mqApdIugl3BqqraxrNVVoZldoLAeWLzIbhQqp6Ar5RtavYMa1eaOxvqFthUqokflCsFjbsGnzjpaLaD0VJsaWhDfBHDPiVsoaVeSwGqXJUM//7Va8GXukuOzDoMq4ySlLq5TcrSdnVblSdZlYJUytvwLkS5p0+cWpdtB5z83wcDPwYq+NYRBPsd6nx62fi8xLRddOb+2+H2qwVW97o5yVNV5tCs7FZxsKonjP1a5Xlu7Uqj0kDy24itSIFDcc5kXL0vUQM1sCqr7N8rKsK1aIw9i0We6TTkm2HebJvPWb8QZky16ttLT7bnNLzrHhKfOTDNxZbpWapgoMHUO+bvcU6btlS99t7LWprCezjny9mtEmAV695BjErYVUlZ3ZR0pfPjBFJalNW1lYJ2XtBcDJzicuVKAct/777YVAfY7zsEex8I2daYvMBUpDqoefDfcPt43H7uULCS2BiJm1rqYDVfqYLabrVKYWXGjtkUOIxSaVQCpmGbuVZiPcNUqjhJqchYTfmyPTqWTiQr2aq7hLCqrArLRIOVqL6YBLksZuIHkMvCB2/ZbIW2wwJwdsTFDkRz3ANisrseqRjzQpXTEMqVgA5i1gKUr5BBCSdIXhnedUpTqZQr/37WNs5STpZEJSQ+By4dY/jWFwCKWysFZbx0ccbwuDIlpS5qrszf9OcOKcDq20cRjNrbqiGFsA290CqcVFCFefguDaub3f56u5s+TRgUuizGyL7AM7KvknInLpXqgiL1rr1pVG2VgQ7aygWNCX3JuMqqlZVWepozC/JZzOyZ9v8fOI/bg7e15xAbnTd5jnsIfOFgNJEwVskHkzxQ42yhcRIUbXiWS927cdJ/KcO5vlfjEsmzZd7vh7QUeYTXdWCV8loI9aULihgGfdWvVKOCUt1/syWM5LkyF7Otz8n+vwf8FiA48UzYbKvQTCFqRzpd8AJa1aUK89CdGlb/dPvrTVg1IPBgtUABa4EnWUn4wqqA1f8KEtTOu1vjd3vSqMTeRDurrfp5oX6Bw0j9+jR88gHmorPaeyiL3LWSWmGfu3P5OWFgra5okcLG3KXagFKwHFBqT6HDUnbTPKVL7LT3/7k2tkQlLHPxdBWBFnfTiAok9ppGpQL6tqmA9tUDLxdrYspAKFdCOvP//kdnYLctzyUNIy5NpLI6hNWDRbAy2DSQnoSJuBJv1eCM7D6s6gnDF1aVzcqWKTn8eILtv+5JSm3keZZLQG9x6SQBthhhc5Pd32cfEeyyJ2yzfXH+pza2f/SehpUULsw7yaiLu38q3f+kDrsU4BOJdIlTvbtQupBhW9VWaYfaVqrQYb6NB2euDITybQAp347XUiV72oTWuihhGQ9Yum6TAMyHFZ5k1R5xOV/md799VFub8YyX/wKOLMBK2sXrQFCxtSjDsHno32Jgb8XWIxIPkVQN0MGh9TGwkoh27Q1sXUUG9nrAhmNMnwLV1Q5UqBxPp/IGKVg41wZDCpxmTYfGpeFnXn6q/Ld97ySbXxmX/SCS6vy5upX8vdja9DWEda16OpUNJaULhDLuHIuts1KBYHk1g7jI/3wZCWl51LdSwb3lSvHk2ni4lsrtLBfmktiwYi5sC2FKgDwNMzHqX1t2qnI3UFs/l7pwpS7mbcCR5boIF7ncK50aeFsBVrcoWHUvAysdGLrQ8wZ2uBroDRsL9ujdHd0OZqnzrIFNW6riqB8SHHF8NDdU0rMEWvPnYH79Q6m2+jE2bGCQg30PZ1eqUqDKe46RvAJZhVp/caEfpoy0lG+HmhVnJypnW2prf209fOP+BvGxd/kSkmH7DNDrSqS7s4v4Bve4nL1UGVhRxhbQ1u9t2RNMuQsZjBtvCilGbcFKPFbVXRys/i1xVq3ArW6XNR6stDdQx1pJ6o1IVksVrHKswhK9Lnzhm87oXhPjetcq1ETC9vNpB6VGdU0/Vt7hTYDLgEqOHUPwvRPjO1mLGphtxRx3AMyeirM9vUI0Xk/CXtLKZCAe1mZlZtAldjRI2jJslwNTltKlnLMlVLpsG2DKlbHJlpOYSlXGaLMKQ8l7YF1NzVHA8r0pcTaqwLNXlQIXJS6OaeP/kX21teBdPa+7gF2jsPIMwhpWWg285SqB1e0KVt1KwGqBBytRA+NSblZtPfEgwJz/I7keOqVJYuj8LS6oV4ekZLCBpRcAFRz7Y4IjT1RhC2mb55fOhMGhra2Y3/8MnnsMbLzTW0Rj8nSYS95z2zerzS9cWE66aasSa7YNr3Nb9qlSttZ8O1W5ttS4DrsnfGCtUyqhk1J8D197onkp8YQwZUDWUWVNQlgNH0Fw8PctrPyW5wIriQkKAh9W/3bHVuN5A5s7Jay8S0dxhoJOpfIzEioVrDRcBmNDQCo4doxVA+2q8Oxi7ry2tmJ+f7bAqgHbqqyvJ0nliNb5alKQ8puuliqrk6N0V54c5ZthdBSYWB7bklx7t55W21jnjO7eIuvU3UaKYBXX8jyt4qsEWIC58mIpCNgK3KlsViJZGcI2Uj6sap0kMgyb5pIHdvElRHezvge8GIwbf89qgJUYrysIU6q6xqhnGlry/g2QTICjTyP4zg9sIKdJFXcrAkilMH+/CJ57FAfsqe57UgpUAqZlhAUMpbOND622KqaWU+PKgaotb3Ke0hUw8m1oBHS2jjxJ15zOC6ttsF2BS8MqUxEvWV0xTmA1DduCKq3UwEplYzFucW/u7Dr9gCHK09WesSdwhhk75nsdDS2nDkJ8SlWlA4jkgXbx7ElaDVy/AKvvnUTw7SNtpQSdz4dx1Vat09jcejU8dDvO9jRN7UvbpyS/sp6w/npceZ1y0tPySEltAam96lunhlICrDUTVrZgXCysMtHIdQFWEGD+/nuB1XSkuaeVkqT3XQ+3+LuXncT2o8Kqlgbb1iwuSXfBPMwd1wDsQRDco4wPHS1hxTlMdLqUdpbouksDC7D6znEEBx4RJoOLs0Kkq7RdDub2a+HGy0VFknq/FYQljVsJ23DVEqYp1ROtWNHShoHbj8try9BtlhNK7baTJsBKxsrDyu/IEgurahejhA+rNPADQhd68dhkSxiwPmy8OUFFpbWN1fQNJY4ibhCF1mcTMS8UEnVftKqV8a2mK31KYhwafnZCi1LVsspAPxhb8bOCg4+xCeFaskp5sDLGhn9YWOWcgV3KUMu+dRsuHfqxUAFLykOLClgq5q5U8ULfplTO27zWQSkB1poDq1OAK2iri7CGVZWVvMzfL9JNLIZEdnzg92HAQKjpSzBkmJUsenrVLnM5W/HSB4yOMG9thS8/w0z6EN5/ExoWyrv+C9xvzvthOs4B0QELSUtM2gMXePYkXcF1I2AsUMGBRxKM/na0zE464xQ8Ba0P34KrLw4BbAHRg2gNJ+2g0DXBFhKmKzUpdbAtO1I5aanT25QSYK3bsLoeoK0uwlHJSsHq20fBBhvCehsQDN/aSk+ZTAimpsaw2mVLszM66/pM6SioggBqF8DMqZiP34M3nven/So2VOImZcgvCog1Y8es0EJzXt3A26dkKIioJwHAOjthU+BSoJL9D7fnsrU1LKsDkJKcS6cWfvQu5oLT5atfctJSLwWqvFP1tGSlK1foevbNHqzKxSetEu9yAqxkrEpYjQPOBy/VJqaLcCGJuboaqrpAUyPBueOg3/WqiihWYsq2hhJUa4v9PVKO1w1d7XLJYpg1DTPlc3jlGahfoKe6GNvt+HG31bq/dyXefS5qDSsKLeJLmWjJqkKphCmsA+FaoIp9DyP45oEWzAJkY6KlYjIZmPgB5ndnyPf9DxtvJUXtckqCW1wCVn4yeNZT9xIgJcBa4yE1EtgR2BvXIKMoL7BMEjNVXSy0evQKi8aJez6fC8vx5rJ2E1AZt36k+mjdQpj+JeaLSTB5Enw5yZ/qRGdTe90tZqOM4D2JJnLrOkd6lCpWviIqod5nVsEqwKba3AVUM/pQgm8eYM9DUUdtVdNq0oc6mflRZ//ro2x/8h1+TbA2y+wkYEqAtabCqR9hhcxv4Nd36lFDcMLp1iPXjiTmoqJxUvYEQsnJ5F0XlnzYiQVg5nTMl5Pgkw9LVbac5YzNb7ptppJeelJc5tkHVVyS+EqfQoq9Y35dssHYhqXV7HOwhZVWbePKGi+q17B6gDAwtIuzg+UJY9XqCRPBdbqSbiUvIQwJrBJgrVGAaruE7/ARMHhDgiEbw/qDXVcbVTAuLom5UDfcwatC6oerzs0mCNtEzZkJUydjpn4G774Bbz4fN93PseV233bS1ByiDTP6UlzyxHiSlY7yhqhXrGxTgfbYsUSlJNqsAPU6FFvBYjjbjSrf3UbD6sIztS3uC2wcmlSukBAGSQaXmmDzia8J1kq0JHAyEmB1SjhlsKV793JwGklcCd9td7B1xTcYGpbvjetALZJAOl2UFxipHa7L8QYBzJ4O0yZjJn9mm7w+dHupKX+ObX75PvCOA42AJEXY3t6PbYproCHqUrO6l7TUJVLQSi/iUhkKLhvgduDrDB9BcOhRxWEgpWA1bybuPLzijru3s8dJxdUmB6Vaoj0Y42C1SuvYJyMB1sqodwKn7YnrzrK8JXx1WRO/yYFUXRBQVVXbZgWzp2MWzIVPP4L7bi41XTESz8LWbvqEsCtzi5Mm/OJxcWV5fdVMq4GBgleatnMxO/JalE5d0mlLWqUuhtXTHqwyJWAVV2YngVUCrE4JqdEOUt+IBdR2o2wDhA2GQt/+doHESVDlKmRGEpkldMFJBQbMvbfA55/Ai/8tNc1WpZYtcgus3tlZJG2k2kEnQ9QQXqoxgW8/ElCZEtKU3zjVsPIG95WEVUUI/XhY9cWmLfmw0lHsfrXVVV4TTEnue7g/1WNzNt9KgJWMOCnqMLdFu7Q49S7YcBPbMipOvdPSUyGhNqYLSxBE6y5FjOwuhKG+FvOXsTDhbT3FOrdYZEgVS3G/LyP0qEnBOA2rbAmQxBUn1O55rQIKHBvVq6735DcVMF8NrKrjYPUe8IwHq4oYWGm7la62qktD51YBrMYBh2O9nv7//h2MG39MAqxkYMaOOQI4oQhSw0fA1tuVtj9BGMekAZVKxQNKq4CFgnHpMC5IVJjaBbbK5ZzpYD1Yn7gv7E3YP1Fy3LS0o2GhS7Lk3e/6/6UqWfotmXSZFKlE0KRedVmVOGCtPlgVAmydzcoYH1aiBmpY5UtIVnGwWmVldgpFGpXkDthS0S/8DxbXHW3GjqkNxo0/PQHWuguqU4DjI+reqNEEm28NG27sdWmJsz+VaICwbAksWYyZPgWaGwn22Bequ6rmBrq6pVto0kZqwtuYyy8UWH3uDOQ12OjrroT1rLRNSWAiUk+LUuFMjLqXp3TD1haiBedaPAmqWf1N/+5LWPnVBiuBvg6wBcw/LhFYfeLBqptSj9uClY5iX1VqYFhR9oTTbQdqnRq11UjMpecB7FF4QOpUKmNW13rRdtyR6l/12JSmB9w92+Fjnao42uYTbfAwgj32g823KoZUnIon4Fm6BJYswsyYAvW1titLmNcHfdYjOO9PNlUmpYzrWroSYKXT8P6bmHOOl09PdlJBL2cklxIqaQUdgUyT2hoVuJoUUOKatbbGSFH+37Lq7/r/fifqHMWlf0subDN2zDCgPhg3vq6N69QDeKIsrCoqQlhVdwlh9dqzIqH+1507qQumJSsxsMdFsS8imnKzQrFW5Y61kO3gl7/2bKDm5qtg4ntgHT7vRRbzxdeYVQUt1cz20Fg7bnQ0YjsyrbQUuE5XHC3xpLBPtO8eB5tuEe1PJ6qeQKquFlpbMDOnWjDVzrchBHULSn9J34EEv/mLfVpqOOk+d2kFrvfe0LB6wy2avkqq0k1Oc56K1uxBq0lJWn4FzDgAtXg/Z0tAKa5qZlz7ppLJz75Ua8aOeQkYE4wbP6HEmby2TVjp/ovFsHrcwd5XA5sdkOoobhYblx+43LBq61gdDM4GrGRVgJU2ITgpvnvBUtGPsD6XjVU7/0dmFUh9pzhQHVTSjisP9uZmzOcT4emHugA/cQ+GDrW3resqofXAbLuDrV4wfw4sbsAsarAXYM5MaFwGn32sKxPEjVnYiPB33OsRwAj6DSL43d9hvQ0UrNRrJhNCK5WGl5/C/OIk2ae0Ke/jpIKMo6gAojlGmvLtSb5dyW+C0F5ADQZ2dtvWbn4vY0u3xPaUKyNRRbs5Dx4GDfWwuG534A0zdsyIYNz4z0uqSt/9v9KwEptVEPiwegwbve4XMWyOUQNT2OqqWwCbOUC9DPx0eWG1HMd6GK5CRyTbwTcbRBPUpUx0URPflcjblHlngAvRXnHdzHbIsGhTWmXLDTbaFHbYFXPNn2FR3dFO0noqAVbHjBeB2bzy1CDzSrvO6cfuBn8TmIGNCv/CwaISW4b3ImArdvoGwUlnuBtQeQIzIlllQmCl0phbroKrL5HvmeT2WUNYgSCvoCMleaWLzTJPBWyOsTHFNUHwVTu/jO/RwLeA/WLOxdbuPT+l/c00rnJPXqt+jz7ESrWAefZxeTLvThAUgGXO/1EIq9PO8TICvHI7xbCaoiSr3h6sfG/gpk6K2L7MsZ6+HLBanmM9FCDYbKvQFqptciKNp1LwaUEA/cIdj5a2C8UCVwRaClShh1LmLrbctkJ1APoPhAO+C3fdALbr0TOsROecBFhyyseNX2DGjhnhJAWJd5mKLYkbABMcED5xUPCbG8jvfRysfg0MZ+dvEJx1ga3YqWGV1rCqKADL3HylwCrvFlmz81LqonSS0ybF42RbQhjE2ORJUS0xqpz+Oa4rSw44D9gN2DXydB2ysY0zAxtqAbsHF1+Tb8vg67yvZxf2p7s5y01e00fePkwKAZrzTrOw6llD8MNzvOYbXpxVVZdysKqJgdVip/Jtg+0vuDEAPfvAznsQDB0GfdyxXna+HKvp6GM15/8oU5Bihm4Sk5rlnDDpDOa156BuPk6SD5xds1Vddw2E3HLC6hQ37y3FQxnsvo/nFQ/inU1+p20g2GgzodKebo2Uq/mVAGs5ofUb5UHT7aR0+yjd5KBa/b0KW4b3bGBTdv4GwZm/LbjTbdSnCaVmHdrQ0oK5ezz842KB1ZfuVcoXaxuVtDqvd1JBHdGSvMtiVL5W4ltExXX4zQPHOVvLLrFPV4B5szH/uiKUULUXS47TvTpD+bUFp8bwEbaeurbRgK0m8eRDss+XzHk/TAE/L8DqtHNtJdRyVVfjYVWlJKsqpQYuAdZzUNlAYBHseygM3djuF2DurFV+rG5Bww67h2lW+vgqXLZD/UK4/jL53G3OhiWwEikcipv1tkdtPRs4oCyoIiE6KU9NVaE6cm4keNrOq5r4stDLHVSchDV4/CKMWxJJSlpIScMD3Vaq0j2dfwJszE57EJx+vr3ZctnQziLGe13dsqUZc9HP4NlHBFYziMZUZZXnT4zCtYTt43UEu64h7nvrynXxlW174DfAgYXFtt+h0Zu2tRXz5kvwyJ1yrv4N/NScd1qqhKj/Xaceb0mPGrt4t9ku3J/c3Lks5t/Xw6JaHGReAE4D/gwQ/GBMQdKJeFh9WF11CbxegNVjSrLq7sEq42xxtirr1jsQfOtwW5E1n7eLrbXFP9Y7gTNW0bHaQlyDN4zarDKZ0IFQVYW54zr5rieczXSgepCl1QNOrnnQDq/reODYyMNpsy1LgEo3l1Vaw7Kl0KsmhK18bb2USuNTpy1oe6kklrO80EqAVQwr3eRApKmuauuiJKtBbnENY4fdCcb8yl5MqW6ZcuwJgmjBvOYmzMXnSL+7ZQ5AKeX1ERWwkeLk27jSJo0xsCrVqdcXy68o2FrEW+rftPULMQ/fJe50gD8gzUijC9g4QIwHjio8sb/1HZtP6Xu+sjnMHdfDx++KR/TnwA/dnAhOPRc22jQsuheUgNU//uDDqopo/0WB1aYF1a+mH8FRp8LGw6OloRtqbV334mPNrIJjrXbwJBg4OLRTSTxeRaWF1VOPwOvPgQ1xeRzbBSjnzBW6C5L2ALeltl5UUP8OP55g2+2VjcoDle/JzmRg2VLMC4/aApLHnqaKQFpgmdeek6/7xEm52kEk6mt2eVXDBFjRTjC+hFVBccNOURPXc4trGNvtSnDq2XYPhbrh6fCpo2HV0oz5w6/ghcdxsJlNtIWUlDRZ4lS+hYTJt+JulwTcxeoGaPXCC0raDFzp4dHuprW2loOOJNhxt+hNGwTwxSeY//wLGmrBFvH7OTb+p8o7k3lnPP4tsAU9awgOcpJGQZVSnq9cDnPHtfDR2zgnxmlOwrsMIPjxebDZVraWl1wnkTwEVhK6YBezDyuxWeHAsq2zNcL3TiLYaQ87l7za/+cTV+ex1gOnAkfQux8MHRYNIpb0rDkz4fpL5XufcpJVyoFJJMdGZRZIUxwgHK+2xgFWVw3RoBK7a+NSzDOPwj3/gn6DCC69Ebp2jwJr6ufw1oviPJrg1FdxEgUxqmu7Sw8lwAoNqH47qbTa/KoFg4AzgfUZsQvBiWcUwyqjbB1ijJw3G/OLU2DONAg7CUuzT4FNE2F1S+1u14XjBFZ+fFAuDk4xN26hJHOsrcXdtOadV8XTA/Af4GQ312rPZtIV+IsL54Dt3ULo5kka8oTO5TC3XwMT3gJbh+sMB6uLAYIzL7TBu9lsNNK7UMXCSVZX/0HD6lFPshLIDMU2hIWRX7cSZM/edt8Cq1QK89YrcNf1+lhPcdd+VRzrEncufw8QHPdjq1aBu3cqCpt59D+oMJJWwOnHNLrXJjfHCuIrbBRLVaXUVp2Bob2TmQowecyTD8B//hk+3X/1RxsMLQ9mJ5WZq/+IcmCtrxxFmZgwjOVyDiTACmHli/t+GRWxLa3vbrRKdvkmwfdckGdrSzROJp+CjHpaLZin8wLnOAN7lbvRRDTW1S0XxsBqoYNYbDAjbQQNugDFKwoG1sOPJ9hh12KbRTqNefpR+G+hzeAZzmbVnbAPoDwVv+WMtpvRsw/BwUfB1iMpZAL5db5yWcxt4+HDN8XbdY7zkllYnfsHGL6NrT8PoXQqjWMrq6ya9MjdGlaPeJJVFWE/xn4AnPgzgp1GWXU9m3X7dWB+6mF9rGcCdxCm7XT0sTYCJzpPLMHZ4yyc5Tgln1RySt9/U4e61Lhjy7n7sZFoX8agxHW/o6xUFQcqgWZFhc28uHU8LJiNu+eqOP4MG79YML7bfZgHbhdJcpaTTtd393OFUl11SE2QAGsF5Cxvk9iWjHuCiao2GPgrUMm3jiDY9xB70bNZddF1HI0T7+sWYH59GsydgQPVx84QWU1YhjdLtCtLHKx05HWLpwbSBqzCFmKDh9lW7RKk6Ntabr1KbrombG/D17BpQRXqSd4tYqjfaU+CA78LXbo5qTUojifK5+yN/8EbYKucnueM3+MAgp9dBCN2tLAyzgAeqRpaGcLq9vG443/MqX5ashrk7FUpNt3aGu4HrGdhJeWixZFw+3iphNEE/B+2+uiqOtZW4HJsHX+CX/7JwjmXDR8aEQkrA9t/HR6/RyTFRsKmG7rNWWzwrntA3QLsGpGq4tTWjLOfSf2wTAXU12Ee+rc4hsSAvjm77WulQh3SkErB26/CX38r750ADHDSVUaFk4jq6kuEiUq4AiPvSVbN6obYELgRqGK/7xDsrbqxBKnoTZBWRtMvP8NcNlZgJeWIe6lzn1WwWlwCVrUKVstYzjSRyBN2n4NtEnZFZbEqkMv7tpZfOQmmp7LfZYCdnCSyEb37WfhtvV1ovNZ11MUGks9jbv4HvP862Cj+C90D4GqgkqN/CLvsGaqBYmDXalJlpQ+rfzrpooawtPFWbqHAESfarjkBFlbiBXSOEauqvQ22hv2qPtYa4BJge/oNskGwW4xwkqQKFygUcLSxV2y6lVzGgU5qEbNFnuLMBK1qHY5tv9YlVu3XaqsuGilS7HuvY265GubPApu9MQPYhd33Izj/Mvs5HZP19quYswpZOB+7dVNDWBu/0anTolWklaqdSFgrIWUJtFoVxDYB7gaqGH0owV4H2Cd1QQVQbaMKlUIr4ZMPMb/9sRbp33CG32p1IVs9WJUzsPulTfJtSFVhdQPtAYxTBfJ5J20UbC1nOUjWOPVKnA0/Ab4NwK5724XQtXt4PvS+RbVpbLRweO81gA+cRDXESRuVHDvGgiDbGnWGBE5KdaqJefguDasb3Tv7OFj1wAaB9qTfIIJTfgabbmntitnW0FaZSkHWqWrhsf7MPRR6r6JjHQH8CNiALb5GcMZvbFxZVveF9Ao4upStYMsRInpsgE3IFum/SRnbdS2yLLZE0tXlH1Ce+iddhDDW8fDQHXIlXnfndhcGDiU4Z5wNiDYqvvDNlzBn/5+8/zN333QlTCVrjAHVClWmTYBVDK28sinlsflkjwLV7HOIlawiNot0NMhP2nB9MkHD6jn39O5DtDSMhpVvYF+gJCu/wmV7YLUj8BAwqOwTNp2xrvxbrpYWX9rWIknX1diWZN/H9v2D488g2Gk310osFy46UY1kITTU25IoC+eKmnCpk1YvASr5wU9sfqCWgArxa0Hh3JqH7tSwusFdhL5uMfVzUKhkpz0JjvmhbX8msMqr1ma1CzC3/EOO9V3gXHdu+6yiYz3aSTuw73cITj7T3jOtLeG8Fs6HBXNg2x2j0e2ZjJXmBg2F2dPkwVGvvMiL1L0hoS3XA98DCI4+TamAMQ1OMqq6bUWlvQ8uPEukqnrgPmBfYAiDhhL89VbrHNBhIO+8hjn3BK0yLiCs3CrOgLoSduIEWCtkcbdufq0WCqy2xeZB2dZRex8Y1f1jewZW+5LVfwkbc3ZXXqesByutAooaWB8TZ5VvB6zCLtKjRhPsd0jxE1Zu2vpazBXjJOXjeQeSFgeBbm6RnAzsYz1tuxIceQL07hOVELQNTxZCQx3m0vNlAT/tQLOxU5EqOO50gu8eH7VZ6ZgrpxqZB//twyrvYNXTeQBtkt7BxxAcdkwh+LPQ2VqkofpazBW/l2N9wcVYNbt9dfSx/tuB/2sAnP17gm98K2xom89bz9vLz8CNf4FTzyXQ9dAKeaYpOPj7cN2luOOdR5iiJZs4YP4BfLekNK0LHGYqotrAu69j/vwruYU+dCEURwIbsMe3CMZeZt+fyxbmzivPYH5X6Dz0kZMAK9y5XF95NLdyc9NxgkU2twRYKwYtOXnbYlMnukRax7cBK/Pqs9rwqGHVg7DfncBKJ9/GNeeMk6za8gSGIQsHHUkwau/ST9iGOszfCwv4UeB3DqoCq62wkdA2LOCUnxPssqczXnsLuBAnVREu4D/9GhbOEQnzerefX1pY/ZTgeyeEYBHPnQAmHlY3upu8j1u8WwIbAXDSz+w1am6yQIiD1d9+J8f6mHPxd1tFxyqq4EDWG0xw4RU2kr21xfWKzNnP3HUjvPiEvf82GKokqwrVESllQwfs6EJYoHGJcsD0wmYGjC6qpxWUkaoqq2w11tAuiLvn67FJ7Rn2/Ja1WWUy7rzaJr3mrhvglqvkM+9g82+7uGsyCID+68OGm8BbL67n1O1PiRaWTFJzVhZabtFv4zxjbcCqMmxwUFll1Zbb/qFhNceDVUqpgbqsiYZVnQer1uWAVcG4XtTy3n/C5vO2GFzdPLDR038k7MvXwz1dbZWGHXa3Nah61YQLWNQZXZdentr1dZg//NKqObYixs3uRj4J6MkRJxIceaKTNhSs8vlysPqnglUvbM/H9QCC3/4NNt/GwsqXrFIpGwt105VQO0+uyx+dVNV9FRxrztnE4FtHEPzoF/Z8SzhFayu88aK1oVlpDHbYDYZtHoYRZFTJoWhgs9g8dWWOXu5Bs10hSbymb1RKjdQLqwzv2/o6qx6/9oyc43uA7ZBk7FPPJTj6VAtZmX/jUsy1l8FTD+CO9UVn7tjSbbZg16nnEOy8B+ZXp+mYrDhtIQHWShmxtPu/vbCqqrbuXwurVuB+ZRfpodRADauFJWxWOt1m+WEV10Val2LJZOxT9ear4IuJYHvyXerE957OfX5MQc06/qcEu+1TCAMgnytewIWYHWcHueRcidl5xalGh2BTUDZg1Gi7CFpb3SIIn9o6mj0GVjlnqJcneDcGbGCDF9dbP5SstPculbbhBf+6Qo71VWwkfb9VdKwbOJWX4MIrYde9oDUbqoG1CzD/vg6efzy8cH0HEhz3E+jaTRnc02HuXlGYYMGr3OJg9XNgBFt8jeCok8NaYXENeQt9LqtgyueYyy8Q7/UUN/+9gYEM2pDg3HEwcmc772zWvs6ebj8z6QPcg/UxpzF809klYd/DbKrOkkW2JpaVOt92mobOey3UxE+AtXKwur7gXWlPB2GB1a0FWN3uea+qlYF9KWFuoB+6UFcCVvnlglUpdUBgBZgb/w7vviqG4WtcGEBv5xH7BtCDzUdYA/F6Gyi7iwJLpKpAZbiAf/9zMdq+7lSjs11MFOw2muDs37uwgpbSsIoa2EWy+oYDi43M3e87BIf9AHr1Do3rEmOlU2LCY/0Im5bS3y30jj7WUQDsvj/BmF9Av/XsQs+57dVnbaiDXcCzRW0KfnGx7V0pNquiMJmgoDa6+0YkreEuLmxLthxJcNQprspEjDSt+zJWVmFeeQb+doHs8wPnBLIxCXseQPDjX0H/9ey5aLWwMk8/AldeJJ/50sFqJLYMEQzYgOAnv7ZOgjkzMBecKcc6xXksfXtsPpGwOghWEXWqHKwAc/1f4Mn7ZXHd4eCkDezaG1jvSVbzY2DVtPKw0h4sddMag7nxb/DuK7KA/+rmN9zdsMMBOORYgsN/YP+lF7BWs3SsWYWz4/zuZ7KA33IA/BEA2+xI8H9jYJsdLFxaW0IvmfbgpdNWsrrjGm2z2tF5ansBcMKZBDvtHkpVGlaYUA3K5/Wxfgz8zZ2yzTv4WL9EyvGcdxnB6INDNTfbCrXzrdr17KNyyd5yx0Tw60ttcrcr4hipKyWwmvypSGQS9tLPQcK209l6B4JjTrWfF1gX7GuZ8H515YHMw3fKw1XsVdsDXVl/QzjpTFuxIdsKLe5czJqGueFv8Obzev4znBrdv6D+ffNA+13vvoa5+OfatvU3N28dQyhaQ+IlXK2wuuoS0f/nOduIwKqbgpWfbuPnBQqspCNzdoVgdZrYLlLRoECZN2Bu/Cu887Is4CudtLIXNlWnHwM2IPjZhdZQ2moXG9ksdOsWLoYgFZU0Kiuhrla30XpXFiSDhsIJTs1KpUNYiZcsknbjJKsQVv91i8ImLB/4fYLDjoZBQyyoxF6VzYahBikVuHlD4VgnAlc5lXyfDj5WgGHs+S2Cn5wHAwaFNq9cFia+j7nsN6IyzgMexkbTw/FnwNd2ioKqcGFNYTPXFWpgNTiJxlrg+wyAbx9JsPX2Ng6wAH4dZuPB6spx8GrBXrWoYKs6doyV0Lr3dA+ArFXpXvyflqpmOs/q1wvXd59DbLjMkGH2nP/nJri7kHv6onvgNHgxhIXMDKXvGtoZ7Z5JYFUGVr6EEg+radgaRVVKspLE2xYHonrC8jBasqpXsNJ6/fLDKlKNU83b2S3MPTfD24UFPN7N8zgXv2RVrBN+aj/f3AyvvwA9etgFrdUsLWlUVllp47eniy1kvjPaws8usnWm0mkLBA2rXK4tWM0GDgbg20cRHP5/sIHzshWkKifFmLyXw1dhAx/ffglsaZNrXHxVRx+rHWP/SrD/YS5Gy6l/Sxdjbr0aHrhNq133OomzkiNPJjjg8GKjugIVgLn3ZnjuUdz9MQCpPnHimQS7fMOew9YWe35TTjLLZKIVLaqqbBPZ3/5U5j3P7asvhxxrnR9DN3YOAbevt162GQ/WVgU266GHOHTYfFuC759s06iMgcZlmL//Dt56SRvvn/BMHM0xnsHAg1YiYXU4rBY1YK78vdRLag+s6pQaKK2jFnqSlS4PYzoEVuoJax67Bx67W2wg1zoP27eBfqw3mOCUs2HHURYGS5dg7v4nwZZfgw03jahrYeyOs4nU1WLOH6MXcH8OOYbg1HNsU4+sM6wXQJWNpse4OCZPDawAhrLtTrYKxshdQhVSoJfLRcvCpMLgTfPIXfDoXWIUvsGpPAd1+LF+4wAbsb7eBqG9K5uFCe9h/vhLUReXYqssvIqt5DqIvQ60AE55WSl+2eW3XwZbmhknscORJxMccoztC9C4DJoaQ0jJOS04hBysGiKwAhjAIccSfP8ke8z5XHid3nwZc9vV8Mn78t7JDjg7AdBvIMHxp9sUKrAPi6mTMX/6lXhJpzob7qcqPqxJ2axEkpIcwuUqLbNOA6vdsBLPSnUXe/EvPEPUgUlORNawkmJqPqzikpgXEc0LbG8S87iysBLbhTOymsfukZIgLc5mdXxBCvrWEdZD1aUrtDZbz9Gfzyc44Sc2TEBLG9ozWlkFdQsx550m1SfgGwdal/pGm0bd4AKqnFbdnAokoQsWVgAVDBpK8ItLYPtd7fuzrbbvYxCE0llkP2E+nHn4LimH0+I8vf+HBG525LH+9gorIeXzYVxV7XzM9ZfDE/dqw/SDbuEeBwxjxz0ITjxTSVVOmsrn7X1XiB5/Vbd6s3A88UxYf4iF1LIl0RAL7RgoPFyrYMoXmL/8xsJq0FA45GiC/b9jjfwC/aWL4f23XL/Dd+UbZ7ttW6CCfgPheydaqa66OpQA/3sf/Ovv8pmPHaxmEiY4N6nwBTxYBd6WSFgrBSvfZhWF1fvYCHjdQViKxTUrWMXlBdYSjU5eniTmU3BBocEJp3t1zothxftvwt03ygJ+yAUDDmDgEBsftPOeVmppabZ1l26+0nrxhm+jpI1MGB8k9pC6hZhfnWoX8Pob2oYbe+5vb2RtcC78nI163Nx+zQO3hwGLA4fASWcRfPMA+z1OxTJPPGD73w0a7O0nHS3q9/arcOd1cqyPAT8G+nfosX7jQHusgwaHqls+Dy88YWtAWSmmwXlfn3cPpRBWp59vQaIj+vU6DQKbdPzLk+3v629I8Os/w3ZfdxJmk5LEVN01Yzyp0KmvvzgRvn8qwa572bSfrt2cjzFvAfvUw3DXjVr6muekpGFI96DvnUSwz7dtDTEB7bzZ1uNpi/QBPOlCeXR8WEuM+ufXl0uxnJ3BMwmsSsCqELNSDZMm2JiS8rDSDQ5KSVb1FJeHaS+stkFKB59wZtg+rBSsPvsYE0bcf4oUnDvw+7b9WLcedgHPmma9aW+/RPDzcbDFtmFZF8ng1yWJ6xZgfnmKXcBjfm3LDFd3seqBWwhkW12ScLRIXqEiZSYDb70cwurkn9sYououIQS++ARz+QU2iHODoWECs0BKVKF0Bj56T6eVfIHt89dxxxqkCP78T/jGAaEqJIv+mj+Lui0q0VPu4dSIzUfcis23sbCqrIxWnw0CSCuP4AdvYn59qv39N3+zYTVV1S4QNg95Ew0BMRnbJ0CHXcj1r19I8PgH1pCeyYSweeNFzP8ehIf/rW+vOU7926ig/n3jQILvHGtbdmk72xsvYi7/jfw2BVvs8HPCPph+UKgGVdqTrhIvYYfBSp6wn36EuaiQL/U+8KwHq4oYWC3wjOsrXHHBzXsItlqEbbYp844zsFdVw/QvtWu5FdiGgUNtB+rh24QG1pefxvzzb9b+cOwY2PJroWqUUdKGLGCTx1z3F9hpd4ITz7IgEftLPo95/B6YPYPgyJOsSqjTWVABrBPexVxyDhx4pFXTNhgaagVNjVa1u/IiOO502Gb7MI9P7D66g/bkTzEX/EQf65YMGkrw27/C5luHNrSVOdYfn+dU79Awbh6/F8b9TL53qTOsf+wkrGb3gPga/QZZD2JFRbTCgV/t4cO3MWN/ZCE75hfQd0AoDTUug1efhZ32UHa7VNiZplDRQuUGbr6N/T2dho/ft001HrwDZk1BaQJ1TvXboBBHttk2BCefBYM3ioJqUQPmzuulDwHOHHIXxbXks2VUwMhtzQq0+8oksGoDVr87Q3ZxvzOy93MxRl0VrHRZ4/meN7A2BlZZlq+L8LXAlmw3KhrMGjfvRfU2mTkcFZxyjs3bq6iwC9j3Yh1+vN1vQRLyWr9XVtkFfM2fCY44Hnb5RtgNyBgrufz1Qth8K+sez2bDezBQ5XdSabsw/30twb8es+VfdGuoyZ9i/nyeLfuy/+EqMdqE0pkOM1k431ZH0Mf6w1/YOWYqLKhW9li/vlcISjnWv12oo9XnOC/aQmWT3MXCaqB9SPRbT1WiINrDL5WCmdMwd1xHcNXd1vMmAaTGwEfvYq4cR3DB39QDIB22/wi8phUVFfa7Pnwb8/H7tkzMzCn6HC1x9+YibPDqdgVQHXG8Dfz0x5sv2XNoDetzsBVe3ybaeDfngcq3T/mlkVeoN2EmgVU8rMxrz+sYlAeA6dj8Mw0rqcG+JAZWC4hWXFjGclRcUHO/CjiAwcMIDj2qOEdMezEX1evoaxt1fcrPYNhmoQH7i0mYC34avmf73WzJXN0YMxJ7ZBcw078k+NnvrIqRShVuQ/PYPXDh6Tb84OhTi6saSAJvOg2ffYRZVEcw/p5o/FHjMhvQKKrGVttbA74OKhXJSuxMC+eFqqmoMKeebT1fOSdBduSxAuZRd6zhwv/C3ReLCJuZbgPsDxD8dKyVlArnxITQFfAsXQJzZ9lmDt17huelqRFzw+VWbf71n60NqbXVfTYdLb+Tzlj19M2X4L3Xo6k/4Vylr2Xa3ce2e5AUE9xqZLGncnED5s4btFT1JjY4upHi1nEmBlYQRrRniW83t1zgyiSwioHVo3fDHddqWE3zYJVRsFqsbFYdUnFBzX00rgVXcNQp0TwxXw0EzO3X2sU5cIhVQ/bcL+zak89hnnwQLlMSSd+BBCedWehAE6ntJAtYzs2InVxRObfYZ03DXH6hLZ+75wHWRhNRebRkZROQ2WIEwfajQoiBhcqffinVOe1Hz73YlTLJRZt3iiSRy9qASt/or2KhzJMPwKUddKyzp2P+coEuFTxfue4lxqjZSd8HAwS/+rNNaBYJUUtHqbB0Dl0HWCN+ZVWhaB8vPmkrS8yaCtvuRLDPwWF1W12GWx5YC+Zizj0JZk/TqrEEbDa7e7U3NhfTWt77rw9HnkSw8x5hWIQG1tuv2BLPYSrRQ9jIdb/QpQ8qPGmqVd37LV6sYZKa04GwkrzAxe5G7KVglXM3wiJls5IYKx9WjSsCKzesiPfd48PwhbgcMbBeqjeehxPPskF9XbuFsKpbYMs0v/xUZOfB6efbJ7c2iostR3IPVfXLgrH7uf9iLv+tVTXW35DgnN9bu0k2G7Wx6DIsMud0xoKsqdEGi4bG8iVAd869xBp686pQnnYs5HOYP/7a5tdpo7/EQtXOt3WpVsWx2ms5213jJrU1OxD8ALC2ty22VXWvTPSciP1Jx3llKmx0+fg/wYO3hfM+4acOJirmTHtHs1nMH38lsJqKTZvJu/n0wKbPSD9N2HI72O9Qm96UyYT5l7ItbsDc/U8tpb0O3ErYS5Ay0pQPKgF5C8VdyXOJSrgysAIfVtcSVrXsRVjLKkfYjbk2JnShzoNV64rAysVb7crwEQTb7xpKVjr1QpKv7/on9O5DcN2DtpdfJhOaDj5613aYtqrTQncMvTn+p9GGqTpKWndMkcWcSkNLkzVE33xFuKCuuMOCQDdSCILysJr8mW0k+96rspu5wHrsvq+VJiJ2KyJeUHPDlfZY73jW2sDEMG0MTHjHFpSzx1rrjL0ddayLHQya1OITr1iVUwMzfPcEm1cnbcQKNbnSxWW0BVoVlbZy5x9/IWC0rbsGDYXtdil+EMh+0hnM3y+SRhdzseWJuzsjutT5sjDZentbgXTrkSo2LhdJkTIvPQX33SpS1Sxnt31bGc99w7kPKw2qJhXi0ES0DpaWsFjnje4rBKvxf7ISSmlYZRSsGjxYxSUxL1fFBW/+GVxZ3WD/w7w6TJmIgdi8+izBzrvbOKOKSufCTlm70N03wvWFXLQZbj7D+OZBNoDQtzWlM+GWyUR/n/oZ5pJfSOUDe7deeZdNQtZ2q4K7Ph3dVyYDLS1Wqvrjudq7Nh+pXHDcT6LGaW0YT6UwTz9C8PW9bKS1tFMDaFpmW7lf92f5y0x3rBt1wLHmHOgbCJs+tCjpodnBagO2G2VjliSxW0tWWqITT15llfWujv+TrqNW5+6Xao48Kd5Y7+ZvnnpYaq8vcXPcnrDjjx0n/cwGfK4/xEW0e7mcxsCMKbYEz+cfyadeBf7ljjNVwtOn7U9ZBSqJxVrmAatUtdF1O6xhJWE1GRudnCEsFKerhDYSLbwXl8S83BUXYsYJwJZsPyoab6WN7JVV0NxIsN9h9jik40kqBVM+sxUw7ZM3j43KrwV2o98gaxzXC6AAhbRSiTKFKgLmv/fCbwuhA8uArpzjotF1eeOIFOB1DZ4zE/Ob06V6ggRY1rnzW8WB34Ohm0RrsOsE9CWLbG5iRWU0B++LT2wBvQ9el2P93C3eXTvoWGuJdqRpUdJVswsH2IQ+6xGccpZrctEalawCrX66+66iyjoOfv9zeP813D7nuntoE8Dal7TKpu15ixrg92fJPLtjK6basee3bNWFkTvb48y2qkqsSqpaVG+DaMOejJOwOY8fu3te9zxMeYZ049modPfppUTb0mc921VS072DYHUfYapNL6L11xuJ1rLSWz0rWHGhxDgMIPjaTjGqYGVYhK1XTahaiMr03/sgDMWodTfffFzdouCEn1oVTkeeaztRWnVTaW2xtq8HbtVP/xpGfp3goO+FdqN8HLBCMJjH74Wwxr2U921xC6AbQLDn/mHlBZ0YLXPs3beoBIt59D/aa9fgFtxcF1bQEce6SC3QrKfuNDnVayRAcM5FYfqQX5deS1ZV1bZd2TOP6jguiYdKIWWJttnR2vL88+GkRFXFATbYCPb+NsE229n4sm7dbXmY1hZobnReUyVVtTRjnv8v3Ha17KEeGwz9HwWqDPFNWnPqfDSrkB4fVgJ0/eBeKVitVcBablg11GEuPldc3gKryjKwqo+BlUhWi1mBigtlho0Q3GjTqDrol7gV1aKiEubPsQ0WnntUq0WfE7ZYGsDwEbDz7mEuXsTmpKWijI3uv+AMCTRscsfaHyD4xR/sItS2EK3CCRQW1WOuvVRDYLHb9M3f1cYBbR2tRZVKeTWpVIfhOTNs3FfotZuLzd1b5NShjjhW6a6s+1TKQhR1Z2eA4Ie/CMMONLQ1rKqqnYfS2LmHkeaznaQukrw9H9/YP6x6KucjHxSgFXz/JDj6VOg3AHr1CZOYW5otrOKqYzQ1Yt54Ee67JSzPbGti3eTuX4FUhfpZx1JpKVNUv6UKVCJlaXtVdkXtVWstsFYSVh9iKy5UEnZi0SWNRbJa6Nms/E7My1VxocyxjAR6ssUIqzZo9SpTEQsr87+H4KIztLdttoOrPAn7AjYnLZ8vdmGnolKHefAO3Uij3h23Vd32OsjWP8q2KsBQbHCf+IGtG2Uh0OzOVx6pGBoCIcWue4eqlE5dkQBK1aXGPH6vlqoaHaxEbWtF6met3LGKlGGUO14Wo8Q0bQj0Y9e9bSstMYxru1tGS1XVUL8Ac04h/GAxNrUl786txPVZmFd1scAx7nyYdDRBetjmYXiIybs4O53HqR4mTY02rjAKqnex2RNT3PFWKVDprsza+6f7IS71tkalArb6WsbKgmqtAdZKwupNF1/Sn7ATi64S6ktWOonZbxvfoiQrVlCyApvyY3Px4poeaClrxlTMTVfowL55DlbGszHYp3affqFNxLfrpNPWrX7F73VJ3ilOapF+fbD5Vrbaga++iTG4pRlz341w/aVaLZ2vFoRR6kRQONbW5nBu6TQYCa5013LK5zYPMJQg6xysWol2QO6IY01789R9AMX2ZqWr7b4eTR3S10vU9apqeOslzIU/le+a4yTCLkQzJqSbEsyZYaUkCTatcNAqWgASkqAqR8h1aWzEvPYc/Ocm8fwJqB7DJmin3IO6wpOq0jFSVbOCtkBK90TU9io/bMF01HrPrFOw+vQjzB8KHqo4WLnITLLugiwiLLxXKi9wuSoutGO8CCzinVd6cvj/2bmnvPSLfN7ab674nbbfzHVzSasnmwBrFvA1/veQTTXRKhfufL3+gi33HIYEfOFu6G5K4oCafq58bjaqrqQzNov/2svgpSdEgprmzmEXZQsSlUJ6Mm7E0w9lOOaHYe9ELV21tGAev0/XIF/irkkz0ca3rR14rEZ5hKUOvzy4FrrNNl0YsH4xtAuSlYuRu/cWuKlQhuVzFy9V4x4CIsm1KqfOUJ58APY9JLz+qRRkFHxLgQusKv74vfDva/U73vNAVaWkqQp1jVMxYQpNClRLFLC0J7ClI7yAay2wVhJWz2GbXZaDVUMMrOI6MXckrAjGjc+asWNeBA4yt19HsN+hVqpJZ2zE9cxpcOcNuiTIZDdPeVLnlPguHpzJwHQ+mzDEPP8Ewe77hAt5cQPmzhvhf/drSUPiebopO84yoBefT4RRe4cG91QKmpswr78At1+jIfCJsskEHlgalbQyBxhsrrzYGvI328ruc/qXmOlfwh3Xhek3Ng2m1l2rlFpU2iA+rwOOVSQrDauFyiywsKBmd+tmpZtUOlqTqrLSSjjXXgqvPIXb52vuPNa4Y0gTbd0l52Q6C+YMMVeMIxjzS9dRJ18cOiLdx+XP77xmm0WENblanSPiSWziPjGgyihQBTHxVFoVXtKGCtghhvWy6yMYN35dg9Wt2LSKfjFqYClYrVTb+BU4viHYTPhdy7xtqlMrMoTdeVDSS4NabHXueE8Kzfr7w7KlUkoYtwjfdZ/R5yWjbsTNgEr2/jZsMcKZY1Pw1MO6SuUUZxfsQdiII6Pm1kiY1ya2p4MKEkv8mOmkNfGi6XI+q+JYW5SEXUsYc7dQOVr+BHwt+NlFsP5QlyZVaW1P1V0scP/2O3mwzMJGjHchTO+q9EwPi5QUF56TPgMIfjAGtt3eSnNduobJ+XNn2xiq156Dpx+B2VO1FDoV229yugrLCJTKV+Gpf3hhCtr7tyRGBWwi2lCiwwzrUcHRrNnAWl5YqYqbAqtJMTYrPFjpWlZ+EvNytY1fwccI5vwfpYBfAIdiC//jQhSmurm0YhuJ9iFMGRJPlra1CGjrsblkhyJ9+EIb01SnivYiTEPq7i3gJe792yEdbKJjspvfIrcoezipJaPOr6iBAhYBQD22QcSOKp7oc7fY6t33S5UMHRe3Ko91kZrjQnUfSNrVycAYhmxCcNixsOkWFiRLFmGef0J7AT/C5uD1dpJVd8LATrnnFqv5L1SG/x8ghfTaN+rdeXvf7U881+IISilI+XYqDapl7ZCqsnoNrCqpao0G1krAqgW400lW/d2N4xvYl3iw8vMCF7NyeYHtH6kU5rzTxHPT1d3s/bAdUwZjG4CurxacqLMt6jjq1AKrU9JhkwJP1t3k/R38BhDtp4i3gOvdvvu675cn6gx3zmrc1pto5yANqzoPBNI8ttHtL+MWdR9sBPwgYKDy4FZ581pVx1rnqYCy70VqEd8KjC5xFRucCviFerDoKHS/A3itB0ZJXN7Tbdu6663HMiVl6rSwuM7hEJ9KI+pvs7JT+VJVYxu2KlhFKqAPrMw6Aqs/uAsnsOqhbnyxVYidQnsDV7htfEfJWmpLe65m7b2Rn7UEszBG6hBVNsCmX/R0IDDeTdyibubGGAnmE2X0rnDns4+6iUW1kKd3o5pXrSetiCTQ6uYlLn4dz5ZVxt/cajrWhZ4KWE807arJSXBnYjtbixT8hZNyRIob6OAtdrecUjnluxao71uo5p8FHsUWjezj9jXEPSzWI0zID9x+007V7KJCSJo9+1LeA1WT5/0rZVRvpjiuapXZqtZoo/tywSoIbEF96+rXsOqnVBUNqyVlYLVCbeM74LEC0RZIEC3r0apAm3cLwV8Etd4CFgkxpzxTOrhPp1jklY1Il88RaVOi+VNKHW0hmrYi5XGbPZvVQgWYBsJaUnl1P1YRxj/paOrVfaz+PJd5JgGDbRR6tbuvapzktoGThLsqUOWVgXqZpxbPV98pYJTqCK6dcwEaOvG6Wnn3skRLEld4ElCrd+80xtipllA6tUbXszLOQWTM2DEkwFoZWF33FzGuzsA2chRYiWTl11/XsJrfBqzyrB7JKnIKPGmgSRma88q21KLAUOfd/A1K4jDuHKTcDd+sbuDFapHnYgzPEnvWoqQr2Z9eAKKu5EpIaKIGLlKSK24/aXWcEqBY+RUca61SgZcSzWSQxatLAKdjvG/akylwbPKkOC1dNXjnROZd4UlCS4gm5Osy3a0UF8tr8c5pY4zqFwcqLX0WJKrVfP+vOcBaCVhNwmabZ5Rk5bfhWuzBSryCWvRv+gphZWLEd1GDqpSqJYtCigkuUh6zRYTxYloqEnWhSe1TnshLPbveImUXWqRUlZSyUVUpsOC+S/ahJaE4G4uoeSkl9TYqY/RXdawCj6We+15LGakY9R2KI8MDTzKs9aRNXT9tqZI400rK0vPXRSS7qvPe6kmlTR7o/FQaH1S6DEzOV/++SlB1emAtF6wWN1hYfTZBw0pKwfYuI1ktULDSeYEaVrnVfsFCQ6OWrCTaWhbbMs8u0qSkBEkfWUo0t0svsozaR4WCQgXR3oqLlNNhqbKZZRRoKpUxucnbhzbYL1L7afQ8WCJZZTrJsS7xVMBs5F64+Bpjzv+RKfGAaVVwCBSAmspIcRrgck5ESmtW89PxW02EjVC0fUxLkrqKgg+qZUQTlVs86azTgKpTA2u5YfWnX0uB/Hew+VFppQZ2p3Rnm/nEp9p8dbCKXwDNnooh1U4rlMG12XuCxqVLoNzZuu2SSC2yGIyC5FJvMbWqeyevpAeZV6VaUC1E8+98qMjiQLn5O8uxaqBGmiwE48Yb76GiQaUlocDtJ60cBYuU/UpLcX4gsrZhNhGNSNfnRcd06aDXFk+yWub93OyBKudDuXCsnWhkOiGsRq8grF50bub+xLfhavJgJcCqZRUkMXcgsLIeFHLqBtaJxK2eYdZPQjWe+iK5fDqHrcK78Zs8A22L2k/W87iJly2jwKIXsPY2+ZHRgadWdZZjbU+ZIN8RIvZFkTYFJlllO1ukpMM4KU5/j0hYKTVfefB2VVJjiuI66r5aWOqcaTU33xlB1SmB5ZqFPgTA4ceXh9XnEzGXnS8f1bCK62wjF7hWwUpLVivUiXk1QSvnqRWyuNJK5cl53q9Wz+hqYhaxSEo6NSRNcRpNS4xKlPJgJfuoUAsrp6Qhv553BALO09TZjjWSwFsGVr7anvIcAzpwVufkLSOai+qXYcF7YOlzJGCU6HxVE7vI0N5CtKZ63DnrtBJVpwWWg9UbuGahwQ67thdWj2NrTwustGSl23DVegb2Wg9WLZ0JVm4h5z1pRhZc2jP46viaojZKcixm7Bh9U+vyti3ePv39xcXemJgFq9M88h5ciqAi8+rEx9qe+8BXB1H3XaX6nmyMQbysFGfGjjFKZTYesBqJr66gz0ur2rIx9qk1BlSdClhFsCrXLHTCO5irCo1C/4HNQvclq7g2XAs8WNUrkTySE9XJLl7eu1njWn3HtV4quhGVNKPfEyiPGjFgMBQHCeYpbo7ZWmZOuXZ6mzrVsbbzPtCqO55k6Es+2RKSZqnzYpRU6RfQ09UVUjEAzXtScVEvwDUFUpEH+VedmtMuWLn+e+bJB+H+W0rBqobiBqc+rBbSAc1Nv4JzFHgqDp6aELnB2zoGtT//tZTKg/fk921OQRmwmFL7WROOtZ3XRjdqEIhoKU4DNk9x5HnJ74w51ylKN4YoBeD8ih5fO45/1d77nSmXsCyspMtIMayagb9jy4KUslk1Eu3GvID45qatSl1ZI584nQymJdXbdeAcaKD4bbGMJxmaFZFyYuAVB2AT97qqrsE6AyxXQuV1YFBZWBlji5E9cZ/A6lwHm7bUQN9m5fcLXPVJzMlYV8EdtKFCrjUQX93AynxFByn1ngYxanQxrEQNNAZz01XScHMhcKGCld+Gy29wqnO0OqS5aTKS0U4pMrmfVtFY7cCKFKcbPoJgv0PC6okCq4oKB6sr4b3XwJZ1/Yt7cmlY6c42Pqx09HpnyQtMRjKSsaYAqwhWR59iPX8EUW/gonrbCql2nsDqMgcrMa5LXaR0G7Cqp3PkBSYjGclYAyWs5YXVy9iod0NxSeM0YexLKVjpvMCVbW6ajGQkY10Blhk75o42YTVjim3lZGH1JLbWUD8Fqx5Ym5VOdfBLdfipNp0hLzAZyUjGmgIsB6uj6VFDcPD3i2GVycAXn2CuuEg+8iTwVweqvmVgJd5Av4yt34Lrq84LTEYykrEmAMuMHXNVAVannWMbXIqBPZUOYXXl7+UjV2D7p/mw8hucajVQB4Suqn6ByUhGMtZmYLkyMT8BimHl1EDz1MPwyJ3ykYuBFxSspDyMhtUyonFWEragYdWp8gKTkYxkdHJgFdW0qumrYGUlK/PUQ/DIXWDtTJc5WPUlDAjtTrQjTGMZWK3yfoHJSEYy1kJguZSbKwqw2mxLFRSahrzB3HUjvPaswOo4ByGBVa8SsPJ7xcVFr3fqvMBkJCMZnQhYZuyYTVH5gYWaVgKrXB5z+3j48C2w7ZB+7WDVrw1YLfZgVU+SapOMZCTAWglYDQFuoVQyc0M95oHbYcJbYMsZn4c1jkuFUIGVFNX3JataBauvpgVXMpKRjLVGwroWibXaY99omZiGesw/LoH6BQKrXylY9cYGhErhPYGVtESq92C1mCTVJhnJSIC1EtLVHcABDB4WBoaKZDVjKuaWfwisHgTGOolKcgLbgpWogrpof5Jqk4xkJMBaIVidg8RaHaWi2FMp+GIS5ro/y1sfdGqgqH9astK91UQNFMlKhy0k0evJSEYCrBWG1RHApQDBMT8MY63Safj8E8z1l8pbxwG3O0j1ipGsdLslKb5XRzRsoahRRAKrVT/M2DHDgI2ADYFh2DzOPby3bQQMVb8vwlaElTHFbV8CU4EXg3Hjs8nZXSXXqj4YN75ubTy+lSrgp4vwBUefBttsV1ADzbOPSdE9gHOw3XB6K1VQWsfrelYaVqIK6o64LZ4aSAKrDr3ZRwIjgU0dkHoDI1bhV36A7Xj0XDBu/D3JFVhpLedQYHf3p38H48Yfsxq+d9XuvyMrjpqxYx4BDmLUaIKDjrBG9lwO87+H4IX/4gA01sFKVMA+hEGhXQg7CAus6tWmyxkn0esdD6cdHZhGlgXT4GHQfxD06Qu9+tgbZ4Ohro6ZG917QPee4e+tLVC7IPx9cQNmUT3U10HtfHjnFf9bpjl4/S0YN/6t5Aotl9AwHjiocK0a6mFxHUCfVS1prTEVR10k+0H0qAmL8C1birn3Vpj4LsAc4PvADKf69VAqYBei3ZilFVeDgtUikuj1jrqpMsBebhNA9Sx64/ARMHhD6NXHAqmq2mUoEIWTrgAsfw+8qsBVXWDQkPD3QUOidYO/dyLULYCZ0zBvvwKfvD8UOBY41owd82/gtGDc+MXJ1St7XbcBrgN2pUcNwTGnwpBhmD+dF70+Zu1ZLitjwzocIDjiOGtkn/Yl5o7rYFEt2MDRHzrwCKx6KFjpdtstHqwaiIYtJNHrK3Yz7wgcBnxDqQlFcAqGbAx9+zvbYwkwBUEUTEWQCqKfC4Jyj8zwtf9A6D+Q4Gs7wZJFmHdfh+efgEW1RwMjzdgxRwYXXzMh8rlkaIHhCqALw0cQHHWyXYcfvSfS1UvBJdfWxUJrDT6XK6QSOsPeZAYPIzjux5j/PgDvvCz//o+zWeUdpHoTGtm1zSqvYLXIgUpgtZQken15r0k/ByiRooZG3rDdKBi2mZWc+vaHisp46PhgkvLVQcwWJ2GVkrhkoWhg6b8ZA/k8LF6EefRueOtFMSnsAkwILrnWRD6/bl/rcYDtJCwB2gDLlmCuvBgW1QEcCdyjnjyRE9dRa2lNUQnrAVsd9JJz5W+fYKPcr8Z2senuJKqubqtSoJLutUsdoBYpe5VfzjiBVembZVMHqUOLpKjhI2DTLQg2Hg4DNyiGkw+lwpaK/p5Khe9NpdoHMWKgZVTXKeNveQurfB769CU49jRMv/Xgv/d0AZ4ARpnzTpsGmODia8y6LHEVasuh83Tt9TD/vV9gdSdwH9FO3JH+kGbsGNapRqrqxE0DXgLOdKDp4mDVgzB0oTthKy4dviCwEntVEhC6MpAaNZpg861h0GBrBC8lQRVApCCUigFVoP7nvz8ObkFQXh30JSofViYPuRzkc9Z5c9+t8OyjAI+7Yw67JF98jVmXoBXph9CjhuCE0+2DSGD16rPw8L9FcNjdraVASVe6J2KHdX9eY4zuwbjxx5ixY37iJKM01oheqbYq91qB7WyTI2xpLr0DFyt71TKS2uulbooMcIJbtHu7hwL0qIGddyfYdEsYMqxYymkPoARGkpVQ9uegDYAFUXuWL2FpKSufD9XAfC6EVi4HuSzksgSHHWvtWvULDgD2B56S+8ic/6N1poKse0jdgqS9fftIa3OUh8YXnwisAE512ksl0c7TumU96nWNGisbOFpPtNNtRm0VDmR4J6tJqX4iVRVVCE1gBWbsmNEOVFGb1D4Htw2pAkg84GgQpdNh5Vf9t6WLoa7e/m3OLExzo/1sYyNM+cz7Pk8F3GQ4dO1uf91sK/v3jTaNUQuJSlYCrqyFFdmstbN95wfwr78BHI8Ne2h1X5gD8muqarMc90DYHd3vhxAE0FCH+c9N8vbTgY+UnThQ6y/rzp0ArMiutS4AS4aGVlqdrDzKw0c0kl2kKu0JXOdrrytp6viIyrfdKOtN23Bjl6dZClIKUBFIpaOAmjMDmpsxc2fZ8IL5c2DmdPj0g447Fv3LHvvD8G0JtvyaDTCuqnIAMyG4tITV2gLZVoKd98BYYO3qTAuN7uEWFKSttRRaEVjtc7AtKKDT3nI565lvWIgzsN/tTC8Vbm3LGsy6cyaXJeX+zroIrEDBKvBE0FalP2cdmMQDKPaqJCA0FPvPcirfloANAtx5T4Lh23g2qTYgJbXHghTUL7Set3mz4dOPYPYM+GxCW9ORmmMpYKa7RtJWbb56KI0ANnD2SoAv3Oekltl67nUALz4BLz4RQuyYHxF841uw1cjQEK+lrEwFZFuhfwY22wY+m7A+sBXwqZtXk7rX1jpJy4WlvIBfqklV7TX33QrTPsepymcQ1pHztZtmZbvKAsGael46sryM3Cya6HlF8xb3t0a3+Z7AdRJWSu07vGCbEmlqsy2jkIJiqUlDKpeFWdMw8+bAZx/DxPdh4dxSX/2xe2hMJ+yOLTbFKmWLFPVentrVwChsXmG6ID19PhFmT9vEGX1zbsLT1QOtJ9YJsx5Qwx3XZMwd18AhxxIcf7p1FAi0MhUWWtmMPcYNNxbIboENSA68+86wFrWH1+XFi2CVTkMqjXnmUXjjeRzAzyd0bFW7ayUqX4sCV6snWKyzwDKeVJVWJ8soHbpZbdoTuM7ByiWNn4CkVMjNOXIXL4gziDeOp9NWbZo1AzNtMkyaAO+9FvdVXwBzsYnHnyo4VZXYeniASqttI2AbJEr+pJ8RHPQ9qO6COfkQ+b4uys6UUsBqIWzHVgEMBAby0O1dzVsvEfz6z7DT7vbYjAmPMwhswxI7+rjNB5UBzNogZUVgddCRBKP2jsIqbbtM8fh/cA/9091Dphdh+JCcMLFZtSgDPGsy3DMdCCtf3BSaa5C1Eg0GXedirNwNGdqnetTAvoeEap+2TRWkqXQIqalfYGZ8CZM+gg/e8He/BHgf+AyYiA05ybqbuIt7+lYC63tSlAZUxrNFptx7dgBsrs3+3yU44afQq8Ye09OPwJzpAPOUfQklaaXUgpG+krMcSDdj1tR+5qffJ7j3VZAcxcA7fjt6Yws+5tRDsCChs4Z6vuJgFYmxKjykMjB/Dmb8H+QjvwNmu/MiMY+Vyr4nsIoLbTDrKrBQRvWsOim+S1XfZOucJ7AIVIOHEeyxH2y+lTKie7apVBqWLYWpn2G+/AyeeSQOUO8A7wITnBRVreAk/Ryr1GuFB6m0glSKqANFpJrtgL70X5/gpDNhlz2tFNS4FJqb4JZ/yHw+IRr/g7c/vQkQPwY2Bwaae24i+Ml5zv6mzsG7r8v+G918Wrwtqx6WZq2F1eJ6zHWXyUeuxsanSdWTboTB2TkPVP66y6+p66gjJayc97M2wOfVVnjfOhJDUwyq0YcU26e02ldXi5nyKXzwttS/1+Mt4FknSX2ppKcuzj4kP2s1r7KEmpfy4KJvZgNsja3oADvsTnDq2bYiw7KlhbmbO66D+bPA1riaqPalX7V6KN8tc6l0tq6B1NdCSzNUVIRS5bxZMGca2BCaLg5Y4rQRW6iW2tcuWIkamM9jbrka6uYDPALc6GAlgdlS+cQoI3vW02qydGDQ6NqgEsqrH2Hrv2etr2O13KCqr8VM/ADefQ2mfqZ3NRN4E3gGWxCvSUlRA9TPXTxJqtJT83xAyQ3tX8O8e/9ewHAAjj6NYJ9vW6mqqTGc/7uvw6N34Wwo92KDiIMSthId9pIhGmC8NQB9B1iJLZ+zMVipNOaJB+Tz9c5OozMkJI4vs6Yak0um2viwuvVq+HISWM/h7wir9op0lVEqoIQTNSugR7zx66RKGIwbb8zYMYGCFDE3jdGv6wCoRgNnAwe0CaoGgdTr4p6W8ZGD1NPutYtS8/qr37t4Kl9lGSkq70nBec/2I1tP4GBgKDX9CU75mQ38lOBRsa1N+Rxz1e9lvnc4g76GYd7bNLQ0sHYHNqLvQIK99oemZZCvtnBcugQeLnQFn+FsNN0Iq35oF/4aB6wCrHrUEHz3uHhYZTK2O7q1V76HbThco6QrbbdqIQxjkBhHySBp1nbjdVYlFACpnCJT6j1rOah2BC5EFVKLBdWyJZhPP4LXnoNpX/iQes1JKpMUhPoqOHVVEpWv8mkpKqUkqDg4ZZW6oH/+GnASUMk2OxAcdSp06w6treExpFKwsBZzbaH09c0OrNqwnldPef+pHhCGSuyJTTciOP4nUFEVSnCAueNamD0NbOxXk/uML0XKcQdAYMaOCdaE+y0Cqx/+PJpqE4HVI5J204QtM95CfP9OOc9NDlJLCUs0rTUpbx0Wh7UOB3z2wFZ8PBYIvX7bbh8a01tbYepkzKvPwMT39McnAK9iS/J8rBZibyU9dVU/d4mxS/mZBb69MKvAoX9u8f52NLYkCex/OMGe+0NlpY2H0o1wF87H/P0isaU8A/xbgUODsoVoYHBWSVopp27+BCA4+Wc2paelKQTjGy/C3TfiJIOPlH0q7TkM1ijpyt0v18bCSrIRHKz46F14+A6B1SkORH2ddNXd3ROBuoZi29P5uX5NuTXadpwhGStz843DBnxaMeqgIwl23C0EVV0t5r3X4fUXpLAhzsD8ilvoryg7Tk9PzdM/y1bhSRUoKJkS0pO2X2hQaUPsb4H9AIIf/Bi22d7JSXn31Hdeu9YWG11tYfUkcLGbF57hXmLu4oKEDXCMs8NUsd93YMuRFuoiYUx8H/PHX8j5etPZq1KeOhN425pwv0QrLpx2jq3oqmPrBFZfTMJcW+g2Nc7Z8ARWUlcupa615Ohq215Rju6aLlgkwFpxO9UFBYP6dqMIvvWdMI7q84mY99+Et1/WH3sceBS4TYGnh3vVYPJtU1WeRKEhpaWonAJRS4mffUmrH3AlsB09awhOPAPWW1+BSqkouaz1UllbyvtO/e2qVLQUUQeLhpYsnCw20NEav0YfSrDXATZC3/UDYP5sDavHnNOhh7tXI6WyWYOi3COwGj6C4Lv/52rgB8WwWtyA+fuF8tE/ufPd17NbpdQ1144IyVbw2+GtFV75BFjLf+NdJaoMg4cRfOcHti5Rawt8/B7m+SdhxmR5+yfAc9iYmakOOl0ViKq9rUsJA3oqRt3TkpQPKF+qavXsVVlgM+AaYDOGjyA4+PvR+u0S+5PJQD6HuXW8htVvneFb3OmV6mmvQ1skHUuMvjeK2hmccKaNQdNjwTzMFQVD/jPYOmv9CT2dAkGtZkZiizrjoiyC1dFe78502qYjCaz+coF89D4nhfcj9ArqLlOt7mGgK/ZKo+FG1gKvYAKslbvxXsFWDYDDjyfY/uuQbcW8+xo8+aBUewR42UlSd7gbpSLGUF4ds1XGqHzacJ6NsUO1tEOS0hHhOeDbzo7She1GERx6VHQBaVhVVGCu+wu8/7qWrFqw8VBiR8kog2+LUg1F+tsW+COwS6FZwtCNo3CcOwtz/WW2coSF1Q3Y9B2R0ioIq300Upw4T2dclMsFK8Bc9luonQs2ofkWBSuxa2bUeV2qYFWv1MFG1tKKvQmw2n/jPYYuoFZVhXnteXjhCQ2qx4BbsR2uJd6oQhnJqzxVrzpGmpLF3kxxlHJLGbWvJQZQGlIihRzvnASUqgJAOmNfKyoxTz4oOYofOFtK3kk9PSiuItsaM+dzsVUoiC0+Jw13r/2TPoeXYoNgRYpoVtKV2Gaa1N+zdEJ3fduwCh8KGIP55xUCq1edVN6PsC2enGvxvmpY6f6dy9YmI3sCrBW78YYBBzB4GMGu38S89hy8/JR+y2POFvQs0eoGugKrHy+lPX0Su9TqSSe5EsZy33De6j1RczEqpHEwPQogbHwbxD/tKypt0OYDt+LAcIWb2wDCYEXXyaIImM3YkIVjge0LDgmdyOskOfPOa3DndXIe/wH80y1UXc9JkuibYmw0LUQjuDvLPbONc0wMahNWlVWY8X+Gd18B6xG9KQZWFepciBpYB9QSbTa8VhnZE2CtwAjGjf/SjB3zODO+PMDc9Hf582wHqCuwuXza3V4KVpWe2qdDEVo9tS/r2Z80FHxpqhykjAPMNcBRRUGKqmQJFR6s7r9FYHWWWyQDCFNBBLStRIsz9gJ+DuwGwBYjCPY7zBrzNaxyOczj98Hzj8n5/KVzSvRR6rPurpQl9ILpzkrNnc1OEym8N2q07dspsNLnWmD1+P0aVle689rPnctuClZis6p3sBLJKs7IvlZWQEmA1X5oHejSbfZwxuAH3dMtrWxOGlRV3s9xnj4NGd/b19oOw7mfn1nIA1QBvVFXuh+kGPe0f/x+uO9mgdU5DgwD1NNeghUFJI1uYR3hbHxV9KyxhvytRqoa7+776utsUKhNQZoL/Awbxd2baP/KjFKPGwkbloitRiSsHJ0kobeoSmhMLasIrP57P9x3k5zrfzrnRV8Fq0oPVmKvqiXaHd03sq+VIwHW8kHrBjN2zI0UVx/QsKqidCMOiMZNlYo89yWocpJUwa3vP1EjnYHFld6tR2xEtbWjYL2BL/xXFtCvHBTKwaoLtkHEdgUVcfShBHuMDnsfRlTAV+HO62WKTwNj3aLTvSt9CU73r6x3EoVuWtIpDMttwsp7MPDZRLi3AKvz3Wt/wij2Ss9mVa/UQIHVUs/IvlZXQUmAtVzEKsQn6goE2rheGaP2pYjPrSuXItNawmiucwHL5mZGSuyW8k6l0gUVEMD8868SOzbNqbrNDlZ6AQmsumK7Sm/ljh32PYxg5z1sOo+cJvECLluGuecm+OhtmeK/sPFY3QjjiwRY2vPoSxaLFLCaO4vBvd2wqqy0KUifT8T8+Vfy8ZvdOe3vHgzdlRqovYECqzp3LsTIvs60xUuAtRL48iQsXRUhTXEtojiJKkf58IOiAMn23IxlS+z6QYqVVfYz118usJqI9VAFHqwq3O4HA5sAwwpfuP93CXbZA7p0CzvjqHI55u1X4b/3Qf0CsJHrf8HW8RJA9VSSlfaGZZUqqOOMltGJgiLbBStRAyuqbBG+P/1SPn69s135sIKoN7BWbRpWLaxlwaEJsDrqxjz/R346iF+MLq4PnKHY1Z+Nka5KqnvLcxOWLbGr7VUaVtf9Bd5+CWyg67XuvtAJtn0cpPpjww2gpj/s+k2CnfeELl3CvoO65nxdLeahO2BCQaq636mARi1OAZXYraS8dtYtyMWUD4r8SqWrkrDS9sGCzaraBoZeXggMfUDBqkZJsaImLnXHLaBaqFTipXge0nUhnzcB1opLV345HS1BQXGZlVwZSOXaY5Nqx+Ip2ca8yBNYWQXNTZibr9KwusE93QVWm2BruK9XcBZssqWtjbXZ1nZBShNUCINOW7M2Rs16GUWq+iu2+GBXBSiJ5RLbWEpJVsucFNGgJKxOJVW0H1aV9nwvbsBcfC4smA021up5J8W2BauFHqz8c7DO9ERIgLWC96r6WafK4P1cSrLKlwDVCqeWlK2tFOMJZFED5g+/lMUzCRv7U4Ft27UjsLFbTHYccSLBtjtC//VsGlLOtpMvgEokuAnvYO6/TdQ/3H7HObtUDWFKj9S2qiaaftTqwWqxMi53moW63LAKAh9W/1Gw6uGALbASm91CwsYddaxD4QsJsDp+6MJ0pWrZazBpUK2wyhezcEqXKwlSxa70CvekD2H1MrYJ5wjg69j2XV0B2GIk7HMQwfa7WnWvtcVu0mZeq5pzZ2HuuhGmfCpTexobU/SZW5R+8b0uSqqSpgnNClZiXF8UA6vsGgWrVAoz/k9yvt/D1jwbQDS9ScOqXklWYmTXoRzrbB/PBFgrLmHpctAaRn6HEr94nqGDamq3GWMVcaUrteSSX2hYLcHGQQ0t7Pi7JxLssidstAk0N9s669lWW1VBjOpiq6pbYINMX3tWPv0GNgfuGQepvgpWGlS+VNVEWHRusdqWKVhl1yhYVVVbyWr8n+DNFwA+xwbH9new6qFgJYG3AistWfk5gutsH88EWMtjuLIlofEkKDx4EQOsDlH7SsKqVLmSgmRVGaqBoVoyCYlGB9hmRzjwCILtvg5dulpItTQXWsaTz0VhtWwJ5uVn4JFCCePPsakoVzso9VP2KV0yJ6MM6zpsQQzsSzypShbpmqUGFmD1Zw2ru5WN0IeVL1kJrOopTmhea6ovJMBavVJWvgys/K3DSp+4tva3UK4CgA5bqKyCzz7G3HC5wApgOAOHwLedJ3HIMFtEr7XFNoIQUPlSVeNSzItPSdlenGR0L7bWeKWSqLp6EpVE+QdKRdblfAVWccXnJP1nzYFVVTXm0bvhzefLwSpQsGpQktUCisMXIqVi1tUKvwmwVk4ljGu8YbzXDq3RFFk4bZUrEVh9+hHmD+eGO/n+KTYcYYdR1h6Vz1lYZVtDUGWzoVE9CGDpUsxL/4MHb9egehobQjFf2an8uvMaVLp8soDKh5WUj9FJvGuON1DD6t/XifR0n4K5VAv1YbXQg1WdUonXylIxCbBWk1qobmRWJZzaXDh77Fu6AoAsnk8/wtzwVzjudIIddrNF87p0swvOGDB5K0XlsqFEpY3qtQttdYowREFGNbbhxkEOWAsIY9KasMnhLe51llt8UtBvqacCLlFqYRMxzSvWYFj9w52XfkRLG5eSrEQVXCcDQxNgrSZ4rYaFc4RTA8sn1RYkK2ceWW99gpsec/9z/w8CJ1m5LZe30pSACmDpYsx7b8CkD+37+w2EBXNKTa+/2/TYxvu9Dlt1dQLwNrbChVb/moh2d/nKG+6uEKyefcyHVc7BqqeCla4UWquAv4B1PDA0AdbaoH+WS7WJS6qtrIaqKqjqAgMG2fy1TIV9n0hWIhhqcIn6l05DTV+CvQ+E0d+OhkdIcKjkVRoD9bVQuyCU1pYuwcycBksWwZTP4eP3oG6+9NIbCfwA28fwDWxV1teJ1mvvDOk2my4vrPh0Atx4ueziWgcaKRMjamBWwWqhg5UASzyCS1lHA0MTYK2ZgOqHLWOzAzbBeHeIKbpXlFRbaSElsKqqDv+ezrgAT0LblFE+AUmnIeMsTpIL6FpPBR6oIARdrxrbgCObLdi/giHDlC0sC/V1MG82Zurn8M5rMP2LzYHNHbxewRYXvJ5O0EbdeWBvWV5YmYvOkl3cS7R/YFdCZ4O2WfmwEsmqOYFVAqzODKhNHZR2dKAaUaR++m3M/Ty1iiq7cKqrFayq7KLKZCx4wEpBGjq4fngZwKRDKUu+Q28Fu5cJJTJRI/N5u++8txn3/x49oWs3gqEbw+6jYeE8zEfvwfNPwKLaUcAobK35C4OLr3krlAK/EliF4SJ77LsisJriwSqlYCWS1Ty3aclKB4ZmE1jFmGGCceOTs/DVSFCHAXs5QA2NvKFHDWy7AwzcgGCDobYrj1dauCggVBaPQKuy2sGqwklITnbJayN7VhnZVTf5VAqmTXaQSoWSWUGqcvauIRtBq0hVbsvlQkkr79J3Cq/5KPDE6P/pR5i7/ql7N54bXHLtZYX3flWw0h7YSNUFd86ru5SDVW+iHW6kntUCbNHCuUq6khQkaXqaA3JrSAfrVbt/7/onEtbqA9ReClBRCWrwMBi+DcGA9WH9ITZaXSQdgYivosXBqrpL+LvAKiMRBUBgoK4WFsyzJU7mz4Y5s2DWdFhUDy89seIHuc8hFkxDN4aqLgQbbgx9B9g5mDSk81FIaXhtNZLg13+23sgHbwO41Jx32g7AMcEl15rVAa4VgtWiesw1l5aCVVcHK10ix1cDaykRxZ6smkQlXN2Q2tEB6lCxQfkSVLD51jBosLX/xAEqsjlJJxN2tCnEWWnpSv42fw7Mmo5ZOA8+nwjTJ8PTDy/PIcwnLKHjd1cW41efwl+efih6/PLDplvDiB0JthoJG28eQsp4amMmY438G22KuelKaFh4FIA577RjZXfBxdeYVQGu9sOqIgqrC8+EeTPB5gdOwRrYRbKSPopNROOsNKz88saJRzBRCVcrpI4oKUWNGk2w4SblJag4SAVaDRQjuzzpnR1lzkwrMc2cCp9+rBs7xA0J3JTcvcVq0TQ4MEkxwgr1szTMkEUon5etj9tHP2yQ5CbYROouhW/uNxC+eSDBqH2gb/8QVhG1MWeN83+7CBoW4kDyA1QqVAcH4rYNK3FqVLqHwqJ6zO/O0rB6WsGqq1IDG5UaOM+pgdpupQND18i2XKtbJUyA1TGQOqzIFjV4GHxtJ4LBG9m0F4GQAApCQ3YpQOmfU+pJn6mAhlrM/bfDUw+WmpoEHUKYyyjeJ+nGLIGcEk4A0Qqqunpq3oOdjlSXIMdGZYcRt3xfbL33HYEtCrPb+9sER51i8x+NceVqXHR9ttVC6/ILpEzNn4HfqOMwqyQfs2NglfFgtTAGVrVE61qtsVHsCbDWZEgNH2FLsbRHihKDdt1C6zFb3AD1C61Xqmdv5aVLRxdPOg0TP7AVAOyiARuQWe8WSd5BRmpOVRJNNm5RoGr1VBEBlt50qWeBXbMClLzK3yNVFYgmfvcF9nbgGkT/9Ql+/CvYZvtQ0hJgZbMw7QsxaM8FdnELvrDflSzLUx5WEogrNdirraBoLjkXJr6nYdWXMC2pQsGqQcFqTglYNbOGp9wkwOq8F2a0gtSIIkhttKlni4qRolqzMHcmZv4cmDwJXn8u/IIROxOc8jNbKSHwmkRod/qEdzC/+bF86h3gcbdg+hA2c5BSLpUUd+vxm7JqsBAVAQvmqLyCXbPamoi2jM9SXBq66FS6eR3uJC+C3/0DRuyooJUteBrNHdfBk/eLUfvkmO9Zkcqs7YOVlDWWygv/uETK6HwCPELYRr4bYR36phjJaq4HKz8wdI21WSVews4JqrOwOXNtQ0rglG2FuoXWrjR7ho34tn34isfIrxOcdq59ivuQymRc6/gM5vnH4dLz5FMPYIvjrYeN95EGp9WEDUibPVjprjwt3sL3O/LENc3IKmi1UNxxWkPKN9jrnwPgIWA6cIi54CcE//iPVZ3TGchnIJ2FVIrgkKMxFli7OjA0qn1kWU6Pmit4uDKwmgo8p2CluzI3E+YGznfAmk+SH9hhIwFW+Zu7UCOdHjWw7yEEwzbz1D0njMybbVW7ebNh4gcw7fO4XS4GXsPm040BqtluV4If/9rCKq3UPw2rTAZz5w3wz7/Kfp5wasYgpfp1cQvHeEbcuPZhpZqyanjliO/wo/dRVOKZ4iYdaaKNOsQmlnbnoR8wylx1McGl/wylUkkD6r8e7LAbvP3y+tj+h/8j6rXMmrFjlkc9vHYlYDXFSbTVymZVqWAlrbjEG6hhpaPYE29gAqwOh1UNruww+x5CsO32hdrczJ0FCxycZkwRm0YcnD5UgPrEQWYrbEniao44keDAIxSsMmF5GAFWLov5z78EVlngKbcABiq1TwzkOQUqDRdfBWwhvr1Y3BYHrjhQEWMDSxNtgeZ7HyuctDKUie8N5pMPYYsRUWClUvD1vaQF2Z7YvEO/9hjtgVa07v3/lW0fLwG45vIL4mAlamCl+36BlVRdEMmqnIE9iWJPgNWhY0PAGtADME89DAvnwyfvl3r/K8D7DlJvAjO8xVmJzQ28DajieycRfOcHxV7ATCasqpDL2drrthNzDnjWQaI/xXWmtKon9iVtCG9W/29pQ+LKxWxx1VONZ/cq1f7Mh5XujF2F7YU42Lz7GsHwbSBIR2x/webbyBft6GBhymxtw+q0c6LVWYtg1cXC6qE7fVhVOcnKh9ViJVnNU9JVkh+YAGv1jGDc+PfM2DGvMumDXZn0gf/vl7Feoved9PSRtyArsLWP9ALdAttGqxhWkbw9t1iXLMb89QKBVa37jkqnAsp1E0mq2dl2pFSLLtnSqKDV4klXpRq45inTJ7EEGOKA5auCGaKdsaXQ36fAvsyabm1/GaIhHRnpK0qVA1Y+DqZm7JggDgRFsOrTj0gNsVKwuu1q3Pl5Wn139xKwEpvVvBhYJZUXEmCtFmiNckb3PRycpjgJSi/ECrfwKpR65res3wb4G1DJ904iOOzYaAJxKoh2TJ4/B3PuSTB7Gu7G/8TtX7rMQLRyp9RBlx5+unlDUwmpSrceKydNmRhYtQWsoIxqKOdJzltXN28bNNri/AS6OsQmw+U7NsN6Q7UNLRvjNGg/rHRZnnhY3eKOx+8d2OLOuw+ruMoLLQmsEmCtHmhdfM1T5vwfPe0ZkTMKVhpMAhX9t4OBMwH47gkE3/6+ddmLBFFol5W2r9MmYy48A+ZMx6mVnxNt4KDLDEvvvnrC7sANarE0EhbFa42xTeXLqHxxsCLmFaKlotvqjq2l0Cp3bLbY3/pDoaXFwco5IPySNhYcErzapIAgntF2wipdXEOsbVhJ78AmBasFHqx0fmCTO097yDk0Y8e8F4wbX/cV2WUzbi4yvrK5JMBaVRc52p5eSw0Vyg4j6o3YZGQxHgScDsAxP7Idk7OtYeiDcYtGxgdv6riWqU4N7OH2lyIM4JRk2jrCDiuy6cx/nf1fromrL0HFQSoOVHFSVilpK4iRTCuchLUtQLDV16yEpdOQUimbF2nHAmdD0oGrkUqlohaasWPOKQ8rpwZWVYewevBOuL1NWEmJZ4GVjmDPY8MvNgd2dsfVMwYci4AXgeeCceMvW0Vw0jXV9sAWTvxK5pIA6ysStgjd8b7xuFoBS/52oMAqOPNC2HKEbfCgqy5IfakggDdfwvzxF4Unn5OsehLN4xNYLSb0SPnuc6lY2URxI4c4yalNOK1AYGbQDlVRzuNZwDB22tMWAsy2QrbCdetxU2tqRKnB3R2surtjlXPe7PabcxVaLwUIjjkVavrGw0pVZzUP3VUKVj1iYFWvJKsU8E0HqJGxJ2S7UeHPn0+ExXU93cPsIDN2zN7AGcG48Z93AKQ2xQY3Fyfcr+a5JMDqHMBKlYGW9trtX4DV6WNt4b2CZOXUQHGnBwHmvtvgzuvke/4HzHSShEhVEqogqoj0rvPd57qle7P6XK6EHWqVNM/w9mU8kOmtyoGdYM/9VD5hNkzTMcDMqbKLeieRdSeMP/M785wCXAeu6OHQjVXxvRKwevU5H1Z4sAo8WM0HhrnrHIXUbqNhPVfHrE8/FzpBVK1tbYHZMzCP/AdmTD4A+MCMHTMiuPgaC4rlrEjhAH0YOrgZYNTosKbaappLAqzOJV3FRWxDtOvzgWKzCsb8GjbdMrRZBYFdVji7TDaLuedmaUbaCjyIjdXq7RYgyv7kP939ukr1hJHUTZ5BusN7I64EyIyC15+B4Ww/ytaeN16NeVeKxnz0nuxioZJmxa6nHxYnYRu5qgqtqeJejRWVBTWQSRPg7xfK/u8hLJvTXcGqxZ37Bqy395tI2EvPPrDzHgSbbmEj9SNACMLfA/VzOgPDNif40bmY55+A/z3QBXjInP+jEcEl12YjlV3L26MuxOZm7grY4OaddyfYdMsw4b4wn1U3lwRYndikRbT9fJZocvB3gXMBgh/+AjbZImpg1xUY8jnMtZfB2y/hFsKNbmH0cQswUFJVq1owC9uAVcSF/lVDqszYB/gxYG17pZ7mQQAvPKGBlVG2Qg2r44DLo7DyGst6QaFMmoC54HTZ96PuHOoW8rp34EbABthkZ9hqe4JR37QSXKaCSKC/n+ROAHNn2mDjUL0lqO5CsNMemLqF8NaLWwLfMOed9mxEHfdqgClQHQ5sCdhUsV2/CRtuHAY3r4a5JMDq3KDSWxysvo8tgUJwys+tKz6fczePi0QQ21V9Leb6y+GzCWDzAW9z++qjVBzJlZOnu0RSi4F3oYLVUtagSGrV5AG+ezzU9AvPj7/A3ntdPKYLHIi1l1G8tUcCFxXBKigBq6pqmPQh5oKfaljNVLDSktUQYAA2XxN22ctW1BgwyOs2pB5G8t3TJ2M+/RhefVbK5BTdVGpMwgYcV2pniDn/RwXp1IwdMy4Cqu1GEey+jy2hrSWpSEWQVTOXBFhrnnTVqmD1A+BigOCkn8HGw+2NrCUqqRK6qB7z5/Okx9+72ETclHtydydaB1xLVtrIrg3s4hHsFC3d2wmru4BBjBpNsMOo6OLSJaBTKczDd8lHp1AcHpHGNq74uT33Z1mp1oeVqIG6aUQUVjPc+e/pJKuUU8vXR6qq7roPwTf2h/4Dw5r2GrISAJzLwaQPME8/ClM+tQv8jN9ibh0PdfMB/qpMCTXOWP8aMFY9qHR8XB443Iwdc0bBkF4KVKtnLsaMHfOVQSsB1vJLWDkPYMcjHqmTzoJNt4jaCqT6QmUVfD4Rc9n5ss8XgZsJs/6lw4roFy0xsJJNd1nR5XXXhOz/MPl4v0OIpMcIqCT5+4O34eX/4SA9ldBjKotsJ+AnAMHJZ4cBpj6sRLKqrPJh9YgnWYltbOOC6rfJlgRH/9AmYWezFlbGRFUseSB9+DbmvlugzpNgvrazTeu6fTzYHNBLvHsoSxgULCo9wGDg7+KYYPAwmyFRElTpVTkXlL02kbA6rbXdiuKBuqD6wh3nbiirimyiYKXTPoph9Ri2vlN/wgJwkp+GZ2D3YVVPGLqwRtUCd4GcBzB4WFgpwbczSR5lNou54xr56BfuXtUFBfsDpwIEx/0UNtvKSj1BUFoN/PQjzIUFWD3sYCWSVRen/m0AVNJvIMH3T7bFBVtbLKwK2Qie5DztC+vp/XKS7PsZbPmfKwCo7kKw0+4YC4md3fVGAULngMoxnu5sfAPpWWMDjrceWQwqkaak0seqmYtvEgm+KikrAdbySVko0fhkbCvyNu0m5okH4H7xlnMVNs4qDlbGg9VCBaqFRNuYNxINBl0TYGUDOY8qUYpYyj9XVGJefRY+egdgGrZuVld1HXo7W04FB34Ptt3eqj+pVPGDojSstBpYg037sYv3oO8THPx9+87WFhde4U6triLRuNRGxr/ytOz3LeB24AXAftne37bq6PpD5D2buO81RD3AzU7F3RA4D+uJhN32tZJoRWVoSPfV53R6Vc0FpVXkHMC+0o4+CbDaKWXJxXPS1slOtSkPK9CwasYmP2tY9fbUwGan5mlYiXG9ZOb/GgUrHXUuZV0K8VGusUbdQvjLWPn4J05FEbteD2BfIMO3v0+wz8FhjJuuvKDVwEkTML87Q/b3kAerzbAewBTDRxAc80Pr+Wtucr0V81Gp2UlV5s2X4eE7oXaeSIAPAnc7tXIgMBogOORoe3xR71pfd90kx1Nq5B/rpMYqhmxioTl4I3UjejX+XcnsVTSXQNls9YMxUFJXAqw1YJyMDkwsB6t/XQHvviqwOtdJRXGwynuwWkCxJ3AJ0cz/LJ2grfsKwypS1kW1LKuswvzz7/LxD50Nr4d7undxhuc0hx5rwyFaWyl0r5Y2aHp/n37kw2q6O//rYVNnrK3qmNMI9jvMLuaW5jB4Vdur0s7De8/N8N5rss//YsMpjNtnFwedwYw+FDbcJIReOLq5ay42uT7YGLKdAdj/cOuJzFSE3+/3pUynoaFuVcxF56qKGq7r+weJhLWm6IQ2ovj6NmG1uMHeSBZWE5zqmHUG9j7OwC6963KEEew+rOooE2PV2TP/l6usi8Dqxafg1acBZmG9qH3ceeqKbUSR5jvHEex7iFXXIjbDdLEaGMLqQQWrjbEJ110ZsAHB2b+zUlVLs1MBHawgomaaN16Ef/1N9vcB8C/gYwfUrm77GjbGjOCI40PoTftCPjeFsGdhAGyN9TIPpnc/gv/7MQwdVizZaTtVpgLz5kurYi4Qn1tqvkpDewKsVQ2rv1wAtXMFVnJX9XeLrzdh6EKWsFqlqIHzlQpYzxoWY+XO1RCnMh/QZqUECTeorLKVXC8vqILvEkab98AW70tzxIkE+x9mVTZf+omELkRg9YCC1XZIu7H9Dic48aehVCXGdQlJEZtV4zLMbX+TBxDAfU7K7k5YprqLk2qOA+Cnv4E+/V1OpIEZhfSiGYShAvtgY8hgl28SHP5/roJHvriBrpyzxkYtueOcN9e5c7Qyc8kS7ajUTLSzkk7vSoC1VsBq5lTM9X8VWD3lDOz9iIYuVMfAqs6zWcWFLXT6GCsFK9vkYfAwa2AvVSlB5fPR3IS56Geymzfdsfd22w5Aiu+fQvCtw4thlUqFamCVi2C/6Mw4WO2Fja2Cs8fZWKbmJlvSprXVSVUmDFdIp2HuLMzfL4KFhQfQbdhg34EOEtKhqD82n687Bx9DMGrvUAI0BvPCkzKfz9y1PAEblgH/9xOCHXcLwya0F1CHesybg7miMJcP3Vw+d6Bambn4zUnKdVb6SqWtBFgdBasvJmHCnDQfVn2cgVfiW1qdGuiXiCkXttDpY6zM2DE7OjvRoKImD6VgVV0NBttnce4MMbJPcuesTwFWR/+Q4MDv2coNeeW1k31KC/liWE3DhivsBdQwcAjBuZfAsE1DWGVbVXyV8jS+/wbmyt/Lvp5x90FGSTLdCPMZDwLWZ8c9CA7/gd2vcWrd4gZJwap1x3Y2sAl9BhCc/DMYspHyRAZhaEYqFUqh77+Fuaowl6fdXCpWci6vEQ2E1lKWX502kbDWFliZl56Gu2+Qj12N7WrTjzBsQYISBVal6llpWDWxZsVYFc4Vo0ZbV3xbsKqyr+bBO+CVp8Ru9baTRENYHTuG4KDvWcCIWhOJt6qMk6zud7DaFBgF1LDbvhYQNX3iYSXSWj6P+e99cM+/ZF93O/hJOzWxE0ka1T7Ahmy2jW3XJiomFoDmmcdkP5Ow1SQ2YbtdCY480ZXUyYb2KpEaxXmQz1tPcziXO509rncHzKVZ2a18aOn6/0USVhLpvqbC6n8Pw8N3yMf+hG1GEQcr3E2wjLCelYBKPIGLPVitKWELV+EizjnoSKuCRNSaTGx1T6q6YB64HW6+ArcoXnHSQl9njE7xgx8THHIUNDaG9iWRrNLKI/jpBOkSLbCa6mD1LSDNbvsS/Pz3rlCMByvZXyptG39c9xeRQlqcpPyxUwGl96O096rGVkrYhL4DCX74c7ueW5pDqC5bJGEtLQ7Aleywm4VJEFhVNJL3F4SNSABz499kLs3AlWouvVZyLne6V4mtynqQ8rt4+4HTiYS1RsHK5DE3/BU+eAMHmNOdwVxgpRNpy8GqTsFK17Hq9LCKGNf9c+W3z8pkwuqeVbZ+uvnfgxpWD7n7sT823KAHu+5NcMB3LVxy2RAugWdknztLw+o+B6ttscGXaU48i+CIE6ClycKqtTUaYyWhAvW1mIvPhQWzRQK5wV1bsVdJo9qM+3kPYAB91yM492Lo0cvaiiTiPpXG3HuLPmWVHHkywaHHWBWwtQXSMgc1l0yFzTn9wy8k5/QTZ1hvcSpgz5Wcy6vYKP8K75LqKiStnsF9ldROS4C1OmDV3Ii580aB1XvY2JcGBSo/1UbyAuNg1UBxjFVnLw2DGTvmCGy6xyAGD7NpLH36eZ6t0pIVE9+HqyWNjUcs4TSs9iE48zd2wUmogVbbRLJqqMP88VfazpQHvofNw6MsrArXNQP1CzWs3nFqIA5WYiOSANZqB4j+bLcrwQ/GQJcuUUCk0/D+m5IL2QxU8f1TbT/EnFZBJaA8HZ6zhjrb3s3C6m0nDaU8Q/+KzmUaNswmRdjpSaLYdRpOXjl58p3lvkuAtbywWlSPueL3ku3+HrasiY6xissLXObAVEc0cl1gtaaFLYQqoNirKipLVEmogApVg6qyGiZ+gPn1qbK7F90C6QmMAHowajTBmb+1f25tDVXBgn2nIoTVhWfCvJlguxqtjy1oBwOHwvE/JtjzWxZWLc3OE+jtK52xpWYu/rmWPv7tVK5+DhDSsDZwv+8G9GLk1wlO+Kk93tbWaJBn3ULMNX+UfVZx1A9tLJQxrl1G3klTQF5Fr3/yAeYP58rnXgbuIPQw9+yAudzs7rGuFHusBVrQSeKuEmCtDKxmTrUxMBZWj2FjrKqVZNWbaKpNkwerWs+4vqaVhtnUSVVWBTz6NNhmu2I3vKSN6FAD2d5+RRvGX8R6RnsVYLXbaIIzL3ByaUtY212uhXjNGup9WG0NZBg0FE48w9nRUmF8lYaVBGJmMhYQIayexZabWU8ZtKvV9Rzq7FDWJva94wuVYyOAyGUx/7yicN6C3/4NRu4S1vDPmvBcBQFk3Lmb+L6G1VNuLgPdfdURc7kfm2OopbTCNBWodHOSBFhrJKwmT8L842L5yGPYshx9FKziysMsc3DyYbWYNaw0jOtCcxHQpUgF9D2BEnGu8/mqu1gbyk2FtJuX3PnohY3I7st6g22JniCwoPHtTALBhnrbCs3CqtV9Hn54rg196N7Dwq65CVqbVYwVHqw+xIw7W+ZzO7ZL0QBl0BYJJI8NNt0agEOPtZH2hbrzChD5HOamq2DyRLvXk8+G7XYNA1HzLklbcoslfOGj9/RcbsXGfAmsOmIur7l7vEZ5FjPKK6iTnItKayfA6ly2mLKwMq88A/feJB+5DOvirlEqoIZVXhnYNax8T+AaURrGGdbHIw0O9jnY5rlpFVDbq/xcvuouUFVtU5UsrLJOslqkJKu+DBxCcMk10LO3sjVlw9ioAqwiaiBABT/8BcHBR0HPXhZyLS0ual2pk5EYq7SF1e8Lhvo7sUGUAiuRPlJO/drWqZtW+pM6/QJBUS8rKjBPPhjm9h19mp1XWnVIMgZSXpmaj97RUqfMRWDVEXP50Hk7eykYVylDu05w1p7BfAKszrUYt8GV6g2OPi0eVk8/Ao+J/ZULnKjex4OV5AXmS0hWdRSHLWTXAFiFhvUeNbZl1tCNi+sxRexVrsFDpfPgGTC3/APuvlFg9ShhRc8NI7DqVeOqJLjOObIAS8Hq20cRHHkSDNvcSi65rIOU23LZaICpxDd9/L4GxH+wFQ76OzWwm7IR1WB7DPajzwCCH/8aBgyMhleIUVsA8cBtFCSfo06x5yZQaXqF+8udwwlv64KC9wGTlUraEXNpdg/ZVsIKFV0JYwLlnvVTcRKVsBPC6g2gC/scHNpiBFa5POaWK2DCWzjAHEdYnVJgJSV1xdPi11+vI5rAvEaUhimSqkaNJtj3YNXgQEVi6xLEhVy+KmtoB8zlY+Gl/+GO/Rl3rnpio883AtcKTWAlXjwdHFpRaUMOfneWhdU2O1rXvRRMNHkrYWSz0JoNJY5CDSsF1rqFNqo+Coj+yq4jrv5NHCCwBu3T7b2hC/kVPJYerHb+hvXWZSpCVdAYMF681fw5mKsintIv3Vy6d9BcmrHhNk2EFUK6qYerxFo1EnZb0venSYDVCWEV7H1QFFaNjZj//Etg9baz3SxwkKohjDLWScytDko+rHxPYKcuDeNsVWcXpKpvHxk1rAdB1LDuq4Bit6pbiPnlKdJAYg7wOmEi84ACrMZdC1tuG/XilYJVEBBcdDXs9a0wHMAYeOMl2GgT6NrdRa3no4tYrmvtAsxvTxcJ7UNstYL+nk2nGtvkYQAAJ54Z5vnlcp6H0VVO0LDqv74NCu3Ww323XGkTNiRJOVj9+jRJR5qIjR3Tdf1Xdi7N2MJ9i523Uwz3YmMVz+Aywi7ajUQj2zvd/ZlJYOXBqqEe849LpLPI29g6Vk0KVn6qjUhWS5Q3UKSqBmVc79SlYVwe4IVlpaoiL6BTASuqXJqNg9WEdzG/Oll2Pc3BoYs7b72dxABn/97CSiSrnBfJnqkIYXX8T+y16tYj7JpdtxBzzZ8I9voWdO9p96GbQ6Akq2wWc9MVAoiPgOeIlkdOO8/bhkA1m25FcOxptumE7DeSEmQL4Znr/gLvFWqeVQVn/hbWH2qhpB1vohamUtDajLn+LzKXT7ER/hIOI/fVys7lDAer/p7hHqUCLnP3pzZVNNNJ8gbXeWCVhVUqZROY77pRYPUgMM49kbRk1c2DVbOCVb1nXPdhle+ksBoH2ILzcbYqHbOUTkdVwMqqqAp4363wz7/KridiI8bFHtMd2zE5xXGnE+y2T3wwp8CqoRbzynMEV9xhm0BUVIY2oeefsJULtt/VNlbIZkMwBClIR+1r5tqL4OVCvuJLTuqQRdzbzcv2G/vWEQQHHRGGCcQBYlE95j83CSAmANuw3+Gw426hymeUk021LzPX/FmCOOc6753YQSs7aC7/cAAa4O7b7uqeFViJ6WIR0Qa8nToWMJPAyt3YH7+PubkQr/IA8GvC8ia9vadUSonUPqwaWEPCFlw4x0lI5+CDjrQqR7ukqspoLavGZZgrx8FLT4px/U1s2EIfwoJyGwHV7PcdW663qbG0ZGUMVFQR/OBH1oBfWWXnMHcW5qYr4aHbLQdOvitcxL4aKCWEn3kUHvsPTvJ92Ukd4n3bXLxubLYNwVEn27LEUss9ny+yETF9Cua6y3TJmW3sXM4qhpXqr2qTjwtzaVCwqnZz2QzbBGNl5vIX92DsT3zifZMyXTR4wGrW92pnXMeZBFYug/2Je+Xt52KbFPQmdANL2II02GyNgVWdgpUOW8h1NliZsWNGA2cV1L/hIwj2O9S2jyonVWV0OWMHq4oq65b/6+9gzjSRGt5y91aNsscMBrry9W/aqprNTaobjcDK1X2qdJ7GvgNCWKUzmCfuh7AoH5x5oQ2DKFQ7cDYjXUdq2pcQBmN+4K5jFyfFDHQ/wwln2k7OxkQBEQQRqc+88CT8+1rZ39MFw/hPzofefcrCiulfwh9/IZ99nzC1ZmM3l64rOZerCGMDa5Q9TMNqqbpn64lWB+n08YCZdRpWuSzm1uvh43fEE3gG8LwHKg0rylz4Bjp52IKLVL8Q2+zAqn/fPc6GcxTUllRxowPpZlNZFTWwG4O59R9wV6G0zmRnH+rqSaNDgJ4M2IDgJ+dFA0MLYQcaVlWht7GyCubPtelQzz0q35MHUsFe34rWKA8CpwqmC+3CzOUXyH8/c9djODZsoAcAow8lOPRo6NHbpvBkW4sDMDMuv+8/N+lKn9cpiYbgG98KPZZ5o1qCqQfj334nn/3E3SebOumuZwfM5SmlAvragJasRBOopUxvy866njPrLKwaajEP3SWwehP4JbZkrAaVzt3yYVWvgNXgidWdKmzBjB2TwaYRnVSQKA4/nmDb7YvVP68jS0T9q1SwmjUNc8U48aQudYt3gQJ8pVssNmWp//oEv/lLtMlDwWblwaoyhJX538NwUUGqEol2A045x1YkyHmpKKkwj9H872H44HXcNQqwNeG7A7D19jb3bsNNbOmalub4mKZU2sZK3fVPrXZd5471e0AFJ5wJvXqHretFwhL4B4GN5/vwTdznstgaXb0A2Gp7W6p56MbQ1LSicxFYSSUH0QayFNdf09qA2K5aWQOKRGbWYlhtGgsrApg323ZmaViIe8+P3QXt6TZda0in2jQpY6WAqoFo3fVOE7bgQHUhtoefFaP2OZhg5z1t+oqv/mlQacO6L1U9cT+ElTinOy+grwIGbtHYqOyfng89a4phVShW5xX2W7YU8/ufa6lqHjDbSSUEI3d2qpIp7iyTyVjb2A2Xy2e7yufYdidrF9tqJDQuCyW9nFZNXYxZfS3m7oIxW9SuK9xxDsDm8hGM3AWyLpxCG8VTgUNGK9x0peyjm9i82HYngmN/ZBukrvxcaogGm8oDVscFLiAMuRHpao1QBddqYLnAx1tiYTV5EuaGv8hb78HGqnT3YNWNMC7HKM+KuIDrlcFyKZ0sbCEWVNuNItj7QJX/R7z6p21VWqqqqPSlKghjmXqohZJ256wV65aH45300NIUDXbU/QgLCdJV8PoLNrRk1lQxTs9157fKfQ9svnXUEK3VryAFH70Ls6bIfyo59AcE3zzQNl1taoKmZWH6jm4/n85AthXzzmva2zkBmzj8oVMnezvJcSgAm25RvB8JvQhSVoqfPU321YVDjnFz2cHOpblxZefSWz1gZU23xMBqoXIMLSGmqm1nX9uZtRRWtgnC8BE2783Byjz3ODx5v7z1Mmd/6O4WXA/1hJK4nLzyBi71PCuLlWTVKaotlATV7vsogzrF3r+018y0ojLafiufx9xytS4DPR0brpBzC7eLk0R1XNoAoAc77Eaw5/7F5Y1TXsXQqmorvf3z79qQPNdJVZWEVTXhgCPChg2qQF0IrQDz+gtw2P8R7D4aRuxo47RamkM4iJSnk6JJ2TLLN10ljURwcPiXuzfWU6aC4QDse5iTGiVgVbXlchKfefsVOOQYO5dt3VxaW6IS1crNRdurUA9XgZVfLNIvadTpq9quzRLW+AKspAlCayvm4TvhrZdw0tAvsTlk3RSwJMeqOkaykuJ7i4gW3OsUYQttgkoWsm+nioDKC1cQkLz5IuaaS8UDuNQZ1r9U50wKyeHOgxh3NwYIDj46VAM1rHSn56pqmD0dc8EZIok0OiN5i7KHhUFNUtRPVyANUhFgBT8dG6bF5LJh+EQ25/IOtTE7BdM+t0UZv/hYTuurzlv8OWFStJZkrBMmlwuBJbAJKiJqdvDjX1vJNXAtvESSynXYXCTfUNJtFnuwqo2xtbasSargWgksV1juIHrUhLCqq8XceQNM/0K8Mye6Bdfdk640rKTigobVYqX3+3XXv5KLbsaO6YcNT1hBUDn1T8NDQFU73y6aMPF7OjYsIIN1m2upSs5Xozs/1tj+tV1gwHoWLjrYsZDOY8MXzH/vh6sLpXtmuoXZlWjyb9add5j6RbRWeTptp2ViTr9USCiAIR/14E353EreL/xXq7lPAy+4+0PXxuqmbHRL7Fn5EpqbwwqiMlRbe1utQeUUFozzHTYXlHFdPIF1ysje4HkE10hYrVXAcpUFfgLYxp2VVTDtS8wd18GiWoAn3eKudRe7G2Gd7q5KUhAASfG9xWpbSjQi+CsRp1V4wt7YGt/tB5UYpTWodLv4fN43qtc5u0lDzLmCaE7aYvf+jQDYbKto9cuUCjmoqLC9CP/+e+n0LAt0hjLeV3jeWVvw8JP3u7BwnvUSSjKxb8vyoaVHEMDH79mshk8naCD/D5uE3LWg0oZwkOMWQC8AFvPZhB7UzrdzEYeFTvVKpcNrIPPQ8+mYuUgC82IPVqViA9dIWK1tEtbh4MrE1PS1hspom6ZT3CKQqGtZfBK2kIqB1RIFq2XEtItfnRfd5fuJRGXDE0aNJthh1+UHVZwaGFX/RCKd6M5VH/VE11JVkzpHUk7H2pqWLrG2plQqWt64ohKmfoH564WSiDwTW0c98DyNxvuOBmfT2ti89BTB6EMcJHJe3JNsbg8CsEX1Nrzg3lt0Pa1PsWEtj7vj6u/uCx8O4vnUkvdk4Gvm1ecI9jkolLA0nLU9S8+v4+ci50fUP18FXKPaxq3VwDJjx9QAR9OjBoZtaitbvvOK/PvX2AjgagUsEaflKR4oWMkNsFQ9meI8gastbMFJjycgkekQE55AeVCllffPzwWcOcX3/k1zi0dqKEl4RympSpeArsWGIBzJK89Yl/0GG4Zer6ZGzB3XwjOPaK/Xm4T5ml2J1hZr8r7jJWBjbrvahknssmdUutJQAJgzw5ZBfuRurWrJMb6GDRTOO5tQpXqgdSEsSeyrvRI0/AjwNe6+wUa577JnVB3UWwDMXqVz8YOYtQd7jenE1NYIgnHj1xZg1dKzxj1J63CSwc+x1S2r1MUXNVDbAAIFq2UerJbFiNKr3BPoDOknAMcDuwPQowb23JdgxE7LD6o4iWrWVMwDd2g71WxsMbt674meVkZdvVAWqae6bAKuXwD7A7D1DrYaaDojuYbyXe87e9V6hN2xK9X18NUc6Y69GTZ2DjbZCnYfTbDx5jBosK1jNnsGTPkMPngzrP5pRxO21M1b7nvluuJgUKW2OEA3KlumgGEHbGFH2GRLNZchX8Vc6hWotAq4yh6yZuyYVbu2PXV+rQCWO3F3AEe7X+/EFi5rdAugi4KUVgW1dNWkFuISpQL6ovQqhZWzT53l7FPWkD54GMEe+8HmW0Uj03VuWcFmUk6icr8vW2IN3WFsT52zHU1WoKpW6p9R50jOj86hrPVUEVk0Z2AjundUhzjXeQAfdZAaiK1MIMUQxcCubWK6Q3at+/vOTjXepo1TKg+hOudsqSdMTpdSKoEDQoU7ZoGDtg8t8zzFIsU0umt1HLDdVzwX/ZBt9u9b6Pi2cQmwVl7SSrkLmHEXvVqpgaVg1aJgpaWq5tXlCYxV+7YbRfC1naK5fpHIdFWcTrxvWqJqG1RZbCfhLxSoungLRZ8fneVfp2Al4Fqk7H1aYtiesL/fTCdRbeAcBv0J03nSRBvO1nugEglumZt7GhiJrTaxJTaqPnDzhTAUQktrcZU0nJiKqmVcsJ01KlvmIrUJHOS7qrCpP7s7iG5AWM5ldc1FvNctq8sptLqBtbbFYdWrJ5S0Jsl4Tyut2uTUzbCMaPXFVW5cd9LUCcA3ImrfzrvbdI8+/YoN6dqgW0r1i6TVVFhQPXyXD6ppTtLBSTjVhJHq/kLRcWh1nmRVrxbOUk8qNe46THDf19fBqsozHufdZ+RVl+vxgx4XuQeJcdf1fedVG4SNPB/i4NiHsMywRHEH7jsr3d8C5Wzx27VraXIR0bAWac/W6D4r99UHTtV92XlKh7h5ra65NFOcxLzG2qvWdi8h3tMppaAlv2uJIe+pgrLpJ9QqgZWSpvYuePti1T7PPhV4sT3pjOf5y0RDFZYtsQGzxaD61P0uqp+4yAPvvCyLMerqiqr1nhfVrwkeEIYmBOp6pDw1Z5n7XSq31nl2sVql9khmQaDU1ia1yZwl+Vd3345cUyXxtKhNP7wWe5LQEk/6blHrqEIBpsUzMayuueh95tcmUK3NwEKJ0ylPtJakZA2uJnVz+U+oDtP7lW1qD2xrq9Dbt9XI4rCEYAVAJbBatrgtUImHtFIB3XgGXV2RUgOqzrOZLPNsJtrAm/JPA8XpToGSVJYRrYkfF6Hd5Ek1ld6cFxOmVuUUJLJKtRWwNsfATsJZtONlifdAE3tTVt1frTES0eqey1opVa0rEpZeIEbZUwK1aFrUjdLs6f0r/YRykegnAIcWVD6wBfO237W0NOXH8Wi1L63qU2mJKlNhwxOiXr/lAZVv0F2sIKVB1aCe8I0lzp1Rao+JAZXYcAL3eYkpWqrsY/VE3fO6Iqbss8Wzr9UraVEAqH9vKQMGbcNc6tkzm2JsQzl1jCl1DpuUU6J6Nc4lvzaDam2XsIySquTmMMqomVM3WIsnTq+0cV2pfHsgxdnK2aaCIB5SWqIqeP1iJKoP37I2qjBkYDEw39mojFL9fFDlPNVjied50pDSpZ+1KhK7aMzYMfqhkfPsYYvc/5qIlu/RoRKLKc7ZFOkNJUHrZgp1SpppIhoRnvMkoEYF6GUxNsxlCihxcMjHPAC/0rms7bBaW4Gln+g+rPRCzSn1b6WfUg5ShzlIDS38Y9RoWyhvyLBoQGM5aUqrfQVjugZWBSxdgnn2MbjnZmmlBTauZz5hLl6XdoJqqed10qBa5NmpStpM9KJx0DKeNNuo7rkmwhgv7bKPCyvxpRr90Gl2+2xQ8GhU6pgOtvTNAE3qmLRZoMk7xiJ7kxyn85L5x/iVzGVdGGuzhJXXOr1SFfPqf3pb7otfElLlVL4421Sc2pfxQCWq4OefYF55Rpd6EVBNca9dndevqh2gWuZ5neqVcX1xDKi0+tee86avQ7OyaUmibgVRr622JzaVknyd9KYXvZbmdNG6KvUdxvO8NccAoVlJ3LnlgENnmksCrDVYwtK/+4sosrX34rcJqY02tVHopVQ+bUAvtGrKFMOqoiKUrpYuwbz7Ajx+r06fWYp1oX/ubuouClQVyuHgq2S+10lAtUiBapGSdJpi7FTtlUa1hOXHFTUqgOkF7EsTef+7lPSWU/vV+15GNEJcSzVZpV5qr552tkS+t9xxdqa5JMBas6Ur/XMQ83/TnhvApcgctsKQ0qBKp6Nt032Pn9SmEslqwjuYF56Ax+/RU5qFDb6c6a6fNCit9ECV94y72ovm26oaiLrMl5YwqK+IzSTvnXuZU4poeEPek6ba+i4NQ5Sa2OLOgwAiHSPtZb0t7jvNchxjZ5rLWj3Wqkh3Bxilf0VefYN8yZvAhSDspSDVc4UhpaWpTCbSJKEALS1NzZyGeeMF+O992ja1yKl7U93POn6qkjAA01c3moi62P1+dIs8iWop5UM8VkRt1nFxOj4uVUIqbrc04e07paCQivke37aZ98wGKyXBdKa5rOb1tmr3vzan5pQAV6wYH/P+0QpQIyL/3G4UwRbbLh+ktAFd6qWr9lMFaSqdgboFmLdehuefgI/e1t88E5vfN4MwJKHaUzH8ODNfotIFCBvUq25R7ktUrcthp1reh0jcg8T46vtyqOj+vlPqZz/EBV+6XpHvXBPmkgBr7QNaaSlKQhCGbAwbbmwN5ysCqUJIQjpU+cR4vnQJfPIh5tlHpYW6jBlOmprmYNElRppKx9inWjyJyq+U6qdzLPMkKj+8I88aFtvjPaSCMuobqxoKnWkuCbDWzBPbzwFqr1gpavgI2Ho7gmGbeXFSxBjOg/KQSqWjKl8mNJ5bSD0Gr0QgJS2svnQQkZCEKmWb8lNa4mJ5lsaof3HpHNrr53ui1jhQJWPdAVZmnQXU4GEwfJvSUhQoOMUASje3LAWpdAYWzse88yp88JYPqQasAX26g5VAaoBS+TJEvX1ZT+1rJprCsUTBSUPKV/v8nL8EVMlYI8baVNN9U2z6y46xgOpRA9vuQLDhJrD+kPJSVFDcqikiSQWpqLrnQ+qLSZgJb8Nbr0hnaQ2pmU7dm63sUgMdoHyVT9umfPtUHKj8nDMtTelI6dY1WfVLRgKsNQ1OGQelHdzrSHS4wYoAqtCEM4iRolJRSaoAKgeppUtsI4FJE+C+m/3pznGS1KcOIgKp9RSkfJVPS1O+2rdMSUxLvE1LUrp6QjPRcjkJqJKRAGsVAmpHBaaRRdKTVvEGrL8cgCoDqSDGwyeQymZhxhTMhHfhnVdh4rv+bKZii+JNd6CoVpCq9CQpXVEiW0KaalTS1LIYQGlINSpIaY9fFi/6PwFVMhJgdYzkNLIsnAC2GwXrDyYYvBH06e+FGywnoHQun2+XEkhN/hQz+VOY8Da89qw/mzqn5k3G5vKhIFWjAFURAymRdlpLSFPLPBVviSdl6eTZlhhpKomUTkYCrA6A0zBgEwWojUrCafgI2HQLgv6DoG//eOlJfm83oHTCsQeobCvMnOoA9Q68/pw/oyasR28aNoeviTD8oDfREIRMGUhpaaopBlS+FKVtUjpuqoVoPao80VIv60w2fzISYHUkmDbCtjDfveQHRHJaHjiB6wnnhR6UA5QG1cJ5MH8OZvIkmPxpHKBw0tNErNG8TgGqi4JURQlImRKQ0vWQ/DpIyzxI6VpIOhzBz+L3q1gmoEpGAqwSqlxvJS2VB9PgYdB/EAzbjKD/etC954rBKRIbVaKulAbUsiUwfwZm7iz45EN45uG42TU6G9SXzg4lzUFlG0Q0RkoAJd49bZPSOWN+Zn6jB6lGzx61TNmxmmNUPr1/XZkiUfuSsW4Dy3WkGQlsCAxzUNrI/a1nu8DUszf06OmVA6YD4OTek05HE41nTYfFDZjZ02HaZHj20VKznO4kpynYNlR1hNHl1dhuLAInreqliKZfaBXMh1SLp8oto9hYrv8fJ0n5KTOJNJWMdWpI54491N9GOkmpt/p5RJt72m4UdOkKAzewYOrZC9Zbv20wFUGqnXDSNaVqF8CSBsycWTBzKsydBW+/VGqmC5ztaRbWmzfNQahavWrpyc+21zFSBZ4TLQqoy6Q0eZBqC1DN7YRUksWfjK98fBWR7h8gDTvLjR41sOmW0Kcv9OoTQqlPP1umNyiROtUeMMVtPpyyrbBgPiyuxzTUwcxpMG8WvP1yuVlPxHrtZmADNacRdtUVQA0iDDWoiLFD+QZzbY/yIeXbpRpjNg0wP/xAG85by0hSicqXjHVWJdyS7UaFf1l/MFR1Iaiqhv7r2ZSVmr6lJaU4KEX+1gaYBE5LF8PixdDSjJk3C5qaYPqX9u/vvtrWcXzpwDTVwanOqXYiKUkfvHJw0oZyreZJEKeWorIUhyH4oGqKkZ7iAjlb1L78eKl8ovIlIxkaWAcdSTBip/g4pnYBiXgoLV0CSxaFu5o/F9PcZP9XtxAWunClaH5dubEUawifp9S6WqfaVXo2pips512xN2njuBS5KwUoiNYl8oustXiSkQ+kRu9/LTGQavUglUsglYxktM+GFV0MPWtgs62UrSkGXvrnubNg6mcdMZc5Tm0TMC0jjHGariSiyjZeM21ITilPxdN2KL/We9azJTV7kpIvNWkjeTlAxUlRCaSSkdiw2rBhBcBt+KV/O2ZIKV/5nknYQMjAwWmeA8kEwg7BGU9Vq4jZyqlzcXYn3fVZA9qvcOnn7vnqXkuM3ck3kLeUgFNbql6kCmoykpGM0sCCaEXEvljvoJZE4l5lEzBpKSbtASTj/U1v4oHzwZQp8Zry9hen1sVJT6UkqFaKexS2xADJjyjXUMt6+/KDOLXRPJ8AKhnJWHFgBZ4kkvJg4MMmpSBR6j3+z77nraKM+uZLTf53+SDV4PVLz+Y9OMUZzFtjYOVHkfsG8lwJCUpsX4kUlYxkrAJgZWLgpWHjQ8WXmkr9LVNCkopT4XxpKQ5KfopLLsb2pDffUN5aAlRxP2fbUOtKxUQVNRBIAJWMZHTsyHiw0hKWthllYtS1UjCqKKH+pcuAyYdSvsRCN97/czEqXq4EdEoZv1u915wHJh9QpoSKlwAqGclYTcDCs1EJbMTA7Ud+l1LlUm1ITHiLPChhdzIx7/UlqFwJuMSBKFfGxlQKTPmYLQFUMpLRSSQsGb7UU05dCzywQBhkKWCJM9rH2Z1MjASlAVUKVrkSEIpT30pt+RJgNIkNKhnJ6HzA0otRL/p0jGSk/1dOtSu1UUKSMiWkmjzFHrdy4Cn1tzhvXZzUFNfaPhnJSEYnA5Ys3JSCUuCBqpVoIGa5kAIfUEEMCErFRJWSrNr7v0gp4DISUyI5JSMZa6gNy8SoclrqyijJKk7NK9XVlxgoxKl+5aQs08bfaENaMiXmkYxkJGMNl7A0bAReaSddpSnfgrs9kIrb8m38TBswMjFSWwKmZCRjLRtxke5+JLvYsNoDKUrAoy2gtAWgchJSAqVkJGMtHaUCRzUItN2KEoAqJ1GtzM+mzD6TkYxkJCphm9CgjDRVFo7J6U1GMpLRoSqhL3IlIxnJSEZnHankFCQjGclIgJWMZCQjGQmwkpGMZCTASkYykpGMBFjJSEYykpEAKxnJSEYCrGQkIxnJSICVjGQkIxkJsJKRjGQkwEpGMpKRjARYyUhGMpKRACsZyUhGAqxkJCMZyUiAlYxkJCMZCbCSkYxkJMBKRjKSkYyvcPz/ACZjXdcxg6j1AAAAAElFTkSuQmCC' rtb_banner = b'iVBORw0KGgoAAAANSUhEUgAAAkgAAABOCAYAAADb2OmbAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAHxfSURBVHja7H13mFzVkf25PVFxRppRzllIQgkJhEAiiRwNJhhsEMZ5nUH2rtf+rcOya6/A2AYbAwZJ5JwRUSQlJCShnIVy1kiTY3ff3x9V1a/e7fe6e4QkUt/ve1/39Mx0v37v1r2nTp2qMtZaZEd2ZEd2ZEd2ZEd2ZIc3TPYSpBztAIxUP0cATAj4u2Ln7zId5QCWOq9VOK/NBhDN3orsyI7syI7syI4jN9IRRF9GgCSgR4MdDXB6A+j1GTzvrQC2OMfWLIDKDgBn8VyeDWBW9nJkR3YAAPoAKApwQo/2GMn7jIxevK80d8gaDwCHPoXv8aUHSLlm6rQv1heecqMAIJmU+mge8ClqDwwY6n+t76BklFnYAijt1PyTbWyA3bfb/1pDPbBzq/fzotnayHoBOC0EPC3lDfI9M3XaouzU/4Ib9pQbcwH8F4Ojk9WvXjVTp12QvUKfqfs0AcBSM3XaoS/od+zjAICRDEwAIAfJrHsOgFOd15YCWAZgtpk67f5PcC6lAH4C4HT1GfPN1Gnjj9C+oh1r2VeCvs/RGhJh2KKuV3a9P0rDfB4BUgAIkucjmwV6GOyYwkKgtDO91qYt0LqtvkJBVy3samb+t34Ym/616kqgsgKoqoCtOASUHwTK9mkA5RrRbADPf5LFJjs+k3O/PwOjCQnAP2QUMOwE4IN3gG2bAKCvmTptc/Zqfar36FIAlzkb52Nm6rRrP4Pn6zIeGuDIz8Xq5+Y7m80b32ruuqXs4iwAXQAAPfvRWr76IwCYZKZOm5XBdShh2ypW12Fks85+yCigZWvv55IOtO80GwodBMr20/PaavkeCHGQZb1/JmuBzZo3KX+f+zkBQhoAucYbDIB4UpqiYqBNcXrgo3+W50GvZQJ6zCeMXAYBpuL2QBGtYUb/zbXfAaoqgAP7YLdvBtavAlYvKQJwEYCL7JQbbwKFXX5npk7LhuI+/8DoCgAtAABjJsBMPAfo0h04eAD29efkz8uTo+fZZIxjwBTdAGByEpswZgKwYRVQcfBrdsqNfz7SHv9hAJzUa2hzR89+QMeu3s/degIFLbzlsHvv5P/p0t3/88H9tIbdNxUEUMz9mczdQLuYeB7MmFOALt1hP5wrwGICYGbR/0weCQq/jcjYuQ5yrGVvCfo+h+sspxuNDcCBfeQo79sFrF8NrF4i0YWv2yk3zgHwlyxQ+oIxSGzkIwH0YwQfbsQuCOrYGWhTBLTvkB7QGJMMgMLAUrpHD67QaGoEDuwN/l3qb+//sXURATr9Oxvw6L4mzxvqgY/Xw85+E1i9RH6zBsD9Zur027Ob5eccGJ17Ocy40z3Av3sH7P13ABVlxFLc/uC1SXMiC5KO9v3xGL2i9sC402EGDAF69QNgYOe8BbzwMAD83Eydfof3/5PTJYIEhaiOLMBxGQ8X4HTsAuQXeL/PhGWX1xsbPBakqpzYbxjg43X02rqVMm/9DNJtM+5PdhZt8+xixWLYB++Uf/krgBOQKhQm16HvII4qdAIKCsP3lXR7Q3Oc6sN1oq2l6MKmdbBvvwJs2yh/cZeZOv1HWbv/ZAzSpwKQFBgamXLSChDq1hOmqB1N2JKOfmNNBWJSTVr5/e4dHpbZtwe2vs4DNhvXOFcLwNy3jv1dPGUSPZZ2AtqV0LVo2w7o2sO/+dmAY/d22LdnAgvfk3d7zEydfm2WWfhcMBJ3ALgpdAMwBtiwCvae/0vcWwDXqdmauLlm6nSbvd/HgNEbdRIwcKi3hhgDrF8Fe2/iHi3F4WW8HjmAU9IheA1Nx3jon3fvoK/YoHSUEvYHiMkuP9Ccb7EUoqn580P3BzqCsJnZRVMj7PtvAK89HXK9RtNa2rkbXZs2bdM714frWAeCpAyud6B4OMRJ1tdo6ULYaX/x1vrbZlybdZA+wwCJBXwjAYyGXziXbOQ9+hAj1L1XZkAobCLWVAFVlX4R9K7tQG0Nzc15Ry3RpxrAumbSR0FUUldIHD3d6Hsc0H8w0LUnzEBm1awF4nEPNMXjwMfrYKfdKYvWf5vbH/yNu/hkx2fGaP/AG+9xocDIGNi3XgJefUr+7VYAv2MGQuZeXB2WQFL2Podcc5fJ0SxNsfM7vy4l6P7wo100F3jsnvAPLioBBgxxbNqfCJIUojoSACfof/aws9jQQOEbGD/o2bMT2LqhuZe2goEPQFoZyUCZy4vOMv4bdx20eu7y8XMGRuF2UVMF++Q0YNViem3YGGDQUJii9kDHzkDn7smgIhMwtHs7XQ9jgP27Yevr6XlDPbB9swLER2B/6Xcc0KWH5xS3LyWnuKgd0K2Xt65rkKTX+/17YP/ye1nrx5rbH1yUXes/IwDJTrlxDIgSHg1NOweAIdOpK00AmQyZAiGerHb7ZpqQG9fS62tXAIf2N/eUF7ERGgY31fw8ogw7R208q3mGyWvuYdSjyRAoWbUQxJ3D8IIQB9ABQEcAnRhAjQg0rhMnwow9lTyjeNwzoJ1bYW+9GaBw23Dz54eiid9nDeezYKw3QWtYxkyAOfsSz7uV+V9bDfvE/cDKxQBQB+BnAB4BaQpzFDiKAmgCEAMQM1Onx7/I9zgNyHFDVc0X37ojBLjCGCASAfbsgN2+BaZnX+9/CgroftoQxjcVgEkHcNzfV1eSPhEAKsthyw95m31tLT1ft6K5TI+MeTyvygEs53VqGwBGEljBwMddC8NoFOuA+hjP3yhI7P6jtHaxdyfsyiVAcQlMr37EpLmsTNC13r2dfr1tM/39prUeINyy/shP1P5DgOEnEtDdsUU7OZmNUeOBoSNh+gwgMK1Bko0D8TiF2568Xxyn35g7HraJtd7a7Fp/rAASA6LTmB2aADc23rMf0HsA0Lk7MUOZgKGmRhLtiVHv3gHU1VCWTmZjBx9VDAYiADYAqOGFcgX/XW7AkZPiiAQ8DwNI2pMfCi/zozN7Ua8B2BngLcniEPSzLBp68SgB0BPAMABDQBouoKQTzDd/Ahw3wjOeeAx2xl3i4UwC8DYAmNsftFnD+VSN9CwAPwUJ64Ge/WC+OtmzFb3pbtukmcAF/H+bABQAyOd5F2dgVM9HI4CmzwtAaiabMxJHQo/jlvRQYaqkMh4Cctx1S+6RPEYigIn4nbzEBh1nm4wHawmDAJDW8zTUEztuABxyWJ7D39Tn89pSwWukYcAjoGeHem5SAB+T5m+CgJFeAwXYnwzgewDOJ7voD3PJ11jX5diF77rneD/LfrJvD1BxEPZQGbBjK2WFzX+7OddmgXJYVytHugbAemcv2ALgGgBjeO0HSjoDZ14Ac8pZQIfOCX2W/Z8pwPqVAPB9AHwT0ZEPy48d+OjMa7w3BgyD+cG/0/y0FojHaE5t+xj2tz8CKLvtLLm22bW+eQAp9zDesD8DossCAdGQUcCAIRTb7dozWMwnE/fgAaC6kujc3TsoBLbg3UxO4wO+4R/yXV7Mk3UDe9S5APJCHnMB9Ah4TQOk3AyBkAnxkAwv5CNA4bJS5/x7AfgugMfZKMIYJJvidxok7eaF60UA3QGcjbK94+3UX8H842m6B+Jd9OovAGksgDkAovbm68lwEstV1nCOkXGWgvQUX5dN2lz1TWDgsOQNoKkRdt77wDPT5d+fBvALvlkdQHqMPP5dE9sB1Dwxn9J31DVyihXr6TI6nxzopAA5gBOqEpCTCpAEvZ6K4ZaNWjboSA6Qk5MMkAQYxWPEIPCGZbd9TH9TX0evAyQXWP7h4V6R7czqwAE6q9l5BD+vDGC/w9a10hAmyM1cCQJNYYyRXufa8P4yFsDldF9LYC67Fjh+jP8+aFCUkwNEo8D+vRRiqjgEbPsYWL0UKNubCTCMMwiyHFUwvK7uSeFIu8+7A7gawHBI1uCYCTDnXgYMGgYUtoAXptsD+9ffCzhay9+7jTonsd9t7FDr9b8bO8IjsWFlX/vovTBT/tsXLbA75bZjMYCW4iTxWh8ngGSya32akZvBApcLqulxOlOcIwMBUY8+lOqYX5i8gFRXAmX7YffvISB0YC+wMmWmayXTtuKxrGWkvoQNV8CNPnJ5UnZwXnP/Rl4LA0JBwCeSYiGA83M/AIOhQ4sDj4e5+Gpi0jp2hn3tOYCEdN2U16DfX39emFrPPQQ0RQC0ks9F+1JFv1rgwznyHsvZcBrYcGKe4WTHMQAOfwDpKUhrdtW3YEaMIftxGYmDB2CfexhYkdgofwvgQQCt1VHI8zcKgOMnqHfm0pFkdnS21ZEFO81hczLR4zRHi5NJ5pELjiJ8iXNygJpqoLqKXtvPSR+RCOlUaqrIBlcsAcr2HM6VqQSwku9nJYBV/PpOPgyAXfw8jNF2j0IG15EMmJ90YTIErI3uo8sYWQYG5wEYxQDaU5x/7bsww8ck3+NIBFi/kvaUHdtYXrEv7FxqAXzM12YbX8MydrRjPH/DHOruKZxpObow+zsy4aRc/DWY084Fevb1QJEcC2fDPvBXYP8uMNs0lz8HKdZ8eb0YwEkQHdZJp8Pc+GMgL99jJ/fsBJ57WP5nDagERDWDrkZ78/Uwt83IrvWHC5BUobPTk1iinv2A40ZQXL13/2RAtGcnLQyV5VQR2sueChrL1YQV2lLy0jWwyefHzup5JocbMgtjgbQRu3mlAjysY9z6uWE6dSCzUx6lOv5MolRl7NoOvPQ4lPd2IMV7Q21GQV6d/jmXAexwACUo7QLz41+TFytb2IL3gI2rwNd7LxtOpTIca26bYbMs0lEFRlcAuBlS/XrieTBnXODXsaiQgf1wNvDw3fLviwD8nhfVbmyXbXiDy1XgqEnNZfE6w85nJM+DMMDzybQ6ukZOy1Ykkg1idI4k0En1d5n8b6rMIxcc7doO+8KjwNIPDvcKLeH7ZpkRj/M6uJY/tIpDOJkAHnmta4ZsULqwWBD7kwrwhDlvLgsu6+kFIK3qJN8VOeNCmOOGU4i5dVsv9KhCZvblZ4C3X3avZTWAjexUV7LzuZ+d6wZ+rOS/a1BsWG6Ge4m7pwwEMB6Ap6q/+lswZ10EtC1OnneNDbBPPgA8nwAvGwG8x/enLYI1qHKtu/Pn9Ens2z/6fzCnnEnOg7Bp89+lkh8HdgPAQl7nu/A+I2uCtbfcYL3M1uxIC5BYS3RDIEs0ZgLMkBGkoNe09J6dwIG9sHt3kYckmQPJYxtI8LyCQYGwQkETs1SBoPwAkOQ+z00BhIJi31aFHVxPRn4XD3geDzhKAIxjIycmoN8QmPMvB4aNphoaABBtosdN62D/8b9C+c5j4wjyGmzAwhVBsg4qlzewMwD0T4QyTr8A5ppvUXFJof5XLIK9/dfy/nMYyBXw+yHxnYyJZT2LowKMxoDSwi8S5tWcd3mwzigSAWqqYR+/T4dXZgC4jT3IXvzYlsGRMEfVfB8beQMQzUIXAD3slMlSef7wQI/L7KhsqyMGdo4E0Al73LXd+3nvbmJ3DICd2yi8DwCtWgPdesGMGc/2G6Azks3uwznAv253z2gvb0a58MLn+aBeWnXM6q3nNbCc71kjrzVB4CfCtpop4EnFgAeBnjDA44a/0oGeIL1kqsc/ADgXAFBcCowaBzNyLMky8guS9Vhy3bdugp32N0nG2QvgXnYY9qj9ox3P8UJeo9swOMpnWylgJ8Iq9kjvK7lpnOt+vO4PBEBdGM64AObMCwkYAUAs5rfp5Yth75kK7N8NPpf3eF/MU8AlJqEwPopAGqaePobp6m/DnH0x2WOEl++9u2Cfng68kSgWuwnAOwD68vc18GtYY9lVOQOAxFT/BOgeX8ISDRjihc2qK4GD+2HXLKMF5cP3w95zLntF25mpWBjACOWBxGfuxNSP+QFsUW7IhHUBkAt+tPHGnOdBr8VDDvldZ1C9mVN58gGnTIKZcLY/RTfKjnxjI+yLjwKvPyu/eZPDJAhZjOAsZPq7yvc/DcAp0I0R+w2B+dq3KEsiJ4eMtLEB9ukZwIuPynu+DeAgb7K58IsiSY+U9SyOJDCSui0/FJBhLlV6iiCh6crFsE/NkE1gMYB/sEPRixf8Yl70GYGjge2pKwOgksTinW7oGjpBgCcTrU5zwc4nBTqNXJBVft63B7aeo4rlB0mHYkChrmULMr9Z132fbLhAwpwRPzCSz9u0Fvbhu0U/AgAPgWpQtWFbbM/3oB2DWIW00MgbXxQU4q5Vm3WmbHEEqfU9YeGZTFgepFkvMwE/Qckm+nlrAOeiuBTm2m97jqSAI3c+RCJAtAl2/ruSmQUAb4EytBr4WndkcFTC11fChk18ja0CoYXqu2pn05VZGMep7s1rPoW3SjoBX/kGZQwnnOGo36YrDhFr9M4rOmrwEp93Ie9xAl7EqRnOn+WBov5DiFkbMZbS/fmaoKaKMtYeTZSSqAJpcXfxeiFzr4GvQx0/NzDGZp3h9AzSrxOgaNQ4mCEjaUE8uB/YuQ12+WJgywZdoVOPOQyGljM7tArJcdyiFAyQC4RcBJ/rgAM4aLvJAUGxAJR8OEdYNll3AD8AcE5ic7roGpq0XXv42SKwgWzeAHvf7cDBfWCP8gEA0+GlYwug0+ccBpIu5M8eyyEWGpMuhTn5DKB7L/rMGDH2dvY7wLMPAgf2iNfyEUh42Jmvc5yNpkrR0Nl2JEcOHN0MXbfl0utgTpwQrDOKRIDaGtgXH9N1VF5h1qgFe4ICjlo59+86kO7NP3oNADp2IXsuake1VNoUpQc9zQE8zQE7YUBHXqsoh6046P28frW3Ra1ZLjb0ScYSeJlI7TlcAXz1RgpzFrXzC64TQmC+P5XlsI/cA7z1grzfMnZ2NvE9bsPrXVFA+DPOm5PYcw48DWDMCYOGqWdtCOixAUx4PAX7nQrgpANFYWtjOqdSn893ANSj/EChffQ+4IIrYE6cmDxvxC5276Dr/vFa+e2fADzL97CbAkbFCpDmqLVUAFA+PJ1mPIC1jzp7ipz7IA4DEuvaviNw2XUwJ5xCtgTQmqttuqmJamDd8yd5/50AXmXCoCXbcA6zgx15b+mlnB4q2XL8CTAjT6Lojbx3tIlCu0sXAE89kHDH2Ylao65DAZ9/DbOaLRWLZrIrdCYA6dzLYYaOohmyYyvs3FnAsg+Dyr9Lx/g5/DifJ5IWPrdDsHYoP8VzTWe6jJCOV7vZW7EQQBT0PB1gcg3ZpY97A5gC4OLEBL7gKor/inYk6hhITTXsmy/qxfRNAP/J7I2mVaO8SNYrgCL0p7RduYTZIi8lcNgY2mz7D6ZNT4BRfROBspceBzYlKoEvB/Vja833KJ+/V5VaxPOyRnPEgNFZIJ0RpScH1W3RjFFODoUO/vUXEZpuAnAP21kX3gDaq5BahJmIOrabweg7GBhzKkzPPsQItS+Fv+5JCHjJBPQEvd7U6KWcy8sVFQxwVNG8DU41+nlHpBK91uiAQ1Y1/PMedkQiDB43K2ZgAkhbSYD1jAthLvgqC2nhMUY6RT8Soc1u3izAC1EfYIdwCdvN8bwZFfD9KVTsQI7DyghLlK/Co7EUACeeBvDEMmDHY81gd9I5iWGHzeDniwH8GCQyBs77Ksz4M2j9CgJGkRzYBe8B0/4qv30fwL/4HvdRdlHMa1tLvh8Rta7W8Hyp5vlQD1UbLA1A7AjgawDOBAC06wBccg3MCeM9pssHjPi8Vy+FfeBvWoj/JocCu4O0h/0YDCXXCBx1MjDyJJj+x3kJNuJ4NzUCq5fBfvCu1rw1gLLv3uJ9tCtfh0K+FgVqLubiCCZtfDkA0pplsF7oRw8BQ+/x863wpza2cJiiVGGy/JAwmaYxow5yDzqiCK4FFEvxGBY2iyG4Wqs++jLD9hVIWfvzvgpz8ukEjIzxYs2RCE1mY2AXvg+89KSOk98D0pC0UADF8DnWqe9exLHtCQjMGBwNM/YUCoW0KfIMMx6n5oWrlwGvPKWLZS4GZTvthleHycKv/coNoPOzvOvhAaPWAO6GpO337Md1W/oHh9MY1NoXngTefF7e5lUAd7GH2R+epqK1Yo3qQGLTAwnA3rotkJ8Pu2s7TI/ewK5tfiWbA3Tsts3Oa/BCVGVOsdXDK8CayaiCv/L8bj6EMV2hAMVm3uDCapNFQp73B+mwzoDUpBk4HOaGH/jLKSTq5kT8KfrrV8Lee7vWV0pSiWWgFaRxlFBao3KCGnlzroOnRWp01ql4CscvlVOXCRMUtO5lIidIxURZpNcpWQYEtyOhvxsNc/4VJN8wJrFuUsArh679oTKqiL10vlzXaRzGbM/3tL1iUwsU0GyAV+aiVoGjmgAnNOzoAuDboPpBhIS+8W8wo8d5wCgeSwbVu7bCPv8I8NF8Deg2gzSqMxi4+McZFwI9+lJhy87dgVyWRtg4ga+GenJ41ywDZr2k/3MxA6PX+Pt1YjatLX9XYS3r1TWJ+pizbHgtA4C0bRPgiYVncxhmDjMdWvPSKiB8lg4UueyQBkONIWAomsFjNAQIpTL6dEYMc9sMyt+65YbUjRDFqIWKl8V17y7Yl54AlovsCi8A+F+enN15k9OUexc+enHceajv7kjTy559qUSAjs/L52/dBLtsoY5xyyb7OqguUgc2HKGPRRBarxbxKII1UNlxuOG0oLR9PVdyc4Etm2D/9WcJHe0H8CR7gt34vpUo1sjwvaph29yn2JKlWL5wpMy7Y3QDq0B6Cq2F2aUAjhzLFciJcBheAFAukhMPwkBP5wzAUcRZa0qYeSW76tAF5oYfASdN9LNikqYv9XQiOUB1Oez0u4CZiSrHh/ge1cITTcdDwI/oPBqdo0EdTYrJyJThTrfOZaoNSgd2Mlkvk9bNoA3XTpn8B2ZTWyTp71zGKDcXyMmFXfA+8ECin+8qBkZbONQlAuzW8MTHUZ6PtQoMyeHej2iKCIRlhuvbGUUKIhH6l5oq2OceAea+Kee8i5mciXzQGDwCGD0OpltvoHNX0lzFYsQO6ceGOmDjWgJF/ky9ClByz+MA3mDAJbq3uGLNJFmjCVTOoIz/t1at/9l1PiOARCzJFmcRE6W/W//BDZ+FCal1qEw25kyZoUyAkGv4QfS034Bt+pC+veUGKdwX3iE6aLOrraG+WF44bQmAv7Nxt+UJfIICQ935uvtHcSkwYixM7/5kPK5ORI6tm2A3rALmvaPbBOwG8C4vJh+w8bRlYKup/Bq+Pod4o61StHM8axJHIJx24ZWhafvIzaXw61sv6YyTOQDuY5sZwOCoHTytUYwXN9mk9/Kxj+/hOQBOZPbRMPsYVLhPc0W6MrBmEAXkaNChq9DnhICanDRgR44+zs+5GQCkVBlcQYLlCKjsxkhIpu6//SfMuNMoJVrCjq4uKhKhpIZZLwN/v1WuXR1f9xq2I6nRI2xFrdqYD/JRrkI67sacyrGLpQmZZRLysimeBwKcUNCTkmFQv7PxMLv4A6ScxbmXw0w8J9hhyMkBcnKB8oPEGn00Tzt6zzJTdByvZwKMRIAtqfsH+T5VOOE0nRWWaj/5D5YyUKbC+Vf6IwXxeHJR0KYm2HdmAi884n79rijtAow/E+jVD6b/YKBTV3JwdZHQGB/xOLBvN7B1I+yyRcD8WS4omgvgZXZ6q/j7t+H1oY1yvHP4e1YowHiAbXo/vyaat+zIBCCZqdM32ymTdRp5bgBDFJZt5gIiq2jleAa0cTQEFKWKnbsgKMSYUxuwY8y5zBh5hfsyAUaxKOxHC4GXnhDtyD4Az/NkPBvALUx9tg/84JHjgJ59qSddlx7JuhG9eAeDIrBH8QqzD9Xs+XRgo2kLT7uSz/emQhnOHvYuqhWj91kDHxN4oyvmMGExh3zLAcw2U6fd/rkJp+XkAssXUVYLsUYHeAN4D157AWGNdIaahNP28j2TVHLZiBt48XwV/pIQqeq4BFWNzwl5rZjPK+j3zW3Pk2n/wqD6OymMPLEuHMfzhWzuqpv86dfRJv+9icu9ArBsIeydtwJ7d8h77mGw2FqFcozacOv4Huxn29egtUoxF5mKn2MZMDyhjuDhsjxBzmK6NTOFXZQC+BtIuxNczsJnExRSsvPeBB79p7zNOgAzeW0awoxRK4cxquW17ABf//183SvhJZw0hewpOtR4A4DrmWkExk6EmXguhf/09XKqdtsF79O6f3Af0H8oVcru2ddrp9WuxAu/JbX2sFQtfctG2BWLgaULgU2rwy5pEUcX2oP6NEqP0AgDwkr+7iL8r1dhNbk+Ug+qkn+XZZAyHHohylGLqPR1KlDP8wJCZjJSUb2ZaoeChNKJ1NPk1HN7pDY6f+f0oMJ9QaLadatgX35CZ1bsToCroHHmxUCHTjBdelDhyC7dKcYcjdJjLOYZpCXaFpvWwW7Z4IbPNCh6HVRtXMShcrSCV2FZPA3RPTWoRX0vP5bzotL4WejXxffkrIT3mXrMN1Onjf/Mh9Nqa2CffxSY84a8zSxQg9kWDKJLFWskbF81L4L74LU92Kc2glr4s6B06ErsVwTDBQjWA2baRiEIDAWFuMJq+TSnCnPYhp+KJekJXZtm4vnU4kHKFQRlp4nWaNc22Mfu070et4EqL+fwPZGSCkaxFuVq89kdAFx1VmgY8DmcsBYOi+U5dnZLTmZRe3Iyx56a2mHYuwv24X9qgPAGH13Y0StyGHABRmXKYdjH170CntYoqqQDcQU0hGEV0T6Vt+nZn/sfdk+97sdiwOYNNG9KOlBfOA4NJsKz8veJ3ZFZo/pa4OP1sBtWSyeFIz0+5rm7GqRR2sbrR7laLxrxJWhc3Yw5mxFA0h5nYcCi6qrfLcLTRzPRE4WFx44aEAq4MMmd0yeeE164Twxkz07Yt2fqeLN/TLqU6NSSjjD9BgNti0hQHY8xGIp5wEho1niMPIqd22C3bgIWzwtqODmPvarXQSmj+c69asFhNXmU1+XeiSC8ko2mzNloxXDsp2U4dsqN3ZkJO1m8Tww7AaZjZ6Kn2xTRY9l+CoW8/TKw+iMA+G8zdfpvjvamkFTsMVU4TetZli+CfeIB4OBecDj7CVAV3U7MGgnLV8BfoJ4X+/28AcixX7FGdRIWNVOnx5kF1lWBZR604seWyqYLkL7YqgZBxnkeyQD0pGtMmqrgYBADHQ9hl1uCGoMSSG7fkVovDBkZHJ5O9EmLALXVbg2Zbcxe7IGXIeWCo2oV6tzjANcDKsSjw9bxDEJbzWd5PqthZu1kBpWzENZo/rvAY4lrv5DXt0aQBq8Tg1O59vXMymlQuptBUhkDo+E8J8YxIBqBdEVRe/aDOfcrwf0PjaNLEyCUm0fPc/m5/E4E/okLY70emAnhdUyt+27DYhu8RVdVAlXl3ttu3kBPDu4H9u8BVn0U1m9uLUhu8RA/NmXBUfMAkm414uoAdBp6LMSTiyPzzAuflxQOhOzRviB+YJSqc7oGRlo30n8ocPoFQJ8BMCUdyUstLmFa1QQbhw6dWQtUVQB7d9JkX7NcC7v1Yj0fXu2MasUKdHbAkQAk2fxks7PwRKE1vMCU8yJe6Wy0nyo44nE3gJOTaHnNABhDvbmMgWlxFSwBpAmJLEIoAfsR/C7sHVOed1F7mG/8IH04rfwg7FPTdFbLuwAe5UV7EG/CxbzJ56gNuCxgEziowqPCTLhFPV2QVAhPyNlKzZF8hNcaCyq14Ya3ghqPBjUfTbVmpEo1T8VG62MyqF1FCQDghh95KdhNjf70a7FjyTSd/Sbw9HSpbNwIyjhawqxFKbOv+Xzucs2r1L3Zo1ij/SrcocM7cXPbjHg46DkyYa1PcXNJDjMHraXSsFe0Rts2wd5zuzgMYKdoFgOjvuw0FMMr6FirmFTLc3scOxUd4OmTwoeuAs8FUU333l7V92YBozwgL49ZI2GOIv61X5fXiFugshw4VEbgKM4moprL0jm280LBerQvoUOMr2df//4iz7d/TA78hjXAknnAoQODQfXRJoN0TM8D+MvnbqJ9iiPXCZMJwGlUHlvEWfjSLVoxd5H0L+LHDAhJF3FprzCSF9JTm+051NUAFYdgTjsPuOGHilLN9f5OGhKKJyCT3lqiVnfvgN20jjpMr18VFHOuZJZoHkhAu8YJd3ZRIZMC57kwAfpeSSy6VoEjAUUCjJyN9lP3KiYAgLnuu/4ef740bF6EqithX31G/m92YvPT1/0IVCxg7/i3iXkTVOzRDafFYlQkzsvEWQ1Kx93Cc7EDsxOyCUvqvrBGuxUzIZuvD8x6dpX2+1nHtkUrKIVWIxmEvjLNaIqHsELNKVaYLt08BtL3TQYJsYEzL4KZdAnQRjKNmpyUfQCGN+mP18E+dq+ugr2AwZFkypUo1siy7Wi9yz6H0StToR19f8imvqB7ETuaN/vDzGOTwYbLGj3/iO4o8AFIKlDHodFO6vq3UiBf1ruOKU9q7ESy+76DvKbGqYqiBjUdFiAnZR5yGQjl5lJrLcm027yBv5sBtmwilkdMZeaTR+5Cl3YBjh9Nz1u2ToSMTa9+dK1LO3pgrGtPoHN3mOFjga9cB+zfC7tyMbBoHrB1wykgndU37ZQbf2OmTn8myyKlH64GSXc11pS6RerCZPHUYOiogR/dYHMkPCFvr2ZTqtpAcnODDUR7DfI3kYg/8HiojLqvb1hFFcjXLAfWLQ86kx3wWrEs4E00qFRCgRMW0eGRHAcU6ZRjAUZSKE2nvTYexkZ7LBbdlwBcZK7/ETB8TDIwikTIQ1q+CHjpMb3BTXQ3Zr8+wx7u+dwJaRES5B27wCiSQ5qKh+7WAPgVULmFzvDaIbip+8JM7IVfz6I33zRg1sBOmRxxQmw67FrohNPCehWmCoWFaWbiaUJlqfoZxlO8h/s5I0AFW88DAPQaAHPNTf574rs3OR5rcaiMNIPvvarDD28yo9pRsXlSzsSqsI4uq7BXhdPK4Rdjf5acjaNlo/1Bmb6Zh5lzcoF1K2Ef/LuEgsrYLhawXXRmpqMbA6RWCGmkjhEnUdPjvoNgiorpc9uVUjf7wB1OzYmmRg/ABQGknBzKTPtoAbB7O1BHji02rDwSl+4gvMbk7t4rh9R2at449RygRx+YXn0JJOXmEUmkoxabN8DOe1s3j3/MTJ1+7Wc5dPtZCLEZM3Ua7JQbXZ2BLuLoNnHVC5fSDNkjcbLt4MWLR3IoojjgtfRDuoiXdKCQSMfO5PUHifC0gQRRqnl5/FzAUg6wdzfQWE905v49ZEivPhV2NjWgVOlFoOJ3axggBTVKzA85NHDV7VYEFDUoYKQPAUVukbTP3ELOne6fTrxw4mm8iBlg305gs0+XVc+L7C+ZGRNGJFEQzdw2Ix4e20/LGnkpyld9K73YNB6DnfUK8NyD8jaLOGxwkD1jSd1vzfcxCn/q/m6HmdCsUWMmYJbt2BVpu0kWkQDWKB1LlAl4aS7DlOr/3bBdKwB3glqqAEUlMJddCwwf6529C6Ql9FFXC/v+m8Cz07VjsgBUn0mAkQixZZdtRLLWSEorHAgLp32WnI2jZJ/+mkZXfTOYgXfYd/v8o8Ds1+VtFnJILZ+BUQdQhe3Wvg8bNJw2+4FDae1u2ZokDJLQosNYZfuAhgagoR52/x7Wc26l81m3Ehg0DOaM8wlIu731JPwabYJd8gHwwmM69OeOXcrBqFNOqqytdTwnNiNYi6Zt09X2apZX6tU18u9L+XkOqL5SjJm7lqCyIP5xybXE5nXpQSZkVThv6ULYZx+STOjHzG0zrvWHgL9cYClTgBSWXpucLnqYgMhOuVFCXML49OYjJxG+yHQI+AG8eLIAoDZtPW8mjFKNRALEgw4wqq2mo7ICtuIQMUN7dwE7tgArF6U6O/E418LrjbNFbXJQhhJUQkEfWg8GJzSiQZEuUFeL5IJ1TcpIP9MeLoOkn6aYE0tAGRozebOLO6xZrfrOzdJVJWkqhoyiwnZC0bsZUMIarV8FO+Mu8Y4bGLi9p1gjSd0vUOBOQjaaNdrH3nWlwxpl9D2UHesU/NwAYBQWPkv3c9rMqhSvpfxdmECZCw16WaaXfp1DnAXhAuBIDhCPw370AfDcI9LyoRFUb+pt3pQlzCnhNF1Xp1zdGzkkjdzd+GL44rNG/jBzqppGwqZKSYvH/yV2sY3DzGuVXbQHtR3phHMuB4aMgOkzgOwtJwc4eICOeBT24w3Eihw8QP37aqrTrcNA74HEbh03XIXnHRlFYxPsknnA849oofNcAO/wGiyaJwHTklDR0mEaq9luRcYgiS+6KW6ew/7rYqOyluujAf42VPWOsysZrMdziHIMSJtF+oRrvkNFLvPyFaCMAwf2wt7xOwFJt5g/P3S7JxT/coGkAIBUyhhlNIAJxkydFhB1QwjjftjG5XnjqYYW0nXrCRS0gCksBEo702siqEsFflzqNOxR91sSGjgaJX3CuzMz+Wp1PDnL1YK6gTe4cvizw6SVSFCtqbwUm1hcGVCTYzBu24I6x7Aa4ZSXT7eIcz2oCSG/nm2mTjsGjWwNOCOrEMDpDCpaqnCGFEXL43+QTa0KXkqrpPo2yXd2vpvo0vTYDldTEcYayXypq6EKup53vAhUPT0CL3W/GH4Rtq6ErUXYboZaRqxRCpAU5vSYEMO2GbwWDGoSf53pOmEz+R5+oJyuAKdmf9etgn3hUWDjKnm7+QxYcxRglfTxXHjp41Jvyg2nucUfG3U4zU6ZPJJZqKBxyEydtvQYLPSafQ8aW8zUaZub+Z7pRdhBYebkgo+zATzD16gz24U08z0JHbsRGyhhoXdebu7XX8bAdSyAFiguBS6+mgo9wgT314tEqK/Z/X/RPdPms+O1jc9RgHQJvAreUo9JwFEj/DrPWmW/8QCHWEcBYvBXYa8NAECNAUcTkguNytEFFIKeLOE3M/lHnn3KNd60FnbqrwDSgY03dzxs/b0bj2iCS5+A9TajvYUzhyfw3yw6CnaTC+rPeDoC2nsFAKQj7nm8Jd44Wrb2GJ+iYqANh1sl7JUO+OjNyv19TRVlhgFASUegoDA5xqw9iEgEqK6Cfe5hYgm6dCcDL9sP+9ufUEiHNs1GRY9KCFKo0Dq1Met6E7oWh1ufJiiMiRBA1BjgQbhgSA5tPNpwoDdYBRRGMlAYiXS6Lf+YA8qGmGGmTjtwmPOiP0/KyxRTNAfA983U6StZSyM6miJeoPRC1Vp5d3UOG1PGIGcQqGL5iGaFZvVGnMI7tgveB154VHvHb4JSxLV3HCbCdtPDdYE7uYefkJU40v0oj41XmaRxSZdlqsNpe3dRpun7r8nbLeV5VeEA1lZq/ojOqCwgnFbGdl3F93EIe+i9QNlWzWG+5Vx+d7h2ozabkWpe90oDjPSoYLDyvJk67f4MAOofMnIYdJj5owXA/X+Wt1nDjN0OFU5rD09jFAP1VevsfHwN/81Otq0YX7soqCfoNv4uKxlEXw+pf3Xx12AmXeyt/z5QxJq01Uthn3kQWL9COzZv8HsX8RojeqAi5ZRJQkzEYX4ktKZ77MWUIbprf6o2NdrBDSty6ZO5IFkPGOP5+UsAHc2dT3ICgwpLxmKwd90KLFsAUBX+JQDi5vYH7eGCJAVmZE5mvu7StZ8NYLqZOm0Wv9+jkIKjNB4zU6dde4TWGAFFE3znWNQeGHEiid279zrqAOm3AP4LV32LKowiTedwY4D9e2Ab6pPX+E3r/G++d1dyraA+A2G+egPQZ6DnOWidkYCjmirYd1/3dAlXfxvmysmezqhsL+wvvw3s2Q618bqVdKWmUIU6ahzvP47kNgg6NOFWFG9UBtMQQLs2OIDI7emUKMegmJP+oGJoE9SimhIgBI5Fs91XdgMY3pzFngHzT0FFIFsE/Ml8M3X6eDtlsrS6ac0LlfSskywXreOJq7/pywtu6u/GujT/1nEQpmc/YODQ1ML9ZO9YAGN7tQlnKsI+gOS6Rp8p4fwxpLpzGRjdhKC+XWFgNcI6o9lvAs/OkLfbwRvzJvj1X6IzkvuidUa66OB+tqOhHLY4EVRjJ3iI8xc0aqulVtdh2Y2y39PV5pOafQ8a+3aB+24qW0susMq1yO5GmAjbDTMLm7p3F+xD/wA2JpITpLJ7Z2W3ukJ8vWLsKtiehal7l++Ly8RonezpAL4P4EwAwPizYC64EujQKZkp0sDoqRnA+kTSzCYGBivg1QxrpQBRCyccBiRrPxud9blJRQzgrP3a29BOcH0AMIohuLSGu5+EMcXfAnAiTrsA5js3I4npjccpo5Bs5ocAHpDPNbc/GE8HktheZV6entJZ0JKYzPaWxwD8GcCHKGoPnH4+8O6rQMVBALjLTJ32o8NYX8aAqqYnN4EfMwFmyAigWy9PTlFdCfvKU8eQQTqao10HmCtvBEaPS24+qY2lqgL23VeBpx6Q/2zgCZVvHpnlxb5zc4F9u2F/dj2wexvgpflChbrc1Hm3W7SbpRNz2CHNELmNLBsC4s+abtUtWpIyCO2UyVeEUYYJoNCtJ0xRO0qFbVPk120FMXcJnM/9gt5/FQAuN1OnP5eKZWBDugG69hRAOoYBQ6gSLQA77W+ykYziBauQF9RSUHZLV15s27G32Fdtfv5x0ulA154wbYuAkk6Zh2ZdtlELfuNc2O6Ru+Uv14L6I5Ur1qid4x3r+i17VDhtHzyhb0Bdoy+dUNJfmTxI45K5zuh1DpV0hL8Ip9YZ1TqsoxztGGBPhJQQSACQEmDAEC97qk2Rv05XKpsBgIP7YefMyshumL0Jtt+e/ahxdefupLtsU+RPY091Ho0N1N5izlvA6iUAMMpMnb7U+9zJvkrYKQGqDjO/8QLwWqLkxmJQ2YRyxRoJa5cuzKyrYbv6HTk6APg9SNgN9BkMc9WNQP/ByWu+1CdavRT26Rk6m3gb2+9meBmebiIMHJanyWHpm5DciLgpBdPjZnFGA/YCvW9o9sktzqp7protfzowo3Y8SjrD/OEuqq8ktahUrSb74D+AV54AgB+AkmO8gsG3PxhP1Gvy5mWpYv4nJLFDQ0YBA4Z4+0pJx/B11x3VlbBrlgOvPQtUlAHAXQB+iEu/DnPqJLKf/50CBs3DzdTpG9Mx26GgqGc/4LgRtP906e4vKdPYAPv+G8BrlCuUezQXPjN12iw75cZJyvtJFweQ7t8VASj5A35tIoBreXMkIdqESfQlg+LMkQhlKCx4D3hyGrB/lyyki3gxvQzAKPvmizBf/57nbXTrBfPXR2F/ch2we2tLnrTbFR2qO0bXBngQ4gU0Od6GC4rcTt/u60GNFuPwlVSwsFNuvMJOmXxZkpcpk6FnX5q0QTVBfGHKStgdW/yZIOJ1JI/yRIHGRN2hxPlIfztPYNuzHzDuDK8tBy/a9vXnBRzNN7c/uNTefH2OQxc3gTRsJwPop7xQoH0nYMwpMH0HkG6tqL2XtRFXNWh27yBx4p6dVIF23UoqNjn5R0Dv/smgSXueWzbBPvWA6x2/xqzVAMUaFQR4x0Gp++UKUH+ZWaPkRr9nX+LN0XQ6o+l3av3IPGYechlAi85I9F9xdmQq1OYsqtwzQWnmA32AaOSJ4Y2jXbsp2w+7bzdMYSHs5o3Au057oKIS6tclduOzKwM7ZfJZ7ESE22/XnsEJKPJ46ACwcyts+SGYTl1h57wJrFzsP49eA5Lew95yg1+EPfE8KoUSVNMoXIR9kEMkcxkYDYQngtcFNwWY7gFlhblhZpEmuO2v8kC9Lb8KoAPadQAu/RrMmFOoAbGvhh0Do51bYR/4qw6lbQOwnkN3bdnJEj2RK5jWuqKqgBBak+OoBnWJcPu+pasFFsQ6RVI8arlGLoALAVwOoDvad4T59z/677WsZyYCNNQBC2fr61LC71UNoNHefL01t82w9pbJ4aBozARyGKT/XNi8bGok+9ixhVfHOp3t640TTyMwRwDpVAAwQ0fS+5R0BM69Anj9mRYAfgJjfpSMj2xqUDRqHMyQkcFN4BsbqHzMq8+IeL0OwDNHlUHS91q1QkjXuTsS8trVAK5MfOlzLoe54AqqPKqLwonXIDUtFrwHPH6/aIrAAGw2X4CWvMldAiDHPDufampEVMn4Xdthf/p1YZI28//rNHo3bux6GK6nkepoUl6FK8KzAaBoDICfJC2qQ0bRwqEpQ3fiGkML+67tsFs3AquWAls3NOem1gEYYf780AadcmunTO7P53RWAhiNmQAz6iQvJVjO4dABSgFetVhCD+eYvzyy0v70uggvquMB/AiU6eL1uRt5MjB6HMzAocQOxZ1S/taSQW5cTaHZBe8mn/2FV1E7hAKnIKWuutwUhX3p8YQ3wd7xa3yvuqjQjWzCUXhd3TVrtAf+9PA6OELfLxkwKuVwWjMa/apQzoP/0ALsxQyOypHc087VGR2E19i0P0jUO8QHHk4YTxWWe/XzOwWu7WzdBLt+FbV50HbD88q+8nSY2HgNh7qjDPZvSApRpLJft67Plo2wa5cDHy3wNbE2P/gV0L0X7L23aylChdrg5gM4F8A/vPsQ0I8srNbXC4+5YeaXGQxpEXYLxdrpKuS7HbuQMHMDPL2nZHwVMFt0I7PLwKRLqc+eXvv1ue7eAfv6czrZZjOz0luUvkjAsyu2lm4Dh3i+6MxFt4ZcFME1AcNAUaos0CDyIOgIYpF6s95oIoUbJ8Fc+22gsKVX+TvxSM/tkw8AD94l8/F/OCy9m79vNYdYr08CRRPPgxk0jJxKzby47PvBA7CrPqKiyDrbsPdAmJ//Dli7AvYf/+NqkGQPexXA+Sgqgfl/d3jvfXA/7H//HCA932gAMLc/aO3N1/cPtKN0oIj3QLtmGTDzGW0/r4DqrW3JPYbrYliXcU1rBh3jmDGiLz7qZJjLrwd69HYoVb+Had97HXjsPg2MpM/SQQ7X6LT6MgAd7RP3w3x3Ck9lnrcdiKa037oEAPrweyx2WKNGBxA1hYCkphRAKIqUhTetRsk3MaK/KGlR7TPQn+njToimRpqcC2cHpclKc8MRiVeGj4U56TS63iVUtdW++izwyhMtAJxhf/4NEVH2A7XiuCKhLwrrb2cMsGIR7LS/yqd8ABLj7bQ/va4LG+YlkP5aAHD8WJjTzycqXQSYLDZMUMFl+2CXLwYWzQ3qZee9zyXXENsk09KnN+LN+KMFsI/eKwzFQTbaJQyMeilNhesdB4mwdep+oi4K9URKTRN/AcGRF8YB0jf6FWC0ZyfsrJd1xuAaAB+CMkc7KcaitWLyJBQuOiNZT/okQrPtSoHxZ8KMHg+0L/Wzjm64detG2HWrgHlv+8AI281uACehVRugZWuYS6+BJYBUCWqkWwRKx57Ljt51AM5I2ErP/sC402GOG57efrdsoNpOyfa7LGG77UuB4hKYi6+GvfMPouv4Pp9LW95MFzJzBlzzbZgxpwawqI4Ie85bbph5FjNB3eBPTsjjdUFf/6DkhAr4U+I1IzKQma3TKZw2kKrsd+2luhYIdDDUy/LNFyWMCT6v5XzN28NL0y92QuHC+B5iwCYgWsCbGwqPIvOCp9Zhh4JKXaTaM5ECKOUDuJUBbiGKSykKctxwDkHHgHjEu07iaCxfJOAoxnOmN59jC9YjSbmAzECR2OrBA7CrlgCL57vrbwXfhwloW0wgbdhoylxc/iGYoZrLn7mF5+b5OOVM7lKBxF6MXgOArRtGMnN/mr35+kuZOUPCjkadlBoUiQ557ttu1fOZrL+bw/O3OPfYLIqT5UZrgORWiHY7irdn9mCShFLMN39MFxYmnH5f9RHsE/cDa5ZqI9nGE7wVG0eOI7jbCqAYT/wrH+PPAoaM8Bgka6lK6a33wP7ndwFKodzKKNMFRNGA50E0bJDHEVJnypd99l8+lMwCNjPypOBFVa5NUyOweT3s2hXA2y+7C/s8NpBxvHj2RN/BMOdcCvQbTBoHPTatA1Ynru0SXhhv5UneIqEhGX2yP1QiR2017EtPaFbnbgC/4An/J5Dwr1PCox8znt6rTZH3neIqQaSqkoxy9pvA5nXuZlGTAFl9BsFcfA3dW5cx0qHZg/thX3xMe5+LQSnKBbxgS5+olmm8Y11U0E3dj39Jw2n+MI40NE3FVtTVkHbHE2BvB/CRCuUMgteeooWjMyrne9CSF11PxXzymTCjxlHYS6c3u6Bo93bYFYuBuUmgSFLCqwD8EUBPjDiJHILcXCA3Idpuy/MlzmDkN8yI0jjvqzDDRgOduwVr4eR6rFsRZL/SnmgmSET+LZEdoGdfDkEnNom+DNJ6gBIlzha9nrnoKqBVG//3dwGqv9YXADzHWqMubBel8IuwG/j8dHKCtgthjeoVODIq1PUL1sbQxn/F9cDIE3l9Y9ORc921jbIXPfC8ncHzLL72JQHAqElJJSoUMJKSGxIKr4JTWy1DRigJCDW7LIaj2bG33CAv5AH4f+yMEsA9/0oqhllQSE6j/L9vXkcoLEr7mDBrbdkuLmPHob2sveaMCyhpRaqUB+0tNVVUYDO5wfpydnyf4HV9Atp1hLnmW2QfADB6vACkM9iml/L1PQMAhbddJ6H/YGFs3+K5DBSXAiefATN0FNlRAjgHJNvs3g777mvAB+/oSMiLfJ4fMBbpwNc451gzSG4jTRHIud3FJwM4B1Jb5Js/I++msJBvtiNfikSAFUtgn54OrF0mr+5l7zLKi2cXeBksUn9CUiur2Rsabm+9Beafz1A5+0Q1IguMGAvz27tgf/tDAPguvOaWQSyQC4JiAZ4FMulRF6blMed+JRnRJ02GHbS4z5tF+gRvUZ3Pi8VJDIqA9h2Bc79CFVhLOyUb6c6tJMac84b85j1meq5KAJrzr4QZdxottq4nagwZp1fFdR1Tu3mgLLCzEv9z1sUwI05MCLgTi4kckQhtGIvmAfPfDjLK0xOedN/BJDaV7u4mhDFqbID98H3Ao313MQiOsUamlQoB5PPr1byIBvVP06n74nn2FBrZTpkMvgcjHDvpjfCaIak7k3tjDihd9v7PSDjtb5B03UzT9uMxykx79J9QG+5M/m4deWNIpzMqBPWfIrtp1wE4+xJyKFq19vfu85UCAQGCmU+51ds/4BDrW2qTOgMA8JXrYc65jHp/JY9vcphoVAKsn3UhMOh4bgthw+n/1UuBV55y7fcD1sE9xQ7FzTIvzL/9J3CCSk6LNkHp4n4N4NtyLcxNPyUgpRuruskJ5WWwM5/R4ONDligM41C6gCCpKRV1WCMNjEKTE5QDfRpfV/oSF1xJG3V+gbfRy3nu2k6s4tw35dy2MHB+keeFMEZuBftK/uxqBaI1a3QI/qxkN/HGhhU2dWa/82Mz+/Ilv7eEZK/wyRfOuZSAsDE0nyORwDllX30GuPf/tHMM3gM80uDcy6kQa4fO/ibrbteJ3Tso4ckDGuAw5kJ2KNezQzRLZBHm2m/795bdO+TZDr5PQi7Qve/ex581aSJAjz7yPz0w/ixqTt27P9lRkKMjRMfWTbDz39H7xXZQRf2/8vwshNfvVAgb82mE2CIhobQIe3lXJDy9sy/zx5rjcXWx+MavXOLWtNgOYCMbY4kSCkqKvgimJdZcxsdSAIXYt3OgffDvtHhEcvwofMRY4Js/kyak9zOIW47grLWQZr3IiGENBEZBISsBiInKsA3Apo2wM592GZU32RDGsvaAMrxOO5+Qd//BwSdSVUFp7R5tvZVFjifwYgacdQnMWRfRpqMrsmo688XHtTE9wwvYXXxvCKBNPAdmwtmUMi1dr92Qx7qV7sa1jTeMYp4/lI494VyYEycCIvJLLKyRZA9501rStXhZLh/wgnpN4vy8sYo3X526X84G1o83qnzewOMJVu7YjlMBnGqn3IhPEyT5wmlF7WnxTVlLJyeoxhTYGXmb14iBATojqTMlOqMIKDWfJnW7jsDFV8GMPNHzCV1AwGDCLl0IvPwkcGi/fPYCng/PM/jtzEDjDAAFKOkEc9PPgKGj/Jv3orny/6t5wwf6HUdaq0HDaH4nwsMOa1BdRX2zXn5c/2YBKNPoXQYXEzhsdgp546fAXPsd2tjUediPFsj/d0rY69e+SxWWGYj6NkEROceiLkDdxvP9eF5DXD3iSiRnB7ph5nKEJCfYKZPbALiXbY70UFffBHTtkZz9VFUF++YLwFsvJHhtUOXrx+Flvpby+l+sAHQjvKSaSp4rZXy+ZQF6owYkJVHwun0MmxArrWm4fCHI+UvU+6uEnT4DmPWiDk935mtDF/fa79HaW1BIe0hToyqPo957/SrYV57Se8t2BkUz2OktZIfgHwlH7+v/Ruda2MJ7r/17gNefEfnCTmZtGvj/u6FdB6C4nbdmc9KMKekE+62bYYaP8faJWMx71MAw2gR8vBb2Zd/5rmcn525ep1swE1UIL5tRRPuxYwmQhD3RVaElDjqA4+MTEh7Wdd+lrA2NiqGMeOdW2Dee16GQTRxW2cwXu5Q3uUJ4AtrGAK9B6p5UMZr8Hzz/UBEGDQXGn8UxUG/imfOvgK2qAJ56oBBUXOwEnhhOka3MgFCIQfg7ZafS8kR0L6H5QYt7NW8WRKmXdAbOvIBo/f7HhZ9EZTns26/okgi1vND0SojpJpxLwKhTV2+CCmKX81yxmFJs6ZzW8wZ3ReJvTjuf2KKho4D8fHqPWJSZIgUCd+8gTZA30T9gJuxUZrFoXDGZQnLiaYQ1ppRCoS89DrzwiI6VF/ni70NPAM44n87n77cKvb2H59CJoGKUJRndWLceSMtWQGd/kVRT1C45rCkjVWdyPdavgiVPcQJg7g/1aD+NcFpY2r40NH3xcd3o90O2sToE1zMSZqRG6UdOSISw2ncELroaZhQDI5cpkcdoE+zSBcBLPtv5kMNIL/MaMgDAz3iNopX7ym/CnH8FbSqa3di/B/aRBLAYggHDYL7yddKGyPyGSbaVmmrS+HiNmOtZ+/YCO3AtGORcxXOPugxccQOtD+53+3CO1lgMxgmnwlz+DRJhy6ZiLZCjpC45OXQf/OE0+ID+eV8F+g2CGTgEduazklkE3ugkOWGPCldJsc3A5AQ7ZbJX5qGoBDiPgbQ7v6uriAXwrs9edramO8BItwQRZqvRAdEaGB1SwKg2GBhZHMuQeMryKENHhTOwOsswN496rz1yD3BgN/hebGLWmu7ZjT+FmXQJRWfq64CGej/zIvN6/SrYl5/U6+9CPu5hW2zJkZXzIIkPp18Ac9l1BNq1fTTU0znRWMr/24mvPbGsJ4z3S2mkQfzIE2Hk3OJxsqVolB4jOQRcqypJIP7SE649zwL1ASxkaUgreM283SKgTQDqPw2AJGnbwir9hicCUFwK89XrqZKlMYzS9Y0CCfHeelFXy93B7MhKZRxaj6BT6MU4pJ3APhUOqeH3uwPAb+39f4XpM5AmooAk7r9lrpxMpkIgaRoow26rTzh4GMbEnsJ/QRdpywQYLVvoLu6zeAH1tA4XXQNz0kSq5aIXHo24raXJu+B94KlpwIE9+vRaYswEYNho6pfUrRdN2MSCD79wsrqK2j3Mm6XfYyAGDKNJPmw0hdCEOpdMtIgFLEvEbAQ4sI/YsHlvadAXYRBDQGbAMJgLvkoMX0FheDxfXTf7/hvAEw9I2QcvhDXsBODEiSSW7TOQhIfz3gamJwTl63iRmZQIj7XrAAw+ngS/xe1g8guJSrYWaN0mvDfgJ32tbD81TN6+BSg/SE07vW7dADA7rAzDpxpOk5osohvcu4t0Xx/N1yzdy7x5dWIPT3RGYfWMLIdCCRlf/S1qNZGTm8xqCusaicAumA289Li2nbeZmVnBDtZ4kAj2xAQou+gamIuvJiDrvu/KJbD33U62U9oF5vofAGNPpXOIMvCX+R1nXUhTIzkjHlCv5xDav3htag0SdU9KbCClXYArJ5NNu+EngMLhM/7m3Zzv/wcxBPE4edZBRQBrqmGfe1iH02gcNxIYOwFm9DigzwCgoQ72vTdg/+eXwN4d4HV1Gby0fR1mroDT1FeSE+yUyWNANY28Mg8XXuk5CDrUOO8dqdkj12cmqJigASXddFCskZuhVq0iBgcyBEbxTwkYJWcmh2lNwxIacnKpoO0rT2oCYRkDAlozL7jaC3k11NPhY/65HMDu7QRmPl4r7yPtlF7l9xsKSjoYASnSO/B4Eov3Py7ZPg7shX3obmDxHNFAPc/3qjMoM20sAJi+g/yMZm4uaaFkzZCQZZTLscRygO2biSR4/mF9Sd9hOcgbfL692J4EHAUCIz7qjlGaf6LTuG6k+TMGRlR75PIbaEFza28IvbZnB+xbL2sNzBZmEF5lj65UeZjiOQhzVKd0CfvVUaZi4vV8fm1AncPPwtiJML/6P0LikRzeyGO0wFRXwv7198DiubJpXwNg6+GWaudwxK/FIEI7ZetNZt0qMgJv8lb5QkIXXUNhhUHH+1uv+ICR9X5esRj2n1PF2wAGHg+MPhnm+NGUgp1fQH8vYEYeY1GPqgeAjz6gsNzBffTzCacAY05lEV1Xv35MegPJIZ5tfT0xhM8/JH+5gY2oTcJzPvNCytwTQWpQ/N5ljrZvoQ1MtGqdulNob8wpZNDtSmhxWfA+sXGrEnVkYqz5WMahg/8D0NH86QGgZUtvE/Y1fUQwi5XqeSI+v529rQbYfXw/NvJ9XvBOZhqkOx6+36fdCrrvR86+b2bWM/NwWi13evdsejXrW1YzMJIGoW1VmCTm2PM+BkVfAZCPESeRk1Vckhy+EmAkta2enq5t512+v2t4jl3MDsbxif+95tswp0yias1avyRe8XuvATPupJ8vvpYKGBYU0rWOMcMajfrCWnbe2xROJFupZ33TDP5+3TgcPpbDtwSMrr6RMkvzC5LnW2U5JanIxjh2IswNPwQ6duENJep53vK/DQ3UsPVft3vvM+kSmLETgP5DKMzVWA+sWU6M61xf7d/NAJ6Fv6ZRkAg7ATrslMlSNf2HCSDtlnmIRCihY947mgWrZ13gPXx9SkLCacIuSkitXDnGEkorTw2MjinjGtR6SZVHGeqtmcakrg9WW0Oh0acT+/ouDlGfAaATOveAufkPwKiTaA40NVE4rbEBaGykvS0Wo3n0zINa37WYr/1bbB/D+ZyHsH3SXDv3Mkqkcu0DADaugb3zv8Xx/pjnuTSwHwbpr3nKJGKe2hR57FF+AUUY8vI96Us8TpXq1yyjzGoCXdqOXgdpi9vw0ZoPAUaJUBo80b6A6QoAFccSIIlI+ywAP2cqzruoJR2DJ8DBMtjXntFGuYlv+LNMo+rO3OI5SP0TEeIdgtdryQVGus1DhC9gB6biBuOmn5Px5uZ54rdYlCZSVQXsX34PLJkLRqgXgqqQZgySuLT/vQkv6tLruFt5YTBjlJMD1NQwOxNQpPzir1HI6rjhFPN1N9+gzXLbx1Tw7cP3gTMvJuFbnwEUOjMGqCyn99Jsj9ZQCKipLKdw2uzXSbA9Yiy9T7sSTwytC+Tp99Ig6cM5FKIgir8eujCkgL7hYxMbU2ITChI2SouZ6krYR+8B3noRGHcmpXaPGOMxhBWHgJUfsRDd50GXsf5iPm/c4h1PAXARho0BBg0FCgqpfk4oKKLraCsPeX+zawdQV+P97BecZzKkqOo8XnAkK1G3OkjSxh3JDLqkYo+ZhNNqa2DnztKe3hZFgXdCcN+0OJLrGe1jndE3E3P/3MuCQap8djRKoYI3EoWsP+IQzUZmZyax00ax0A5dgUkXUyi5bZE3R7UN7dhCTU83rKQ7/Zu/qIwr+O1FbGbfbvLM/Q1d7+HvN4k9/cEJh2DQcMrCHDGWNgqtz5NzWTQX9uG7Peb3334Nc+YFHrMr5xFV4GjHFiqmWF5GyRGDhlG4u1Vrzl5bATvnbeCp+13N0T4OsayAv3WOJCdIGRRqX+Gv8u/1eAta72qrqWq9B4zqeHP+OwObEvj7M8o8EYW8ZhcPKZ2pMFpV6vw+FWDkVKX2Wi+lYouCnGQNjFZ+BNw3FQocfsCO5WQAOTj1HKpB1LaYwRHvY00MjHhe2NlvaLD8MTMwj7NdTGDAnlBL45LrYE47l0rBBNlHZTnVXfLYrHk8byYm5gEAfPVGmOFjyYlO6I1zgLw82nsKCgkg5eYB+3bBvvMqFXb0Svms4HXkHZ6DRQzeBBy1UBojyWCXoqDVSG4dVnUsAZLTGbo/AY/ejteQMJIa8q68ePNG/uJPMkvUUdGqxfBqb7ieQ5nSG5UpA9ZCPBFZR3gzbseT9gEAML+9ExhzCi0Yifo7UULdVRWwf7hZCtc9yVR4RiDJTrlxGP/PcWk7ZbMx2IXvA9P/5n+jMy6COYXLE7RoCWzbTBVJi9ohSX+iAVLFIQJaABnk4ONZSMegaO1y2O2bSewshfOkI7SAIjGIDathP14P028QhfHEeKNNwLIPYevr6BwlBBaP+9kjGyfm5rH7gHdeSQZ9+vwaG4C1K+g7DRzmlbP3XWtVIfWD94Dtm2GOG0HeTfvSROYa1iyHXTQXeOI+/YkNPE/WOBuAro0SA/BIgGD1SI0F/BmVHHKS1yxvTDEE93jSxel0nz+domzN1Gn2yNpzSLFHHU6LRkkE/eLjwMG9cp3nsg0UK52RbvQLx9GR8PheBjF/AADzw1+Tp62zWOQ8ErWUdsD+7Vb57APMGH3MztpgZmxonHQ6zHmXe2nOeq7KXNu+Bfa1Z4H3eOEv7QLzu7+RxsdE/M5APOaxNgtnw/75N/JJKwE8zOvZKbwJeYZ72ddhxp1O7KYWVOvzkEQVBmgYeDzMT/+LUp5NxM/Wit2WHyQQYgDT/zhimXNyaTPavxd20RzgmQelH6UwqOXwyizolPj9ipUJbJ/DBWTv8MkH3KrptdWwH7wLzHxKA6OXmNE/yPNCs0bF8BJwIvx5IsDWhR6DgFHjsQZGKVt1JFov9Q+VBXh6nByvKnZtDckFnpmuP0r0ma1BlbVL8M2fkf5MygCIbifaRI+xGPU0fPDvGsi8AUoMOIPZVI+qHzwCOPVsmPFnEJALso/Kcth3Zmod6zZmdk4BlecgB+TiqylU3KIVgTXRoBrjsUcFhXQsmkvhaI/ZkpD8Byy1yeU5UaSAkYivWcicCKPVKLaoXAGjRPuwYwKQknotpSoOJ/FmL4Ojntmie9kgNDDSheGkiazUtShT8eYDAfHmRp8Q77YZ1t5yg1Rwbc3v/x0AP0eHLjC3/hPo3hvI4Uih0NSNDcCOrbC/+4kwHk+CCluSaDtBM9ogcLQQQAuMmQDzleuCr0dYOGLMBJjTz6P09XYlQGUFxV+3fUx6nE5dkRRe0eewbzfpVgYO85Vbx7oVZHBvPAd8799hLrra+z8NZqRIo7VUtr6g0NNp5eQA61dTFfNnZ8Dcei9RugmAFk9+r6ULYe/+I7B/t+eVjDqJmDBpJbBtE2lGFs+D+f4vgZ59/Kmd7sLS1Ahs/RjoN4iMT6qsr1tBG7XXdVy8znIGQxsdliIIXIuuYjjrVNrxoqdBi/t8Bx/y+lp+L8nwXKKAuq6aazLQ97kNkN1+f04Y4fABUlISwVXfIrYwqDVFYj6sokxBCbuS1uclfi7hNN03TdtzeYBu8ACAvwAYjeu+TyyEG1Z1W5Pc/p96A2lkWr+9T2sz4RxiUDt0SmY3ZZ65wIiubYG5/UFiTE3EnwGUCL3GYZ+aDjyWEKi+yPqqwdDNm8edQSzcoOOJtZIq8cLWAiSo3bDaD4wAKoly5oXEAGmQpoFaXS0xr22LvZY61ZVUQPa5h4BVS/TtruJrvQVeNtoBdQ8Oqs0lKWRlpk6Pc4+3mxHWhLimipyYV33A6EVQ0swBXvfbK2Dkyigk7FqpwmlaY+QyRtFjBYxYU3RaUvhM2NagAoxhbJFR4GjPTiIQvGvWyGGwVfx9OzKw6YpTz4b5r78qGUPUC/UKYN67G/b3PxN5xVZ+n2HQGbgduwHnXApz/Bhg4BBVBkB1MLCWHO93ZuowXwOzUN0TAu7BI2Au/RpFAvLyKNQXZcAmde5MhNiiAgZImzfC3vwNeU/pc7mEo0pVPA/y4DUeLuSfpbZWowqjyVw5pOav21e18Vg0q705SYQXVByuhjMUXvYJ8d7gOGW9CqUJMBLBZo7jOaQDRiGpm4mClsIitWXNy18BTMBJp8P84n+oxo9W0UebGCRtgf3dTwUk3Q0qchkIktj7XgjgOJx7OWURuNdDZ/fs2Umx22EnwJxwMoGi9qVkKBtXU1jojeeAk8+CueW/aUK5wCGoeJYc61bBLv/QE3V26g7z2795dYikUrXW2ASFsqoqKHTy3MMi3oT547+AUeOQKO6mNgvE40B9HbUteOQfwGXfICHocSPIICIRMrbZbwLvvQ6s+Yg2j5//nouXBWh+3H5M4mlVlsMungu88rSuQBxXhrKPH8sDNgEJxwb1ZNLsYy689gj56tDNJFO11zFpwJEOm7nASDNGukt4nToa/CEPeziLvT+JIMyeZf7u2cUizzWaXn+D2QcJp7n1jLRusEwBo33qfgwD8DB6DSC2xL3/Yju5eZSVNfU/gr/UcaOA084lvVSHzv5wmAYlDfXEhL7ylG5zspkp/atwzXdgrpzszTvjZKnF49SQOagHFUC2e+aFxAK3KfK3ztEgreIQgYlXntJ96IDSznQdBh3vbaZ6g9XssXjnjQ10bWa/KSnXCbk2H+IYVCn2ztXxVKlNReaZOJ+n8Xw5NcGS6CbENVXEYnmtfOpYAPxnvtdFDIYkpCYyilYqTNKgBNjCFh1SGiNxZBqR1MfSHo09r1QBIn8LqKL2wIgTU4MiPW/EhgQYRWPAmqWkt/Hm4CF2tGbzmiFhx3bMbuebJ98H2hT70+E1G7lvNzn44pzq0bEbcN5XSLYxcKgjr3CchxWLaQ9/71UNjGYxKCL9wYmnUebniLEqOYcZrCZms+rrKasuJ4fW+bx8oLAF1dCjZJm9fM/rFRCuU6y6FJuGE0arUmHXQwobVCp8oNnFo5PmnzH9Lo1kZ73mZii8xrqAGr7h3RGcuiml7CsdAz4Af02LjDIUmAoWpCkI9d8BzMCCd/vbu/8E87Pf+TeCXI7qdesF819/gf3x1wAqWbAcwH325usVSDLyeXcDOA5jJnjgKBJJLpaXm0veXl0tzO3TCZzl5lKG2BsvAO+/IV25gRt+TMJuG1Kjw7doUx0K++Fs4L3X/B7jKWdTu5VOXTxAkyg8ZplBc5iapQt8HZC96zkNGH2yCgnEvdAXIkCUwl9myAjg2Q88zVRDPVGpb73k11ld/0MKQ2rmybfAON3ecyKkr3rrJeCJf7lecZWjlahKMYd0KwTjAB23hU5LdbSAvwhqUEuddOBIp565XcFdcKRZozp4FeP178zheM0ZJxHIUX6QWBZPO7iMhdBL4bUG6RCgMxLvTjN4+wJsmurlnHxGcgVs3Xdq7y4/ODpuFDBkJM25oaOIRUmEwGJ+cFRbQwBi+SK9PoG91sXsvM0AQBu/GwpRDI59Z6YfHI2fBAwcSpvl4OHkEGjGygmHYc1yAjKeEFWu6QiMmQDzvSm0AcvcT/STNMk6xG2bCGS99mzCkXEEqpVKtFqhNDwHHGAkGiPAX98uAuB3AP4jsf5r+YAwRn5g9DyA25jBbQsq2tdeHUUq7BpXIK4yABgFhtJwFFL2OR3/NFBx2tOTWCLpB9ajT3D4LAgc6QK2kRxqLbPkA80WgUHRxxzubME21U4ByPYA8nHuFUDLNhy6iiXXvYpEYO+61QNHHbuRQztsNMzwE6gsiTsf9fts2Qi7eB7w9kwN2HfxeU0CcAEA0rZefDU53bq2oKzhDfXEYC5fBLz2NMyM1zlzLY8AUixG85VGlL+jtHnKcx1AfqxXc6RcgaJyB9xrfBDVa2vuUQBHmYXTpG7PzESVWKn5cT+fdCkobVCnbrZQC2mVI8AO8myambppBSTFlGdSBipFcAfeeqGz7dydajRFAmj0rj1h/mMq7P9OERBkAdyHSMSpj0T1nsyFVyaDI13DIi+fQFGXHjQZ162gJpjzZ/lP+5RJVMJdMz1BlXFNBFi2kDLf/Jko+wF0QOceMD/4d854sQoPwCm2CKCinLQ7M32MjIRDuuEnv6XsNejvbQBjvUKfua1hzvuKB4pWLWE90L9cQWgLnHwWbcqaynXBUUL31EgA6+kZ+tykBpZk1lgFJmSRPaA2g0yAkQ6j5cArPKazJloGgKRcBxjpHSyMMdK6IvdwQ2waKDW6+qPDYIH/AODkUFGttoW6Ws7MekSzLHNZZNuJtQcdkNw3rU7Z834kl+EoR3IBP391dbGfXBZ15uUD+QUwv/w/ynTs2oMr5BtPkxO3STo4fLyOC0b6CjVWMyh6CZQl2IrDGAQQmhqT29aooramQxfgT/dTc+XeAxxGJw7ENEsboyrDH6+jnpKLZuvz2MUA7WUA/8SYCTA/+Y0XQlZF9Xwbb0M9sGQ+heS8zEwwIBFHIV/NuzoV2ixDcsavJAK4QL4LKMPz/MT6L9mMe3aStsljGAQY/QmUGdqa50hxADDS86QuZNOr0uGRowGM0gIiYYl690/fF1MzRTpjOyeHwklrlxNz7gGPGlAtuSWs5ylhhqpIEQfSLYLmZTwGNDX4w2GSuMJFSXHe5TA//g3NzXal/uQCHYEQO1nHQGbWy24pmCV8HydB+qNd822YCeewHs4B63t3wa7+CFgw253jhAm69kgwSPb910UPV60YeavW1UbFKGrR9SFnjlQ4kYCGgPUxMUlyjyAwCq5p4dLv0SbYxQtpY/V6G70FYCqfeCmLwTooYKTRYg28Yo9lToZC+RHKULCOB7Ua1G/sz3j473no1ReYeA4BmQSNnk+T6ITxGiT9EwDsz75+n7nj4Tht7kCCdm3dNhkcCTDKy6fJvX4VtQvxelFBLRC5AErMlTf6w1ZuJWvRJz18txZdHlILYHcAMD/4DxKYJt6DAY02qG2bSCP2wB2+6Qyv2OZgAKQfckXh8j4RtUCsXk5F+l55Eti9TQtCK9nYSgG0MF+93m/kCTihgNGOLaR7mvYXly0SoxFQks/XsNYJqckc8jWVDQhf6fYycYdBKmRQ5KaUagZJziMMCLli6ziSe/o1Oc9dUFSvjkbHM8qUBb4XUtNoyCgSLYclEcRjsB8tBB68UzPBr4BqCpUyMOoIr8mv6Iwa4O+bts/RfYU5O+8DAOa/Q/q23JZeWE3sp6CQEgaGjGTHI8djceNxzourpmq7a1cCyxa6daSqedF/h0MYdbwWdeNNvJjPdZB9ZybM5B+rEJYjVD/xVA80uVllMQqdYcNq2HUrqAq3V9UdbAdyHu/xRkgNtUTcGgSOIhGy1/nv6jpeEqIQLzqfv1NbpeXRgngNjLR2U+Zeo3NMBXAeikqowniX7lTkdfYblCXrfZ93QD3sdvLnl6pr2k4l3ojOqEGJ9SsUOKoIAEbRIwWM7JQb24Hq8wQDIt7r0HcQTPdewZWtNYPv1OHKABQJW7Sc96ECBo6SXq+1NlAC5J0AOuHN54tw8TVAaUclfM7xohSlHcmuc3KUfcBbY2MxYonWr6RIw1svut9+KYeZe0Ay0wUYTboEKG7vfXdhidavAt580a1BV8NzPAbgdNRUeSxwbSXw4N+19ignQGxdrgBQeQB41mG0ukwdx9wjBI7uRKqaFolKzx+6wOhNzuBYzTe9r2KMpJWA9hxqAijfQyHA6DCFeFaH2kQkeog1Q3cC+Lm99WaYlvdQATiZbICXTTX65GCQ9OeH4qxHmgPgVLtoLgGJFi09cBS3FBZauxyY9YqeRE0qXlrOX6gEQIl94gFqjSIVSwHSF6xfCTv7LVdfIOUOKnnzLhbP0R7YC+OjPr1sN6xeRqEqr2ZNTG1gMb5PHUUfY9etJFo5qD/O1k2UrfLKUxoUAf6CbkKhFwLoiAP7gL6DkpsvVlcCa1fCPu8Tl8bVfJDeaa35uSy0utWAW/ah1tHuCNBoUI9NDnsjQEYLo90CZC44ckFQEFOkn0cDHnUTZLdhst64MgZIPhY4XU2jaBPssg+5UGlCgP0qZ7/EQPV7JG1fF/BzdUaaNSqDPyMqyNl5y06Z/Cq2bTzf3v0narg6cChQ2JJrpvBRwExSTi7N40MHCAzt3QmsW+EyqeDPXwoqiPcez6MCPm+pydRWOW4bAZyA5x9uaasrYc6+lEJmmkESHZwAl13bqSny1k3AprUU5vZCXTI2qc3nHXgNvrsyO0mL6IdzgONPADopD73iEG1qrzypQ9RRZot28hwvYtvXDX7rnfX1YMDmUuPYhbaJRk5YgPnl/9I5TPubJwOgrNDnQG0oqvmzRTYh4Eiyj3QF7MaQjKMqZ8P7xMDITrlxJKga+wRQ8cORzQJEmYbP2HawY2sYKFrNIdSN/L3asY6nSAHHAhVGb1RSAXH62gMYZ3/3E+Dy6ymRol2Jl8CQl0dHbh7ZR2MDsGcHsG0z1V7bsNoN68lYweHyd5nR/G8AZ6G0CzDpIgJGRe2IVd24BnbTWmD5It2gPBHsZTH4e7y/ghOcTrebN5IYPCcXdtpd4thXKYe0geeAG4Yvc8CSgGe9jjQ5zmjo+EQi7Yzod1lA/cBIxNcrnewEyVAQStVN3TwYwhgdBSGegZ0yOaJ0Je15cZoMrrtibr2XPMOcHA9tRzmzrbGBKG0CSWCP71/mzw/F7c+/cRazZt7oM8jtnSZjB9/oRsVERJXXPRK61cWkS8gL8PoUQXmEh/jaSOpjrtIPdBSBNkaNo9BedSVQVeHWWzqkFqY8RetGVCiKzmfoaOC088jDBYBVHwFLF2gWCw7NGVWLoRQCbMWeG3DiaZSR1r4jsGMLsGenWzTxkHq/ArXIGsUIVqVgHyucuHSds/g3BnjQcv2EPWqljhaKAnZDc0G6olgASEoFmFIdQQ2UU6b4pxRhBy30G1bBvvw0sDlRbPF9UPbRdiXA7qBsWvQjQfWM9sGfKVgT7OxYfb7+GmIAFTbs0QfIyfO84u2bgRUfhhl6PahWjICilXyOOmQqbGCbAFYQ/Pq50Blx486gcItmiBfPA3ZtDTuPcmYKlvB5bOHXcxRAc89jMoe02PYvBXZsBdYudUNoAowiKhzTCsllFFy7OOQ4Dnqjce1CNp6nEroTb8wHZS3+D89/sRNJxy5SwKilw4bUKV1UhUqWSAOMMtq/+vD6OZoB0Ujo1HsJmQ0YeniAyC12zO2NsGkt7KZ1SZpNBkUfgar1RxVg1NemUIXo48410uBWGNgfQDcCB4AzLwIizKjmRICqKmD2a6ku1cfMYC1mwN7I9zGP7fshlHaB+d4vqEvBrm3AisUuGyvzbDO/j7QFk9BYLtvaUAC/QoeuML/9K+zmDcBtv5L/3c9/JxnHuxlk7eTnuq2Nzkard/VFXpubG3FUAJKPNRoyilI3dU2LaBNlRs18RgOj10GtOZbzzXeBkVDvOUpkVekY7sEA7/IoZCgYndUmDEQJU4nf4ANmxmvUdkNYJA2SJO7/x19okHSfueNha3/29bMA/BRuPQz6Tpv5e9YqwV0rvi5NfPN14cuxTPt3dRb+XbzxVMFfSFMAjVb4x3ixLQ64GFUqBNUEr/6IBllyv6p5wotoMGgc4r+NKX2OXqhFDyRZZF1AhfN6h5xbmfIuihXzKItIo8pi0Jo1t0llpeMhB20AUUf7I7ohyWAr5M/WuqNIADhyQ2oaCNkAsJSKaYqnEHA7DZNtZiLsb/wgvKbRto8po8QD9O8zY7TVAUbSHkTKcDQiuZ6RFmDr+mSJTJLwc0/Y6HdBlbTHs52GjahaaHfzRrQcXquhJnUvC5XYXsCu1FMRil/P+Rr+/BGgvm2phojo9zMQWsaP5coWjZpPcg4tkdweYQIo21Y16UMFO1Z7eAMRtqgt/P0p4+r8ywPsQmcAa82GLhvRpNi9GK9Bf+fzmg3KSpvO11ScllYOE9dGfS+pbFzviMaDQiQZA6OMwBDvZejRB6ZnX2rDEdT7MC0gMg5LtI1Cp8s/BDaudsNKq1lXtJa/U5ECsa2dEJpOutBrWoUSqmtwKwTCiaD+fSc5ewQC1qMGeFm9mxjMyB4iYCbHuZffhLRdSp7n23k/W8eH3rOtckRaKvB/tUg11NiuFoBqDhNv5nPcxvZcFiDQj6bCBkccICWxRlqEx7Vn7PJFVOHSA0avsfh6Kd98zRoJxSrUe9yhCnWxr3JHYHWUUzcTC7BMiDbMtPQA8EsAE9CxG8zU+5NBUlOTn0lyQdJfHrH2p9fpkgIj+fv35bBEL57M7fjaCAviet4SZqzha3Ec/30ln2sXfix2rnGTErNpA6vj75mrPIUovPpT7R2Gz02jLFeGWsibpSzo5fw/UgW3SIVQGxWA0RXPNaPQGVSXoxO/bvn9OqvvKBlRVm2IOtNRA0sdonU9Djc8FWBoidIQOpMtVx05IcAITmgu3fOgn90D5rYZNqn8QvpK7v7GsqlE2Ht2wr77qq74vYjDaXP4+ndSOqMi+Nv9aL2XS4m7HdQz3PgSLK8Ud+3K69JYttHOPF8L1DmUseMgrTHK+LOblFdcqABRgQJFBv5+TTWK2aji13N5Hkp7EAEvbVUoq4rnn5zHXp6HAo4iChzp88hT4dk4/KUcouxAVPBrss6KXEGzM1bZf5jTUO4A1noFjBqDnAVdMoVtQ9uE1uYJOGqjnJkcx5kRcFTVHGDEImpJrx+pjmQw1LMfCeY7dyd2qKSjJ5MIa3KdKSDatglYvUxXStf6L9EU7eD76V6PlinmXYMTbtQFMbXeRgMFw+/ZgefkebyOduU9uCXPiXp+jz2KlTnA79egZDkFal4KeBvJWlbL33ELA5igMiOaoXUdAHFCxrPTL1EB8GfGlAOwjtnfrUpXV+ewRSllNkcUIKVkjQQYvfasBkavAriPaeO2SK5poTc0KA+zXBmtvulphHhHYyRAkhh5EW8EvUDZbSMTIKl7b65cax2QVA8sng/7p1/6QBJPkhYqfNcPlP7cjydbB540Efirgx+Av2BeObzMrJZ8fbvye3Thn4WBiiE5/fGg48U38N+2USCri9Jg5DuCQJ0xoN+rmu9TIZ9DN+ecWiK58WiZ+l6uQDTK5yXtYLrxob9jLpKLglU4m0BYu5n6zDaAUCYj7ACCO8VaBywFPQ8BPpkBoGZpB8MquR88APvmCxoYbQRlH73E90H3TWvn3Ic6JKftHwgRYEeR1EE9ozC4hMC7sf0M5cdefH6FCpiU8cK/T3mcjYo5ylOHUnUnwr918GfJyCGLeCu+Hn1BwvR+fF7t+P1F/yZd7/cpByeqQFoevLYIEbVJCugXTabM3Rj/bWt1TzorR6RQSRbqA9bZA2qTdYsr1iM5I1KcBSTfKx/7LtqpVnxuRQ6T5YqL5TtVI7k2jW/Nt1MmjwS1vBihgFCvwKnyScCQq73TgKiminREe3eFAaIa1tmsY7ZIHFA301V3lM9Rxu3e70q1npXDX8unylnLhEDI4+vemefjUGZo+vBrrfi61vIc2Mtz84AC3DbAPnLVuhZT2sv6gPU0pkLG2glpqRyAXDXPoeQtRby2tOL3OcSs0VoGSNuVo9MsXJAOIOVmuJCGs0ZNjRRKe/VZoKJMA6N7OF4ZVNNCh0GMWnQqHWB0KIAxOmIZChluI27qf7WaKH8E8Cvs2zncTrkJZuoDQPdeXmaV3tROOBnml38SkCSldKcrD0uHZ4TCb1DsRa2z0ehKttp7tWx0UYdBaXKoa7046jBTnfI4IuqaNylvRGt6KkPeq5L/N0ct0A3K661RYjnNGLpVemWxFiMtUOelq0bXqUVbizo1C+luAm7oQLNF8eQNwKaYI9PUH5hPPOf8P8aP7IxOxwK7zUK9GkAb4CVWtOfFtqPSGbVR4LkmIJy2H6kF2Idr05pl0xtKNbyMxSg84X8T/1++8tYBv4A+qsJIDQ4wqlHrkuhyxP5ivLbVOkyIsCnClMo5RdTnx5V9RZTTqDcf/b66K0CEP9fwvZD3sArYaH3foQB23hU+1wc4CwGbjw1HsN6GWKCAQL5aQ+od4FnjaJ1acoioB4POCQB62ymTe4XOhjETgJIOMJ26UpjscMGQrhsXiZDoeP8e2G2bgZ3bgEVzpDBwECCSOkX7FRDqFACI8hXbDLXuNzoguCLgqAwAkm49Hyh2zqq5pJ3HJuXMVDuAqIViHSMOWK9TdlKv7qHLFmkJghTSLXSkHrXq3OoVk9qK53MtX8c4z91dDoirAdBobpsR9xKMPjkuyM1wMX0riTWqroRdu4IYIw8YzQRlbS1QE6KdA4xaK2+mwRGYuTRh9acHjAIX4ZjSRQmwmQrgF9i383j7i5tg/vB3oP9gmhO5fHkl8yoZJOWAmgBCLe4CFmRhdwGEFlHKdarnvyvg8yxUlLpRoKchIGat60PUKI+jrXqs4veM82saHB0Kea86dS4xNjTRLsl7RJAsynb1D1VqAzL8PoYNpxJeD75GpXPRIbVDAecWBoxiCGzoaj8ZwPkMjZQssHjHtdVUEfcVXxf1JwD8je9hT0dnpNP2651wWlCD6KRaNZ/QpnXKr1TTb83nU8t2oR0c2QSiSM4kjMGfiVjnbN618Gc5NqgNRrxgcUD283y1PI919p7MQS0T0Hoy7eBogFYLfzaZbGb5/Pct1WZVwzZWpdh51/bdFgthzoLDoKa9T0ZtqLmKGbEO4JJsz948lzqzTKAdh1nCx5BRBIA6d4fp2JmAkJSVyRQM6XkvzBBraLF/L+y2j4Fd24CNa4FNq4POYi8Dom0cUtoHT0wve2BLR8Omkzas0v40OixaJfwNVDVL5ArmtRbMKpbNOHuXOC37lIyihQLjNYoRbXJsQ94/GsAW1TpsX1yxoQVI7hgQdUBWk2NvOlpQwu8tN7ecAdIBtdeQLdsjiwty0yympQAe8nmZ1ZWU7u1PHX8FlLo5H/6aFu0UMGqjNAmNCK9p4QKjpk8ZGCEg9b/O0Zz8GcAt2LtjqP3OpTB/vJ+y22C8DDcZo8dpkPQPnkAvwCvMthdeY8g8RyugU1wrlZE0Ko+4SS1KcQVuYoqFKkdy/5laFWeWDSVf6Zaa+B5Zh4UKey85j5Yqfixhvno+Jwt/Zlk5kmub1KnNLKI2HImDR/j3Beo7VgWcW1UaT6u5G8DnamTEGknG6aP/1MDoFVCmWDWHRzs6OiM9P+ocoBukI/M5PEegH5b2iquU9k2qcmudW1SxMFpTozMo3TpSOqW9ztHh6BCs7LgSKt6n7LdCOQa6xlpQWFeXZ2hwNqG6AD1QTDkOOcoxyFfh7XgK269JYRPxT2gTwoa1ZU1WBwY/RSAhe0ski3H9o6iEalmVdKDkge69qBVLJkAo7LkLhsr2Awf2wnItKqxeJg2N3VENEgWv4bDOFr5OrRQg6qjCRoWKIdKhUgt/Hal6BXorAw7NEtUGzJl0MgCt7TqoAJFo8lrAryetC5nrYXXWXGfBKmZU98trUkAMDtiqV59d74SMaxSDBKXhO6idjKMhtUnHIE0A0AUTz4Mpagf7xP264mUdqInsQ6D+Si3glTpvB6/YlxZgR9VEqAox1rpwPcKnuWklgaRax0u6A8CNAE6x/36TB5JMxCNPdbjt3/9PhNt/5WvzEryCaAcCNAOafq5xFsqoAkhRhfYrHe2RbifgeiGNitZsVPS4GNJ++EX0cg/dXkzag8hR75mnKGjRnWk9RDVSp9jHFbiG8kar4c/w09+xKsQzbgpmi75YoCgta6Sa+gZknD7NAL6CwVAfeL0QhQnOV+xIUKsWHcr8RCnZaYZmh/bzz9XKm9dlKKJOyKnJORpCjiYkZ8UkQrDsqYuXXqFCSBWseZI5b5yNIegcGkPOoTEg5GXVOp6rvmudYgk0a1Xt2H4DUmb7pNVwtGPtj2TUgX8u5jnTM+3dKyoBBg2jOVnUjtigvAIqMumCoEyAUJBmCAyEqiqoxs+ubdSwe+kHYWdVDdLarQaJgHfzHNeC4t4OO1QAv35Na9jiSG4FVOesfZUB61ZtCJAO0YHZVHtWjWKtatlGWyuABAcIBc3LVHNTGNkcJyxnFEumGa2o837aQZFoRa3a/1o5ToifPToKI6VImxmk5dC1NmiyzGFvdBs8AV4bBY6K4a+A7dahqVThIdezDNAjfJZGUmabUIDd2GAuh1QU/eGvYS7/hhdmi0a9EgBNDcBHC3SdpOcB3KKMLVctpprObAgwlDiSa/HoYmLG8Q7qkVx/KAZ/2qXUf9EpuBEnhu16tNpwZcEW7YFkaugUfO09hHnUbixd3q+NAt+6vH69MigN2BqRkeD6CwWM+nNY7PxQ1mjDatjH/+WW4pgOKgYn2aZuk+gCJ5wp4TS3bEJ1aofniNmjbhSsa1GJJ6+zv/TiHFaJXP/satIChMk+UXKuYl51PSxdv8ZtLhwN2Zjcmlv+ela3zbD2lhu0zse1/fwQ268Psn1tE1wwsZ0DfHrDK7UxEkGZYakAUMtWQNceMAUtAAFBJR2Cm1+nA0NhQKiqCqiuAPbtgW2oI0Zo907dLDlorGdmaD9ITL2Dr7GAn5YOENKlPPIQXOcs7oAivS5VBziFNQEh3IYwpgjNS2TQrZDcrDGZJ1oDFUdw1f4gxyLq7B8R57MK4Bdgu2AxzNZk/9BibmGCtWi9HkCTmTo9fjhryifOYmOQdCkbyRxmjKyzGAk4EmAUVGujxompVn2+gFHgpMtVIKmUQVIfvl4Ekm78KcxXb6Bq2WEg6d7bROz3LKiwVw786bxB7SXiaiJBMT5aDKczIoImpc9jVJlYohnQnelznPMJqg3kvpfWH2hjcVNXXU86FhJL1xtQgXNu1tGPuB6//XzMrSMGjm4CVX5vgZ79YK77nl9rtH4VNZPdukH+5TUA/wLV5CmGV4ZDSju0RXLafljx1qAG0Uezg7px5n9egA0EVS8PK6jpAyKZAWofSAqyQ50VBwckpTqPePh5cCNcAogR+LPftO235tCWrBvjVMxsBLzaZ5mDngT44UKKAFW6B2A6diFRdNsiCocFMTzhO1I4CGK2E2X7gIYG2L27gYY6YPsWqgD98dp0776OJQyb2NE/CNKyyCbcQoEgFwzlB7BDOmRm1T1rdBw/AT/VzqOrZwsKtwaAouY6dkbPkRz1XXR/SBfcxdRan8o+gtb8HARng8KZ79GA99KMrLYjOU8b4NTED3dtOUJp/knG7zIMutpnC/hTN3VKbNXnGxilBEltFUjqDRIYfg1ADk45G+ZX/0cgKR73F5NsagB2boP9w80S914I4OvsxbgLuk2zUOqQn1ucMKmtRbKxmaC6Pvq9gJAChWney+1gbxxvXotUbZr304aek8KwY+Hn9qUAR9Tx99zLYSaeSxuWMVT9+rXnNDCaB0oUeB7JNcp0L0RZnOpVOO0gmtUg+pjYoztHguwgqNedfg2HP2dMmB3KvHfPI57iXGSzyFUsDkCp7L2dDxbGRzzv8Z/ocg4ZBbRs7Qc+RcVAG8ZSJR28zLDDCYGF/d/uHfS4fzdsfT1wqIwAUXU1sHxBJmcutaU28lxcpeaogJ3CABCkgZDekIPWGeswkU0Oy18bIIkIAkP1KUKnzQDnzbYPE7C2m5C9Is3+452XclRc+zMhe0eK7+djvvR5huxjh91r74gBJI0MBRy1DQmduMUDddz7cw6MQq+LZI51ANUg6g2q2voVACXo1B3m1n9Qh2drgVgUaIqSR9TUQLU0HvoH8NF8cLz7evOXR95K6l6fAaWqwFLybzMytqT3COown/F7Oe8T9F7NWARM0HkZuLWDvmSgyGF8lwPoYr59CzBwGNDY4NUo8zJO54IayT7N87aYAZHuhdhahWmCsqBStvv5dOzaqGsROH+9OXIYhTWbex6OHQafh1NgMaDw4XJmgA5viNBZBgMeH9uTDvSkAkHpXivbT84gALt9s9e4dPtmuiR7doS1WQoaVSCRdDWHxupA6fQS3tXscoECRAUBh641lQ4MacaxEeFZXLXwp7vXO2AoDBAdQ4fOZGQf6eZmGjYXn3ytT7xfCtuZZj/henlEAZIu+qWrf2rWSIuKXaHZFwQYBV6bXAWSShkk9QQwHMBlkBLvv/gjzDmXcjfvGIMkrrhdVQn71DTg9WflzW81dzz86wRI+hJu+NnRbIP/CoBnMfE8mOFjYTes0vNJgNEjzBq1gr/isgAjSdsXnZhb0kGX4hDb/gQNorMjxf08A8DbGKMIJM7o8q1CGugA4QLnMMCTDvRUV9Iho6GeQlzy+/KDxPTI/3hFRZs7PmSgsI73DymmWQvKGtNhxKCjAMkheF3YUGeU5YQ4bTqM5Ir33YzCuhRAKF2roiPMEmXHpwKQGMVFFHskuiMRA+rYYL2Douu/mMAoFCRJS5ISBZJ6A7gEwDAAwClnU2O/Tl0p5BZtIiapsQFobIR9ZybwwB3y5q8B+I25/cFFiMezICk7MmaQ1Mt1oGahdzJAaqFYI13AVdL28+BlnUi26SH4+zsdo3Y/WYCUAEgtWwGdu6cBOeGMWuJv6+soiytsrFupRftHYqxiMG0YAFmeP+sZpOzlQ8CLBjR5SNZWuaAoLwQEBQEhzTbrUI3WeeqaRKkODYJc7VCouD4LiL7YAEk3cdSl4mMKYQelJH6BF0+fWFILt6XwWU+QbmAcqGEgKRd/+GuYsy8lzy8W9YEkbN4AO/1vWnh4F4CfmdtmRI90Mazs+EKCpBvgJVa8BBKl6oxCDY6K4fXXA/ytXwQcuaU4jmG7ny/1vfzkIbYjM7aDspZlwasEsFKBDundJbqRJfAL53Oc5y6QCQJEQYfb61CHxSJIbvEjKMQV5rt1fTRD1BDABLlp6EFZhkGi4ywg+hIBJJnAEtcVhK4zm0LSR78ME8OnSRKQ1B5UTbUHg6SeAM6G9AwaOhrmG98Hhp9IICnK/duamijk9t5rwOP3ygesAXC/uW3G7dmQW3ZkMBeD+mEVKXAk4TRhgaWOT1hR0mY2k82OIwiSJvB9GxHAFZlw2ijweRWojIMJABUGVPunCsFC86DHCJITMVwg4/6cFwKQggBQUOJJxL1MCK6K7pZyaHQYn7DHIBAUxArFkCywRxYQfYkAkrPx68kdUeyRRtFf4sXTd63y4fWS6QSqRNyTjyEgfRJlnoyfBPP171HDWwm5NfHjnh2wLz4BzJ8lHzIHlHU0w0ydfiBrhNmRYh7mqnkoDaNd1sgguWJ7hsVbs+MYA96gDLlICNCJBDyPZHgEgaGcANYmJwU4ygsBSmEgKyj71m3y7Gb+xQKAUFhtqzAGyA2LaQc/GgKEAsBQFhB9SQGSj0VyjTEpFTC7eCYV52rFG5JkuPVkRqkrgOMZOFEZ9XMuh7noKmp6G23yQFJTE9WueWoasGW9fFAFgNkMlt4zU6dtzE757FBzUBcQbAOvwr0u4irNMQUcVQUAoy9BmPwzv5C7Kdq5SA5fZQKCXGATxgRFHDATFCZLBZoiKdifsMwkjTDiAWyQWz/HDW81pQA8TQiuJxdLwwgFhMmyYCgLkIINFAETW6Ho7IQJAUl58LQfpSABbXc+uoK0SsPg9fEBBo+Eufqb1Pg2kkMAKdpEYbiNq2EXzQfeeVl/YB2A4Wbq9I3Z+5AdyqGRfkiiO5Lq49IKQHo0udV8s8DoswmQdDFMV5eTk4IByg14HsYG5aYAPUGhLhNyBIEgt/5TLAAIxR3AEk3BFKU6UhU4DAqNZVmhLEDyjdxM38ipN2DDgX92yPXgIm8xJNfS0J2LdZfwtgAGAijG2qXt7e9+TG918ddgho2mbtXtSoABQ2H6DAIuvgrYuAZ2y0Zg5lMtAJwKYzZ6tyJ7T770KN2bCJJEIc0dJaym67i4LWPiX/Q+dZ/D+xmkB3UrPOcgWBQdJGp2mZ2w3+kogQld9JKPOMILYgYVdg0DRWGvxQL+N6mQbcBjGiCUne/Z0QyAlB2fCCRJSw23SZ+UoZeePKX8PB8UgusIoANeeizfvvSY97ajTqYqt9YCNg7EE8a8FZEIEuUAskApOwG9+VYPr+BjRLFHgb39siLTzxVgclkb1yGD83NQuCvV+4UtJG6mSBypK4SHhc3iacBOEOMTT8EA2XAQlAVC2dF8DzM7jt1iJhluEvZoz0CoEx8dQKGQFur+SHXjUlBYLmisBbUbaMxafnbwCOqLpMv1a22GT3iaHZ/p9UP3mwtriZFKyB0JAUDuvhDUngUhz9OBorCQVjzF62GgJ+h8siM7sgDpC7Jp6ZpSIuAWoNSRgZC0esiF1xy0AlROvzW/ptu3vM/P3Q0vu4B8ue3b1aS4bEIc2Rja5wkgyf10s8OCMtkiIc/DxNFWfZZLs6QCKnGkDqtlAnRSgbDsyI5PZWRDbMd+6IVCh9tEKFsBKsxXyqBJUrEjDKYAf2XjQ6Cso1a8sImORJdcyI7sfIshoGdddhP63AwdxgLbttzXIPAT1P8wFTCyIXPDHsbfIc3fZkd2ZAFSdqRc7GLKsxKQVA9igSoZBEkxvzagzKMcBZQs/ILNoCaL8ezClN1Us/f+C3c/tU4nFfj5JHPEZudRdnzZR072EnzqC55mkqLwRLNud2jpaRdV4MoiXJiZDZ9kR3Z88deO+BE60oW8siM7sgApOz51oBSDV+213gFKGjA1KMDk1v3QP2eFt9mRHdmRHdmRHc0c2RDbZwskCaCRQmgScqsCZbW14kepfaL74Ek9m0Rxvywwyo7syI7syI7sOLzx/wcA0Yj4Je+AvvwAAAAASUVORK5CYII=' button_joiner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABzzSURBVHja7J15mFxVmf8/5261dvWW7nQ66e50ks5CVgISBEI07AEXBhQVnAzIMw4iDijMo+Ioooz8FNTxp+LGDCo6ICCjEBEYCUJMGkMSyE4SupPO1vtWVbeWu5z541ZXd6U7gUbSaSb3+zz1dFX1qXPPOfd+z/ue97zve4SmaeRgANcrinKNEGKeEKIIHz58jBfEga1SygellD9zXTcLIHIEniyEeEpV1fmqqqKqKkIIhBD+sPnwMU4gpURKCbBHCOU800y2CE3TDCFEo6Zpp+q6jqqqKIrik9eHj3FKYtd1URSltaambqGqKMoNmqZdZxgGmqblpa8PHz7GH4QQKIqClDIqhFggDMNYp+v6mYZhoKpqQcFgMEgg971PaR8+xlDSAo7jkMlkSGcyA6pzATRN6xCBQCATCAQMXdfzkldRFIpjMRRFIZvNYts2juv6o+rDx1hK2xwXFUUhlU7jDuegowkhjKEGKyEExbEYQgiSySTuCMz34cPHGElh18VxXXRNI5PNHllEVQZIO4BQMIiiKJim6ZPXh49xRObc2rfge+XIgoFAgGw265PXh49xBkWIYxNYCIFQFLKW5Y+WDx/jbU2sKLiuW0BibURxfQKlrxsKk6muw6qYhFNUjBsMg+siHAclbWK0HiBwoAk1GQdfS/BxMhFYiIE94PyyVxuBvSeMGOlps0ksXIIdKwNVBSGQiuq1R4CQkvT02ah9PUS2rCe0ZzvC9rUFHycvtPHQCNcIkDj13aSnz8WJFIEQng1dCDzmei+Zm3XsyhDxcy7CLq8k+vKLKJm0N/eoGlZFFW44imIm0DvbfIL78Al8PCFVlcTis0nNXIAbCHpkVQTCcdG7WhHZDEK6uKEwVkU10gh4pNd0zPlnIIBIjsSp2QtJzl2MGwwhHBetu4Pw9o0EDjQjHNu/2z58Ar/dME9ZTKphPm4w5EldCeHXthBsfg21vwfhOIBEKipuNEbqlFNJzTkVqWlITcNc9G6UdJrIhjUoZsJb6EeLwXVxioqxJ0wkuGcb0U1rUdIp/477+D8FVdO0OzRNyy+MQ8Eg2eEbxscFVnkliVPPxomVelLXsohuWU/k1Ub09sMoqSRKJoWSSaOkTdT+HozD+xFSYlfVIANBpBHAqpxEoGUPRvshjNaDBA40oXe1I4Mh7NIJWBMng6ajtx/2VWof72hkLavAiDWMwMExJHBi0bvJTqkHTUNISei1zUQ2rUNJxo/6G2Fl0VsPgBHEmlIHuoEMBFHMOPqBvaj9PWjdHRhtB9A7DiNDYezyCuzKSSjJOFp3O5zkbqHdP/gtvbd/h8DubSgte97071If+xQdP/odajqFtmW9z6YTAOsIAisnqiFuKII1cQrSMEAoGK37CW99GSVlvuFvRTZD6NWX0NtbQdNA08k0zPMkef4CLnr7IaKNqwnub0IGQpiL3o1TXO4/BTl0JlNYb2HPvzeTJZ1O+wM4LtfArjsm20jZymrcSDRntFIwWppQ+3tBvjnpqPZ0ENy+EbtqCm4whDV5Kk5ZBVpnW0EdWncH4ZfXYFXVYFdOIltdg9rbibBPYqPW0Ns7im3D0K9+gLj/Xnp6e6GkxN+HHwc4YRLYLqtEahoIBTXeh9bbhRiNauu66Af3IjIpUAToBk5JOVLXhxXVO1vR2w+BpmPVTMcNRfw7f+RwTqql51u/5PDaw/lX/x0/LFShr76Rno09lHzuawSDQRK33s3htYdJ3Ho3nQ88m/9d5wPPYi29ZPiS6da7aXtic75c9w8ex51UO6geLr2Ew2sPk7r6xnx97b9Z69+c8UhgaQRAUUFRULKZnHFpdDO6kowPqtxCeFtFI0wCwspiHGhCuA72hIlII+jf+SPI2/nvD5E++/yC75MXXk7bw2vfUIWO/91KrJnzBok4cx5d/3J3gXref8cPif/dStzyivx3mVPPpP27Dw0Lk+t938fy9Tmv76Kzq8u/SeONwEg356CheOtY5S00RUpwHXAlIBFWFjGSCu5KRCaT8+hS8LMTHCEZP/l5nCn1iJ1b4GPnwTQBN30UWppwa+ppv/muY1dgJuHbX/Z+97HzoLMdWV5J96UfzUvW5IWXo+xvHiw3TcCqR5A19XR+9huF9dVOQ/3uV7wy116MPoJW5eMoBHZzcvB4v5CuR1pFQeoGUtWQiFHV4QSCuKqWJ7ETiuCq2rByrqp4arOqgnS9ZR8n92vocjh12jmIVBL5qSsxNq6hoqKCqg3PU/z/7/Sk4ILTSSSTw5bR+XqeeAjlh3dRUlJC1d7thP/8lPcsxUrJZLOklyzzPv/0XvQf3+2Vq6qi6q7PoOxvxll+GYlkcrC+nZtxvndnvlwsFjvp75c8in56whw51P4+sC1QFG+bp3QCesvrCNd5kzUI7IpJ3jratkEDJdk/oseVDISwquuQmo7W3YGwMv7UPXR8wmHoaENp2UPJhAkoOW0o9Jen6U8lkbXTyWQyhI9WwcF9RCIRgkFvaaKIoaYKF3viZO/Dnd/HuvP79B75+1QS0zQxBj63HcYwjHx9PsahCm207kfJZDx1VtWxptQjQ+E3/XsnWkS2ZhpSVcGxUTtbUTvbwRk+AThlFVg19Z7hq6UJxUz6dx6gq71Aog5kJB3R6PgGVvuh+dSGaXXh6LHbEYog62YO0en7GZKv3Md4JLDa24XW2+FZnoUg2zCXzMz5SO3NrXeyU+rJVtchEeC6GHv3oCb7hz880Rjmu5biRGOoXe3oh/adNN5Y7qRaWnNW4YLvIzlCtR7wnAJMEyZMhKkzC8pZSy9BhiKIltf/tsm6+TXvzZc/Pbj+PeLlNu3AHaIk+plRx7sRCwi+tsXzuhICNxzFPPsCsjPnIdVjz77paXNInnYObiDkxQqnUwS3bUCJ9xVK3vJK4svfT2bmfJCS8MsvovZ0njw393ALIpXEnlJP55LzvLG7+kacmnpIJWHvLs/7bsMaCEew//3XWHNPz5O396Z/9aTzq+v/JokYeOnP3pvrP0vsipXe+reqitgd30NsS6C+0ERVVRWKb10cNU6onhJ4fQeZ+lmkSycgdQN7QhXxiz9EcFItoQ1rUHu7C5buTjRGeuYCUrMXFHhdhV5tRDvUAlLilJRjV9diTZlGtm46VuUkRCZDpHE1wR2vnHS+0IGN60iffT72dx6kdagF4Q+PIHIZD6M/vpv0nEW4sxfQ9dMnCi0N+5uQX7ieQNFbP2lHf/EpjDXPkj3nAvq/9QBH6knuT79NV1cXMZ+P7ywCA0Qbn0NGisjMPQ2paThlFZhnLifbcApq60FE2kRks7ia5kUXFZchB8IOcQnufIXwpnUoaW8/ODN7IakzluEUlyMVAbZFcMerhF9+EcVMnHQ3uOS2j9Px/36Os/TCwS8fvh/5hesJRyJ5SV3+z1fRdfPXcM+9aLDcqkeQN30YXdeJRCL8Lc6TZf/y93Te8m/Y770UJlR6X+7cDH94FPnL71NUVuaz8S1ABINBGQwG0TQNIQSxWIxkcmyNPE5JOfGLriAzawHk4n1xHc9KbWXBssCxwXYG3SSFQqB5J7HVTxYEP8RXXEVqyTKk8IxbODZax2GM5l2onW1o3e1oHa2eIUuePEEN/f39mOagn3lRURGRSKFHmuu6JBKJgnKRSISiIdI3nU7T29tLSUkJwWCQZDJJPB7Pfx7Asb43TRMnZ2w0DINwOJwvY1kWXV1dw67rw4NpmgwEH41M4GiUpGmOIXnLyNbOIHX6UqyaaaAb3j6Em3PSsG2PyLblWZgHfLVVFb39IKGtGzGad3p+1K5LavFZpBcuwS0qwYkUea6V3sYzSiqJsXc3ofUvoB/Y6wf5+3jnETiVKiDwCVOhnVgJmboGstNmY9VOw42V5NRiAC8rR/5zLqUOSqEEtmpn4EyqRWs9QGDXVgI7XiGwczP6oRbccBQ3GsOqmoJTXomSSqK1HkTtbENvPeCT18f/TRU6Go0WqFBv/xUF2eo6UnMXk50+BxkIga57ktcwQKgoGRMllfICFRw7v7crNR03EMItinl+1KoKqueGKaSLsXMz4RefRm/ZM+gTrSheih3LAiFwisu8yUJREOkUam83SrL/pI8R9vHOQOpESmCpG6Qb5mIuOBOntMwjH144mxLvQ+vpROs4jNbZhtLf461TBwIUNA03GMaNlWBXTMKursOeVINbXAa654aZWbgEp6KK0LrnCGxZj5LoBylxo8VY9TOxamdgT5yMG42B66D09aC1HkDftxtj327U3p6Tal3s452PMSOwGwiRmrsY89SzkLqRV4sVM4nW1UZw9zaM3dtQUm/OgOaGI2RnLyKz8Aysuoa8Cm5PnkpmziKMPduQ2QyZeadjnnMhdmX1oI+fBFwXNxzFrqgiPXshxu5thNf/2XP0cBz/yfDxjsCwlDqGYbylLA3HlLxGgNTCMzAXDZDXW+dqnW2EN/6F6F+eQT+8f1R7tMKy0A7vJ7h5PUpfD255BW5RKWrHYaJ/eBj9UAvm0otJXnA5bkm5FziRSx4wuLYmF5QucUrLsarrPA+xvm4/WN3HuIRt22Oc2F0IUnMWYS5Y4lmEBQgJxt5dRNc+i9rXw2jjgAutYTbBDWvQ9+0mecmHCWxai7FnO+bSizDPvRgZDBcYwkQqidbZhtR0nOIyLxhioKryiSTecxlKykQ/uNd/Wnz4EjjdMI/kaWcjQ5E8eYO7tlD0/JNvq2OFYiYJbNuA1naQzPzTSb3nMtySskHy5v4GXttK7L/uQ9/fhD25DjdWOhiXLAQyHEGGI+iHWvw0tD7eeRJY/m3ysPBiZRWkZy3ADRflcz4HXt9B5C/PQDbD266kOg7SCJBeuAS7rHKYJgDCM1K5LtKxB5MJSNXbolJVcBwys+Zj7N5GsNfPBOFjfOO4BjNkZi7AmlTrHUOsqBgHmom8+EfEcZRsVl0DTlmlZ7CScnAPeWBveSBcTlFAU73tK92AQAACQe9vKEK2Ya7/dPg4eQlsVdeSnVyH1FQQClp3B5HG595U2ti/SepPrvMs0q4zZD0/QF4VGQp7ZyzpAWQ46u09GwboAc+N0wiCEcQ+IrTuzaD7F3+ivbEN84YvDWo01XV0rG6ivbENWV139KXGNZ9+wzKjRc99vyN9zaeR1XW0N7ZhLVvxlupJ3vZN4l+975hl4l+9j65HG4/7A/tm+hL/6n303Pe7k4LAx20bKTNtDk5ZhecwYVsEmnbkQvmOr3XXiZUghZJz/nDROlvRDu/3jFVGAK3ldYRtofR1Y2zdgNrRCraFcGyckgnYddORhoFTNXn0166pByARDCNSKUKhEObVN3rrfzNJxyvrqaioGDHW1WqYi7K/+ZhlRvugW6eeCb/4PtZ7LkOkkvQ88gBlZWWjDg1MLzkXpfF5EokE0ejIwfnZuacitmyku7ubsuMYmCAO7aNiSSUdHR1H7UvRV24gkUjQ5zgUFxf7EnjUD3LuOJOBtLF6RyuB7ZuOfyhf7jhSKR1wbEQmhbH1ZSJ/fJSix/6Tood/SmjNM4hsBrWzlfAzj1P06x9S9NBPiP76R0Sefsxz/tA0T60eJWFkKAItTVA1BSklsroOc8WVXjK3Ha8ihCD1qX/NS+Sh0tqurEZ0tKI1zKX7sZfyEi952zfzZbsebcSZfwayuo6uRxuH1TEUHb/9qzcx3PVj5ORc6tbnX6f75S66Hm3MS/qR6j9Sq3Cm1GNdeS3yoiswb/gSnau20t7YRsfqJrLvvwYAt7wSN96HetlH6Fy1Nd+mnvt+l6+/+xd/8tq0bAXtjW35/3WsbspL1L57HsyX77vnwRG1ge7HXqKyspLsTXeM2JaO1U1o//R5tK//mM5VW/NjNbTfR0rsgWsObctQHK1dI/Uveds38+0a0MoG6sy+/xo6Vjchq+uOOvbtjW353w/0aUwJnKmbgVtUDIqKcF30A01jE8onZS7wYYj7ZTCMGwp7wQ0lZZ7aLBSkquFGYzgl5bjFpbixEtziUi8jyICb5mj6vPx93pt1qxETq3EcB/PqG1FbmnHbD6O0HUI/5wISK28icM/tiOkKbFhLYskyUqkUTu10ZDKO87MnCP3pCaybrqLnH79Aesm5hK+9BKYJnLbD9Fy+kv5Pfh6RTKLN1OHh+0lcehWpVKFdIfLYz73JZF6UdMUkMJOIe25HvflqnCn1dC84E/OG20es3xniyFJ0/73em+WzSGUtEitvQvv9r1EbNOT2V+m95kZSc09HhiJIKcnefi/Ru28j9fVb6P7WL5GRKIE5QVg+C7usku6P3ED2jPd4RH78QYxL5iMl9C4+h+TVN5I97SyCKxbClz9N5pwL6Jt9auESaWI1NO+m68zzR2xLpnIyMhQhvu550vUzkUj4/D+i3vGZfL+HHmBv3vAlMqcvJfgPF8M0kW/L0BRC6Ws+PWK7+u55cOT+TZuFRKJecAr2xfMhlaRnYg22bZO48lqMVY/QueIjI459JpdP2/2f36M2aPT+7NvHPOrobVehpRHAnuidloCioHa1oR/ch3DGxkVRSSYQVtbLcqnpZOaehj21wVvz6jrGnu2En/oNzoQqUssvw66q8RLpuS5uJIbMB1WMToV1JtWi7G/GjfdBxUTsmunYK64kcM/t2LfehfLqX9E2rEF97AFS516C8g//jKypR3nxGdKT6rx8yUsvhFSS9F2f89TvCz+AM6Ue8z+fGrzQi8/gtB7EnjUP8addBPbtQVt5IaZpEgqFCh50dd8ehKYhp81EPLcK+dQjRD54Df2As2sb5iduwR2h/lQqlVeVrVMWo3S14+7dReDO7+NsWkf2azdTVFSE3LqBxIevw5znZfGQV30CdeM6kv/9ILFTFtGTi0G2dwxGErtFxWQjUdSN63Ae/AHhkhIsARzch5PsR4YipB9dS2DjWvRbV5J44Wmc8vJ8zi176gzEuueRV6xEG6Etife+z8uwue45qKhCee5JeGk10UmT6QOcF57GsiwMw9Owwvd9nfTEajLX3YK47zFPi4r3kc1m8+q50t87vF0tzXDOBSP2jwkTvevu3UVFRQW9O7dgT64j/cG/x6mpR3zmo4if/n7Ee5uaUu+1/wvXE4pGCYfDYyuBnZJynJJyz89ZKOjth1G728fMx1jtbkck4vngBLe41PODrm/AntqAPWWqR+5QGKuuAbtmGlbtdKypDTiVk/LpfNT2Q6Mznk30VGD1wF5keSXOdbegtjSTef6PEIrgvPIS2Xt+QXbJMlRFoH/ny2AmcQ/tR5y13Kvk4fu9sh/9J0KhEM6UetQ7PlOYO2rlReh33Ejwazcjm3aRWXwW5o8eH7butKfOQLQeRNd1nCn1yG2bPILXTUekktD4HG7NyPUPlVBO1WTEvtdRVRV76gzYs5NAIOC1r2oySksTbnWtV+fD9+PMXoA6Yw4yl0p2WO6ruz6LUz8T8bpXjz61wSPN3t0EfvsARZ+4FNavIVM7ncQ9P6d0/mkFCfPc8krktk3IqQ1Hb0tnO0IIzyax7RVCoRByoN97dxXkme56tBGmzUIRAv1bX/QmolfXF9ggjN8/OKxdkcuvHrl/v/oRbk09HNhHKBRCCIHWfgjRMIf0h67DWPUI9u5tRx17Z+a8fPvfiLzHh8DFpbiBgLdNoyqo3R2IMTrtEEA/uA+1r9ubMIZ6lOVuiEiZXiI9y/ISAQxEOzlOLr+0t0+s7942OgJPnYF4fSdqLoGb++HrUNb+CTWX4UI++RDuu5Yi1j2P+MSl2Jd/HMIRxMF9yFMWeQ/XF65H2d+MPONcstksIpXEee+llJSUEP2Klz+q/LzLSG0zCaoqJbd8BGXnZmQyTk9PT0F73PJK5IG9cPGV3n154Wk0TfM0hZYmRM4rbaT6hwbS25XViLZDXgRMRxvOmcvQdZ3s+68hfe5FaH/8LaJhDsqOzYiffAvCEawLLkf0dnsVfPFeKisrCfziGdQXmqisrETWToOD+9B1Hev0pfnxif/PLtwVH6b81qvRXvozmEl64vH8hGItW4EMRXBffAals3XktkyqQdm2EeV9Hz16v3PPgjP/DG9y++E3UO76HNa1N3tt3raxgOSdq7YOa1dy144R+1f6rrO8up94KD/xqK0HcRefhZwwEfmlTxKJRI469krVZJStG4+Z5fP4EjhWCqoOQkFJmShmHDGGfsUDVmdhZQfXxQUNtEFKz6CWJ69dQGSR7Cew9eXR9XtKPfLAXoxNuaNIOtvJfu1mxNxFnhELCLy8BvtD12LvstByD5Hs7YZoLD/rhv76Arx3Bdlslshv/gOWXUTvxh7Myz5C4J7b6X5uFcaaZ+n94r30buxBVFZhfOO2YelghWni3PJVnHcvL5A82WmzEM3e+6PVP3QNrCTj2JdcgXvb3UQf+jGEoyQ2x+m75U6MVY9gfe+rUDEJ2g5iHNqLvqkRuexi3GcfR1/zLFz/Wdob27CnzkD70g10NyxEhiI4Ta+hqirWrAX58Qk/+TDJK1bStb4Td/llBO+9HbFv9xAr/zRPvWx+jaL/+snIbalvgHg/yoJ3HbXfeW1ty19R9zfjfPdX2I83egfjAezdVUCg8JMPDW/XHx4esX99MxfkrzugpuvbN3r3+vEHcRyHcDh89LGvnYZM9OV/+4Z22yPjgSOhEGbqrTtaxJe/j8yMuchIFK27g+jqJ9H3N49pmJ49cTKJ8z+ANX02BCMQDHpWZVVD37Od8FOP4JZNIHXuJdgTJuaOZsFzOBGC0JpnCQ9YpEeB9o4OimMxAoEA7R0dqKpKeVkZpmmSzmQoKy0lkUspAxAKBkml05QUF5O1LLLZLGWlpZimSdI0qZgwgVQ6TTzupQxSVZWiaBTDMIjH46Ry5xNpmkZxLDZs1u7q7sZxHKKRSL4+gL7+flRVJRqJHLX+gnuau1ZRURG6ptHX34/jON7zEg4TDofp7unBMAyikQh9/d64FcdiI7ZzoG1lpaVomlYwPsdqT/zOH5GtmIT7obOpmDAB27aP2pZgIIBQFBKJxIj9LrC09/Rg23belTiTyVBZUVFQZjT3IWtZBdcFzwWyu6eHoqIiQrn0QUers6u7m1AwOKIKnc5kjp1SJxQKDbNojgb9K67CmtqADIbROluJrH7SCwwY44D5zOwFmOd9AGfy1AIC47ooZgKpqt56N6cye+JGwXhtM5FH/wN1SNJzHyce3Y+9hDOlnsBnPw5PPUIsdnLmsMwcQeC335FDUTwf49y5R5ygBN2BnZtB0TDP9yy5+Z5qmmcpHDgYbUBddB2MHZuIPPFrn7zjEGVXLKGnp4eMbVNaWuoPyPHaRlKScYRlIcMCta8HJXniUrkGtm9E7evCPP+DWHMWeXvAuj7oH+06COkizASBl1YTWv0kSiLuPxXjFD5xR9h1OTKcUNf1NzwH55gV9nSCrqNkMwR2bkbtastF/MjRHeD9NkAaARQzgbFnG9qhFoSdBSOAAEQ2g9bSRGDdc4SffIjgpnWITNp/InyMaziOUxBO+LavgX348DF2a2DFHxIfPt65KCCw9PNA+fDxziUweMdr+PDhY/xhJG4OI/DAhrYPHz7GF0YyLg8jsGVZRz2l3YcPHydO+g54nB1J4GGRBtkxDD7w4cPHG5M3m83mAzHyW0hCWAqwcajxauCf2WwW27ZxXdc3bvnwMcaQUuaJm875Wiu5A9kHOKrrRq8mpfyVlPJMKeVQZnvxn7aNbdteehifxD58jDmEEHniqqpaoEIXFRU1C8MwjGAwuF1V1elDo1kGSOu6rm+Z9uHjBBJ4gMRD1WddN3pmzGj4g+a6blYIcZ6iKH91XbcyH6Y0RN/2jVo+fJx4Eg/AMIzu2tqpzymK0iwGXCjnzZs/sb+/7+fJZHKxbdulnMDDv3348DGMxLZhGD3RaFFzZeXEXYqiNAPf/t8BAETChsHsPJizAAAAAElFTkSuQmCC' button_leaver = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABJwSURBVHja7J17mBTFuYffqu7p6bnsssu6uwoCAgpoQAMGRQ+okUSiJjEYjdGQED3kURJDEmI0B41yyEniBS9H0cSTYyIGLxHUREQUYhTkqpHoCooKrAgILOxt7pe+nD96ZnZmLyoeg7tLvc/Tz+z21FR3Vfevvq+q66sWuq6TwwCmSSmnCCFGCiHKUCgU3YUosNF13QWu6/6v4zgZAJETcH8hxFJN00ZpmoamaQghEEKoalMougmu6+K6LsAWIeTERCL+ntB13RBCrNN1fbTP50PTNKSUSrwKRTcVseM4SCn3DBgw6ARNSjld1/XLDMNA1/WC9VUoFN0PIQRSSlzXDQshjheGYaz1+XzjDMNA07SShKZp4s/tV5JWKA6ipQVs2yadTpNKp/Oucwm6ru8Tfr8/7ff7DZ/PV7C8Ukr6lJcjpSSTyWBZFrbjqFpVKA6mtc1pUUpJMpXC6ahBWxdCGMUDVkII+pSXI4QgHo/jdKJ8hUJxkKyw42A7Dj5dJ53JtE+iybxo8wRMEykliURCiVeh6EZizvV9S/bL9gn9fj+ZTEaJV6HoZkghPljAQgiElGSyWVVbCkV36xNLieM4JSKWnZprZX0Viu4nYCE6CFjvRL3eplAour9brapAoVACVigUSsAKheJA0Hvqibt+k8SoscRPGIdrBsBx8Z6WdTkC8CEZuqDr4LiYWzYRXvscWqRZ3SGKniXgD5FBtyF6yhdIfPYUHDPQJtC8SNt/HiDxsafhajplLyxGJuLqLlEoC/xJkzxutCfevHClLBKx+H+LOH30cQT/uVoJWNHDBOw4PeMxkpBtwpXS+18Wbe2FfED+uQtmADRdPVJTKAv8r+kEO0WC1RB2lsCrL6M3NYDUigR84OJ1fQYyFkFraVR3iEIJ+F9jgUVBvOg6gbr1lC1/ApmIHXIXMTvhbPbf9AdCy56gfPb31V19CNFzHyPl3WZdB92HjEcRtnVIX8x41iIajaq7+lC2wA49YxS6vQV2DT+uOPD2yDUDpEeNRd/1LvruHT2yz+u2+1v12pUF7hkC1rTcpuf6vR/Dak26gNYrrqVl+nVkjv7MIXHRI7PvYc+a3YUtdtWNHdLYI8fScsufStLtv3852QlnF9I0LK6jYXFdh98mrpjFnjW7SVwxq7AvdtWNNCyuK+TVdPcTOEcMLOkG7Fmzm9S3fsD++5ezZ81u9j26Rim01wqYosdHmuZ9HgBOuJzIJdOJn30hriaxBg6h9fvXkhp7mtcg9FL237+cxFmTS/bFzp/K/pvmt9XNEQNp/M19pP7tCyXprGEjaZx9F5ma/gCYr6zCqaqmYeznS9KlRo1FJONE7p9HIpEgMvseYudPxamqLqTJjB7Hvjse6bBMTMtXLsEaNtJrRLa+TWOjGkjs/QIujDp/dLIDh5IedRKu1CCbhWwWu7yS1u/+mMT4s3B9Rq+72LGrbsQaNhKx+XW4ZCIMEXDmcNhchzXhLJq+dJFnQb/1fZyqasTTi7w0+W1zHQRCNH/5EhzHwf/Kak/wp04kWxRDnh0xCvHeNuR7W9AmnU/irMnIHfVw2/VteS1ZiDtgMI0zf1N6kgOHoN1xg5fm0i/h8/mUSnutC03Rs97C/x8N/xv/pPyhe9B2bYdsBqws2Bauz0/0osuJf+kC3ECwV13s1MgTEck47jnHY2xYRXV1NYenIlTPmgbJOJnTzyaTyRCe+3PKTijHvfJC9LsXEfzd4xiPrYURx3v97LI+pFIp/IsfRDY2wMSvkMmt15S4YhZuIIT74nJ0XSd78hmeyH9/K757b6SiooLDDz+cw381A7mjHvvMLxOPF02W2VyHfeecQrry8nKl0gMZxOpxIhbiY8+28r/+MhWRZiJfv5TskBGeJZcSV5PEzv0mTrgP4aceRkZbesXFdqpqcQMh2OaSAfa1r87aI0ilUhiGQXLhGhg2EgvobGw/H1QeXLGU2PlTiU+eSmjZooL77D50L6Zpkqn13G3mzCM7Zx4dajIZJ5FIUPB39u7GMAxM01Tq7N0udGcc+Pirb/sWKu67FXP9C4hMCmy7MBstMWESkYu+h31Ybe+onWDwQ74PY1kWkdn3eK72jnpYstDbbrve+2zfCK5f4TUOY08jk8mUuM+maeIEwx98UoEQ7qBhRX5+hKL3dSl6tQX+oJvRHyB75FG4fjMnSrvdaiO5WVpCIuNRzLqXsPoNxBowtMhFh9RnT8ExTMoX3Yfe8H6PrhNtRz3WkYNhZNeicn0+UieO96zo6UPw+XwYhmcf0w8s72CNfS8uRTY24Jx8OtEf/MKz8C8ux6frSCkx6t8iM3ocXH8lLLi7c88AcE48ucixUq8R+PgC7ilzodtb27w4c+fu+v3Ezvs2mQFDIJWATAYsy5uC6S3S6Q2A6TpoOgIH/IG2x1P5Z8pSkvnMGGLJOBV/uLWHtF6dXz9z4yvEho1EPP0a1bO+h9y9HYDI7N+SmDSZ4LNPUD57Og2AGwghrvwFVQv/B4CWuQuwRp/Ssb6L3OjspT8ucZ9xXfzrVxA7fypMm0l5Mkpw1bO5vvK1RL9xGbKxgeoLTyHbfvxCzUE/tC0wtt12I+QDHTQN3HyUkmx7jqz7vFFnnwE+H+i+toAIxwGpeY+XuruAz72Q+LkX0j5+SiTj1J45lPAt15AYexrOiONpeHx9aZrGBhI3/RwRi2H+YxWJSZNxZ85hz8w5HY8TLh1YCjzzmCdSwN2+1XOfq6o8C73yaYxVy8mM/yKRW+YTaW8vfn8bjU1NqKGqT6gPnLdP3X3ryiYXNiG8dMXhhvlHTppesLzoOcHqept4dV9OzAYYfm/zmz2uPoqNWcO+fbhA9TdOQS5dVJrglTW4P7wYbcdWgsEgZbOnoy99rDTNime9fjDA0OE4rls4tnz9JbQd9d53q/6GrusIKQvfV/7s2+gL/wj7G9ry21wHt12P+6d5hMPhDmVw1faRrrMwTdM1TdOrdCEIh8MkEolu3/Lsn/lr7Jp+4DfBDBD6218IPf1nRNI7d6esD63fu5rMwKMhk4Js3n3O9X+LZ3H5fAjHBjOIGwyDYeRmd+XaN8vCv/Y5Ku74Rbetj2w2S1NTU9cttZRUV7dNpIjFYiWPb0zTJBwOl7zgrn2aQCCAYRi0trZiGAaVlZUlx2hqaiKbzVJeXk4gEOhwDvF4nGQyiZ3zjgzDIBAIFEac82UIhUKEw2FlXjshmUyi58YXerULLZJxwk88gBMMeUEOTlH7JfJhhp5llrEIVm1/4l/7DlZFX88Ca7oncMB4/R+EF97Xrcvr8/morf3oo+XhcPhDRdJVmq4e8fTt2/cD8wuFQoRCoU+sDIreLGDLwlf/1kfrLlceRvrci7EHDmkTru59+tc8R9l9c9F271B3i6IHCLgnL+z+Mc49O2QE0ak/Ijt8VJt4c5/Bpx4h9OA9SBXYr1AWuPuRHnMq0UumY/c/qmQpHpHNEHrwboJPPoQ4BBcIUPRgAffUeNIDPe/McaOJTrnSGwgrQkaaCc+/E//KZyCbUbG1im7NIbuwu/7eVox/rPIsrOOA46Dtepfy/74B8/mnENmMujsUyoXuti1XLELZQ/cgY63Ez5uCvnsHZfffgW/LG+quUCgB9xSCyx5H3/ku+vvb0fbu+tTOI/6zm0mdfBpVF4zrdnXU/Nu/Eli9HHPBPBoXrcNcv5LQLVcr9SgX+pNDWNmPNXouUkn8G1aj7dn5qY6+Z4YMh/p3PnAyxqcyttBvENnR40hufYtUdX/sIweTenFZj5jsowTcg3D6VOH24DA0p7oW9uzssAJF5qtT2L9kIw3r9rLv+W1kvjoFgOzp59C4aB0N6/bSsG4vrXMX4PYbRMO6vWRPP6fw233Pb8PtN4j4z24upG1ctA571EkAtM5dUJJHe/Y9/pJ3vF/dWwjot2f+klhdlH3Pbyscq6v8i+nqWM2//Wthf9MDzxXOvWHd3kLZuypXV/VT/Nv8PuVCd2NSJ5/hzZDcu8ubaWU7XgihbbWFE5a8AE2AzM+T1trmSUuJ6zeRqSTGhtVojQ0H5fztIwejbbq9ZCqjPeokWn8yh+Ct15Gafxf2f91Ly5QfULHoD0SuvhnjhSWIM4dh/fJ3pC/6d2KXn4dIxmmuHUBfyyJ2waUYSxay/5xvIk8+jeClZ5NY8Qz2wtU0T55K8PiTyJx4KuY5J5D63ATSc+bROmI0fTb/s3AOocfmEx87Ac4YSnRWLphj2V/Qb74G69UWWsaMJ3DsaNKd5F/56tpCeVJTruz0WEz7KW4ojP9Yk/QRg7AefZGmb07HP2Cw17DNnoH2zELs11o7litQBp3UT7hpv/fbvz2Jdt3ltNg2FRUVhbBIJeDu4NpJrfT/QJDkxPM8ITqOt0xOJu1t6VRu2ZzcfOjiCKV8UIMvF8CQC2wQyQR9dtYfFAHnLYu98tmSYPbEBZfiBkLEr7sdrrvda3YaG4jFYpTfeyOt489CLN4Aw0chGhtIJpP4Nr+O1X8Qqa99B3vAYMSMixG/fxL7yMEk/ri07aAvLiPT3IgbCJFatAb/hjX4rppKbOWz2FVVBeFZtf3Qtm9B6Dq+AUeR2bAW+9c/JVBWRkwA0VZSkybjdJJ/MpksTMWUkZaOx3qvHsZ/0TvOm6k2b6SsD5lQGG3DWuwlj9Cnb1+ib3Usl/bj2Vid1E+y/1FeWON/TCMQDhMMBumt9FgBC9fpZGe7lSrzq1VqGtgaaC7Y5AL5278QDU/YjgO2jYy2HrQXm2WPG+PdcO++ja8o4CA7eBj6wj9iXXNZW0MFOD+8ntYrrkZ/ZQ3u6ucgHsVxQdM09Ib3sY85ltRnT8JYspDMO5twBwxGmz0D+4G72kQCaIEAZdvfIfqdGaQHH0N67nwq39mEtrdt2qh11NGItS/g8/nIDh6GeO1l/H4/5tARRAMhRN3LONNmdpq/WxTQYDy5gLKtm0uOFbprjhf6OKQ0FtgBWLENuXEDfr8fXdc7LZc2eHjn9TNvIWJ/AwjRq8Xbo/vA/rqXEcl4R/G2Dx3Mhwca+fDA3FYcOqjrbW50TszGGxuQjXsPjvt8eH/km3UIIUpWoxDxGPa4MwgdewKVF34XsSlG+cw5+MaOR75ZhzV1knfDjzkVreF9dF1H27MLZ8ypuIfV4l53OaFQCJGMY3/+XCoqKgjfcCdiU4yqiV8mvXI7zjnfoOqqb6GvXwGJOM3RaGG9KwCnqgZ357tomoY9YDDs2u6J+XMTPME89UiX+ZeVlRXy2b9kY4djxd9+0/ty1q3U1NTgf2AZ2spt1NTU4B5Wg7u5ruAJdFquROf1ox9xJHLjhpLuyKFjgXvIihyhF5agxSMkx0/CqaxC5GN4tVybZDtgZ70wQiubW3XSLnKhc6tYyra3HLqGCVLgf+0lgksfRUZbD0pZrJp+2KPHwVaHhqK+Z/jhe2m55ibiS14lDpiL7id6+w2YP7oBe8YNsNWBtzYiGhuwI634NQ3fpg2esJ5YgG3bBAMBePQ+YlNn0LKhGdm4D//ca2n6+xICix8m/t0ZxL8+Fdm4D3PutaS3vwO5YHwAkUhg/+Q/cXfW4wZC2NveQpOS7PDjkTvqcYBQF/n3rawsiCj41MPEprY71tN/Rr/oMrLTZtIwbSbaznr0a6+g6ZgTcAMhnPq38eneGyI7K5evi/rh4suRW97Abxi9fmWPDvHAgUCAZDKpxucPMpFIhHQ6XdpIhUIYhkEkEinE0IZCIYLBIOl0mkjEW9/CMAxs28Y0TYLBIJZl0dzcTFlZWSH0L5VKFd6bpGka4XAYwzC63F9MU1MTtm1TWVlJc3MzlZWV6LpOIpEgnU5TWVn5kfLpKk00GiWV8vrAuq4XlpJtamoqHAvotFyWZXVaP01NTYX66E2k0+mSeGAlYIWiBwtYqipRKNQglkKhUAJWKBRKwArFoShgVy2mrVD0bAvc/n2tCoWie9CZNjsI2LIs9W4ahaIbYlnWhws4m80WnjEpFIruY31t2+5gXCXQYfGn/MuaFQpF9xBvJpMpzJXPi1gIkZXAhuLBq/yXmUwGy7JwHEcNbikUBxnXdQvCzU8zlVIipSxo1OczWnTXdR90XXec67rFykbTNCzLwrIsXNdVIlYoPgWEEAXhappW4kKXlZXVC8MwDNM039A0bWhx+FVetI7jqJFpheJTFHBexMXus89nNB999DFP647jZIQQE6WULzmOU1OIcijyt9WglkLx6Ys4j2EYTQMHHvV3KWW9yEchjRw5qjYSaZ0fj8fHWJZViVpyVqHoTiK2DMNoDofL6mtqat+WUtYDt/3fAJkQuaX9eWk6AAAAAElFTkSuQmCC' button_group_leaver = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAB+nSURBVHja7J15mBxVvfc/59TS++wzmWyTBQigJKACQRB4AQVlUUERBDSAqC8XEV7cLoggelX0VbwoueBVvLwIXhDwFSGyo0KCYTckQEIgQyYJk5nMkpnpvZZz/zjd1d0zkxAgkEmo3/PUM93T1edUVdf3fH97CdM0KYkNnCOlPEMIsY8QIkUooYQyUWQEWKGUukkp9Rvf94sAogTgqUKIewzDmGsYBoZhIIRACBFetlBCmSCilEIpBfCyEPKobDbTJUzTtIUQS03TfJ9lWRiGgZQyBG8ooUxQEPu+j5Ry4/TpM/Y1pJTnmqZ5tm3bmKYZsG8ooYQy8UQIgZQSpVRSCDFP2Lb9D8uyDrJtG8MwanaMRqNESv8PIR1KKO8g0wKe51EoFMgXCmXVuUZM09wkIpFIIRKJ2JZlBcwrpaS+rg4pJcViEdd18Xw/vKqhhPJOsm0Ji1JKcvk8/lgMeqYQwq52WAkhqK+rQwhBJpPBHwf5oYQSyjvEwr6P5/tYpkmhWBy9i2GWQVuWWDSKlHJCgleZFl5dA159I340rrWFfBZjeAhjqB/huuGvHsouC2YpJZ7n1eDVHL1jJBKhWCxOOPB6qXqc9un48QRUnYBnR/HqmpDNbVjdXRjpYQi1hlB2QZFC4CpVA2BZo3MLgZCSouNMLPDWN1GcMmMMeEHo90LgJVIUZs7BS4T5J6HsojaxlPi+X+PQkuPS9QRiMGXZOC3tqGisCryiBrwIgSjvO7kDPxoLf+1Qdj0ACzEGwOY46J1QKqjb1IYfi2vAqlr81jAxIJRma3+wD1nIQ+g5D2VXV6sn+gH6sTiU49NVjFvDwLJ285J1KMsOf91QdnkxJ/LBKWmgTKuWbgPwAkKWPqq1i5UdQb3B5BNlmKhoDGVaCNdB5LMIzwvvkFBCAL8Fpb9i91YzrxzNwlUglhKkMVrH3uoi4ba24za2okwzmE+4DmZ/L2Z/L8ILw1OhhAB+4/j1PSizYI3/SoxVp4MvSVD+Ntnxyo5QnDoTL1WvgV81jm+YOFNm4Efj2N1dCKe4Xc/NOfSjpE84jdwhH64cei5D/NH7qb/ivJ3yZup+cDVG/ybaTjk4RNaOArCi4ivakVKYOYfc3AMozthD28FlZjXKm6nfmwaYFtFn/4G99mVNwrkMOMWa8/AaW5GZYUSxUFKZDYpTOvDqG8eydYmFFeA2twFgbUcQD1++kMzRJ45dUGIJMkefSPYDh9B6yRcxVjy5091Qru+zqa+PlpaWEF3vgEw4J5YfTzL4yc8xePIXye2zP159o7ZNo3FUPIGKJ1GJlN5SdfpvNI7f2KwdV66DHBpEuJVYduaQj9B37iX0feEbOJOmakDXN+En6jRjj1bZq1leGnh19fjx5Dar5VuT7JcvroB30W0wW1S28z8LK59DNbex6Uvfwgtt8FDeMIB9vxJKeoc3ZUcYPOlM8nvuV7FHy8xrmpp1LQssG2wbzNJry9J0aRhY6zuRI0OVMaVB7v2H4McSuJOmMvTJz+O0T8OPJ/Uc1Wp5tZOsSidRVgQ/WYcyjLd8jiPHnYrIZTRYz/8MyUSCye3tenv6b7R87kjkyuWoDxzM0J77gVKkv/Yjupe8hvOhj9Lz52V0L3mN4csXglL47dMZ/MmNdC95LdjKn5W38vdzp/3LVv8/fPnCYJ7qMQeu+SN++/TXP78adWLr+6a/9qPgXLY2x/DlC9n44Opgv54/LyP75YuDz3v+vIyePy8b873sly+me8lrNftuy5wbH1zN8OULg2ux8cHV23bu79Q2kW3g4Q9/EmfyDA1aIZD5LNGXX8QY7MWvb8JraNaglQYYUrOnlBq4Xa9gr1mJ2bOhhn11CKq0ECiF0z6doeNPI/rCs8hsumI3j1KfA083gGXpLDDDAPfNZ6kVTjgdv7kV8Zfbkff8gabmZizLqtnHsixarvo2Q4/cR6FYxGttDT7rO+9SaNbvM12d0DiJ/NW34E2bVTNG5ugTye29H5NG2aKbC0VEPk80Gh33/8E8Z10Ie82rHPf7DqL332+h7eSDkPKtK23D3/2PMSbEeHP03fAAzpx9avmluZWhz59PcfMADbdcR+zpxWSOPpGeA45g0pN/DfbLzz0AkcswdMM1kM3i/uSGbZoTILPXvtAxW69DmQyblj1Fa0vLdjn3XVKFVpEouX0+QH7O3IB5rd4NNN94NfV33kjykXupW3QrdXf9nsTi+4kt+wfR5U8RXf4k0WeWkHjwTmKP3ofVuSqwccvquDN1BioarQG7M302uf0Owk/WVQBc/rx6C/5voKQ5Ko3zTTiu9pyrz3flc8RjsTHgDdacFU9SX1/P5Pb2mhpt4knMzx+t1e0ffo3i+d/BmzYLsXI5nHZURQ3vWoM/fRa9F/7gzR3oXvMwf/tzPd5pR0HXGtT0WfRd9KPt4Lz7GJmjT0Su64SrLquYD4tuq5mjcMLpOHP2Qa5cXmtm3Ho9ALl9DyKfzxN5eon+rQ8+CqcqBbi411xE1xpk18sYx5y0TXMG0jEbec/tep8DJwVF9KENPBq4hokzuYNCx27k9n4/yo6ClAjfI/bCs/iJSkKGH9GsIYcGMDZtLG3dmD0bkJsHQEr8WCJYEIq77U1xz7m4U2ag7EgFkIZWx92pM8nPOxBVBnE1aKUsJYWUXoMOJflvzb0XLBidq2vA6xz6Mbof667Zeh/vJf31K2sHeOgu1D8epq21lcnt7XgHHIbIZVD/8mkizyzW/3/6bzT88nvazp+3P+lM5o0f6KLbcP/tIurr6pj86gs0XvP9tzZeNevNP1xfi1//DOtXV9LY0KDNhx98FbmuE+/I40lnMkTuupmm/Zvxj52H8ePrSVz3RxLX/RFO+YIeKJmiUCwSuetmZH8vHHVCUG6X/d+XoGIJ1KMPYJkmzvz/tU1zVhwVGfzzTg7Mm7YqLWjCe6H9d8gLrQwDd9IU3OZJoBReYzPKNEBKrK614Ps4bZNRpon9yot49Y24U2do9bnkXApsLSH0fi+tgGIBZ9YcvJZ28LUNHKjQo2LKzuw9IRIj+s/HkJk0arxVVkiE52igvMV4sEgP6xeNzUjDCK7zlq73iONCJlP5fGSIeDwefFfF47CpB9n1MvUlFU8B0SX36ePt2I1CoYC9hSiD2lL0YdVyEokEsXgcBUQW36vHiycpFAokEonX/323xMAlJyLfuwbne9cwOHqHXIZsNksikaB4yVVw0gI8YLxlw/d9FBD/+z2kT1pA5sQFJO6/nVxJfVa//xWRaJTiG5iz/F5KSTKVYqLXte0wBvaa2nCb2lCGqR1FkWgQGpJOSQ2WBm77NNy2ychcFuH5+ImU3uIJ/EQSP5nCT9UhXBc5NIA7fRZe6+QScFUFsCX1WTvCbIhEIRLD2W0vch/8MH59IwIxVo02JKJYwBgaeMsJHdaq5frF/MNrEtKtR++h+YCWimp31WVbMB43j+lXpn13xhZVPPdN1khvSb1/q4Uu2pu/FYklUDPmkD/9PNInLdAOv0W36e3W68e9NpHH/67HPuAwisUiTpX6HI1Gt3nOihGc3mn6wu0QACvL1skThkmVG7jW22wYAei89umIQg45PIjw/YrTqUwbSmH0vqbLCpta9aKgqnimzNiGqb3XdqQE4ChEY7iz9yR/0JEaxGWwl2xf4TiYG9cjM+m3fN6BunfEsWQPO3YMYNrb22lvb6chsuU87mqgimwWWibBzDlj7EwVSyC6Xqn98tQZteAuM9NoGbVfMN6rq9/yNbA7V+kXl32l1rat2vw1L5Lbd77+9X70LeQFp5L417NI/NsFWB2zxi42j96jr+v8wxk57zuB+myaJlLKbZ6zumXNRLV5JwSA/VgCZUdR1amS1QxZBm9J/fUamlGRGKJYQBRyGJu6sdaswl69AnPdGoy+HuTwZrzGFpQVKYXCSsaAonb8cujJjkA0FgDZ2eO95A86Aj9Vr53PhonMZbDWrsbsfQ387ROTTS66FeIJ8lf9jsHLF+JP7qhoJfscwPB3/4Ohs//PNo0VfXoxxBO4V/8e5737B2DbfP539M2/7El9E5dV9w8egTtlJgDpr19JvioLrEZOOJXcmRcGxxSM99SSLTLzNi9iJbbknIuo+9SCYNGq++4vEM+nMR5ZQ3t7e4UB5x9OQ0MDqVQKccVC3OM+M+648b/fAy1tOGddGKjPZW/7ts65s4B2h4eRlGXV5B1XVNxSnLecZaU8/Zlp4dc1YHSvw508newRx6Ni8UrMuorZVSSqget64LkgBH5dY2VxMC0NXtvW78uLiO/j7DUP4RSJP/AnrO7VyME+ZGZku5ZXxq/7Ifl4iuKnz6RwzEn0HnPS+PbyI/ehLj4HUltuUJD81ZXk994Pf6959P/6rtrvr1uDuvgcIqkU0TtvYuTks1Eds0nf/SxlXUKuWo5f8oyPcTZ99XI2fvXyyngrl6Ou+T52Q8PWT7BjNs6qIhvH+aj5W2djPXoP9uIHKH7oIwz/3xsYHr24//oq+vv7SfxzqV5gjjuZgeNOHjtYa3utFnzvHaRPWqDvg7WvaPW5lA22rXM2NzfvdADe8UuO2Ir6XGJhmU0jhwbAtBj59NkU9p1Pcff3UtxjH4p7zgs2Z9aeuJOn406apm3nKR24k6frMJJhVqnQdoWFI9ESoPVW3Hc+uSOPx22bgtc+DWf2XriTpuqGAttJmq66mMRZH9N23TgeYE47CnXmR4nH41t1GMnuLpovOAX5yH1jxlCH74ZlWSQSCWR3Fw3f/Qp0rQm8rPzmKvx/PjH+wNf9GLHyucr7W69HHTsP27bHxJDfiPRncziOQ9M3P495239BX2/lw5XPwVWXoX53DalUiujNC4necLU+1lH70NcLLZNqMtWMFU9irO/UbxY/GKjPwTXfhjl3RhHRaFRFo1FM00QIQV1dHZm3GCp4XQdWqgFn6gyd4ywkwnVIH/NpvPapYEeIrnga++UXwPcQnof94rMYA30U3vM+hs7+mg7HVKu0ox0Ovl9h59HsXnZgWbZeMKq92Z4Lrguug738SSJPPILIZRDFAjIzHISvhLt9Wg55nkc2mx1zvROJBPF4vCYGnMlkGBkZoaGhYQyIfN8nnU6TzWZrxhh9UzqOw/DwMI7jaC9rMolSKhi3eOVvyR59Ilx1GQ03/ZJsNkuxFJpJpVLb5H3u7e0dr/1phYWrklcyGe39LQPRtm3i8XjN+WWzWdLpdDBmeZ+RkRGUUrS1tdUuEv39OI5DXV0d8Xh8zPzbMmdvby+GYUxIRs5mszWL0w5RoWU2jXCKiFiiYgcbRsXRVA75WBbWmpUYfb2402biTp6uP/O9SreN8VIgpRFkXgUOLNOs2L+mVdqq5lKqJtRUnHsAeB6Rpx5F+B5eQwt+PIkfjWOt79wuhQ2GYZBKpbZp9U8kElsEkJSSuro66urqXtezPN5NWR539Bk1NTW94XMaDag3e06ByRGPjwvELWkCrwe6bZnzjZzDxLOBff9tb6kjXAdjsE8nXpQSNCoglpU+V/kcxmtdeI3NuFM6NLirc7XL3xOilDUlamuIA/u6CsBl4JpmZdEoA3gUkxf3nY9wHSLPPKYdI6aF2z4NUSxgdq/b9eqEawLDKuzuGTqxtjLxYB+YFs7k6TA6/ioEyjAwe15DeC5e+zSdTcWom6q62CEAv6wFcRDPNWudZGXwjk7woPYmLrzvYCgWiTz3OCKfQ0mJO3k6MpvGGNgU3kGhTCwAv1OZWPg+Rs9rUCyUbNqy3STAKWL09WCs78SPxHTYSUidRBCU+VUBs9r5JWQNi9ekUAaeaLMC+tGMXb4kSoGlQPkU5h+O0d2FufZlnbIZieK2tCN3MQCnvnsu4uufI5PJoOrrCfk3ZOCta2yWpdVkp1jTf0pm0xibupGZER0CCryJZaYs9cIK4rol1dgYZUOPVq+r48vl11SzdemvMsBUtapkeVwpEb5fagSw60kymSSZTIbICAG8FfKNJ/Hqm1CJJMqKIJyCrrUtGWLKjuJOnaGLFDy3ip1VLTCNUbatZdUy63g2crWqzjg2szTGqNH204sxBjdpB5jytYoSiYZ3TyjvMgBLidvUhtcySTuwSkwp3EjFawyoaAy/rgm/oRljQyfCKYBK1gKymklNs8LCpllRo6vt2vEYebTdW203l8T+51Iiyx5HFAolJ5pXSvCS4d0TygQE8NvlfRQCt3WyrkYxqmKv1fNWz++5eC1tmF2vIAf6dPsbxBZAbNbawlVlgLUgFVsHbmWlAQnWsieIPP53RC6rx/a8yryhlzaUdxMDu02tOG1TxqqooxePqtd+QzNeQxPGxvW6AqmuoYbNa51ZRpVta4wF5XjVJVuqOBECa8UzRJc8gMgM6zF9vyq2jH4MRCihTDQAvx1dKVUkits6uVQ6WMWEY5qya+Cq8l8Fzu7vwV7+lPZIl73Vo3OoR4N5vHjwG9AU7CcfxV5yP6RH9DGX56x+EoQi9NKG8u5gYLe5TXfbGIPXqr5T44HO91CxOH4yhdHbTeTpJXit7eQP/ggqkdR2rx0BQ6eBBsX98RREo8FC4Te1oraxiiby17uJ33wtfmMLfnNrBbxKhHdLKO9OAPupet3tQozDvjWOpSomdR3MjeswNnQh8lnNvlISXfIg9nNPanXajiDyOeTwZkRe5wGLQh5cB795El7HbLwpM8h+7it4k6a+rlptrFtD7PbfYq5ZibP3ftDQVMnSGmPvTgxAj1xxLX4iRf3Xzwjv5hDAb48o0y7FWKvBKyuPSBFCd5ksJV0I38PqXIW59mVULIE7bRZ+U0vQm1mUQ0tSQl0j3rRZKNtGeC5iZBijuwtjfSeyb6MO+zjFSvgHMS6QzVdXE3nwT3oBkBJRyCF8T3f2qGnrWdKd5cQAsDNrDix7kpGRkZ22oiaUNy/vTCxkTKF0NQOX4rFVZYRGT7fOgZ7SQeEDh+DO3AM/WR8wtDItVCSqNzui2V0plGHhN7XgzJtPcf4RYNmYq5YjRoZ0lZHnlQohvBpWNbpeIXLPbcj+TTplU6lR/bFLDQJ8HzwfUcwjB/omxA/oTZ8FG9ZiGAaD195J79Ieepf2MHDjQ3rxnDKDgRsfCv7ff/tS1JQZjFxxLYPX3hmMM3DjQ2S+8RO8uQfSf/vSYP/MN34CQPbcS8eMMVqy517Kpr+uCfbLnnvp2AXn8GOD8ftvX8qmv66h+PEzGLjxIfoWrQjmzJ57afC+vA/A4LV3MnLFtcG59S7twTn8WAavvXPc4w4BvN1EjB+LLavMvk85J1oZBu6sOTi7v6dUoF/r5Krd/CrAlUDmFPEbWyjuN1936CjkdD/nAMR+8D1jw6tE771dp0UaBiJgWV/v6xQR+RwiM6I7Ym5ch/nKSuznn97x4J17ICqWwLvrFvIL/4hKJInsHYUj98RtamPg1HMZvugHoMDeKwLnfxZv2iwG5h2ESI/gtkxiaGiI4sfPwJs+i+Kvf8rAlddjP/53zDkWnP9ZMp9aQKZ5MukF5xP9/oVw5J54TW30H/fZmv5Y3twDSS84n8hPv43YTcLTj5Gefzi5XK7y002ZwdA3f4JVGt/r6UbFEgw9tEgvRGtXY+xhkvnbvaQXnI/5599j7GGiXljG5jPOo1gs4nXshrOhi3Q6jbP/oRrUTz6G1zEbX4F5zD5w6/XBcYcq9NuC5dGPL5EYm/vxJk8HIcgfegyykNPMOW6staTGKl87l8rqsV9l1ypfN4OfuYcOKzlOJdykdCjL2LSB6KI/aFW7zOIljUAO9mt13ikismlENoPIjOgywgkS/3X2PVBXSSmFe+hHtMPwxXyN7yH225+TPetC3P+8Cw47WoPtpeeR6SHUpxbgeR7pT5+Fveg2ikefiGpuI/epM+FTZwbjZGbvjchlyH/n37GOOI7IbdeT+eHXyCeTxGK60YGx/Alid9xA7rCPIc+8ADV9FvLR+ykUCsE+hSNPQMXjOP96jv7fiqfJzNxdLwSxBNzwSyzTxDzlbLxn/0Hx+xeSSqVQK54m/ZmzSbdO1Y7FZU9gGAbOnvOQ6zrxAb+5DeOCj0DnKpoe/BMDp3yBTH0z8b7XdpoGdROXgcd7mmA1AxumbsruuoHXOH/Ih1GJ1BYdTqB0n+Zy8b7vV6nIFfb0Gls0KJ1iaXPAc5G93UT/8gfkpu6Kiq/8wBY3Nq7HeuFZzNXPY2xYixzs003jJ1Dyhje5A9m1BnGoBuaYRm0P3U164W0YQiB7NuiOFNkMLH0Y++XnNeC/fx1+8yT83/wMs2MWxqrlY5u+LbqFxkM74C+34bRMIr3gq9gXXB4As+xMK84/HEMKrJ9fpnsrv7aupilB+Xh93ycej+O1T0WufQV5wqn68q94hkQigTtzd3h5JZFIhFgspvfrWoN30BF6Ybrrv7EsCz+ZQmzaiDFvf2T/JrzHHqS+vh63tLCx9OGtNhcIGfgtaNPVoFSGifnqaqyXn9eF9KaFO2MPsg2tmGtexOjvrai/qrpeSpcdCiExejbojKmamlYf7KhWn4uFEvsq5GA/sfvvQPa8pp9uOCoLTE0YH/PWpTh7T0TnSxjDg7gAl/yMtt/8mKGf3oQ7c3diD91NBnAWHIP9idMpfvtnyP5elBCYG9ch+zfhn/IFzP+6Gu+VF4kISa5jNuYnTqdx7UsM/OJW7OefxU+kGG6bTNvnj2Lo4KMpXPU7Cn2bKBQKRCIRza77H4p8+G749pdwr18E8QSiZJvXRCRaJmHu8V6cffcnf9gxGH+7F6bN0Ez66ksYra3ITT24Bx1O1LIofvwM8ocdg/WfP8WbMRsPYOYc/A8fr79/9x9QhxyF39yKPOGzkB0h88kzsBbdhiPEmPlDAL9ZBq55PX78N/nf1zHcOhm3YzediVXfSPF9H9TAdV1d2OBVOaHKtrRhEFn2OPYLz2iGrbaXXafCvspCpoeJPngnsmdDCdBUFoSdLDXSb52EeHYp9gP/H7H4AZxzLqL3nIsw1ndiXnouec+Hz5yNesXHXd+J7OvBVyq4qY2uV/BRgaoavXkh+QMPw/35TWwCrGeX4px/Csbxp+L+4Dp6l/YAEL3jBvI3LURUNbiLPPUouZPPgpPPIrL4ATxAbR6oAVD85oXkDjwM597lDK/v1Pb7i8uQB3wIsWlj0NYpecuv2PzNH5N+bgSRy2j1/hdXkDz8o6Q/cTrq4VWMlPpfees6Md6zr14Arv49/UDkvj/iXfLFbWoBtLPLmJ5YiViMbJXjYXtIft6BOpFCGrWPLgnK/Ezk5gEiK56isN98Mqd8CXfGbiDNkqpcUonL4SPPq+3IISX2C89gL3tCh4GqFgzhFCnO3Z/CB49CZEaILb4f2ddTqR0O9lUgJMb6TqyXViAyIzvFDzgwOEgsFiMWjTIyMkKu9JAy0zSpL7XYGRgcRClV00upob4egKHhYVzXpbnUPkcpxeDmzUFD+EgkQn1dHa7rMrh5c+C4Spb6dlVLutRvCiAWjZLL52mor8e27ao1tTT+N38Mp30Zjn8/9QMbKRaL+EoFx+y6LkPDw3iep+/LUmsdz/PYPDSE53mYponneci/LEM895Rm/9Jxx+NxkrsggPOFwtZ7Yr0dBf1m9zr9BIVYEhWJ6KohTDAC6Oi5pURu7id27x04e7wXZ6+5+I2tQdtX7WX2akM8QqCsCLJ/U+2TA0s3mm/Z2M8uJbL4fuTwEN702dp2KnuwSx5nUSwihjcjN6yFXGanSZNsbGwMrmEylSI5Tix4vIdtl8+v3EdLVWlI5TGr9zVMc8w4o6/R6H5T5WNRJQ/04C//EDxJ0VjfifWzb1NYuxqruRm7pIqXxzRMc0xPLgVIwxjz/76O2Rj33EEkEqk59ndDqusYBo7FYjWu/+0qhqkfiZKs17XAsQQqGkWZNnJkCGvlMtwZu+sfOUh9rGJINVrVVWzxzgyeDyx1g/ZVzwECZ84+qERKNxAoFnSDvaFB5EAvcmS4BOpQ3g5RSrG5it1N0ySRSNQw9JuVvr4+UqlUYJPvqlJ4PQZ+e92mLnJkSD+Au7TaK8OESAR8VfXYlFFN68pAFoKgqF9VuZpUFXqFGtucDZ38YQz2aSArhchlEY4TAvadZItx2H17yXhaxrtBduwDvpXSPZbLqq+s0qnLABWjfcKj63lVDUmjRG2pXznmLHVJoNw8ECIplBDAbyOqKxlVQoAvS9Hq6vTLanW5xMplnIuSIV8DfEFY/BfKrigTry/M6LTI8t+gAFdVh4FH1RSLWrO5xjAOywFD2cUZWE2EOKhfeSiZzpGmkitd/fSF0fgM2FvVOrKEKIWgvPDXDmXXV6F3aOqZ72FuWIvMpPEbmvATKf0UQtOqatoux7GLGVXyh2buYgFjaBBj43qMwb6q7pahhLLzyXjYrAkjgXbt+74/IdhYmRYqGkPFk6h4AhWJoWJxXaEkjao+zgo8Tz8/OJ/TxQeZEeTI0ITLXw4llDcrxWJxTELOGAZ2HAfLsmoe3bijRLgOIu1Aejj89UJ517Ov53ljcrslYx9KFzxSMpRQQpkY4C0Wiwghgg1ACOFI4Jlqdbn8YbFYxHXdCaNOhxLKu0mUUgFw86X8diklUsoAo5ZlbzaVUjcrpQ5SSlUjG8MwcF0X13VRSoUgDiWUHWFGChEA1zCMmuYEqVSqU9i2bUej0RcMw9itWr8ug9b3/V2+KDqUUCYygMsgrlafLcse3H33Pf5i+r5fFEIcJaV8wvf9trJ3q1rfljJ8DlAooexoEJfFtu2Bjo6ZD0spO0W5CmmffeZOGh4e+n+ZTOb9rus2MiHTLEMJ5V0LYte27cFkMtXZ1jbpJSllJ3DV/wwA0Ab3XQmI9nQAAAAASUVORK5CYII=' button_token_checker = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADK0SURBVHja7L13nF9Vnf//POfc8unTS3pCMkASagKEDoqAIKIiWFHUdVfX9Ys8tvlD17YN2yq2VXEtLIoKtqUI0hSEUCQkJJDepk+mz3zqbef8/rifmUwaggQSdN6Pxzwm+cz93HvOued13v39FpZlIYTAGHMScJWU8jVSyvlAgmmapmk6XKgC7DTG3CelvNFxnCcrlQpW9Y/nCSGuFEKcoZRqk1IihJj8pgEwZnoJp2maXi4SArHnJwngaK21EkLkjDE/01rfbgFzgY9IKV9vWRZKKaYCePL39JJO0zS9bDTBLk2VcU7gUGvdprVuE0LMdxxnmyWEeLsQ4kylFFMBPPFFKSVqL448TdM0TS8xgI0h0hqt9R4AllJOfLY8lUp/SjiO85hSaoVt20zow0IILMvCdV0spSZ05ElQT9M0TdNLjmBMzHHxg4AgCPa5xLKsfuE4TsVxHNe2baSUSCmxlCKRSODYNgiBrp4E0/Cdpml6+UhWsRcEAX4QxBicwkSNMVhCCHeqziulJJlM4jgOge/j+T56mvNO0zQdMlJSYlsWfhDsIwXLCZF5AsCO42DbNkEQTILXVNn5NE3TNL2MUnT1t55iyJoKYCEEcuoXhBDYto0xBs/zCKNo8vNpE9Y0TdPLS2KKqHwgBmrtwaqrBqsgDIm0Rkr5Mp0xf2wK0zRN0zQB5gmmug+AJ9xHUdV0/ZKQ1ogoRIRB/O8qkE31X8IYzITLSkhQEqMsjFTwkh8o0zRNr2AAx/jScLABrDVCR4gwQLtJgtY5BE2tRJkcxnFBKISJwIBRCqEj8D1UpYwcH8UaHUSNjSAq5QlRAaSKgS7FNKeepr84AO9XhN7jjwfD8mxMLCYLhU64aNclbJpJZeFi/NkL0JksRigwBhn4scvKSYAg5tKehzU8gN3bgd3XiTU6jCwXqxw8BB1BpGGSY08DeZr+rNG7B1aFEPty4IOqhOsIEQRE2Rq8uYsoLzkRb14bWBbWcD/J9atxejqR+dFJAEduEl1TT9Ayk6BlFmFTK/6s+RgpscZGcDq24nbvwNrVg8qPoQrjGClijizltJg9TX9RJBKJhHFdF8uysG2bRCKBjiKCIPjTwieNQQQ+6IiwoRV/7hH489rwZs3H2C4qP4rT047TsxNrcBdWVTQWOgIBRtnoZIooV0eUqyWsbSCsbyFsakWnMzFAjUaWS1gDfdiDfaiRQayRQdTIILJUAATGsnaDepozT9MrHahCEIYhnu/H7qNq7MbBBbCOxVmdTBHVNlBZsJhK2xJ0TR0i8HG3bSSxaS1u1w5kMY9RCqOsvbimqRq6IkQUYpSFztQQNDQTts4kmDkPf8Y8olwtwveQgYccG8Hp78Ua6EENDSBLBaRXRngeIgrB6FhPnha1p+kvAcDRnwhgEQXoRJry0cdRPvF0wrpmZClPYvOzJDavxRrqh9BHGPPCdGwhQMhYVFYWOpklaGwiap2LN2suYWMrWDbGUshCHrtzB27HNuzeTtTYMMIrIzAYUeXG0wCeplcogP2DDmAhqi4hgz9rLqWTzsabfySyUsLu2onbvgVroBdreAAReCAURqkXBiKjEdqAiUAbkAqdSKIzOaJcLVGmhqiukaixmbCuKTaEKYUI/PjZfV3Yg7tQw/1YE2K2rLqnlIrdVS8a1AbhVZDjo3/UvW2kwCRSmEwNz3mxELE0Ui4iC3l0Ko3J5A71ToIoRBTyiDCoSjjVeSkFloVOZcCJ60EIr4wcHcYkEuia+pcnrzzwkWMjoBQ6WwO284rPZ3/pABxFCCnxZy2guPwMvCOOQo2OkFr7OO629dh93SAl2nZi989BscZphNbxs6MQY0Bna9C1DQQtswhmzMGfMYeorgG0QVbKyGIea6gPe7AfNTyILOWRxTyyXIQgiDn0n+prNtVDpakVf8mJiIl56gi8Svx3JwGWFUvyQYjq6cDavG63z/sA88SyiVrnEM5dgN3TherYitHm0HjOJuwbyiJoW4rO1WHqG6tSDYj8OHJkCGvnFsT4MMZ20HVNBMecgBrox978zHPP9yCN0WRr8Y86FulVsLdvROTH4sPlzxDA1n434wsQcUUUEjbMonDqq6i0LSX5zCoyj9yLNdQXb+pkas97H5zpVMGmMLYTfxIGqME+1EAviQ1r0IkUYX0DwawF+PMWEbTMJGyZSQWBKBexuztwurZh93SgRoeQgRdzkj9ljFqD7RAeczKjn/oqxrYPzFgVyHyR9G0/IrNhNajncASEIaSyeOe9gbG//Si5m28g/Y1/AxNwKH3fUctMSu++Gn/BUQQLj44BbIHq7sbZsZn0TV/H+f3dyMDHO+Vchr/yI5J33Ubtte8Dy35pB6c1ev6RjP7rt7B7O6i57h+xBh6HVOaVL0dP4HLKIfii3EhCR+hUhuLJZ+EvaCO17kkyj96HGh6IjVC+h3aT6FQGWcojggBj2SDV/kVHY6oiWfVvL8SKXJ3cBGdWYYDwyrHrqX0LOp0hqmsibGwlbGolnDEbf0EbhCH2QC/O9o0ktjyDNdCLcRIvjBNXxUpr3R/IfvxvGM/n4/HMXgAf/Cg0NMH3rocnHwETocOQQm8nslIhjUH4XuzXnhRFJSaTiy3pCLBtSEFRKmSlQsJSsfRQKsaGwGwNxk0ivAoiP4oIokl8G0thUmmMmwRlIcdHEOVSfMgAwg8mzkSMm0Dnag8IDCEkwfKzGfvAP6MXLYGN61B//y6icgkERK++lPLrriD8p/8ga9tkbvtpfEClwEdSHBwiO8UEYRw7nufEIRz4iMI4Igj2XAvHxaSzuyU434vjAXw/VqkApEAnkphkOt5fyRS+7VIMAtJRhBX4iPFRhDHoVAaTzsTxB+OjCK+yeztK0IlUfB/bjtWiseGYYQAijPMDdG1tvE8OMb04P3AQ4C9cSqXtWNTgLtKP3ofduR3tJjGWTdAyG++Ixei6emRxDHfrRqz+nli0nAoQoxFhiJFyd3SW1shSEeGVYx3Vsp6HoUvEgJ84DKovWvV3IwxE2RrCukaiphmEjS34rXOI6hpj7lzfRFTfSOrJh1HjI/FB8IIAHCE7t5Jau4qwejyZGbMJ3vhOIstC3H8H9qP3o3bb2pGJBOFxJxHOnEM0az7CcWL9baAPe81jqJ1b0Lm6eEOXIKp4BGFIsjROeOwp+MedhPR9nDWPIbesRzc24597MdGsWQjpxmvQ046z/mnkYC+iVMA7+SzC2QtQw4PgJgjnLkSgIT+OvW0j9trHY0CJPQ8wUSkRHrGYwjv/Fn/FaYhf/Qz5m5/j3P6T3Rft6sZfdBTBaadRWH42zr23x/79ImilKJ/3elh6PFIpKBVRXTuxn12FKIxDGKIzOYIV5xLNnAeZLGiDGNqF1bEda9PaWCKJAkyuHu/4UwnnHgH19RAZxOgQ1tYN2M+ugihEVkqElTJ+EJAuljEz5lC+4DJMrgZn0zqsdU9C4OOtOJdw0WKYcFGOjWJvWIu1YxOiVCScMQf/oiuQhXx8wLXOQihJ4sG7Ed3t+3DEQw5gM+Xn+VidvbkLMZZN8unHsbp2EqUysSspk6O0/EwqS5dhLBvj2ES1TaRW3oc12LcbaFVOq9Px6R+0zIkND1GIGurH7u9BFvMvXLQVAlTVYIY7KZJa/T3Yfd0YKUkmU0R1jfjzFlFefgal5WcCguSax+KD5oVyYTcJrUlqhADfQ89dwKjjEAGqoYmMgMSMmZMRbyaVofTGd1Nadnq8GV0LpI21q5fM/3yBZHc76Gj3u4hVTXS6hvIbrqTwxndh7dhMtrcDd8M6ghNPI3/1ZwjaFkAh5mJyoIfcrd/H+fVPsbdtpHTRWyhd8T6cZ1cjKmW8404GSwKK1G/vJPuf2xHF8X2nF4b4S46nfOEFiNXrkF+4FtG+FSubJZ1Ox3rZptWM/+TbFEZH8EdHKNbU4uowvkHrLKJrPsP4kUvj8NeEjfvMWjL/9TGcJx6M9epjT6LwwY/jtS0FS0AEcmyI5OrHSH37OlTHdoTWhMcso/jWD1A+/hTIpiAUCK9C+oE7kNf/C0aI3QxVa4xt4518DuMf+TRaWWRv/Cqppx7FzJhD6Z1/R+lVF8c7Xmgoe6Tvu530zd/EWr2ScN5CRj/1NVRPF0Qh0ez5YEHt9s24Xe2xR+VlAvAELsVB48BaozM5ZFBBjQ3HdzYG7bp4Rx9P+fgVOB1bsbp34rctpXLsyXEE1ejgpG9W6IgolaZywmmUTzob7boxN1Y2xnFwt28itfIenI5tsRvoxUZaCYGR8XJIr4wY7MMaGcQaHaFwxvmUTzwdWSlj97THksCL1Vn2u24RJpmh/MZ3U7zwTRAEWP/yAcKO7XDWhYRv/yD59/49Oj9G9u5bp8icBjk2SuGfr8O/5K3Y9/4f0U9uoLz2D4RnnU/5H/4D7SZR3/4q0R23gGWjv3Iz+Xd8kMzWDVg7NyN8DxIQLFyMfct3cT/7UbymZrj601ROPgv95vdRe+v/IIrjk2IjUYipqUfPOzI+C7vaoXsnuWwWK5mcHJ9OZUmtfhSxeT2VsREYGkAjwAUzvw35+O+wv3AtQakA13wG/6yzKa04D7X6MczRx1H4648SHHUM1l0/I7zpGyAt9Ic+RvmsC4m62qn54dcQiSSl170N74yzUA/+FvM/X0Qn0ph//izFN7+VaHyE9B9+j4hiKU/2deEtP4PK334MMTKI9Y3rKD3xEMJy8D72JYKlJ2M/9iDBD74CI4Pwvr+n9PrLYLCP7PqnYtVGWUSts1GPPYD65N8RVUqMbdtInTC4jnNIc+VffCilZcWiWhhWE441OC7+/CPRTa0k/+8m3C3PUi4VGHv7ifjzjyTx7JOIYj7eG+kc5ZPPorTiVYgwxO7aGYdHWjbBjDl4bUsxrgMP3oW9Y9OLS14QYjcbq4ru0qsgvAqu5+HPb6O4dBn+3IWIqZzvBePWTNY02ucENQbCEOM4lC64jKilEXHdJ7B/cRNpQPR24LfMwn/H+yi99nLs1Y9V475jIPlv/xvCiy6HO2+BH30b+9mnsBqb8S99B8GihahvfgX1pU/glvKxuP6lj5G/7ruUzn8j7pMPQqUEDphnnkL/4n9JPP0EjmURti2lfO2/Ull8Ip4BN9JVW0XV1pGtRbfMgjKwcwsyDHEzmcn5GgAngRruJ9mxDWVAGU0kZbzeQ/3oH34T96Hf4ALRw/dSOefVVBYtwa2phyUn4p20AvHbe+Dz15Lqbo/HLwyFI2+mcsGbSf7iB4jZC/BXnIf2A9TdP8d+5H4sAaalFe+Y5ZTXPYXtefFhPzpMeO5FRK+6hGigB/nd65F3/QzLstAXX07lVa9FrnwY/uvjJJ56FAtQIwOUFi2kfP6bcO79FapcjI2U5RL6xq/hPnwvCUAriairi/fUIXRRWfu1cj1vkshyEaMsonR2QsqLpZHAh2r2kEkkq3pUGWEijJTIKEK7CfwjjqJ0+vkYyyZz349xtzyLrJRifbixlcI5r8NbsgxZzKMG+5CF8ee23L4gQMvYSJJIxqd1pQRaTxpVXkpfqkllCOYtRPT2Y77zRRSQaWnBGeqjcO8vCE8/j3DREgrHnEzK9+KFbZqB99rLEPWNWDd+HTatI21J1PJT8Y87BQZGYOdmdG0d7tFLcGwb8dRKikO7CM58DX5dE/g+2MBDd8PTT2DX1ZFOJPGffpyyH/tQvUoF25jd1R4MseQjFfhAuYTFvpkxGI22XWStTRKBKI1TlgoCEBvXwv23Y2WzZGyLYLCXYGic0LbxG1oQM+fFZ+uGNURRhHX8SSSTCcTYMOXunYRnn0ElnUHMmoduroWHHkQ/8RCOkmSbmzG3/ZDSzTdQAKKzLowPFKUI3vrXiBNPwfryp5C/vhVbSdKLjqJ83qWgQbRvJhwbwV18LMlsDrt7J8Ha1QTveA/l41eQevx3sWA53I954E6cXG5SZTgcCj2+OCRIiRwdiUWM+maMtEAIpFfG2fYslWNPIv+mq7A6d+C3LUGEIc62DajCeCxq19TjHXsyOpkh+5tbSaxfXbVAxqGUVl8Xmft/hU5n8NqW4mx4mtTTj6HVwc3BEFGEziSIahtAxuM3L5GbRhiDtmx04wxIurClG1Ipkm5cVDCyHazAx86P4s2YQ9Q8kyjwY9H1rPORI0NENUmCV19C3dgg7vAuvEQqLrvSXEt07RcQ/3wd45aFILaO69lZ8MAXEh0GCAPGdbGBhOsSGY12nN1+1Kq2NblJhYgt5ZUSZEC0ztj/xhECAh9RLsaMIAqrwSix9GADiWQSEwZoacXSVBigaxogVwdJ0FddDW//AAXLoiQk6IioMQPN4Nc1I5tmYHJATwdWdztuNotBYFJpEm4SR2u061DxK3DyaciuboyGcNkZpBYdTbZrO5FShFW3UvSGd8JFl1OSkrKUccprYw1kIaptwCuV4nWQEgUkEonDqkKrtT8l+YWIz3ZvZ2zgOOJooqcfRQ0PgFQ47VtJP3IvlWNPIWpoxhrqx33mSZztG2PrIgZdW08wewFqdIjEs6uQVdF5QqcSgY/TsQ1341qKZ7+WcNYCWP1ILNIczKwjY4hq6gkbWxDFAlZ/70tqmBA6QpTyoGNDllUpYTlxTLjxqokdtgtRhCkXCVOpGATbNmJu/Cp8/L8wb3s/ett6xIN3xmuRykC+BPfdgdmxkch2YztDsQC7ukAqvO4OhO3G3FxIJHERh0jrfazOe/quLcToEHL7RgjAzGtDJ9PIwjh6IjJMCMToMHrBkRReewW6ZSbpO34cgxkQ2qCU3F3lZVKvZ7eUZoDHH4JVj6CTKbSOYimuvxcsn+iZVZhjliGCeN1UrhY7qlSj1UqoShlh2fgQ+5vHxzE/uB6z7HS48DL0G65E3PDZeP5unLbKulXw6APoCQnDq8BAD1TKhJvXYxKpPfaCPMyy3V4UKzNKYe/qwtrVhX/E0XiLlpJ64kHQGjU2SurRB1Ajg0Q1dVi7enC2rkdWyhjLQkRBHE6YSGG3b0WNj+5jNDK2iwgD7L5OZKlI2DITnamBIIhdUXvoteJPBi9SErTMJmpoxertwO7YdvCixvZ+XNXlJIZ2oXq6iGbNQyw/A9Y/hciPo2sa8JcuI5o1Gzasg3VPYs6+AALgyUeQt/8Ee+Fi/Gs+Sfmit2CvX4PVvg3V10mQzsHD96Ju/e6kuypSFlHLDGSlgl0qoB2XaG+d/I9KWgrh5bGeWYW1bhPhwiX4F19BtGkNsrcjPigijalvpHLh5RSu/gR6bAz5+3tQ48N7uPkmc8SnHA6MDiH7umL9etM65Nf+dXJjaiBqaMbYCeyRXVid2wl3VdBLjoPlZ8BDd8bRavPb8FtnI4uF2G9uWbBjK+KX/4v99BNEp56Lf+k7KK68j+SOTbFb6ozXwLZNiBu+gFUYjy38QNTYGjOnkUHkslPjA2GKfeNwanLwoo4TIxWylMfZtgEQVI4+IT6RjcFIifDKuM+sIrXyfpytz8Zhj1V/rpkIDoii2Oy/35PNYITCWBbGdgjrGvFnzse4iVjE0+bFGxCMxlgWUctMdDaL07kDa6BntwX2pQCxlIgowt2wGpIOwYc/iWlqQYznCU88jfLr3kbYnIG1f0A8/QRWtcgByRRuroa6G6/HenIl3oWX4R2zDOupx7Ef/DXUZxDv/CDJi99MgyWor8mR+uh1cPc6nK/9hJrZc3B0GDsAXqADQyeS2D3tpB64DZoaCD/0MYpveHccSBGEiMI4/tkXUbzirzBJEN/5IqV7foVnJ57b5mhZyJF+rNWPIgtluOJ9OFd9mEYF9TVZsu+9GvmjBxD/9xg1y1aQ3bkF0bkD2hail59GhALbwbv0Soa/egv5D38Kk8rEhj/Lwl5wFDXrVpH+8beI5i2gfOk7EX29uL/+KYyPwasvwf7AR6mdMYtGIHfJW5G3/h75s0fIXnApaRNNdkc4HGn/RqwXYszSGnf7RryedvwFR+MddTzJJ34Xi0RaI32v6uyWeyUxCGRhHFHME86aT1RTj9WzE+zEJJil72OAsHUOUUMLCMH4m66KuX5fB1Z/H2poF2poAJUf5U/JAxY6IsrUEDTNhDDCbt+CNTYSc8oXczgYE2dO1TdBcx1MiIjVtRClIsmbv4WXrSVaeiLjX/4xanyYaMFRRPXNyJtuRN/8baRtI3M10ALkapFKIfIjZG/9HiP/sYLiRz+PWxgn84ubCGsaKL/x3VT+4+uY916DsWz0nAUoA/6dt1IZHCTM1kENkK2Z8s4By4FmoK6hmnO9l1HTshDFPIk7fkRYLlB6x4coXfFeomWnxsexDtAzF8QBGN/8CubnN2L7PnYuF9+3tmHK3tIYJ4FuykF9EyaVwV35W8z3v0zhbR8k+PAnGHv9WzCWi563CCUtzPf+i+L2LWR8j+TtNxNm/orgTe9m7OTTkcolmrcQ2d9H5X+/jpSCsLkZ/ACRSCLCgORDd+O96hK8d76fwvZN5G65gZrP/SNjV11D8FfXUDjvImRhDN06H9k6i+hXP6K8bjX2vAXQrMBrfW7X4MsVSrmPdmNZn7Ysa3dXBsvCGIPW+nlnI6liHmwXv20JOleHs21jrPtUa1fFv/cDqDBEZ3P4bUvjKvNjwxAGsQ/PGEwiibfkREqnvQYEOO3bMIkkUUMTUUMLQcssovomdG0DOplGu4lY95kIyYx0LN4JDghmEYYEc46gvOwMVGGc9MP3xJbuF6vrGANukqimjnDbdnjoNyR29WClUpO+VdW+BVMuoyslgromgmyOaHgIVt6PvOG/sLY8S7KpGaumjiBw0Q/eg71hDVY6g9PTgU6m8BJJ9LOrST71KKp7O0FNPWEqQWCnCIQkXLcKdect6Ju+jgp8rLkL0Eah77kba9M6kul0jNVEgrB2LtHDD2CteRQX4ogppkSRGIPs68R6dg1hKkPkVwhqGggtmzCRJOrYgbj/DsT3rsfu7SLjutiNTfjpmeiHH0A99QiJZDKWrDK1RG6GcNVK5NonSXW3Y+/qJDAQWTZ+TR0BkrBzO+KeXyK++hnI53FNiDM2hB4bJ7IUYUMjYWSINq3D+vENcNvNWKk0or6ZaM3jse+5NIbjVaAwTlDXgN/fi7vyftwNa4jcBDqVwbddgmSasKcTcd//IW78GmLHZqzGZkz9PKJVKxH33TZpgX65SVS7NERVXE7+TM1GUkrhuu5kO4fnO1AR+ESNLeQvegve0mVkb/8xqUfu+aPuGBEEBHMWMH7ZewlmziO98l7cdX9AjY3EFT1mzqVw4eUEs+aTfvDXpB6+B53J4i9aQjB3EcGMOdWwP4EcG8Hu2o7V3RHnAQ/3I70yRNGBOXE1u6Z01oXkz38TifVrqPn59zHCcDCSBSYWfWxsjCAIqKmpwXXdffROz/Mol8v4vj/5N9u2SafTJJNJtNZ4nsfo6CjpdJp0Oj1ZQXRsbAzf98lms6RSKYIgoFAoUKlUpkipFo7jkEqlcByHQqHA+Pg4yWSS2traSRExiiIGBwdJJpNkMhmUUgfUkY0xFAoFPM8jiqI9jDxTnxVH3AYMDw+TSCTI5XKTaxMEAaOjoyilyOVykw0FisUinuft0djLdV0ymQxWVQULw5ByuUylUpl8/kRXkXQ6jTGG4eFhpJST9zbGUKlUJueezcauz1KpRLFYnHzexBySySSJRIIgCBgZGQGgoaHhkAE4DEOCIJhktgetJpZRFmp4gMQzq/AXLaV82qtxN61FDu16zuwToyRqoIf07+6geM7FVE44lcqxJ6OK4xgh4qBzZZFceS+JPzyIHBlEFseRxQLOtg3odDaOYW6cgb/gSLzFJ1JpOw41Poy9qxs12Is12I/V14UaH9lHBBHGYGyboHUOxnax+joRlTImmTw4Eo/WCK9CRoJOp7Gqm2jvw8+JQpQAbavYNiAk0k1gOU58feDjBB61qSRWIhG7Nar3TgtDIp2Kr41ClO+RxpBwrElft1QKmUzEgPQquEFAbTqFSiR3j0dHqEqZ2mQClUwipnSo3N/BJ32PFBrXkhi1Wy0SSiHdBGrC1hGFWF6Z2oSLTKX2kL4sv0LOsRFuAqlUPP7AJ4UhYSliT3T1nskUqioRmGqyStJoHDXxfIGw7XjsRiMqFXKOhaiOZXIdQ5/aZAJZfcfC90hEIdYez5NI10XZdjymSpmcbUEyddh16TwoHBgRx6LqbA2FCy+ndPZrST9wB5nf/AwC/8DiqIj9gCgLb+mJeEtPIpg5D1E9+WUpj711PcmnHsHq647L78CURHJDlK1BZ2oZe8v7CdqWYO3YEmfGNLYgyiWsvm4SG9eQePrxOLhkD/E5IGxoYewtf42uqaPm1u/ibnoanUgdXEthdf4H8h9ObW0z8Xvi2ql1gCdaS069x/7uvU+D9gPca0JV2kOnqq798zHc7N2WhylW7T3mKgRyd3/bPd7//j6fmNPUtdjnu/t5/t7znLiPnqLLT1y/93rsfZ/9ren+xvBnwYExBmM7yMIYyT88hH/kMZROezXupnXYOzbudvkcwNCDMSTW/gFn6waiukZ0rg6CADUygBoZBB3u4WIySk06IuKAjw5UYRzd10n2np8TNrZSuOAyjJPEJJKEdQ0YZe0DYLQmaJ2NztZgd3egBnow1sGPwvpjL/35BAYYY/YQVZ/r3s/nefu714QY/fxf+/MMaDBm/w3yDvD58wXJH3v+/u6zv+88n3kcrpZoax+O+EKt0Hu5R9RAL6nHf0v+0ispvOZSam7uRI0MPw+rsEBUSlj9vZjhgWp8dVAtlCefYzwGbAdnyzM4W57B7unAb1sKUpJaeQ+ppx7BCIH0K/sRoTXhjDnoVAZrVxdqdLiajD/dym2aDlPaC0MHNazESIWolHCffoLEUyvxjzqW4nmXEtXWx6Lyc/QYNrIKUr8S11sqFeLvVAvaPRfwjWXjbHmGxOpH4/jq+UciSwUS65/C3rYeq68rNmbtxX2jRJJgxlxEGKJ6OyHwX7IQyml6Adb7MAS/Mr0WL5QDC15YPvB+wSQVYmSI5O/uJJw5h/IZFyAHB0isXonMj8YgPlBGUbUXEn9CDIUcHkBUKgRHH0fU0IzdsQ05MkhUUz+pO+/t/w0bZxPVN6EG+lCDfXEY558894O5iXW10oTZ/WYmJBgd7f7/iwFJtQTwYVcIXwhwExg3ER/ir7Txv9TLs/e+f0legAA12Evqnl8ginmKF12Bd9wKkArpVWL/7EF/rgTHRmdrEZUyVtcOZH70wMXMopBg5lx0OhdbqYcHD5vCZ8L3kYVx5PgYcnwsTrAP49I3olSMfexa8ye5uqqGQ1HMx72mDicATCTHN84gPOWc/asyh/P4D7kOfBBJVso4G54mfe+vKJ17CaXzLiWqa8BdvxqreydydHjSjYOyYq4s5Is6OIyysLp3kn7oLqzOHVUGtv9NboQgmHck2A5WbweqMIZOHOIaRzruOBEcdwrli6/AzJqB8CPU9s0k7rwFObSL0ts+iCoVce++BTE6iMmkMOlsnC1UGIdQg4zrW5lMLq6JXS5BtZaTsS2iY07GO/diVOc2krf8AGNLTCoTZ4GVijH3N2BSSUyqWmPKGESpgCiX4rpZlo0ojMWhsIkkwvPiGHUDxnXiZwc+opiPjZJKIQpjk9KD8L14rFa1/pebQIyNEM09gvKVH8J+dhVRuYjt+7FIbQAnDqmNjj4B75zXojq37zl+iLl2pONxpKtrUywgisXdIqat0Jlc7M14jvn+5QJYCIxQyEqJ5O9/gwhDiq9+PZVTzkY3tmBvfgarpwOZH0VUSohKJW5YFkUYUQXdCy3ALgQIhd2xDad9axxffaCKGlqja+oJZ81F5kexBnp3d284lBRFhItPoHL5e6mcfh5aRWAlEadfgEDg/uDLFN/9/7DGRjHCIHt3ovr7UX2dcY3spcswuSyiEtfVkn1d6IYWopZZmFwthAH2ulWERx5L6e0fRD16H+rxBzHz21BVO0HUOjvexJZA9fYgd3XHOcRSEs1vQ9c3Y7VvhXKR8KjjMJma+PnViDiIUIMDqK6dRI0t6ONOxurYDl6Z8KjjY/AGPjqTw+RyCM9Hde5ADg+ga+qpnPcGSpe/m1RhLE52WbocU1MHaOTwMNbmdYRtx1B6x9+iVk4Zf08HBD7RsSfFBfB0iOrpRPV2Ec1ZQDRzNkLGjEKOjqK629GJ5P7nGwSvmOL/L2lzswndM/HE75DD/ZTPvJBgfhveEYuRhXHsjq1xgbGuHajxUUS5gNBUS96IF3F4PPd3hY6IWueiMzXYnduQYyOT+u+h5L5CKYpX/h3Bqy7B/fq/Et7yXYK5izD/8W2Kb7gS9a3PYrJZAtsm+PQ3wPHJfOOrpL99HdGCI8l/7EuExy1F9I+TuP0nZK//F8LlZ1J4xwcIjjkZdIXa/+8DmEwWutuJhocZ+dAnsE4+i8x3v4iRFuPvuQY9Zz7USjLf/AbJm76OKPSC41K56ArKb34fdR97P3LT05Tecw1h2zFkfvxtShe8Cf/Uc8DRJO+4jewXryVYdjrFD3+SumvfD13bKb/nmjiwZHgAb/mZhMcdg7WjnewXr8X69c/xLriU0pUfxiQtyhe9hcxvfkX+H/6d8PgV4Grchx4m9+8fwTgO9HROGf+ZZG74HJQK5D/0ccKFS0D6ZL79ZTL//Z8UL7yM4of/EeErTNLGXvUkNZ//KMHRx5O/6iP7zJeh/rgY/F86gCf0GlEuYW/biCiXCecdQTBzXlzitWU2Qeuc3R0UdnWh+vtQw7tQg/3IwijCCIxt7+6h9HxLzD7HdSIM8Be0YdI57K521OjQfg1dL6ve61UIzjgfc8RizJ0/Jbzjp9hjo6TaNxP997/j1TZSaDsGU9+E+O1dmG/8J1x9LeUlJ8I5F6PPOB+2bUJ9/dOEZ12Kd9qrsL7uUHn7ByCZgev+CXP1JyhceHmcFdbYgjnupLgY+/e/Qn7DWsTHvxzr2h//AMYbo7ijHUZHSNp2XMY1CIhaZlBsmok7Okzlwjdjf+tzFN70LkSuFvHlT6HPOJfK8jORZ70WM2MOoeNS3LaJZDJJsHQZ4pmnMPMWEc1dgPnhDQSrnqDw7BqEZWEN9ePs3ELFkeh/u4bSVVfDnIWIL38Sffq5eGe8hkrrbELHRc+eG+vC+XHkTf9NobsTcfUnsVc/RnT9Z9Bvez+lRcegjjuFcOlyjJPFfPuzkHAI3vZB8iechrnwjfuf7yHeC4cXgIXAuAmkX8Fdvxq7fTNOU1xkPZg5j3D2AqLGFsLZ8wlbZiCLpRjAu3pRQ32o/FhcA7mYRwT+JDafs8/RHwG5dlyCeYsQgYfV14XwSnHi9qGkwMc/6SyMAHnbzYjeLty6OlJoort/iQQKH/o4oljA/PKHuLffTHDJWwnHRykdtwJx0aXw+EpUVy9hpUB0xFGUjz+V4Njl2Nd/Gud7X0YYg1/fiF52OsyeDbV1qN/9GnXT16t1sxtAR4iBHuhsR/Z1IoSBVBoCP3a1dXdQaZ2NmTU39tNvWENw1Yexb/0+zjc/Sziwi+gjiymfcBqWFPDMU3i7ekguPYGweQbWyvuJ3vUhxM6tWF/7T9jVg5QCk06hCuNYHVsRloW5/3bCL92E84OvoL71OXRXO+E5F1LO1MSi9ayGuAbX/Xcgv389/hvfhT77DFI7tyIHejGFcaLZR1A+5VxMfRP85k7kFz+OOnY5wVs/QGV8FFVTH2+X/c13GsD7itMmGweyq6FdqME+3A1Po1NpovpGwpnzCRa0EcxaQDhjNhwb+5Stnnac7RuxO7ahhgbA9/gTElr34M5RYytRXRNWfxcyPzxZvO2QcmBj0JkcYRigEgmSEhzHITAGGupxa+oJ25bgb9tA+NDduLkcet5C9F0/Rze1wKxmzAVvJDz/jbFvoVAkfNXrUP19BLd8j5RtkbntfymWPYr/9s34mmKByKsQATUtrRTXPUnpdVfAjXchiiUy//YR3Ptvw+gollAqZeTwIMxbRHD0sbh33Ur53Ndh9XYT/OQ7ccmc+ga8nZuJjCaqa0a2b4sjjGfPj41VTz+B+cd/R/zmVwghyKRTOJksFPMEzTMJ5yxEjg2j33AlBD76a/+GBSTTKSrt7fjIODXRi8evywXCRBL39W+jXIbSm6+CN18FLqhHHiFqitMAxe/vxjIa94xXExQLyJX3o1acg//6t+53vofDnjisALyHeDvZQSFE5kNEpYwaHcbu2BobYxpbCJtnETXPJGyeSTh3Ydz5oL8Xq2Mb1q5urIHeuB/w+OikBdpMpC8+Z78hQzBnIVFNHYmNa1BjI4eF+8iIuHi6njkPNWMetgbpe5Su+Gu8FeeQeuwBsC1EXzeWX0EsPw3pOLBzM2buAugeRHz6HzDtWwANqRzmXX8XSz8DfdjzF5L/p+uQa5/EaWrBX70Kujsxi5aijzsZ7+LLCRYuJvWOcykvWYa57iuUapuQYYQtY6lGlIpIpYjOOh98H/PdLyH/9mOY2jqs3k6cZBLvrAvisNpiHn3kUuRTjyGB8uvfjhwbJmpowdQ1ojc9g1MqohxnMjlDZ2uIEmnk+tXQOhNtWUSZGmoCj/KZr4FKCdk6C9O2BLP6SejuQh99HGbpsjjvd9smzD++Z8IiSOQFiEvehnKTqP4eVK4W5h8JoY9+3VuI2pYecL7mFc2BX0oT+h4dFEzcfMyrQLmItas7rmyYq4uzjJpnEjbPIpw5l6iphaixGZ2twV+0BDU8EIN4qB+ZH0OOj6Dy41ApI4ze/YyponY1PNNftBiUjdW5I67DdTj4EpWN8+wqKq++lPCK91Gpq8WvbcA/7TUEyqI0Gif7i3WrsJQkOuksTBTFtap6OzHlCD13NlSKyPFRrF3diB2b8M69CPn//oXgiMWEJ5yKTGUwcxfCr38Ou3rgX69Hn3wWWlkEi4/HmrsI6pqwOvvxd2whKJWws3HXAlkYQwU+4ZxmxC0/Jdz0LMmtGyid93rkNZ8iSCXRbUsxP/kOoqcTXnMp+rwLEUbjnX4eorcLvfh4SNiYbRuwvDIyl40zq6IQk84QLDkGa2wQ6/f34CMwH/0cwVg/0YmnY275LsJ14chjML+4aXL8ZvmZqI1rYX4bzJ4XlywaH8fd8HvCbBadTGOPjSJnziFatATZtTN2Ry0+HnOg+R5udABMvujmZgdFR1Zx0v9k/nAQxC1BuzviFpGpDGFDE+Hs+QQLjiKYOZ+woQX/iKMQvo+1qwe7ewd2dwdyuD9uHxqG1T7EerIKBIg4BXFWXEhPDe6KfYyOe8j9fsZxsVc/hr3yPiqXvJXCicugUMZavxr75u/g3/tLxN98FNW1A2UM2nFh0zNI38N9+g/owR4q//QpKAlk+1YSv74F59EHCM97PdHVn6JU8Ujd8Fl8ZRPlapFrHoPCGGZ4BCMV9h0/QV58BeX//A6EPvZdPyda/SiE/u4Y+TCIE0K6BzG/uAmhFMk/PIR3/hsI/+rvKUqD++ADyJ/fiEmlsfq68Zcdj2k7AbnlGVi/Fst2MBueJerrQpq435IxJq6gWS4jZISeMQdn4zrUpnWEF1/OuKtwnlgJ//sN5LkXxVbiifEPjcR9oR+5D3HhZZgv/RAsgWhvJ/2JD1KxLUqdOxAjQ4hUmqiYR655HHHPL4ne+lfPPd9XAIj3SCec+ImiiLBaqP2QDdSYatsK4rpYtoVx4+wik84SNrQQts4ibJmFSecwTgJjWajJxP4dWLt6kMODqMIoBCEmmaZ86rnkL3sv7pO/J3v3zxCjQ3+879LLNWeliFpmUUzn8MIwPlwKeezhfpxKCeeEFYxv30JifJjE/DYqUhK0byOZTCHmLSRvKSIvBK+MPTZM0ivDgqMoCIGueIiedtxUGlnXQNC+HVtJ1FHHkN+8gWzooZYcz1gQYXwfBvpwhneRdhxs20YODOCtOJv853+A3roB/ZG3k0WTqKnDnzWPgrTi8rfDQ9i9HaRyOcS8RRSUJPQjKIzF7T4xWI0tlJ5dQ862cJNxTrKIQkxdI5VZ88gPDCI7t5FdfCxFZRNGIYwMY+3cQmb2XKKmGZS3bsKxVDz+LRvJohELjyYf6ViHrVRwOreTmjOPioaofSvpbA5mzqU8sAs5Nox77LJ952vb2PspunA4kNaaKIoO3B/4sAHwPpt7dz9gwjhPOUrn0A1NhPXNcQpiYythcysmWY3IicLJYvBqeKCar1xLefmZIAWZ23+Ms3V9HFt8OMxzolplMU9Q8fHY3QdHWQonV4M1NkJRG6yaWpzAIyiViVIpHMuC/Diehqj6PSnATqWwSyUqBqodinBthQwiQsfGchxUoUgRcLIZnGKBko4rM5qJzxwH3BT+inOoXPkewrq5yM9di/nNL6hpbERGIWJ8lHK0+9l2KkXCdTHjo3iRIZjQEgCr+nw/mcBJpeMk/WplUOFVMKNjFAFsi3QU4mkmm8VZ6TQJKdCFAr5tYTvu7vGnk9jFMmV2j184NikBkRcQJhO4roso5vG1QSRTOKXivvNNpCZbBE0D+KUOfNBRXDtZCkhlCWsbiFpnE8xbRDCvDV1bH1/j+3GrFMvGCEnq93eRfPLhuObwYdj4+bmS5Kcmne+dgH6gpPT9fT713hPJ/fu71vgeZOsofuTTlC67BHXjD1Gf/WccqUhmMvsd8/6S5Q/07P3R1OT557rv8xr/AdbpQGtjDuMQyj8vAO+tE1TbpKAsTDKFrm0gbJ5B2DqXsGUmJplCjgzhbliDu3HtfjvwTdMB1lgqdH0jRSWp9PbiFMbIZXOIv/BEgmkAH3Qx21Tzfk3MbdNpopoGdK4O48Tik93biSyMVUvcTm/A5yEPTCY5BKUyPmDlcrjVFiPTdGgBbP357DOJUewWibVG5vPIsZFYt6wWm8dyDn3c8yuLBceegnQGO5PFOUyaek1TTNbeOsmfzYuRsurfndIJYppepDQ9DdxDaReZqvNPbvPpFzRN0/TKPUCtvWXsw7kPzDRN01+y/rt3SeE9OPAEi46i6Pm3VZmmaZqml4WiKJo0YO3NgT3AnfCJTS3qPVFAepqmaZoOndgchiFhGO7jtxZCRBawxhizYn+yttZ6GsDTNE2HAYAnwDu1a4Vt2yOWMeZXwNHGmJqpLSYmqve/kEr90zRN03RwwTtVxZ0qESulwnQ606WUUh2WZV1gjJmxN4APdLNpmqZpenloAo9SyindIg3JZHJXS8uMjRbQ0do64/OVSuUjnuet0FpL0JORHns3jJqmaZqmlxfAwGTvbqUsksnkYG1tzY5kMrnFAmhqav7p+PjYnNHR0Yzv+wu01ilA7s2Np0E8TdP08oO3CmAtpcwnEone2traHblcTZfWetv/PwDMDffKBBPzowAAAABJRU5ErkJggg==' button_checker_v2 = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAChXSURBVHja7J13fFzFufe/c9r2Va+WZMtykdwxGIxNSWgJpuSFUAOJU997CSE3EEh4QxohISQEQnJJyL0JqRAS2s2ll1ANNsbB4AKusmzJsmx1bd89Zd4/jrTSWpILOIbA/j6f89Hq7Jwzs3POb54yzzwjNE1jEAbweUVRLhVCzBJChMgjjzzeK4gC66WUd0kpf+M4TgZADBJ4ghDicVVVZ6uqiqqqCCEQQuS7LY883iOQUiKlBNgqhHJyIhFvFZqmGUKIVzRNO0LXdVRVRVGUPHnzyOM9SmLHcVAUZXdt7cS5qqIol2ma9lnDMNA0LSt988gjj/cehBAoioKUMiiEmCMMw1ih6/pCwzBQVTWnoNfrxTN4Pk/pPPI4jJIWsG2bdDpNKp0eUp1zoGlal/B4PGmPx2Poup6VvIqiUBAOoygKmUwGy7KwHSffq3nkcTil7SAXFUUhmUrhjOagrQkhjJEOKyEEBeEwQgji8TjOGMzPI488DpMUdhxsx0HXNNKZzN5FVGWItEPweb0oikIikciTN4883kNkHrR9c84rexf0eDxkMpk8efPI4z0GRYh9E1gIgVAUMqaZ76088niv2cSKguM4OSRWxhTXeembRx7vPQILMYrA2hjsdY9DBMfrw6yeSGrKDNK1DdiFJUhdRzgOIp1CHejD2NmCZ8dm9I421Hj0kNafRx7vZ2j/NKNbUcnUTSY1bTbp+kaswhKEbaEkYoiI602T/iDmhDqsyhrSU2egdXbgaduGsWMretcuyE9d5ZHH4SWw1HQytZNJ108n1dCEXViCSKfwtmxC37MTtb8XkUmBouD4glgl5Vjl1VjFZaSajiA9ZQZ69270nS0Y7TvQunejde1G2Fb+aeWRxz+LwFLVsAtLSDU0kZwxH6u0EhwbY2cL3i3r8ezYihLpR9gWwrGRQoBQkB4vdmExmZrJZOoaMKvqMCtrMStqSDUdgb6n3ZXIHa2o/T2osQjCNHEd63nk8QG3i71er/R6vWiahhCCosJCYrHYQanK0uMlU9dAYuZ8MnVTkYqC0dGKp3kDnrZtaJ3tCNve930MD3aoALukArOqhsyEeszqOhxfwLWVI33oHW0YbdvQd7WiRgcQmVSezHl8oBCLx9E0DUVRxiZw4UEQWGo6VlkVqakzSU2fi1VUgtbbhW/TWjzbNqDvagP5NuxYIbDKqjAnTMKsqsWsrsMqq8LRPaixCFpHG3rnTrTd7a5aPtCHsKxB59e7T+bYV39I4ugTsWsmuT8nGce/7CnC118+qlz03KUU/uL7+P78y8PWtsNdp1NVR+efnkFra6H0M6eNWy75iS/Sf/k3CT34B4K3/L9se2Onn4f0BQDQN6+n4Le3oi974gNJ4PheBH7bKrTUDTJ1DSRnHUVqykwAvFvexP/GCoz27a5klG/TCSUlWvdu1N5OvGtfxSqvwpw4lXTDDMzqWjINjWSmNKH296K3bsXTsgltTztqPIqSiL1rzi971gJ6vvWzLHGzP8cXIH7aOSSb5lF25cUoHa053/enM4hUCq/Xe9jaejjrVDpa0TeuI3PEQnqmzKZk67qxCbz4FEQyTvT2GyEWw/zlg6QWn5JTxpw2i+7v/CdFV1yId8PqD7xEHj0P7DjDU0njHFLTSU2ZSXTxaSSnz0Hv3EX4738j/NzDGDu2ItIpcOz93mefh20jTBNhmei7d+J7fQXhR++h8P7fElz2BEZbM04wRHL+YgaWXMTAGRcTO/ZkUlNmYIcLkYryzup/G0fPt27DrpmE2LgOrrgYJgv3uOJi2LgWp7aerm/cimPbo6fKDlc73406pST4xP0AZJZcgD2kLY04nMpaMtNno/zjZZTWrWgXfoHU4lMQbS3DfXnSdNi4FnwB+j91xZj3ed8f+yXwfimvkmyaR2zxqdjFZfjXrCT0/CP41q1C7ev+53iLHQeRSqD2dWNs24h/5fOEnniAgkfuIbDyebRIL1bNJOLHnkJkyUUMnHUp8cWnkalrQGr6YRkJE//+DeyaesTGdcglc/A8/SClJSVUVVZS9drzlH7yJERbC878RfRPnzdaNbrxTjqWd9CxvIPu3z+Nefzpo8pEvvvLbJmO5R3Err5pzLaMLLf7ma3jlhvZ9qF6naq6A67PPP50OpZ3kLzkcrp//zQdyzvovHf5mHV4Hr4bpa0FTj6LZCo1ug2XfBHpCyDv/z1erxercY47xjz5P+hPPeD2ZSpCxadPhWQcOWkqsXg874U+WE9zesoMEkcejxMI4Vu3iuArz6LEoofV9lSScZRkHL2jFc/m9ZgTJroe7AmTsEorXBV74hT0KTPR25rRO9rQejvRejpd7eCfgHRDk9tHf/4vPIZBcXFxzve6rlNy+w0M/O0u0qaJXVY2/OWS88gMvrBDamLP126i5NmH0HV3AOr+/dOY02bl3DN67lKSZVWUfX1p9tze5aQvQPTcpaQch9JbvzFabb3kcgY+dQXqpnWYp8+h3zAoLCyk94/PHFB9AP1nfQLqJrtmRPNmunt6KC0pGVVXYNWLRM9dSvycpQSfuj+XwEefgNLWgvPwPfhLStB/ci1cfwXRaBR/OJztB0VR3LXpiRhmPuT34CSwWVlDYv5i7MISfOtfI7jimVzyKgpS0+BQZPRQVKyyKtKN80geeRyJhR8medTxpGfOxyqvBsVNPiBSCYzmDQSfe4TC+39Lwd/+RODlp9F79mBV1xI/7iNEllxI9OSPET/qeDK1DTjBMAjlkHakObEBknG46xcEgsExy+jLHqcgHKaqsjIneQJ1DWi//amrJn7iZOjuRJaU03vGxa4j5+qbMKfNQtm4zv1+hDppHX8aPR+9MEtGc9osRE/nsNp567chEcdccsEoiWWddDYDn70SddM67NPnZAeexNd+fED1Dbd/Mupt33HLfeajWbLtjeBPrkUk4zgfPjNnaZx5/Omu9rLiOXRdz14fDASoqqzE7/cPO+Guvsl1aD12P0o+c8xoCezsQ5YmZ87HKijGaGvGs2kNIhFDDpaWHh9WxQQcfwC1txO1p2v/6vTIBzBCv7eLSslMmooTLHDLCOGubkZgBwswK2tQIgMYzW+h9nUPX5tKoLc1o7Vvx/faS5gTJpGZMoPMxClk6htJT5mJ2t+L963VeNeuROvsOOQqv6IoGIYxbh9qup79LlvmucdwbryacDiMf/tbRF54nMTHl+KEi0hnMiRnHem++EvmYBgGBWVlqKkI9jc+T9fdz5E58XTSD/2J1LyF7n3//jDqE/dRWFKCfv+vSd31n0QiEeJAlgoTJhK77Oso3Z3IM+ZhGAZFxcVIOOD6sk9v41rsn3+PwsLCrFNsvN/vW/YUieNOI5VKYRiGK31PPguRjGNf+zn8odC416YuuZzouUvRlj2FdfsN+AoLP/ATiAelQpvVE1ETMYxtG9C6dmeJI3WDxDEfInnU8Uh/EL21Gd/K5zC2bUSYmX1MQ2k4/iAik0ZJJUFKzJp6zJp613YdMtyFAEUBMfi4bAcnFCY1byHG1g3o7S0wNM9s2wjHQe3vQUnE0Drb8by5GruskkxNPZnJ00kc/SHsUAH+V5/HaG1+959CRxs+ny8raRQxTDLHcXBKKlyps02SAbr2HgcrqkilUjj+Qcn/0t/x+/1ZSeb1erPEyk4QXvg5d8F4STnaopMpHuEZPtD6fEMn9nRgGMYBebR9zzxM4rRzSH7lBsK/vdkl5pHHoT7/BI6iEAgExrXTI5+6Au31FVhLP4Lf7z+sXvv3BYGdYAH6ru3oe9pR0kn3nM9PeuaRpOYegwyGwbYx6xoAidrXjdbVMcp7ZheVkp7ciDlhIo4viJJKoLfvQFgZHK/fVW8dx5W6QrjDuePkkli6EjkzfRZIB719h+v5HiHNRTqF1rUbtbcb2poxtr5FevdOkvMWkpnShHCcQ0ZgfUczdk098pIvwtP377Ns6pLL8d79ixFep/5clXpkX9k2coQKOeZA6A9iWbmaxJB0GxfdnbDyBTjjfOz/+C72F/9Ptg0HXV8swoj84vvup2WPo25aj33cKSRuvx7lC9fglJTBEw/g8/nGdcolTjsHdfUKrPMW4fV6CYfD5HGQNrBUFFdaJoZtKSdUSPLoE0HT8S97guAT96Hv2oFZNwWrph7p8Y3UL7Eqa4gvPpX44lNJT5uDWVVLenITsRNPJ37MSdjFZYMiSI7Ww+SIc0N/bYfM1FnYRaVj295SIiwTkUqide7C/+rzBJY9idbfS7px7iHrSO8br7jVXfwFMpmxtY7Y1Texe3mHS+K9PLFDE/NjQW1rgUR8eFpq7+NDDUgp3TlwgONO2X+D/3g76lcuRtm0DnnkIvou/uJB15drDR24PRr6+9+gcQ7JOQtJLDoFddM6nIfvGSVR7VkL6Lp3OYnTzkH/3W3Yg+QtLCzMM/ftEFgMOaoGHUgIgfT6sCpqUCJ9eF9fge/15WjtO0BVsYtKcLy+rB1rVtaQWHAiydkLEGYG77pVBFY+j3fzWpAOVmU1mbop2KFCVwofyDshJSiCzJQmpGf/KpVIJfFueAOjZbOrMRwqAt/9C3eapHEOfXc9T+qSy3OcNN2/f5rYuUtR2lrov+VbB3fv9a+BP4B4bA3lRxxNZWUllZWV+H/1IGyT+H/1ICUlJdlBhJPPInnCEneAraqj697l7F7eQfqsS3KJFApRcst1kIxjnfup7KByoPW9k74SPZ2YZ1yA2Tgb8fIzGIaR4/xyquro+eGdOCXlaF+5BPOGKwmHw3nyvhMVGsdGGl6kPwB9wpVuZgY10geqhlVZgxMqwAkXuLZoKoWwTHeiPhgmNfMoUk3zUPu6Cbz8NN6NaxBmhvT0OUjdQ2bSVOzKCViWidL81qD9LEY4ssSwlBUjRhXHwS4oxiqvRt+5fViV3sfvUOLRtx8pNg5KbvgPun/4G2TjbPobZ8Pl38wdPHo6cb7+eXRdx+v1cqAR58GfXEtiwQk4jXPofGDlqHsmbroWEY0SuvsXqKd8DHv6bBK3/JHEyHIb19H361vw3vy7XOm+fhXeF58k9ZFziV57C97brjvg+t6JBRp44XFiZ10EiTjOjV/Fv5fnPnHJF13VGrBuuxtuu5sIEBlqRzJOxclT8hL4oAqnkjg+P3ZRKVI3QEqUeBRj61vYRaXETzqL+ElnYU6ahhKPou3akVXr7OJyMlNngBAElz2J763VCDPjrkYKF6J17sLTshFhWdgl5a50VDVQVdf2VZQRJB7x2TWUEY6NOWESzgFIYccfdFXuQxzkoa5fRemSWYjH7ndV0JF49D7k+cejrnrhbUmR8gsXoTy+l2392nLkFRejtjVnnT9lnzltdLlH70MOepS1MVTdwusvR/R0Yp95IbHiyoOq7+3Cf/cv3ce38gWEEDlTRQCpWUfuV/Hq7Oz8wBN41GKGcDhMfJwIl/4LvoBdWIJn20Z8q19G7et2lxFWVBP96AWkZ80HVUNv34Fv+d/xvvYSSiLmhl7OX0x88akokX5Cj9+L3tE66HWehFk3BalqSI+X9JwFOIEw+o6taLvbRkjhEWJ3LNVaul5t75qVaJ279pnVw6xrIHH8R0nNXkDFtZ/+p3RsNBolmUzm5PINBAIEAoEcezcejxONRnOmYEaeD4VCOWSJRqM5z8fr9RIKhUY5wfYuFwgECIVC+6yzq6sLKSWlpaXZNu6vPtM06enpybn/ASt0jkN3dzc+n2/Ma3t7e8f1Jwz5DcrLyz9QhE0kEvtZzDAUCz2WB3FXK1ZpJVZ5NY4/hNrbhbBMtF2tBJ57GKNlI6iau1po+xZX+kqJNDxYZZXg8YDHQ7pxLnZJOcb2zdiFpUjVDf4QgMikISRcT6huDE8PidGEHWau+1dIiV1YgtrTOe70ldQN7IJi7FAYJRb5p6XvCQWDhMYJ6BhZZ8DvJzAkfQ7g/Lj33et3jFlusMx49y4rLR1Vdn/16ZpGZUXFmG3Yr0YnBOVDEWljXFtcVHRgPpC8DXygUyVbSE+bhVVWhVVWid6+Pbtowdi2EW1XKwiBkkrkrAiyy6uwaiYNz+1qGnZRKcnC4kF12HVYSVVFIEA3XO/10BxwNmpKjsHgER5rx8EpLEZq+j4IrGMXluD4gqg9e/JekDzeXwTeVySWtqcdbU876dJKzLrJ6M0bXAfWYMCFSMZH0QwgU9swaCRqSE1HDu0EoWi5jinHcYM7QkWge7BSSZT+HpT4UBYOMWLEFbk1Df7r+ENI3UAmxzYDHN2DPUhybVdrPhVAHh8cCSzSKYzmja7dWtuAOXUm6urlIMf3+lqVNaAoKPEYqCpOuAjp9UEmM8KTPBis4fEggwXIQBA7FMYJF6L29aB27kLt6kAkY4hMBiwT4TggB1k7eL1UBMJMI1WVTONcHI8PZaAXrXv3oNdZIn0B7HAR2Bbarh35NyCPDw6BAYyWTWQmTyM1bxGZhiY861Yh0uMT2C6tdO3beBSRSmIXlmBX1CDMDEo6nY1zlrqBVT0Ju6wCkXFT6DihIqwJE7ErqlFiAyiDZFZ6u1BiA2DZg0SWQztBubHRioJdUIzjD+AUuPfQ9rRjNG/ACYZx/EGUZBy1a3f+Dcjjg0VgkUqgt7WQbjoCc8JErOqJaK3N4y4KkL7B+N54DLVzF04wjDl5OlLX0TvaEJk00uPFqqzBnNyI1A301ma09h044ULs8iqcwlKcgmLssirsqlrUPbtQejtR+ntRBnoRiRjCAVQVtacL6fWDrg97vhQFs7IWO1zkagC6jjrQhxrtz78BefxLQ9U07btDbmkhBIau73+dpZQ4RaXY1XVI3TP+ogVFwZwwCTQD4diIVNKN0CqtxCmrwikowgkXY9VMwpo0FXwB9B3N6M0bUAb6UGIR1O7dqD2dKLEIQkocfwC7uAyntAK7tALpDyKE4gZlSDC2rMMuLMUpLB4M73MdXMKxcYpKMWsnI31+jLYWjK1vuV7vPPL4F4FlWVmuvi0JDKD2duJ563Ws6jrSsxfg+8eLKDu2js5F5TgI00R6HXAESiyKvn0LSIlVPx2rqtYN1kCixCJoO7agb9/qTu+Aa+vaFqSSKJF+tI427OJSMjOOwAkVIj0+ZCCMXTEBkYih7WzBLirDCRe695VOjpPM8QewS8oRjo3avTtP3jzefyr0AeV1tCy0tma0HVsx6xpIzV6AiEVRuweXGCqKKyXDRTge73DguwARj6Jv24QSj+KUViL9AXeBRE8nameH64QaCtwY6eQyM256WTONmDrTTd8THRgM3SyCgmJkMIz55mrIZNy804jsFJUApDfghoGm0yiRPrDMvBc6jw+WDZy1heNRjOYNmPXTSM9d6GaF7O3E8frJTJ2FEyoYHhKyBB4Me8yk0dpboaPNDZEcGWmVJd7I/wc/S4n0BUGCtrMFZc9O7AkTsVQNYaZRd7W59nAygWMYSFXFnRhTQFFxAkGkx4eSiLvSW9XcWO088vjAEdiy0Ha24Fm3ivjpF5CZ3ITa0eYuIRyMkx43SmakZCU348ZwxNUYoVeKgkjG0DevQ+3pxAmEsMurURJRAn/5b4x1qxCppLu9y7yF2MWDSwyFdMkbKkCoKko66drPXh8ilidwHh9AAgMokT6MLW+SOrKDTONcpGGgDS7MH9ZNxwhcdiRKrBcxZKM6trtzw6gUmsNhktlzioKuvYmIRzAb54Giona1oe3Y6jrJAGGZeF5fjl1U5i4xVFXM2sluaKZ0EKkU0h/CCRUM29vjIHHZN0mefCZ2Tb3bYZvXU/ypkwHouf8VvCtfJHDz1952H8rqiXQ9+Crh22/Ae9ftB3Vt/Jof4wRDhL5z2bhlotffQWbmEZSct/BdfdFSl36J6OeuouzDk3PafSj6EMCefTT93/k5xV++ELHX/L6snkjkqh+QPu5U9/1Ixin46bcxHroLe/bR9Pz64VH3Czzwh1Ft6rvjfzGPyO3H4B/+E/8d33/X+vUdZXYTloW2px3/sieQho45ZSZ2eVXuaqGcZYDuX2Fb6FveRH9zNfqbqzHeegN9wxr0jUPH2hF/h75bi75pHfqGNRhrV6K1b0d6fTihAkR0AJFM7PVEbdS+btSuDtQ97UivD+nxIdJpRDrpauRZNX98giTOvAj9dz9Dm6bDFRdj1dTT89UfIqsnYtfUk1r2FIlE4m33YfqkswCIPHgX6fTBOdVSx5yAFR3Y504amZlHINatpre3910lsPeu2wkvmkBXV1e23dHiykPShwDm3KNxSsrpW/96TrIBWT2Rnl8/6mZRnemHyQL56kv0f+V7pMsnYM492o0g3CtpQfyaT49qk9U4G+227w6Xe/Q+YmdcSDKZ/NeUwOAukPe8vpzUvGMxG5owG5oQpunGGTsjAzOHSCyRukH6qONylwhmPU2Mtp33zv4gJU64EHPqDDfSaldrji1rl1ZiTW7ECRe4ziwpSc9diBMqQO3qyO7e4PhD+xzR4x9fiu+rnyLz0J8JhUIYq54ldu+dJH0BYvWNbrmrbiB2293Ek3EKv/sl9BceI3P2pUT+7VqckrKc0d48cQmRK76NXVOPurOF4i9fiF1Vh0jGkds3k/rjU8TLqyi69rM5EsPz0tMUXH1pTvt6//gMdk099nn1aCueI77oZOIfd9O9qjtbKLz+y6jrXsUpKUdEB9DPvIju627F/8hf8N/x/RxpMqRVxK/5MckPLUEkYzltBOj9+V+zWsjeUidz9qX0f+MWyhdWYJ64hL4f/S4rwQZ+cperdAVCaJ27UOunYY1o93h9mLjsmyTOvGhUH3Y9t43Qnbfivev2rFQv+Om3iXzJTZJg3fMC4vJzsm2LXPUD1NZmnAuOw9E0ysvLkT/7Fr1Xfp9IqAhfVR1K6zYcISgbmep3DE1J+gLY2zZRUFCAx+Ohd2oT4qE/uyuEPvrx7LMd+cz67vhfnLIKpC+IU1I25rN81yRwllyqjr5jC9qeduziMjLT52CXVbkhk4oKYmhN78gF+WIvO3iExp21h5XhhHYjDtc5JVAi/ai7WlF3toDlzkNbk6aRmX8sdmn5YFJ3AZrhTi0pwp1PTiUR0kF6PONLt4+eh9rWQvJ//kRBQUE2x1TwVz8geOOV2EPrVZ/6G9o0HSmhf/5xpGctYODK7+G740bUqRryob/Qf+nlZDIZBr72Y5TtW9E+Mgu7pp6eMy7GqqhGtG6Dx9YAoJ9zNH0nLCFz5CK8S+bCt79E+rhTGWg8Iqd9oTtvcT+cNJ3k0SeS/NDp+L76KThpOrY3QN85S8nMWuAmS5eSzHW3ELzpGpLfv5Lem/+EDATxNHnhpOlYxeX0XnQZmcnT3Syj1/5f1O9+Gbumnt45C4n+27WIeNzVQv565yipo7ZsBqDTX0jirE+42ktpJbGm+e4g9JtbsEorMNtbUX/1o+F2N80bsw9Tx59ObOkVaA/92e3Dt9bQf+nlJGce5ea5XvE86XTaHfy6Oxm486dor6+AR++D8xczMDAwPLgcuQhefAJN0ygocDUusWsHxVdfiveNFWQmT8eePhvZ7ND5yh46X9lD6tIvjZbwRx3vvu4/v4eB1/vpfGUP1rRZyHX/wO/3M/C1H6OvfCHbR+njTiUajWI1zkbGYijHVqPc+9vs+fcOgQG7oAi1vwd92wbU3i6csgoys47EnNw4GGzhdxfPZ1ce7Z1OdqxtJBz3cMY+RDKO2r7DjQJLxBCWjV1agdnQhNQ97j0c18Z2giGkz48wTZR4dDhqbB8L+q2Kati+BU3TRiVs8/l8qNW1qKtXwI1fxefzuT8pOkD8vM+4eyF986fYWyy48HOIQJDoJ7+MU1KGc/1/oO/cRtkx5Tg/uApz4hSc6bOhcQ72A39wB4lEFOkLkLp/OZ7TPkbw6qWkX3wSe8QOj+aM+Sg9nbB9M8opZ6M+9yiZh/5McaQbz8Y1yIpqErMXuF184edQdjQT/9tdhGfMwzr+NKxps0hvSMGzm6C0HCdUgF1agfLsI7DyOYJx1zdgv/gkMhrBmj4L+5nNeCbUEVh6Wo56qa571f1w3KlkjlzkbocCpD97JcZLT5NubUHW1iPXrkLOPirbbm/tpLH78OxPoL2+gswNX8Hv9xNc/xqUVZCYdZSrrax4Fk3TyEyejvLmalRVxamb4ppzfn+WqPbso5G+ANary0bl2xJCEAqFkGUVqPf9Nkd9jtz67VHmjDl9jpsyaajcSdOhuxPrlI+h6zrh/7qJdFkVzsOr3Wfe00myotYdQH95I4qi4FNVlLaWQ6pyHxICS58fKQRq9x6MTetQu3ZjF5VhNs4lM+sozIYm7IoJ7tRSNvG7GCbwyGOIpEOfpQRnxHln8H/LRCTjboz1YBSYNWWG67Ry7MFrHaSqufUqqls+nRpepriftaQyEBqVpDxz9qXYs4/GrJ+GaN6Ix+PB29DopmFduwqnfhrafb/LeSHkggrkhIlu7uPmDQSDQYQQlJeX49TWozx2v/syLPwwPp8P46G7CH3uDFj1Eum6BmI/+QNFs4/MWbRvV05A7GhGbWjCKSnDXr8an8+HpmlYk6agbtuEXV3r2nd/vRO7cQ7qlCbkMSe6N9jL5nN+cBVObT28+QY+nw85scG9dvtmwjd/De8NX0Fu20x6/iISv/qfUTtPiGQcTj4L0d0Jy59FBEPYRy1G/OYWPPOOdtu89h+I6lq33aqKNU4fyklTYat73ufzYVdOcNXcalfdFUK4pC2rQEYH0KfMcAfHNa+Omd1TFpePGoTj1/zYbVNNPbz8DMFgkPLy8uwRe/j1rEROXPZNV1MaHNDLy8spT/Sj9XSixKPEPvllBq78HpqioLz8DMrq5cjtW1FOcHdilI/8hWAwiBMMIbp2H3AGz8NHYFUbjABxULt3Y2x4A711K0gHu6qOzJxjSM9fjDltFnbFBKQ/iNT1wTlgcsmbJeze0ngcySwlIh5zY6Z9AVeaj7yPrruBHo6DiMfATGcJvK9ILL15I878YzG/eqM7Ap+4hJ77XyF++vnYr72EXVsP7TvQdX1YvXrkLyiJGPbCDxFomkvR+Z9GvBkjfNX38Kkq0hdAHHsSia/dTNdz2zBPHEw89/gDaKuWIY79MJlMhu5H1+MsuYCSqy9BW/kCJOL0RaM5zhmrvBqxZxfazm1uEvYFJ6BpmuvhLSmHh+6BhiaUDWsR/30z+AOYp56D6B90Zn3jFsrLy/H88SnUF7dRdP6nsxJX0zTsQdtQHHsSXSs78aoqhVdehLJxLTIepa+vL/dF6umEEz+C8srzCCGQRy5C2bGNzLKnUOcscKXX9s04Q+3WtPH7sHs39sIT0XWdzNmXkjrhI2hPPIioqnXzjus68Wt+7JLvzTegyc0u6qx7LWfAVde96rbrmh/gVE/KErfzlT0Yrz5PdPFHsgPL3ml4S85b6KrDkwWx67+MOXEKYnd79v6Jy76JXVeP+shfsecfi7JhLdZS937O/EWonbsQM49wfzegaVp20B8vhfChIfAB7E445o5pclg6KgO9GBvW4H31BYy3VqP2dCILCjFnzie1+FRSi07BbJyLXVLhbsUykrwjSTrq/FgHKLEBl6SqBvaI6xx7WAKbJkoiPriuGHdNcjI+7n39v7wB7YkHsD77FTpf2UPfj36H/soLyAuPJ1FRk3VoqIoyrF4BoXv+G/wB4o++Qd+Pfofn0fuI/vQ7qL+/DaWtBXn3MyQ/dDqem6+jv6LW7bs3V+N/9iFk3WSSJ52N/5F7iH98KT2runFOOhPvT65D7NiS0z4lHsU6/eM419xE4N474Yzz6V/dR+qYE/DcfB328r9DWSXsacfYtR399VeQJ34U56kH0V96Gj5/lWvHTZqCdt2/MzBtTlbi6oPqqdi2Gf21lzBeepr+b9xC/+o+RHklxg+vcVO6jGxPl5scwbrjJtSh0NU//xe6riOrarKSZ6jd9vfu2E8fBomtjTJw5fcwHr0P8+fX433hcZzaejIb06QHfRD2i0+i9XW7/XjvMtS92lXwo68jgL7//Ydr3x5zAr6rPknffb9HjFDn1TF2sywuKqK8rIzysjJkaTnW+Z8h+WbClcpnXoTnJ9dhvfw0vjdewZ5/LLLZgcWnuPnFIgNQOfy7kXJ4wBp65w/B7oSjcmL5fL6D1tGt8mqc4jLXYbVXAjrp8+MUlrgriarrsCtrcQqKkbhEV7v3oO7a4TqjOjsQeyVn36fkVxSE46BvXIP0+gf3PCJLbGGbmA1NJE6/AKW/F8/ql9G3bwYzA6qG0teNEunf91RSPJ5j7wUCAfx+P1JKuru7KSoqQtM0EokE6XSaoqIiLMsiEolkbdaR1/T392NZFqqqEgwGkVISiUQoLS3Ftm36+vqy9xhydgyV3VtKRKNRUqlUNp/UUHlN0wgEAhiGQV9fH4ZhEAgEiERcuzYcDmevHSofDocxTZNYLEbpYGqdSCSCqqoEAoExy+8tSSKRCOl0mtLSUpLJJPF4POsAjMfj2LadU3cgECAej++3D4eS3vn9ftcZOOikMgyDTCZDaWkpjuPQ29uLqqqj1PuhvhxKRq9pGqFQCE3TSKVSJBKJUdeMhe7u7hwtaORzSafT2f41DAPbtvF6vW5ifimziei7u7sJhUJ49uFA3ee0YzqdkxPrkBD4QOGECrCmzsRsmIE1eTpWdR1OUSkiGUdr2YK+ZT1ay2bUznaXzO90sYGikFpwArHzP4fnjVfwPfsI2u62d20D8DzyeKfYm8Da4axciQ5gvL4CY81KnMJSzPppmLOOJNM0F6t+GubUmSiRPrSWTRhvrnaXFUb6EYm4G3xxkAnMnFAhdlmVu9C/ew9qf0+evHm8r6Ad9hqlBNtG6dmDZ6AXfdtGPMv/jlU7GXPabKyGRszZCzAb56H0daNt34yxcQ36pnXu4n3bGnZg7W96q6gUu7QSkUyg9HW7qnMeeeQJfIhgW64dOtCH1roNfctb2NW1WLUNWJOmYlVPJH30iZjTZ6PtakVr2Yy2bSNa+3bU3q59k1hRcYrdhf1qXzdKZMBNv5NHHu8jjMrIoev6qJ3u/vlS2UFYJkpsALVzF9r2zWitW938zukUeLxY1bVYDU1YE93tV5yCYjAMhG25tvJe6rXUDdKzF2BOn4Pesglj0xqUfAqdPP7FYdv2+Bk55LudJNt2VyWJdGowA8dOjLWvYpdWYk6ejjltNnbFBDJzF5KZOR+1pxO9eSP65nVoHW2IaD9KKgW2hVVVizlpGlLT3PS3fT35p5/H+w45Xmhwt8442FUxh0VI+wJYVbXY1ROxausx6xpcB5V0UPp7Xcm9swVtTztScdPKmg1NaLt2EPzbn1C7OvJPO49/aTiOg2ma408jgTtH5jjOuy+N90Vmw4NVPRGzoQlr8nR3U7NQASKVRBnoRfoCOB4feusW/C8+gb55fT7zRh7/8shkMkgp901gKSW6rucEzr+nR6WCYsxJUzGnznSlcnk1Uijo2zbif+lJ9E3r8uTN430hfdPpNKqqoqpqDoHTXq/XGElgKeUhjdfMI4883hl5h3ZpHCKwcLcnMhVg9Uh1eci7lclksCzrPa9O55HH+xFSyixxh0JYFUXJ8UDrutGvSSnvllIulFJmvxharmVZFpZlZaVyHnnkcXghhMgSd0jyDiEUCrUIwzAMr9f7lqqqDSPV5iHSOo6Ts0l1HnnkcXgJPETioc+D0rdvypSpj2mO42SEECcrivKq4zjlWeN4sPDQxXnkkce7S+IhGIbRW1c36VlFUVrE0CqkWbNmV0QiA3+Ix+PzLcsq4t0Os8wjjzxGktgyDKMvGAy1lJdXbFYUpQW49f8PAOe6+AI7wAjWAAAAAElFTkSuQmCC' button_message_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAB8eSURBVHja7J13mBXV+cc/Z2bu3L67sA0UUUApugiIBStGVATUKMVKXEF/SQysGqPRYMfEhmIvSQQlilGxRQLYFewFUYoiQUAxBrbv3dvvlN8fc+/svbt3YVFYUOf7PPPs3pkzp7znfM/7nveUEYqikIYKnC9J0kQhRIUQIogDBw52FTQDK03TfMw0zYcMw0gCiDSBdxdCLJJleaAsy8iyjBACIYQjNgcOdhGYpolpmgBrhZBGRKORb4SiKKoQ4n1FUYa4XC5kWUaSJIe8DhzsoiQ2DANJkjbtsceeg2RJki5QFGWyqqooimJrXwcOHOx6EEIgSRKmaQaEEPsLVVXfc7lcw1RVRZblnIAejwd3+r5DaQcOOlHTArquk0gkiCcSGdM5B4qi1Ai3251wu92qy+WyNa8kSRQWFCBJEslkEk3T0A3DkaoDB52pbdNclCSJWDyO0ZaDuiKEULMdVkIICgsKEEIQiUQw8jDfgQMHnaSFDQPdMHApColksnUQWcqQNgOvx4MkSUSjUYe8DhzsQmROj31z7kutA7rdbpLJpENeBw52MUhCbJnAQgiEJJFMpRxpOXCwq42JJQnDMHJILOVV1472deBg1yOwEG0IrORhr3U5cOBg1zerHRE4cOAQ2IEDBzsByo6I1HSpRIYcSrz/YAyX2imruExJRuga7nWr8S99C7m5yaldBw6BtxWGx0vomJOJVRyIKcmZ0bd1Zf7P/rudkdqtJ6ndelK46CmUhlqnhh38vAhspq/vi+jAg4jtewCmJKM01CI31KQXighrbRg7iMC6ht61FK2kG4m99yM65DAC77yMSMSdWnbgaOCOIjZgCKZLRandRJdnH0apq/mBXcI2aH9/kMYJ55PoM4BE3wq8n76H4hDYwc+KwIbxg6aRTI8PhMBV/R1yUwOYnbcJQgqHUDb/l0TfgZi+AMiyMyXmwNHA20hhEAJTcYHU1smtlZRj+oJZxNpOBDMMMAyMrmXgcmG6PaR69ML0+JCaQ8hNdVYYBw4cAm8BQljEbTXGNV0qzaNPI3bQcEx/YPtrRjPTcSggyejd96BxYhUIgRQJ4X/1X/jfex2RiP3gpMKX3kzz2EoACv9xD74Hb8wbrmHGo8QPPxYRi9BtxN5Oa0sjdeQoms/4NYkhw+x7rjUr8b3/RruydNBpBJasK0v7moqL0PjziA07GlPOr5m3i3c6+13TBMVlaWWlK80nT0QYOv4lL27X4jbtNxSiUXw+X5tniQMOtbOyubqa8rKyn32Di509hcYpV7Uldd8KmvpWEC3bjZLpUx1mfl8CGz/UqM1MGQlhK9n4wIOIDT0C0+VGXbca9fNlCEPHFFlEzvZQbw8CA0LXMWWZ+NDD0cp2I3LMyfi2A4Ft+dRWw4BBJJJJvK0IHD97CqbXD3XV4PVvz8HCjxqhM35j/bNgHlSd1vJg2u1wykRSJ4yj4eXnKXr/VUdYO9eElmw+6sWl4HIhkgkCLzyGuvbzTh2PSuEQzaecg15Svn0jXrUMho8kcclfYPaMnEfRw45F2rje2paZJnAGesVBNF0wjWTahJTqaggseKKN+Ri+9Gaiw0djFJdalbVmJV1um4a88qNtCqNXHERz5YXEDz+2peLXrKRw1kxcby3KCddw6Y1ofSvsMErNJuKHH0vg2TkEbruihYjX3U/0+FPt362f53VTdO+JUVyK+GYdZtVp+P1+gsH06cWzZ9AgyyQmXUT8kKNJvbUI/dyLaZxyFYFn5yCFQ4TOqWo375k8xY483uo488g1deQo6m6Zje/l51A2fUvzhMmYXj/KmpWUnHscRvee1N80yy5/6zJtfm0tUl01RffcQGPV1eg9eiF/u56u0y9CXvlRjkwycbbu1MPHnZIj39bl2PzaWrxvvWy1oeNPRcQilE48Bul/3+Rv2zuEMa3NYMMAIRCahkglO90zLLSU1ZfI27m/WvoOoq4ac8gwotForknYfyDS+2+SmQLPJkndTbNs8gIYxaWEzqmi4f+uyCFmeGylTUwArW8FtTc9hFbeo8NhjO49qbtpVg55M+HqrruHZNnuOeEyjSsTJvNeOKURiUQsw+ORV3LICxAeW0ntLXO23JH+7xvkb9djlpSjHHFcC3nT6PL3mykYXAh/Op9k1ukT4X2H2OTNznt836H2vUyezKzOMiPXxjN+m9u59uxD6JwqO6zWt4Lqq++h7q4ncsofHltJQ6t3da+f+j/ejN6jl/W7Ry9qr76Txmvvy5FJJs5s8jZOuaqNfFuXAyDaf5AdlxmJUPvZx/mO09nBBM4hcfq3JCzNbJqYbg+RkeNpqryY0K+qCE2ssv62czVNvpTwmDMxgkXfQwVLoCjWtNL2NmG++AwGDMppcNHfTrMa0F9nIFoNC5oumGZpoSUvQW9hXVVnwjfrSJx+vt0RxCuGImIR61km3NJ3MYvLqD/xLAzD6FCY6Nm/s9Jb+HRLmN4CVi8Hr5+G1uFWL4dj+llhHpqZ14Gn9a1ArF4BZ42wwh3TD1YvRzvyeOpPOH2L8iq65wYQoP3jZWqeepfQdfcTuu5++7nP56Nbt274/VlWS//9kZa83CbvTRdMsw5+O+nsljxll/HJWZYsBw0jHo/nxCfPm22FOWsE1FZjjBpvuU3OOd66v2Ce5cdo/W5xGdRsQt5HsfNi7tGb+FEjUe+63ro38xqr/g86iubmZnvoIGIRK0+Z/D00E0xouvRGdF1vSaNnb6RF6fo6uNw+ibLzTOjWGjjP0DbVuz+RUeMxfMEWkmW/m/Yqt4bc3IDn3VcRmvb9nGvbGeqbC0kdcVyOGR0d9gukb9ZhbviyTRFS/QcifbkC49wT8Pl8FBQUwNI3Cf9rLuGqq2meei2+dDym1484twr1xAkUPPMIctU4GhsbicfjxAsKOhQmcNsViOuraG5uRrnvaVRZQivtTrL//tb7wULi8Tixg49CxCKYv5uA+t0GisrKkGbPoK7HnqROGNeiSdKdhjl6f1RVpbC0FDkeQp92PjVz3yA5fBTJFx5FVdW88nK9tYjio/ak/voH0Hv3szVN9PhTkb9dT/Bfc/HMvS/3pW/WYZw7skVek0eyef5nmAMG0dzcTNH8uXR95mHq6+uRb5mFu7CLHadlCwdJJpN4M/GtXo5++XkEg0H8Gz6nbuM6UiVlGH+/HfmDNyktLYV/PUrNmAn2ux6PJ907RzBHD0JWVUpLSwl/voxw//3hhSfQ7plOUVERnqf/zubKqZg+P/F4HPWs32IUlyI9NRtx5a/xB4NWB5Ul38Z+Qyheu9xOw5gyIXeI0Wlj4PbM6FbEljf/F3XVMrTueyDSJnbed2xPtoJcX4tr/RpEdm/VIa+TucMWlLiefQTpgj9hpM1o98HD0fpWIM++A0VR0FuNfU2vH7PfQFhnEgWirbMaLCQajRJ85hEa/nQb5tDDSAA1I8ci1dXgW7yQbulxmdyBMACxee9C3wo0QMsrHhOjuAxqNyN9s5aikhK7x/d/9QWN2aOh4nLL9FxnkgRqWld7eXer0bZDYACXy0X5ny+kubmZVCpF8oAj4Ozfoh8ynMYpV+FvqCO48ImWF1YsxeVyWeTNxPHNOpJDhpHcrRdEG0hOmwljK9HzyNQaxWXV/1dfoqqqreXtVrb2C4LBILIsY9Rtzv9u7WYkSaJr1665CTQ34ff7baJLsQi6149pmui772nFc9pkOG0yzVjfScnp2PfaB/3LZekKiyBJ0lbJu2MJvBVyy/U1FD5yB6bq7tiYWJIQiThCS237GNowQEuBoe+Q4niWvkP0iOOts8ROGIeIRdD/fAn+ggIi2dnoUrL1yAIFmKaJe/5cCr9aTdOplTBmgj2mC4+tJF7anZLLKzsUJnTd/ZZ5uXE95vKPrTS+XAH9Btrv5My8pb/M0W5fmGe6LPd5AK2D1pHdQDd8jj59CuEBQ4k9sojI+Em4n/9HrqXTTodgGDrRs35HeGylZRm8vjBt64fgv1/DJdPb7UTaYNO3OWejt4e8YUKNbT+IkP5pBAq2Loyiri1mdCTc4Y8r7BwCZ8qXSlpOrR0NQ4dUCrbV7O4g3EvfIXr8qSTOv4zUwUchf/wOhiTh8/lyCOx6a5HVyL7+CkYPaj+7ac3g/Xwp6ooPiV4xyXIg3fMU/GI02tDDCYVCFBQUbDVMfOgRVprDe+NyuWwiJP7xSo42FtEoZkk57NUXmuvs+8l99sttvBvXo/XoBRWB9kmcjxxZTrd8HmtZlilc8ynxWATTFyAcDmN3FX36tYlL69nHciBuWENisOUQNG+6HOnxB/B6LWM5ee09pLZZt3z/qcz2Oj7Xlyusf56cBX86v/16Lyraalxbd2Jl1kJ/3yvHbM26J0TLGDR93wgUkOyzL8m99yXZZ4D1f5/M/1m/9943z7MBJHv3J9mrn3Xt1bfl6tUPwx9sSUs3LPLq2g8rW77jhkwT9wuPIdVVY44ej96jF+bSd/C43XnDulavsJwy982jW3k53crLKRt8MMqLK2CdSdElNxAMBKiev5zq+csxjj6RYCBAt/JyipdYHQCxCPF4vENh7HHy1Ksp7tqVYCCA/uDzaEMOzcmXb/FC8PnR7nocvbwHmCbR30zL9TabJp6VS8HnRyz8jLLBB9tl8D3wLKwz8T3wLMVdu+aVm/uDxRaRTxhP7TX35jwzuvWk/r7nrLyuXGqd+2S2OJ3i19xth6195BXL8/7BktxPAR0ynKLCQoKBAOL6+9DGnNaBoZWZ/56ZJ2yH3829n2kfnHQG6tV32jIrnjAJeck6xKowZYMPttpMe/G1c9RVJ2ngVnMppokRLKTp/MtI9upnkTuf00pkObZyCmKArlua1dAtcqbXQmMYmIoLzxfLCM6f27KhwtCtd3YQfIsXWWZcXTX63dNRCwvzhit84EZq7vonxqjxbBo1Pre4q1fQOPNqigoL8S1eSHhsJXW3zG7b6z41GyEE3g6EcX/8NtGRp2JeMp1N+czJtHnne+x+IsNHYfbfn5rnPmrfwp9xOdGDjsLovz/Vz36Qm/+6aqK3XIEIhwkG2mpo15KFuF96lsTIsWgnjGNTlnMsOw7ztqtyTeZoBH3CZDZNmNwq3JV4PB5cy963prvGTKC+1bAAgNJu7GwE/v0kocoqkpMuYtOki3Ktj6dmU7v8Y0qKi7dd67dRwLTsCf4+V04H0vqeEPY9w+1F67YHpteHqboxPd5Wl896lrl8fuvKvufxYbq96ctjxeP2gCTQSsoxPD4rPZM0iY0fVLZ85cz8VtPaxXx/MbIs4/Z48spDWvEhXapORyx9N/fhgnm2Z9ft8eCfcTmupx+2VntleWN5aCbGFefh9Xo7FCZ43QUoi57JTWvxS/ZUB336YZgm4n9f0+WK86xppCxvbWYqJruspacdak1z5MyJv4tZdSbyxq/w+Xztyq3out9Z0y2tyx+NWDI4qDwnDgDeWIh4alZuWhOOtMO5596L++G7rDiy8z7zGks2JeXour719rmVtry1cFt61/vgX/Dcfb2VL9shVg1PzkK/4jx8Ph+ildm8NX4BCI/HY3o8HhRFQQhBIBBosyhhW1BXdR1a9z3wrPqEgqdnIRJxoseeQnjcJEQqSdFd1+BatxpMk2S//Un17p+VXZE1+M9ziodtRqT/Zsx9w7AImi6hKcuoG/6Da/2XCC1F7MAjCf9yIoY/SPklZ22XHjUSiRAOhyksLLQ9j6lUivr6evx+P4EsDVRfX4+u69b0RMYjreuEw+GcOcbW72XSicVitoPD5XLh9XrtcV5Hw4TDYXshBoDX60VVVZqamlBVlS5dutj5CoVC9ry2fMss9AmTYeY1BB65I2d+tnWcHo+HQCDQIUdQPB63PtyVVX5JkvB6vbYM4mdPpWnqVbBgHv4rJiGEIBwO22kFg8GcsWIsFiMcDtteY1VV8Xq9hMNhTNOktLS03TpqamoiHo9TWlpqx2kYBjU1NXg8HgrTFlVNTQ2yLOd4ofO1hfbqPR6PE4vFWuQry1ZnnCXXfGlkl1FRFDuP292ENjNk0/WtbhlUv1yO+uXyTjLhty/8fn/uYoPM9Eh52+Wa+SpClmUKCwvthrEt6XyfMIFAoE3nkCECQMP9z5McMgz/s3PoMuNyq0M6ajSNx5xkBfz4nTbEbC/ODnnuPZ4cYnxfmWejdafVuoxbqqN8dSFJUpuw2WTcWr7y1Xum3FtCvjQ6zQudmaM1goWYirX+WaRSO3clv/WZtx1C5J8K3Ms/IjlkGJGxlUTSWyVt8S15CfP913GVlDiC2sWw3Q92V/+zCr18d5J9BhA6ewrK/74h1bcC0+VCJON2/KYskxx0CFpxubWQI9uEtv1eoh3SWV5CU5IRqQTu5R8i11W3n28hQMjOCR1bcsI98GeShkFixEnQs3fLGO21+Zh/Oh+v14ssSZ0sP3O7tcufD4F/aEP4eAmpXn1J9e5PYsBga45OVXOXSpomWq9+hH51IYbP37IzKXs1lpS1rzh7DNzGXW95tP0vPYOIx9oncJ5DBhzkouivNxK782pisRip9Jy5LMt4AwH8W1nAsSPgeexemHU7TU1NsBPS/1ES+IeeSinVVVMw7yEiI04mtU8F+AIYBUWYgYIcL7Soq0bZuA5ttz1A01s0sE1g0ZbA2b2x1bpA05H/txFTS23RhjbFlkbjDmzSeL148owjd5bc3G43ZemDEJy66wQNDCDXVVMwbxZ6cTkIiB15ArFRp7WcxJFeSlnwt5sxCrq0eJbbcz61pzhlBRGPItfVWIs0tmSKGY4J5sAh8DYMX0zk2k2WMm1uBNPARCCSiRZt3dyE1BlfUNA0hJbCdA61c+AQeNsh0iulTK+PZMVQ0PX0kTrW2FQKNaVJbmlIvbSbdarl9/J5mEjRsOX51jVM1U1yn/0wPF5EKuHUuAOHwNsKdeXHSMedir5bTyJjzyV2XHp9rWFgShKed1/FP/9xRDxG7JiTiB01Kn2+NLnj4rT53WYsbGYt6DB0RKQZEgmElsLw+Kx1s0LgXv5RpwtYH3gwTZfdZJ/EIGIR/E/NxvfAn39SDSk+cSrhM39LyZiKbZZP47V30/XC0xHffe0wclcksFyzieDc+2g+92L00u7oxWUt65s1DdPjRSQTxIaPJnzKryzyQtbZWlshcWYllp5e71zYNb0+umUxiWvjOnyvPN/pAm689m7kDWtRTx5KMpnEvOkhwhMmI2ZemXfRwY8VeveeiK/XUldXR/E2rOlNDToYo7iMhpXL6NKlyw/aDeQQeEdq4VWfUHjvdBIHHG4t8vB4SQ48CMMfRAo3Ex92DJFfTsT0+BCJOO7lHyGizW2OqG3XI20alqMqm8yYmLKCXF+DZ+nb1lxxJ2tfvUcvmPcIqixb3tQ7phH9y8WEIxHij7yMUVpun6/kf2YO/hl/JDV8NKGqa+z77rdfofDSiUQuu5XY0aMt46W4FO9LzyKFm4mMs/bCdr3wDKS6zdTf/aT9bmDOPW20fXvxtw7T9MdbrWN2YhGKrpuKa/FCkidPJPSbK+z7hXdcg/rCYyR790Ns/i+yohC57FYi46zFIPK36ym6/kLkFR8SveAqIqdZB8m5334F75IXCU292nJT/HMxYkrLzqeOlFVe8WHetNqTQfSCqwhXVtlhM1q/+foHiI0ca1tImbJm51dZsxKtbwVlw8rblcFPmsAAytdrUb5ea1WKP0jTJTdi9AoSP/hojEDA0ryGQeDZOXjefqlz9grvSMtjxYeob79C8vfXkxh/LsbXa/HNfxzf4oX4fD5qe/bBjIZRRlagTf49kdPPg9l3EPvjrahvLkAc0xfthgdJnH4ezc3NaL37YWIiXXQ20slnEjvxdFxP/B3/mMFEFnxK/SG/QN1jL0QkgtLXhXbDg4THnN5G2ze1E3/2CRChqmtQ31xA6orz0ed/QsOYMyisqyH0++n4br+K+Jx70P/8VxonTqHo6dnoPfsgLX4R47KbiR9yFL5Jo4gufhF93js0nFpJgWkSrqxCffguUg11JC6ZDg/djrLsPbTvvoWq02hyu+3ljMkOlNV7+HEk8qTlkqU2MmDebMKVVXhuuJj4G4vQ//0JdWPOxKfIJA48Es+5JxBf8hLmyjCNBxxB0DDt8Ik3X0R7cgli43qqe1cg2pHBlk4h2VHYeR/4znx61DAsp5U3AEIiMO+hnwR5Myi6dCLe/XwYyz8m6fXTcMvDRM6egrnbntY5SX/6Naz/kq6vWuZ9pLCY4F9vJlHaHWP+J3D6eYi6amKxGEZpOdLr/4YP3sAtS0h11Wh/ucQ2O83PPsJobkLrV4H+2hrcu/fEX3l8m80pBe3En+N4jEaIjzsX89/L8K9ahvrrkwmPm4Tp9RO56g70/2jWu/4A4dLdMYpLMdavQT/ul+g9ehF9eBGsM2HoYRAsIDxuEvLG9SRvuJjAnDspHFJEYslLGD37oGz+Lz6fL2ctckfKGh9xUt609FBbGcQSCUQsQvzqO3FNv5fAvFmYN/4BMfMqpI+WkJj8e8SqMPj80NxEdMRJKMveI/7wXRQ2bMa9+jNYvwZp4gX5ZZDeZPHzIbAQ1qbtjFksBIGnZ+Nd8uJPhrwZBINBym6YirfyOMTG9UTKdifaewBSXQ36u69SWFiINuhgayP+gYcT+v10FElCeuc1pE/exdywFlmWLZNw1aeWNg0UIGo2Icsyrv0GWwmt+oTgzZfiueFizHVrSBxwGNEHn8tZVB+fOJWmduLPRtdzRiDPm42x6Tsi4yox7nwc0acfyryHc05+NA8qx0gfkGfM/yfGHr2Qr7swJ4xRORKjfDeo2YSiKHi9XtxuN6WDD8IoLsP47MM26XekrO2l5bpuSlsZhGopOboXLJxHqqSccOWFqBddS3TBZ9C7H5IQuGZMa+kIe/WFtatxu92oqoq2197Im7+DdmRg7qQ1Btv/RI5tugx7I7//hbl4X3/B+p5vp6W/4y6ze0+q399M5LJbW06kGH0alJQhv/c6yUOOtjTwSWfC4EOJnDIR14J5cODhSF8sR6scaVXHAYchV3+HdOIZVsNe8hKKLJPcbwjiq9XIskxq3yHWiQ/delD/cR0eWabo4tORVi/HjDTT0NBg5yExeFje+BVFscNEL7iSmjfW0fXxB/DfejmirhqtqREz3Iw+7Gj8AwbRZfy5iFVhCi6ZjveokUgb19tjSP0XYygqLCRw7V2IVWGKR5yILATGnn2QZZmGB/5F/ZzX0Pa2jusxVizFlZV+6qjRWy/rhjXtphVbFW0jg7oZj9Lwj9cpu34K7r9Zp34mfEHrBJX7b0L6yx9ITbrY7hykaBijTz9cikL0giutcN9uQETCeWXQ3ikk2/3aGoF/6Ib+Dl9Za5l9LzyGd9FTkIh3TtqdcPHd1/jn3E1k1HiqP6im+oNqQhdeg//2qzHm/xMRLLS+3HDX49T9fT7KqmUY0/4Pddn76AccivmVAYcfa53wEWqCgQdaGnrDGhSXC6O4DPPbDSiKgtatB+Lrr5A/Wozr7VdonHY7jcsaEWXdUG+6DEmSWg4e+DR//LIs22E8zz+KqK2m5rmPiCz4FOWbdchX/QbXY/eDz09kwac03Pow6oJ5NN9xLUl/ALHhPyiKgv+pWTB8JI3LGomeeCbu266k/vUFeB9/ENPnJ/FF3DKPb/wD4U3fWY3uqbeQstJP7Tdk62WV5XbTyiuD5x5F69mL6g+qScx8FPfTj8CNf0DauB79zrloz72PUps+iXLDGgL//BvGgEGEV4SJjbC2VOrzn8Az94G8MognEp3Trlobsq039Hu93jbjoR3ioS0uo2nqtahffIr/hcfa34jwY58fjcftDeWA1cj9fiJPvA3LP4Irf22f4ujz+fD7/SQSCUKhkOW9V1V0Xcfj8SBJEuFwmJL0tr7a2lqCwSBut5tIJIKu6xQUFNDc3GxvlFcUhYKCghwTtb34sz/QZpomjY2Ndt7cbjcFBQVomkYoFLIPD/D7/dbhfZEIhmEQDAaJx+P2geayLBMIBCwzVNNobGzENE07X2BtfG+9gT0jt62Vtb208skgU6ZMXWTy3tDQgKZpCCFQVZVEIkFpaWlLfmcvQpTvhjl6f0pKSuxDD1rLoDOQSCRyNvTvPAKXdCPZbyCeT961etufGWrfXI/81xm4Z93WaZXvoGPQho+h8fp77U+vKF+uRL7xD5gfvLlNBxD8pAnsIFerONjFSJxlLWQslY4eF9SZBFacqtp5KHFOuNhloSjKj6J+JKeqHDj48SKHwKazX9aBgx8vgYF2v0PqwIGDnYt83JTyDd6dHSEOHOx6yPfRuDYETqVSHf6wkgMHDjpP++q63ka5SkCbhcfZX5t34MDBzidvMplECGFfAEKIlAR8ku28yjxMJpNomoZhGI5zy4GDToZpmjZxMyvKJElCkiSboy6X2qiYpjnXNM1hpmlmMxtZltE0DU3TME3TIbEDBzsBQgibuDmfUgWCweB6oaqq6vF4PpdluU/2KpMMaQ3DcDzTDhzsRAJnSJxtPrtcasPee++zUDEMIymEGCFJ0oeGYZTZayyz7G3HqeXAwc4ncQaqqtb37LnX65IkrReZNdAVFQPLQ6GmOZFI5ABN07rgLLN04GBXIrGmqmpDIBBcX1ZWvkaSpPXAzP8fAOjm4IgR9xUjAAAAAElFTkSuQmCC' button_ascii_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADlnSURBVHja7J13lF3Fkf8/3Te9PFGjnFAWSEIgRJDI2RhjDDgbDM457do/r+31Jq+x1zmtccaBYGxsE2wQmBxEFghljdIojSa+Ny/c2P37o9+MRkKsJdYEe6fOmTPn3Hdv31hdVd+q+rawbRshBFrrRcBlUsozpJRTgBQjMiIj8koRH9iitb5TSnm167qP+76PXf/xdCHEW4UQSyzLmiGlRAgxdKQG0HrkEY7IiLxUIgRi3y0pYLZSyhJCFLTWv1FK3WwDk4CPSCnPt20by7IYrsBD/0ce6YiMyEsmg+ZS1w3noB4qpWYopWYIIaa4rttuCyHeJIRYalkWwxV48EApJdZ+FnlERmREXmQF1ppEKZRS+yiwlHJw29GZTPbzwnXd5ZZlHes4DoPxsBAC27bxPA/bsgZj5CGlHpERGZEXXYPRxuISRhFRFD1nF9u29wjXdX3XdT3HcZBSIqXEtixSqRSu44AQqPpMMKK+IzIiL53Iuu5FUUQYRUYHhxlRrTW2EMIbHvNKKUmn07iuSxSGBGGIGrG8IzIiL5tYUuLYNmEUPccLloMu86ACu66L4zhEUTSkvLpuzkdkREbkJfSi6//VMCBruAILIZDDDxBC4DgOWmuCICBOkqHtIxDWiIzISytimKv8fAZ0HwW26oBVFMckSiGlHHmKIzIirySrvB+YvI+GDqaPkjp0PSIjMiKvbAW2999BKQUjCjwiI/KKVeDhYj/vjyPI84iMyCtNe/fR1eeAWCMyIiPytyUjCjwiI/I3LPb/ypwrBXp4vCww2SsBlgQh6/tokBJG6qlHZERefAXW8JcLN7RGDClwXWkHFVsItJR1fdYIrdAjxn5ERuR/FwL/1SywSkjGTCQ8YhHJmPHguIgohDhGZXNIv4r34J1Y27cQHb4Q1diM+/TjyFKfscT/l2KUUh+i6qPTHirXALb9XIAwiRHVCiKoIdQwoEJKdCqNTmfBsve+QiEgDBBhgPCriEQd4JhM/RhASmTPHkQUoRqbzHh+DTlQBKXQ+QZ0Kn1g4FIICENErWLONzxDIQXa9VD5BhDWwUz7I/Kyu9AqgSQBy0bnG1BNrUaBAx/iCJ3No1wP7XlgO+ZjSmXMh/B/CtnWiCgmXHgCyaSxWDu6cNpXo+PIhBZDz1OB4xEdPotkwlRIp403IzSiUsHatgl7x1Z0EoNlGZ3ya+hcgXjyDOKJUyGfBy0AhahUsTvakbs6IAzAdhBhgH/i2eh8AXftSuTuHajWNoJFS9G2i7N5HbK703hN++tv4JtzzTycePR4yOXrLpoGv4rVuQtn7Qq01EPXNyIvpwJrvffvQGLZxpJEId4jd5N6MIK69d1ndlYJOp3F3r4VsX41slz8v6XEKgHboXzZh6m95QLSv7+bhi9/Crl1A9rbl61ITZpO9eLLqZ15IaoxDzHggOzuI/PHX5P77c8QHRtByyErm8yYh3/SOVTOuYhk/BgI9x6Tu+Va0n+8AblpjQlhKmVKH/lXovlH0fTxy8iuXkm0aCmlf/wycVMrTV/6JN6y34J3ABalKCSePpfqJe+kdsxJqFEt5voAURkg/eh9FK78BKK/Z+j6RuTFsgl6KEQ9dAtcB6KiOQuonvtGVMso7I52Uvfcir3maUQUIWRdQTWodJpw7gL8U8/He+IBUvf9CVEu1V2tv3cRiIEi4ZkXkkw/AioQzJ5P5eil5Fc8BmPH7p3IUmlK7/wHojlHYt93G+G9f4RiERoaUKe9hspZF5IUmmj42mcQtQHEwAD+hZdSecO70WMm4Dz5EOobt6B7eqC5FXXGaymf/TrCuQvJX3UlzrNPmHOl0pCBsh9gA8K2IZ1BpdKUE42MIuz9FFgEPsn0I6hcfAX+aeci77kd/btfoBMFqQz6dZdSm7eI5NNfpek/Pors64YkQVbLaNsGDSKMDBYiBSqVRucKQ665qFaMax4nwx8d2nVRuQJYNiIMkMU+tOuZySgKQQESVDaHTmWQxV5EVJ9VLDm0XfhVZLmEtmyQEhHWj7VApbPoVBpZ6t97rASVK9Q9RomIAkS5hIiioehAWxLteuhsHmwbUS0jygMghTkmjNGWQOfyZpxXlAstBEm+iXj8ZHQ2i9XRDr5xnQG0qANXg8izECSjx5O0jEJLG1FvjhhyIfUB4DIh9nUxD+QZiDraLQ6AbGttgDU9OJbYu89wz2L49uHu7PONe0gzpULnm6id+3pUKo2480HUYdOpnvwq3JuvxUti86wsi3jeYmqnnwftG/B+9i3Sjz+wd5hSP+H8RdTe8HqcJx8mc+uvUDONQgULF8JNN+L9/Nuklt+z95juTqLsx/FPPRn55CnkVj6OLTTCr0ENolrVGHil6tsqhGFAkiTP/RjCgGjOAoJTzkMVi1g//Cqpx+5HYvRAhzWCT3yB4A3nUXnsAXK//QnxrNnEU2YgB/rRqQzJ1MMQkUL092BvXIOz+im06yEqAyRTZhLOXYhqG2smFJVApYy1bRPe6qfQSUwybjLVV78Je+dWVDaPGj8FXAsGyjhPPozd0U7tgreRTJiICCJETyfuqhVYnduJp80lnHskVrEPtCKeOsu82t5enLVPY23fQvW1l6JGj0foGPr78FY8gtW5Ax1WUbkGomNPIRk32YQOSiN6OrG3bcJe9wyiUiaecTjRjMPNxCIlyeTJyIEa3jOPIDat5cUmo7KfD4HWBwIztEZ2d5K691ZE4GNvWIW1fTNIy8RPg8ohTfrIXr+a9K3XYXfugDBA265JLw0qkrSee3/P574PT0MNgt4H2lfKvVZes2+aSwgTp+2/fVh48LzjHorEEcmRS/AXnYju2Iy89Rr0GReQzDuKyoln4d1xowGShCCePA0ZRqitG4iLveSbGkkXGhGVMmrdCio3XUv58vdSnnUE7k2a+PQLCOYdjVy9BnXlJ0m2tZNuaCCdySCUQq14kNoPYkrpLFUhcKMIa9itiHqcO/wdy/pktv8dC61RdVIHnl1Bsn0rqcYm8s3N6GoF/eQDFO+6BX/UGAYOX4R7yzWEJ5xJ+fKP4HRsgigiXLgAAokIfLJ/vhn5zc8hKgNoL4V/5oVUXvMW4rETwaIeQ0vcxx/A+vZ/IDc8QzJzHv3/+l3SD99NYlmEsxZAawESQe7HXydz06+oXPYRgrmHg7IQpV4afvptUtf9N9HCEyh+8kqcjk3InR34Ry2BvIeoxuRu/BmpP15P+dIPEx02G/IeVGMavvl50r/7GSJQRPMWUX7vZwhmHA62gARksYf0U8vJXPVFnGefIDxqCaUP/jOiVkH27iGaPwfZ0UPD97+Au3E1Qv71PE69b77nhYFYslzEbl+L0ApsFzVqDKJURPiVva6GEKAUVl8X3vK7jOuSROh8AW3ZxhVMFDqdQzuOUSZRV+zQR9aq+yqQ1uA4qHQObVuIOAZpGQQ28PctMXM9g6jW3S9Rq0Acg5DG/ckWEICoDtQ9BzMxacuGTA7tuOb6atUDewIH46hUy/jHLEW3jEL99mrcP90Aza2Ep55FMnch8W9/jpUtoJXCvfMm9Ns+BKecifb/jXDXNqxN6/Huvhl7yxayv/gW+s4bKXf3UIsj9NQZCFei1jyNHfrkPBcvlap7QAIhJN6m1RT+82OUO3cTB/4LtgLK9XBXPondvobk7LMQ8XdQ65+lVuwlfcOPkP39FH7+Taxbr6NcKuF3dqK1ca+j+Quwb7wO9wsfI2wchf7Yv1M99TySzetouP771C5+D+V3/yPWM49jf+WfiHdth0mHweUfJZp7FMXz30zjl580bnMQEBy9FPdPN+B+9z8JpxwG7/oU1QvfTDJxGt6TD6K/8FHCBUvQ7/o4A6edj3XLr9BRiAx8oqmzcJ94GO/ycwjGT0J/4gtUz76QqNBE5sFlVP79o8SnnQeXfojySedg3ftHrPFTKL/rU0SzjsD+02+If/FdkDbq/f9E7cSzSbZvpWFXByIKAE0yegzyzzfj/MsHiWo+pd3baYhiXM96BbnQg2mKxmbCGYeTjJmEiHysnR04Kx/FWfO0ccsG0cjAxyqXjCvd1Epw+mtQ+Ubcx+5BlgcI5y0maR2NUAnaSyFqFawdW/GeeNAoGGLIGsYTphAuPpWkoQGrrwctLOzN63BXPWGUTSkQEE2fS3TUCeh0FmvrRtxnH8festHEVW3j8U86G6HBffQerG2bEEkMSYxqaSNcfArJ6PG4zyzHffrRF9bUoTW0jiE44Qzo2o1YdiNuTxfO08tJentIjjuN2twjKXTvIJEWcscW8t//IuVL34+aNR9/4fEkYUBw4hnIjnZkxxbcu24lv30bclQbteY2tA0svxfXr+LlcliWNUR+hmVhlUukdz4EiUI2NEL8At0418PasYXMD64kuex9xAuPJ5g0jaCtlWjOfERvN9a2jdhPLie3ZQMOEAqBkBbqqSdJrvshqUcfwJWgJkym+v++TO3VbyL9mx9jde7A/vWPUHfcjHP/MlKAfOJB4mye6r9/l2DWEdSqVVylEHGE8n3iO2/Cu+92vEc8giOPJ7zibfhrC1g3/BTvmcdxdnRQu/jtJEccSc2ysQMfqRRJdyfx/XeQfvQ+nIZGotNeQ/D6S0gKTThXXUl65ZPo7VuonfpqktnzCdrGI8dNIjjmWMRdy+DLnyazYyuWcUsoz7wG/6yLSP/2x+hK2ZBhdHej7r8D75H78QAlBaK55SWOgQ/KdRSofAPx1NkkE6YgkgSdb0Tu2YG9YZWxzKoeX9ZzkqgEHJd46kxUcxv2+mcBQTJhMvGEqQil0OksothrxnNcM86gVRYC1dBCPH2uiac7t6O1QFZK6LW22Vcb50I1jyKeOQ+Vzpq89JYNRhGlRDc0E0+bi0Bjr3sGi0116ww630A8eRrJhKnYOzajpTTKfahWOEkITziTePoc2L4F0dSCmDoTMekwrFKRcPY8/AvfSu4bn4N8AzqTpXD1t4njBH/yDJgxl2DGHIITToPchchqleycI8n+8L8gCvGFMAa1rxtbK4R0n9Ohoh0H0dhCVpqCGhH4LyxDa1noOCT9h+tRXXsYeM1bSXJ5dNtSyqeeD7kCojpA+pnHyF71JdxH7yUeLOC55dfw0F1YhQINKY/4zt/hX/R21OELqKXzNN78K7jlOkqWgxg/iWxTEzIK8cMq1ZoPUYBfq+EAWA6seZT4qeVkbIt8GFDevI6wCjy5nOiZx8k2NpKKakTFHkJvOn4YkUkSSKVgxaPoZx5DCkGudRTVzesIasDG1YRrV5Jvbia1fQtx53aSCVOIW8fAuEkGJlmzwuADCxaRTqcQxV5qO7YQn7QEP9+MFScIx4V1z6I3r8dxLPKjxw7xV73YRJD2oVoXq7sT+dj92O1rDRInpbGce3YZ11fF9YDeQtuOscbC7JP60w3GQmzbhAx8ZHkA1dhkYlYpoVrGGiia4ocgRDuuQfoQ2Fs3kv7d1Wg3haiVIE6w+nqQfT2IJEI7HiBw163E6ukCnSCKfQYZFeZjFH17yPz+54gkwtqxFVkrQxSh8w0Iv0bqvj8ilEbu2YWoVk0FmesdEqAl/Rrlsy5EZdKwYA589zdUohCRzqAKFsSgJs3Ar9Tw8g3IygDaEuQfuA3rgWXEUhIrRWS7cMp5qLd/iMpr3kjkeDR97TOIJEYkoGfPR65+AlEt7fuRCAFxgigXzSvLN7xwGEUIhO+DBen21YiffAXfD1CeS6glnH0R+oI3UTvmROLeXpq2bETEEYQhWJIUkM1kSJIY7bi4e3biz1uA3zIGtXE14pzX4B1zEtr1KBcaCecsIJk6FYS7F/AcjP4sCy+Xw+33IPT3oty2gw24nouSEhEGoNhLwigkRCGOFHgp14Bv9mCBi4WdziAtiXakwXGikKShGRpa0GnQl30Y3vQeyrZNVUhTxNSagzYIWseS8lLGgMQxlkpwPW+IBPIlzwMfTAmlCGqIziqi2EfSNgbd2IJOZ4inzkBPn4vO5QCJ3NWBvWMrstgLKkGEPnb7WpLJ0wgXn4xOZbC6d2O1r8Hq3oN2XZKxE4mmzkAdewqyaxfu048galWiWUeg0lnszeux+rpRmQzJxGkEi09Gp1LYWzfirF2JrAwgu3eDZROPn4RqaCaZfjh+Uyt2925E1y60l0aLNMkxJ5lwvVarv4AI4hBteyRt40lObMXesh537dOmIOIgP/j4yOMIjz4B0deH/ukvYGAAZdtmjGwezn0dyYJj8BefTGrbWkof+Cy6uZWGr3+ObOceYgGJNqlWUeoldiTVT1+Jf9xpVAeKuCsfJzjpNFh4PPzuZ1DqRzS1mo8vSZDlIqqxhdI/fBEyOXLXXoVoX/OCQDlZ6qdyyTuID59H5oafk3nkAVNIpyAC0Al6zROUv3Ud4dIz8b//BVTgg20hosjgUo6LqleM6UwOEo3u3EH1lFeRXP5xVFMLulwicT3Us0+gH7gd3v5R9P6TphBIyzYsMcMzCHW6JyklCeLAYY9SSMFehpnhx0pp0p+DY9afk/EcgUfugyceRKUzKJWAX4M9u8AOUSsfI1l65lDNv9QaKa2XTHlfWCXW4E1KAa6HamolGTMelcmjU2lU62i0l8ZZtxIRR6Z8EiBRYGmS0eMJFi1FNY/CXf0kclu7ebmWRI0aQzR3IdGs+di7t2NvXodVrZC0jUcVGrG2bgS/is43kEw4jOD401Eto3CffgS7YzOUiyaebWgimjkPnc6aKqIJU+HRe3F6u0jGTUKn0sSTDkM1NCNrVewt67G2bIB0lmT8FJJRY4inzUU99RDOlg1mVv+LiI9x0/1XvR4amhDX/RjxxU8iw2CvBfRSaC9FfMX7CN/8HpIv/wPh8WcQnr0Ye80zpB69B7fYZ3AEraFaotqxiWrFB79GZaBM0323U3nNW0mOOIrw2FNxHr4Dx6+ZD8v1SEZPJDjhdMof/jjsLGJf9yPSL9CNE9Uq4eKTqV1xEUp6FHZuIxWFEAakpYT+LvwooFoto5wUQeAbwNKyYNpsdGsbFHtN+DTzCKKpM5E7d6A62ql++J9JzliCvGUZ1qMPIC0L66E7UV6K6B0f3VvttY8D+PwuqR6eHjzAN6uHGm2eB94dlokQvV2InVtJasC6lchv/9uQoiggaWlDOymcnl1InaCGpSs1L+0qJi+sFrruqtg7tw2lGmQQmhmtXEJnc8gwMAizGpa7tWxEpYy9fQu62Ie1swOrPIB2XYSQyHIJa+d2tGUZF0pYxm3fswNR6jOK7njGHS4XsbdtRA0UEUENTZ34SwgIfaweY9XVQBGnUsJe9QTOpnWoTA5daMBGE0/UiDjG3rQWZ9WTqJbRxm0PfBAWolapI7sHUUFWxw9qC49D1KqoX30PLwrJtTRj27ZpwK5VCR+5i763vQ81bxG+lyV3w4/pmzGX0hUfJ5k+l+y138fauAZUQjTvGGqXfgjyKeS6Z9GA1b4K99F7qL3mzdQ+8BmcTBb79t8g+rpRhSaCcy5h4G3vhwGwfvldSutW4iTRC1pZQ6VSpB69j/CE0/HPvhjZ1Unh1z+C4la0myKZMIXKx7+AGjcW7r6LpKcHCQilUWe+FrX6KcTPv4s6bBq1i9+JGj0a6/abkEqZ3G8M6s+3Yv/827jpDPHp55N84DNgUW+UeRmq9hwHejqxenajyj7JJVfg7txC8y+/g8rlCV53OaU3vBvV1Ezh/a9DaUXpZawutJ+3WOIvXVSSQK2K3NWBWy6Z2mjHRTU2g+shB0pQLqIyOWSlBNqgiVbHZlO94nrQ34PwK8YFSRLknp24tRpO+yrQphEAIbA6NmFpDYFP0joGnS9gde7AK/WBtCEO61VeErTA6tqNiGITgwsgiU1cW6vgrH/WVPmkM9gbViODKtbODmS5ZJoC4hjSadSap01qrFr5y89DJehMjtol7yQ6bj7yrocRO7aScmxcx92rPFLiblpH+uF7qL36FPw3vIum319N9odfoXzyuVQvvJT4hJMRPb0gFDrbSNI6GnnXMtRVXzJE+1FI9prvEQtJdNQSyu/5FMElb0OUK+hCAdU2yUx2P/sWyXU/JlV3H1VTK4wBvLR51baDammD5gZTf30AhdHpDN79t+G1jqH6qtdTfe3bSE49C1EcMO87myNpHo18/FHUj7+KHCgiUmkITA128LrL6Hn1BehMC2rMROzHHib+7yvxtMJ94A4qs+agL/sQ8clnmkKfXAHbtgn7B9Cz5sG4ieClUKNS0DzK5OmVgsSU6TIayDfs/XYF5vsbUwfgvDSqzYGmFuMVJAoQxpUfDRQa9x6bJObY0S660IR37x9xfvp1Bt74HqIPfo7i+a9H2x5q8nQsaaN/8lVq2zYj5x8LbZ65Pts+4HP8q5ZSPqd0wbb/xbbtvasy1K2FUuovz9paIwIfq78X2dNlcq6WDY5pZlBjJxLOXwyWZcAklaBGjSWZOM2kj5LIHBdFaMtCtY5GjR6HamgGaWH195hyu0oFMlnChScQHb7QxJOWRTJ+iskJC7B6u4z7JqSJfcdOIBk1BqTE2rEVq7fbgBdJgho70bjSDc1YWzcid203L1ZKExJMmIIqGGDL6uuGJP4LpkqDlyI66gSSko+6/ic47WvIpjykZQ+5flpKRBRjFXuJUk1EW9rx7v0j7ub1UC4Rp9JE6RSxkyb2UsTFfsT9y7Buvg75yD1k8nkcz8Pesh56utD9PSTpNHE2Z47RimTzBuTvf4l18zVYW9vJNzRgC0EyeTpxRzf69t+T6t6N09xKks4Qb1yPvu92Ul27sF1vv6/DQXbuQOzegSr1o9BEjY3EVorYsolDH+69Deu2GxHLbiSjFJx4JtHiJegVj6I3riGeNZe4GqAevQ/7D9fA/beTSadI93ahw5ikdRSqtQ2VyaG2tmPfeRNyczu6Zw/iwbtIeS4q00Ly2ANYT9yPF/hmfaC2ccQqjbrndpy1T+NlsmgBatQ44s4S+qbrSWUyiFQr8SP3Yq1YTioKEak0KlcgjlOoe5fhrH0a17YQSpFMnka8swd1/zIy7WvxOrcRaUhsh7ChiQhJ3LEJsex3iG/9K5TLOGMnIJwC8WMPYD1+P6koQNjOX784t75KQ1LXy6G/VCqlPc8bWtjMq6NoUXQIbtdgqiebR008jGj2fJLxU1Cto4mmz8G79zay110FgU9w5mvxz7qIpG0s3oPLyPzq+1hdO1HZPOEJZxAcs5Rk0nRkbxfZq7+Js/YZsBzCo0+gesk70LZN+sar0a1jqF5yhUGTu3aR/dV/Y+3cinZdwqOWEpzyKpLR45Hdu/Huu53UQ3eiLYtkzET8My8gWnAcSds4Mtf/gNSfbkBWBkhGjyNYejbBSWeTjB6P98g9ZK+5ClHsOegHXa1WGRgYIJvNks1m91kobrgEQUB/fz+ZTIZcLgeA7/tUKhWSYQisEALXdfE8j3Q6vc/2MAwJggDf959zTCaTwfM8HMepG39Jb28vYRhSKBTIZrOEYcjAwABhGNLY2Ijrus/78cRxjO/7BEHwnHV6PM/DdV0yfoXqh/+V8sc/i/72f+Fc+Umk5xEEQd07dUilUqTTaQM6JQmVSoVarTb0jBzHwfM84jgmDEOam5sB6O3txXEc8vn80Bpe1WqVUqlEJpMhn88PjTEwMECtVqOpqQkhBP39/di2TUNDw9D7GHz+g+9JCIGUkv7+foIgIJ/Pk8lkiKKISqVCEAT7LDTmeR65XA7HcQiCgGKxiJSSxsbGF4WOefAdRFE0ZGyFEC8gBo5jkyqw6mmiYYig8GtYO7aAX8XetBYtJG7raGT3bpNaSmLsVU+SKfaZQvLd2xHVsqnOimPs9SsRvXtQjS2IKED27AGlEJU+rO2bcR+5G1Gr4qx7Br2tnWy1bNzxWgUxUDTVVBrsbe1w5x8gnTFu/u7t6HqjhSj14T1yL86G1eh0Bqt9jSkkcRxEtYrzzKPInk6T2969HVErH/QkJqKQVBJhZdLYqdRzmPSHEJMoxo0CGjNprHQaoTUiifGSGMuSaEvsbYqQEum6SM/bd7w4xk5ipFa49n7H2DaW6yAH0yVCoGtVckKjcjls10XFEVYYkJOgcllsx3nevD9JghVHpLTClQLlDvtspIXlOEjPQ/pldCaHHoMJUYCsFKRdG4REOg5WKoWQEp0kyCggoxWeYw2lfKRtI9FoCel8Hqk1IvRp8FxEKo206vuGIW4UDj3DoWU4A5+MTvAKBdO0EfgUPBfhDXsfUTT0/AffE0Kg/RoZFKlsFtt10UmMFYVk0KRsq05KIRCWhUxnsCwLHUXYoU/Bdcw5XuJ+90OvxCo0kuQKiNA3DeFxvFeB48gUGAwUUa1jSFrbkH09yEq53mCgEZUBZPcutOOZGFcng4XNCL9mOkt833SC1KokY8aTjB4PSuE9fBeivxdRq6BaRiP37DRprTBEqGSfiUT2dUPVgyBE+pUhbFDEEaLUj1QJeClktTxU/il0gqhWsLp3o0v9iGKfKUI5SHReux6Wl8KpLwF5YMRUgOMgXZfMsP20dLFcD3vYMjfD0dX9EVhtWUg7g0yDc4Bjhh+H1mgvhZvO7Pt7OoObzf0FhNe4/ngp7FR6n2V49j+fTmVwVz2Be9W1hI/cC1LiNbfg7ncPepBiyUtjpzL7XP/g78PWwwU7R6quGKoeY2rbxiqY8GCf+61fpzO43XVJDR+rDlTt//zRGu16uKn0vs8jlcbNZIes4PB3opQy7yFXeO45XpEKLITJ1c6ej7VnJ86zTyKiYS2CQpgCjlSaeNocguNPReUb8J54CGvHFkSiSCZOI1x4HKqxBXfNCrzeLqjVQLok46cQT5uNamzG6u1C9naTTJtD7eyLsDevw/7Dr5DlEipXIDlsDv5JZxnAqtRPqthnYnDbRrWOIT58IUlzK7LUj7P6SWRfn2GQyORMc/qUmaimVlIP3lGPwxOU65FMmUE8ez4qm8duX4vV12Xi7IPGGfQ+7uyh7HeolTv7KOnBoMoH+LgO5YP7i9eXzePddxvq5utIohiRyfzFoobnG3P/bQca4386dvh29Tz7HOg9vZBn9HIuvWsfMMd7INRVm2oY1TyKeM6R4LjYq1YY19geFjvpBO2miCcdRjJxmknL6DpZvBAmV9zUgm4cZfolB4nktUEIVTqLGjW2PhGkSFrHokaPRe/Zafa36m2Jtm0aKcLQlGICUmm0UmjXRuULqEKTGdv2jKXXtrmGTB7V2IpqaTPN9XovOZ92HFRjM8mYiaZJ/f8ck8j/tmNG46bTNKYFwnXRL1c66O9V9vN+notCW9bzo9B1sjoRhcj+XlPyGIXGAbasvf6/ZaNdF9nXjbP+WZw1K5C9XSbWq8ehdscm7E1rTZzp10xaSkpEpYws9mDt6sDa1WH4okr92JvXI/fsNFxQAhM3JwlWxyZTiNGxGVRsFDaOEUEN2dOF1dGO1bHJpJmkhNAHlSD7us2xG1Yh+3qGSPpEFCEqZaydW3A2rkbu3IrQjDBqHqwCC4lwXGzXNevbav2KXxhPC4EIaqZjTVqHdr1aG0aaekebeNH01jxL9T+h0LZt4zjO/4hCq3wjpDNoxzH5NGFADlPPZoHtmJuqVRDlEvbu7UMxC7aDKjSiM3l0KmWaFgLfxJpeCtXcapqmgxpW506TQop8VDpHMnYiuqHJ1FrXaqYDKa7zRDmOiZv7e8w5GprBderXJUxXTn8vIvJJGprA9UzCXlgQhchSv6lkymRR+SYDNKnEvIwwQPb21GP1Q6mCUAfoORZDzA0vKAeo1HN5pwYJDIZT+v6tEgcO3qPY7x60Mqm64SVTUg4jhtj/d7G3f3zwt8HxDjS+StC5gqm4i6JDn6y9NLqO4bxYE70QgiRJiON4CDE/NBS67kJHC48jmToTZ8VyU6Y450iSQhOyXiWVjJuAthycTWuw1q9CPHqvUZAkRntpwsWnEB69lGTiFMOZ1bEJa8tGkjETSKbOBGnhrH2a1I1XY7evRiNI2sYRLDmL+Kjj0Y6DvWUj9toVWLs6UPlGwhPPRhR7SP/hGtSoMdTOewM4DlbHZpK2cehUmvQt12JvWkftordDJm/KMUeNQe7ZSequW7Da1xAvWExw7KnI6gCqsRWtNc6mtaSv/6Gx4AdL2iZEncUxfK4HM8gYeShupdb13uYqqqFp31rewDcWoE6igLTQ2dzfntsqBETREB2PzhWG7kGEAQTBMEYXTJlsOgNJYp5N4NcLNTD0PekseCmEHxgyiTqBgqiWwXHRmeze8StlotMvwF6zAtmx2VQQHux7kdKElKGP/dTDz+E7e8Wh0AZF7sTq2o0u9qGaWtFhYDqRLAfQKMetu8DbTYw8mGpSCbJnD/am1Sa32tCM8GvGrfZrWDu3gVZYm9fVEWpd73aqYu3Zge7YZLiOesz5rd07EOUBZM8e00guzGwsKmVT9dW1C6RlKmzqM6+IYxjoNy8yjqAysJdQII6Q/T3I/h6IY+M1RKGZ2Q9hYhXVCrULLyU+eilks/W63hixezfeQ3fiLr8bHQZ7FVyD9lyTWvOrxgoMbfdQzaNI5hxJ7fTzyf/wvxDdnYbqVUF43EnERyxCVEoGIyj1kfntL1C5DDqTQ9SqJlWXb9jbWRVHdRrbwFybLVHZvFGEKKzjEoBro/KNJkwql8w26vvnCibkGCgZlpVEGa8Ghq5fZ7PmfQ30I4I6N5bATELDix2EQJT6SabOpHLeG7F3biV987WoVBrimHjeYoKlZ5FMnoawTe9t6o+/xn3oblRTM/ERi/BPfTVq0lRziu1bSd/6a+wNz+KfcAbJ7Pl4y++CgRLBGRdgd2zCu+dWlO1AUEPNXoB/7uvx2tfi9vUhUw7Ur1d7hv9K+DWT/WhsQYS+8RzDhNrrLydecALOshtIohArlX5JAS37kGZIrbE3roYtG7F6Ok2OdqAfncmbFBKGuAxLYvX1IOokZ4M8VyIKsTevQ/Z2Gvd5UCtsx8QPUQhxiOzcWVdgQNQrsh6/H3v9KnBdU+vc3Yks9SNtB5EkqEwWWW8ESC270UwIxT5ULo/KFbD2GJfcffjP5kMNQ8PeYdvIUh+yXMJe+wxWx5a6MqTNNSpl2uMOxe3VitpbP0A0YRp07TAuXCEHzWNR+Qas+25DLViMaqw3fCchsq8Pq7eLqHkUOt9gLKkQplClXCI88Wyqb/sQ3rf+FTHzCPTo8YiBPvwLLyWeOQ/ZtRvVOgbRtQtn/bOmNLV7N2rMBOIJU7C3b0EUe837SGWIJx6Gah0Njo3wA+yOzSSZHCqXr3NKS2RfL9b2zSQtbSQTp9Y5rRViYAB75zaUtIgXHm/aLh3XYAm2bXiikwRr93as3i7iuUejWlpA2ogkxm5faybOQYkidDpDuPQsKh/6J+wnH8O58efIVBpcj9pFlxMceRyJEOBZMHEyGoG94nHU5BnULnkn/vGnoeLQfDOnX4CQDtlvfo5g6Vn4516C3LAaXWii8q5PkvrtT7Fv+w0i56BbRpvxl5yMXnYEcvd25PjJJE3NJvTq2onVuZNk7ERUcyv2upWoljaStnHI3j1UX/tW1PSZiOV3mCq7lxWFPgiXQZaKZmaqxyGyrwf6e4fCDznEW7UXeR4et6h8A8mkGZBKI7duwNnwbF1RZd3k1OMUxF6rpxJkqYgsl/bGesp8NIABquqxuKgMGAta572y+rvNb3U01Fm/at9YafBatcaqVkDsfA51J0l88LGN1tDYim4bh/zG5+Hqb6G0gtkL4N++RzB2Ipblot75KWqnn2vID3SN1J3LyNx6HZUL3kJ45GKQNjqdJfOL75D76ddR46ZgP7WcYk8P9qe/SnzeG9AqQcQJ1gN3kJT6jeIJ6PviT8jefQupX3yL6MSzKX3wn2n8wsdwHrjdWJyJh1F724eonXMxFFysTVtp+OpnCRafjH/kYtS4SejGLN7991P4j48QHrWE8v/7MrqxACrBWreOhq/+EyrfSP/nvoFV7CMZMx7vgTvQqTThkceB1uS+/0UyN11D9b2fxj/9LNAuYqBI8yfeilz1xF6vqFYhPuZkwpNfhYg1cb6BciZPAaCxFf/083Gv+yHW968ktF34xrX4845BHrMUe/4x1M6+EO83PyP56meIlIaf3UbljNfgXPNddDqD7u0i3LQeNW0WGojWPEMtCMkUJMkRi6idcxGqKUVwxgVYDa0kS04jOOlU8GNSN/2KwlVfJjzrIsqXXE7rFecSLj2b6mvfgqhUiCdNQ80dTTh/Me7Nv36Z00gHI0lsFGCQrCuOhtgwhj7gehyyD7ujVmjbJpk8nWDJmejmUbjL78LetAZRKu1LcCet5wIxSQzxXrZLs3/9gDCox+j1VQ9Ushcw2odAT9RdYrGXvG44IKLiffm5BkEh2z6kSS4+4miU46Lf+k6YvwiKPdA8GjudRdx1E36lTMO1/0287LeEpRL8438QtI6GWfNNDrpUgjtugsUnEZx4NuKRe4lb2xC7OtCXXE5y3GnIH32VePwU9MVvQWzfAn4V5i5APvsk8awF+KPHY/V2Uz3vDchalYFN68lVq3iBT3DMUoITTkcs+wPqjl8T10KKu7Yh3/xekplHIH7+PfTUwwgWn0rtsFm4999OOgyo+lX04UcRv/fTlA+bg93ahm5rJr71tzBlGsExJ2Mvv9uMe9qr8afORk2bS3DSmchlt5L8/ho0UFz9NIUkwbasoT7p4JRXEQuJe9WXCc69mGjeMYhVj9U5zlKER5+Adck78Hq7cH/zI4LO3VTzBbwlZ2LfdzvhL75Hqr+PNMAPvkQlnaW2eyfR2InQsRm9tR2x9Ex0GKAfewDpuMYgbV6L2L0Dip3oNc/gL1qCXatgfeBNxEcsJjjtVVQnTcd59jHUOz5G6e0fQy1agnX/MuLtW1Dv+Dj84RbCP/4G37bJH7D67sWTQ4crpdyrvIPKZtkG4LEs87Hb9r4KNmjvwtCwZHTuwNq5zYBbSLO/45i4yHYOjKJKac5jO3X2SDE8GWa2D6KLtrP3GgZ/G0QlB38b3G47e6/VqqPoQ/fhHJry1gPXeOY8w7wYheiFx8GH3g/nXmQaE266Fsu2ET17sFc9Bds3Q08nqms3wYSpEPiIP/wK5xv/gnvvbcSjxlLNNZIUGqG3C3n5R5A7t2F97bO4P/8Ock8XqjKAkhYqCtH3L8Pa3UHc2II/eyHRzHnIq79NvOZplFaIyOTpdaEB6fcjN29GPvs4ons3cds45CP3Ib71LzjX/wykpNo2jqQ8YFJ+mzfCrq1Q7CMo9hNNmYm1fiP89BvYd91i0Ny7bsG59irklg3E1Qq1KEJn08hiP3RsQq54BLo7hxrvRRgSLTwB/5wLUWMnmIk1nUEfcRQqjhC9nWR++V3U2mdJTjsP3vQeZC6P9/j9WEIQTZmOfcNPkeufxW1qItvSTO6235H93S8hk4O2sbB6BToMsGYeDju3QfsanIwBEq0Nq0w69MEHEV27SGbMRTc2Ye3aBQO9qNHj8VvGIB/+M86qp/Bf+xaigX7E1d/CWn6P6bS76SbEU8sRmczfgAV+wVOFBXGMs+pJ7E3rDKtkUDNAimXzdyNaowpNyFKR5ANvMjHnt6+H3TuIrvoSsqeT9Nz5lD/xnyT5BmOhMxLre9+EiYdBTxfysftx/QqioYGwu9PweuUKyJ4u08729c+jXI9MPk+wqwM/3wijxiA6NqFXPoYT1AjHTyZ62wexdm8n/v0vSCcxTq4BrWLsrZuwdm0nuvw9cMm78e6/jfz3r6SnbSzW9/4TVS7i5XOwZyeRm6Jy0eWI11+BGj0OxjbBkysRj95H8oZ3IjauwdqxCattDGLTOuIVjyBHjcZxXaKdW5FbN8L2nURvfgdcfDn24w/Q8Nl3IXq70XEM2ZyxvhMnQQLB+z4FA2XEqLFEUYQbBmS/fyXxnj3El3+E6KwLCd7zafJArlykXymSYh/ZdArXcUgA2tpI1ypYx5+CdhySLevRbWNg4lTY1l6HXZx6OWmWZMZcrLtuhdnzSRpbCKdMgV/fBx6weZtx8d007s4OomOWIH/2HaJN63Eu/wgOEAQ1UkCuXnn2Uop8yT7qdIbgpHPxz38z/jkXU3vDO6le+kGCk88x+V2t/m4UOG4bC6V+rDCgsGkdmUfvgVFjcI5YSGb0GMIrPkFi2dj/9C7kw3ebMH/tSnQuj2pqxdm9HTFhMvGxJyO3tYNSqJZR8NTD6KYsse2SthzipWeihMTK5pDNLbCrAxEGWNUKesp0knMvxrnpGkR/L17Kwwp8whPOpPaW9yPv+RPeq46Fe28nOnoJlYZWdCZDYtlkbTM2pSLi5HNg6RlYP/4a9pf/H9Q0FPvQu7ahJk2FPbtwggA1YQpUyjgDRURLG9r3EdNmo9//aez7luFctAQef5Bo9nxqSqO1Qvb04J90LvGxJ2P/8gdw+XnwqXfD6mfQCxYT+zX6v/Yr/IuuICeg+epvkrrzD9DQiN/YQlDsh6YW1OFH4dZ8rN49hK96I/1X3URyynnoSdNhoIjs3oNoaUO5KeSOrSZSq2dGkrkLIZsnue23KCEQvXvg0++D1x0PFxwP776A+JF7iM6+mGDREoQfoKbPJZNJI8ZOQPf1YXfuwIKXvJHh+S3wX9uHr3NIJ5MOMyWKcYQaNdoQ1JWL6DVPm1X5/g5WXRFaE81fBKuewrYkHhrnkbvxT3k1nP9G6OsiPvYU4oyHPHwhVncnKgO6WjY8TJOnoy77EFFjM1pIrPtuRx2z1CD8zzyG1b6N5JzXkTQ0Elx8uYntHBcaW2GghB1FONs2oZuz0LGH5OZr8Sxpum5qZvXDZNxEdBJgrZiCjALkjg5qM+aC0qjXXYaaPRd19BL4xfcQx5+GOuF01LpnoXs3or+MThQi34ie3Ip++jHsfIHwqBMQ9y0jVeonnrOAxPOQe3ajjj+VxIrRYyebDrOVT1ArlUj5Psm8o/Df8j5UVyfWj76ObF+LVe9dDt//ScJpc4nnHEl17lFkxozFWr8S5izAbl+LWvU08c4dOLu2E7/xXfiuhcgWCE99DXHbGCqlEmrqLFSisXs60VNmELeOxtrZYT76OgVSfMQiVGMGveQMnHIJFQaoiROh2I3sK2L19KDnHU104duwnniIJFtAv/qNyD9djxo7kWjODOy5C7FWPo6OwhfMJX5Q4OhBKfDBMnIc6ocdRdhb25F7dptlN9IZdK4B2bNrL2nc30PNbJ0vTK9+ClnqR3kO1uYNeBtW4ucK+FGCveZpwlNOJfjCD/Du+ROiox/dYJhM8GuEr7sMpIX7w68gH/oz9rv/EZ5aTtzfS/aPv6b2hndQGT8Z4biI1SsQvd3IxhZ0b7exBP094CvEDT8h3NpOrqGAQKC8FM5TD+He9hsqV3yAeMkp2CtX4tx8LfHsBcjuTtThR1JetAjv0eVw3Q+QxX7U/EUEl34QuasDa9Ma1K4OxOhxqB1F1GP3I/MNSK1JVjyCLJeQ6TSqpxN72e+x/Br+pz4Fs3+GtWEV7veuJKoYUv3o+NMNh9p3/h3RvpZ0IU/aSxGsXUFfbz/hlFnkf/Edym95P6U3v9eQ5XX34v382+jld2Pl8th/vomB113GwKe+BLHCWvcs3lc+Q3DvbYjz32Twlr5u9OELiQb6sTs2Y1vDyOuEQOzYg37Te/B+8xOiWfOI3/8PgIXcuJnUnX9ANbcSWJLMVz5NsnAJyWe/RtDQgiqX0I0uesbh0NCErhTBcV/cb2t/vdq/lNK27X1Ktv6aMbDO5vfyLQ+CYUm8d/WEvxMXOpl7JH3r15AuF8m6phc1GTuRsu+TbNtEYeZcyq5HGCXQ24WTbyCeOgv9D19AXP9D9EN3mZe1YyvpWpnUtFn4SYK/8kma586j1thKtVo15+vajWtZ2I3NqPa1WJYF/3U1lcUnwrkL8Ho7yecLQ+6dUAo1ZgLlphb8IICBAVOW9/F/N0wq//0FVBxBfx/2lvVkJ04hHjuJShCaNYWTGBkGyN49ZOYvov+he2hqbETMPZK+VU+TKRfJzJ3PQBQTb95IfsJEgrFjqQ74UC5hd+4glUSkbRvGTqTW0ERtwxrcYh/5pkaTScwVCCZMpfTMkzSOGkXUNo7K4KofYYDcvYPUQB/pXA5GjaXS0IyfJKaYpFzC7t6NVxnAmzOfSq1mesfHTSRqbMFvX0c2DvDSGZNpbG7Db26l3F/E7t5FetxEapkscRSD72OX+kjl8iSuS/zsU2THTSSZOJXKM0+QnTCZqLkRf9t2Uj2d5NPei2eBMV1RSZLsU0r50ilwvRxwiNFSa1PgMEgM8Pey8LcQyJ49lBNwCgWcdNpUf5WLhEFMnEqRURFBmBDVE1UuUP3w50ne8l70R96Eu/weBpfzdvM5vDgirAVEuRwZFRNXfQYXTFGAIwWO0gTTZ+N/7PPII5ei77qF6HPvo6Gh4TlMG7JSJqzWGOTaVNNmEV69DOuuWxH//P6hSMbOZkkLSMoVfIYW9jPVTpk0qWqNAdchm8tjFXspa7AbmkhHAUG5SuS5ZGyLpFKjVr8faUtShUak4yBqFZJSmcCS2IUGPNc1IFDgQ2mAshRkXAf8EJ991wbyGhtxHBtdHiCuBYTDfrcsidfYhFMtU6sFqGyWtBQkA2UCx8ZrqLNm1IkGVblCrZ76TKGJlKH1HTqXLSFWhKkUWddGl8pUHJu0ABXG+ICdy5HKZF5UL/JACmy/lB/2S10n+rKh0M2jyNWpW7RSpiG+0IQrBC6mf9QTYqgJnFoF5bkEj99PUqviWZJs2+ihZnOlNU5e4NSPtXMF8vs18Mv+PuKjjiM57VzU8odxf/0jsKwD0uSobA4nl8cVAuHXiFta6O/tQqxZgZPPkx1kzaj3uVqZLLn9mtlNqWSOQr0pfvg9J7aNk8kNXa+VzQ9d71APs1JoL43VliEz7AMFzDrFo1JDY4uCGDr/8HvWWkOugJMXuAcgQUhyBbz83vNaaXMuPSxE1OkMIp0ZunYGJ6kDjDd4P4xKk69fmyXMuV+unuCXzgKPyP8c2zS1UI0Tou49pIUmlT7ElIRKIN+I39DEQOdurGIvOdd9Xp6rfc7tesRNrZR2dJCOQ1KDNDMj8oqSl9eFHpH/0TsR1QqxX0N5Kax0Zm9J6kGPIRGhjyoW8TWIlIeXL/zlHgwhTP/0QD81LXDyBSzbHnknIwo8Ioeux891217IGOIF8jPJYW7ziPxtKLB9wLhiRF4mT1r/VcZ4oeO81FVEI3Lok7vWeh/aWjmiwCMyIn87E/z++mnvPwOPzMIjMiKvTPf5QFTFcn8TnSTJwS2rMiIjMiIvmSRJMhT/7m+BA8AbJNMeZKQEhpgqR2RERuTlc5vjOCaO4yHC+0ElFkIkNrBCa33sgXxtpdSIAo/IiLwCFHhQeQf1UQiB4zh9ttb698BsrXXDcL7ZQeb6g1llYERGZEReHOUdHuIO94gty4qz2dx2y7KsbbZtn6W1Hru/Aj/fYCMyIiPy0sigPkopzWJqdaqndDrdOXr02LU2sG3MmLFf9n3/I0EQHKuUkqCGEsX7LEg1IiMyIi+5AgNDa3dblk06ne5ubGzYnE6nN9gAo0a1XV8qFSf29/fnwjCcqpTKAHJ/azyixCMyIi+98tYVWEkpB1Kp1K7GxsbNhULDdqVU+/8fANRQTK2s9sySAAAAAElFTkSuQmCC' button_mass_mentioner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABtbSURBVHja7J17mBTFuf8/Vd3Tc19g7yCXAApeQEIQXBXBKyKi5yB6TJQjxvicxIhGMZ5oYoySeCfEn1HRRAkajURQoyJqjHeRRUUEQUFlV1EJ7H13Lju37v790TO9MzsDLrCwq6e/z9PPzPRU163rW+9bb1W9JVRVJQ0NuEhKOUsIMUoIEcSBAwe9BSFgg2maD5umeb9hGAkAkSbwAUKI5xRFGa0oCoqiIIRACOFUmwMHvQSmaWKaJsCnQsgTo9HIVqGqqiaEqFZVdazL5UJRFKSUDnkdOOilJDYMAynl9kGDhoxRpJQXq6p6oaZpqKpqS18HDhz0PgghkFJimmZACHG40DRtlcvlqtI0DUVRcgJ6PB7c6fsOpR042I+SFtB1nXg8Tiwez6jOOVBVtV643e642+3WXC6XLXmllPQpKkJKSSKRIJVKoRuGU6sOHOxPaZvmopSS9lgMI5+DuiqE0LINVkII+hQVIYQgEolgFGC+AwcO9pMUNgx0w8ClqsQTic5BFJkhbQZejwcpJdFo1CGvAwe9iMzpsW/Ofdk5oNvtJpFIOOR14KCXQQqxawILIRBSkkgmndpy4KC3jYmlxDCMHBLLguLakb4OHPQ+AguRR2C1AHuty4EDB71frXaqwIEDh8AOHDjoAag9nQG9Tz/ig4aTGDgUvU8/TI8XU6r7To0XAkwTYeiIWDtqYx3uzz9B++ozZHvEaREOHAJ3FcnyAbQfNo74kAMxAn0wNDeoLkwhLKJlCJf92V08Ng1IpUj1H0TygCF4Nq/Hu3ENSrjNaRUOvrkqtLk/LqmQqBxI5IhjiY6pIlk5CD3Yx5K+mgb25QZXp89uuky3F9MXQO9bQmLoSCJHnURk/CSSxWV7XK7QlTezbeU2tq3cRuTH1+w0XNNtD7Ft5Tb+/a9P9k99d/FKHDvVzn/TbQ/tNFzkx9fY4RLHTt1n+QldeXNOHen9B7Nt5TZaf3N3r6q3/Xn1CgmcLKskOqaK9kPGYmpuS7pKaV1kfZcyLXlFvhq8t8hR0U30sgqiE44DIQm+/PReR9962DiIRvH5fHn/xb93lJ2FHTt2UFFR0et69tjIw2ltbaVPnz55/0Wrjre/N0TaKU0mcblc3Z6H6ITJQH4dRZIpRChEMOj4nMgnsGHs82mk+HdGkBg8HNOlZRFVgqJYl1RySYzodhU6n8gmRnEZse9WEXzpqb2Ls6EODhlDPB7H5/Xm/NV+3iWYXj801oHXX6Az6UGYWfkvLSd21oX0+eey3ObRfzCpQUMRjXWYJeUd+d8nZTAxM923aSK3fU5FVQU76urA73emO3tMAvcfhOELWEuxpbQIq6qgqB2fGTKLtBQW+4jEmcZnGGAa6AMG732cG9fC5FOIz70RFt2eS+CjT0J+UWstVc0QOGPQGzWettmXETvmJPue6+MN9HlgAa43nrPvhX9+C5HJ0zBKyuww/eb/EmXDO7sVZpf5Hz8R4/jpxJf/DbemdUjF837aEWbSKXmPtl1/D5EpM+zfwSceJDD/6o53f+ypNNy6CP8/n0T3B+2yysZ6gs8uwXfvTRj9B7Pj8dUdncanOuEnHsT3yD3seHw1/n8+SfD6n+aUNXzqWVbHCLjXVtNn4U12WbuSZjY61517bTV9f/cz5L+32mG2v/Qpvjf+aWkEU2Yg2iOUzzohJ0yPjIH3S0fv9qQlbZq8LlfHGNftAa/PatxeP/gD1uXbh1cmDa8fM1C09wVcs9KSUGOriEajOX8lDh6NrH41b2Rg9B9Mw80P5JAXIDliFA3X/5FE+QF24wqdOdtuXJkw9TffT6piYJfD7BLhNpRN62HUWGKxWK5qPWoc8qP1UMDY17D4xRzyAoTOnE39rQ/mhY1MmZFTVqOkjNbzL6XtqJMLZimUTBGJJ2wVOhQKAdB095OEzpxtkxcgPraKuv/3KInDjtjtNNuuvyev7uJjq6i7Y0nedr7IwWPs8pqRCPXr3i205e/bR2ChpwsppCVx1TSB3R7weK3L6wNfmsQZkvn8++bKdBY+P8Ll7h7V5qN1lhqdtQUs+pNfWg3nvtsRncb10fN+ilFShlixDIaJjmvTevD6aZp+LoZhEBs1DtEegUt/0BFmzVuYJeU07kaYr4OybjWUWGp0toaQHDEK8foLSCHzpFZyxCjkpg/g3BOtNE8YCZvWkzp2Co1Tz8lP5O8P5JYTiEyYjL51CxVVFbC1BqIR6/9rLsp7vP28S4iPrUI01sGC63LSxOun6SfXoOt6l9JMJpMkjz2VyJQZyC9qO+IbJuDZpZiDhtIw9+bcuAYPQz6Xfl8TKmxvGT1KYGO/WNPMDumrpAmckb7uNHm9PvBkPr25xO6uq3N8Huted1gJtVdXgM9PfO6NHdbbquORW2vgs805owET8M+/muCYIsw5Z6PevQzfvU+gPb4KDj7cChPsQ3ssZsXl9SMuuBT3wscpO+l0Ki+diedQL8aNc3cvzC7y71pwLaI9YqnRiQQmEJ06E9EeIXXnDShZBTCB9nSnYUw7HO29NykrK6My1kbZLy+C9giJyafa8QAWea65iGAwSGVlJf2efMi6HyginkggpESRIm3TlFRWVuJzazlpxr5bZX1/8C6UhTfRt29fKmNtlF9wsqUBHTKGtlCoy2nGjrSMZsaff4/rvlus+CorqbzxMuQXtegnTCcciXTEF41gXHI2fr+fyspKysrK/m9Yoa3WmzZaqWrHlFGGxJrbUqtVV4clel/66cqMgdPj4O6A64nFyIuvwUir0e4Jk0mNGIWy6A+oqope4Jn2pW/BiFGkgFTBbJoEH19M8zXzMccdTRyoP+VMZGM9vtdWUJkeaypdCNOlMmz6gERajdY0jejkaSjvrsSQElUKsreXGyUVlhpbY5IA6ju/8or+xGIxbJPels1omobfb6m+sqUpy47atXdg+ALWl+V/JxgM4vF4rLikxLW1hsTYKhInz8DfxTT1CmuYwry7SM67i5a8FxQhGo3az9MeQUrZo9bwniOwIFcCu1zgzpDYWtCBon4tgWVbC7JhOyKVQi8uw+hXYj23R4YsHfRUtxXTs2Yl0YlTrP3Vaeml/24u/qIiIgWMP6kRoxBf1GKuf9e6ufkDGDkaTjvbDud+5hH6bNlE64zZ9n2jpIzwmbOJlfWn9BezuxSmK/C99S8SY68ldtaFeNsj1rjwpWdsouRUYYHpstz/A6RSuXXbnVNPWpahLXdSxSSV1SHsKk27Q9gZvH7MISMg2pweBId73AFkzxE4M0WUsTarrg4iZ76rasc0kj0QS1mkbW5A3boF10frULd8CKqL+JHHETvhdIw+xXsghQ0w0mPyboJ7zUqiU2YQv+gqkhMm2dLL5/PlETg2biKiPYI5eRgul8tukPGHXsyTxt4P16B98DbRq39IJBKBPz4Gx08jNe4Y2traKCoq6lKYr+2AHrkbceEVGOMnEVYVZGMdxkN34SkuJtZ5zPxFLamBQ2HUzklgdvNcsYyGrS/Tz4HH7sv5LzV4OLRH4NklMLNrHZZWu5nE2Cq4bg48fHdhkgNGeXlHHmTPbifoudRzSJyePspI5OzfneaEZWsznpUv4l9yH75//BXP6ytwv/sm7pUvoq17GxEJF5D2nRaHZDoNJTvuzL1uJPAzjyAb6zCnnYU+cCjmmpUFpZfdwL1+xJxfU1JSQjAYRL/3H6TGHpUTpu6Z9dQ9sx7juOn2WK7k9ecso1V7hFgs1qUwXS7De6ugajKJIyYi334DRVEKSjvPhjWWEXDFOsrHTrDGjpWV+O59AmpMfPc+QUlJSbc2Ic/71daX8+cQPveSDmv+4hctg+DnW5BSonaRZO7Vr1lfLppL0czZdhmKrr8TsTGM8noNlZWVPU7anpfAZM3rik4LObJXYBVYB620NOJa/w7aB++QGnIQ8fGTcX24FtcnG9MbFQxLFbafy5qvKaTu5FiTun+s7XvtOcJnzkY01qHfOQ+tb9+dqNtvEp0yA3PuPLbPnZcfID295XttBeEzZ9N466L83vixRQgh8HYhTFfhff15YsechAkYzz+OdycdUGD+1UTHT8I4+HDqsuZwAURjHdFbrkaEQnh2p5VEIzDQj/GpTuzu36G9/EyehqAefSKpsUcRvew6opddlzNeNeddgWs3NCrXG8+hvfkiiYkn03b7YjpPlBl/XkBjY2O3d0TfXAnc1Su7EvsUEzthOm2X3UDrz28hfP6lJA8baxHXNEHXc6+MYerrVgvto8UimV7drH4NRVF2KoGLrv8p6nOP59587QVrOgNg+EgMwyAw/2pcy/5irZbKYGsN3L8A4+of4fP5uhRmd7UIttZgPPPoLjWI8nOOtqZVsrHmLcxLf4DyxZYO408XEXjxH5YaDLSMGk+8gKun0kvORF36F2u6KStNfnQG8u1XCy4F3RWK//d8K77sutu0HhZch/nXu3rd8k3h8XhMj8eDqqoIISgqKrLGTPsQzd//CcnhB2P0K7PmYdOLKPD6LCu0S8u1QGdnOJGAZBxUDVNVEOEQwT/fiu/Jh4gdP53QhXM7rIlCdlpXLQvGmWXxQMSiVJx00B6XLRKJEAqF6Nu3r93Yk8kkjY2N+P3+nAbQ2NiIruuUZ42pQqFQTv37fD40TaOlpQVN0yguLrbTiUaj9jyny+XC6/XmkLMrYTpjZ3mtr69HSpkjfTJ5LSkpyTEOdS6Dx+MhGAzaBwfsLI1C92OxGG1tbRiGYXVOgQB1dXV5z0YiEcsNctpgtTdpFqo7TdPw+Xw5HVhdXR2KouxXiRyNRlFV1Vbje2Qt9F7N+LjSxi3TBNNAhNsQ0ShkfAWlUpBMdox7UbIkbJYU3pWk3Yvy+30+/BmCpONxqSqVmcX4WXGXpMmYfS8YCBAM5BuCOj+fk85O8t6VMHlq5E7yWlZauuu8dqEMX1cfhe573G48ZWW7rIuulHV30uxq3ZVn8tWDfFH5xsLM2YiQ2ahPKgWpLAKbplVKWz029+2csgMHPUngzEqs3s1dM+syOlapmKY1j5tKWSTNbIYwDBBGWn3uUtfgwME3k8C9nriFfmd/mhmjVcZMJ635XZkZGjj0dOAQuIdMbmk1OTM9lPO5E2J3vhw4cAjcK9icP+0jOkvqTsR1SOzgW0/gb1Ijzyawaaa1Y9EhqTuTN7uM+8gK7cCBI4G7QtxCUlhkkTpDUsfi7OD/EoF7vZknm5ymsJZNJpPWHHAykS+Z9wCO/HXwTcE382SG7DXSUrEWdygKpuaxNiVkG7gcOHBU6N4riU2vn9TIMcRDrSQP+S6m15dLXkeFduBI4N5LYtPrJX7MSUQuuJz40Sdh+IOFT3XYT0Rueugl6qp3EL342g6VfMAQ6l+poa56B+aAIbsdpz56Ao3LqjEHDMEcMIS66h0kJ0/rsWpvnf8wrfMf3mfxh25YSPPCp/b6HYRuWOgQeN+pwN1EKEXFKC4lNWiY5THC5erYppg3zdQVqbx3+dIHDQUg7PHR3t4OQDTjCzoaof79d3b7/OXkmAkYJeU0b1gLX31G2ZHlNC9dnOfhYn8h9Z0D0f/9pe0ZsruROGws5qcf0drautvPxmbNQR80FNfU0bRfPJNwOOwQuNvRndM06XGwvRk/Q9zO+4q7eMaSqex5lZgDhlhE3VoDlQMxTRNzwBCi086yPB1+tA4hBMn/+G8ant1AXfUO6l+pIXHGLACaFz5F47Jq+7/W+Q+TOGMWbXN+bQ0VHn2N6P/eTtPjqykvLyd+zQLqqndQV72DxmXV6KMnAFD/Sg3NC5+y/8toA9GLr80JX0gbCN2w0A5T/0pNQUmvDxyKYZrEn99IXfUOO//1r9QQmzXHJlL9KzU7LVemvjLSMjsto6QcvWoy8Y9iedpMBtGLr82rw9isOXZdJf/0FGVlZQTSmyoiV91G47Jq+/nGZdVErrqN5ORpOfFk8pA4Y1bBd9T00Ev2/chVt9E6/2G7vvalVtKrCCzbWkBPdheDcyWu7LSFMOPRQ8guqdEytOeHm8VPON36suoVRMUAdF0net4lKFtrMer+jdyxDdfEk2m9Yh7ehTehHKRiPr2EllmXkEgkSB08GjMcRh41APnYIuITTyb+yELUtavg2aVw9jHEfH6o/YSGuTfTftw0vFeeDyeMRPf4aZ4xm/ixp1pk/3gj7kM8sGk94SMnEy0dQHj2pXh+e7kVvricxtN+kKMNRC++lvgRx+K5YCoME5gmtHxvYo6kt0lWcQC+0w5Hvv4CLbMuof2wIzC9fkKrXiUej6P3H4xoqKO+vr5guUKhEG1zb8T0+XFNHY1Zv4Pm075PfNR4TK8fs/YT1BEuWPMW4SMn29pMJg/h2ZeiPv03qw4/XEfLrEuQixagvvGiVVfHDae5ublDa6gYALWf0NTUZHdCsa01tM65Du3VZ614Pt9i52Fn70gfNBQ+/wTlIJXI51tIjDsaz7QxcN0c4hNPpvXgsd9+Aru+rEVpqEMYevdJ4RzyKvnueMTXW6ZFexT1o/f3XH3uP9iStKFWKKsgNWg40WlnoT52Pxw6Brn9S4zv/w+m10/k2j+gf5KCc36E8AcIlx1gNdx7bkJKiVdRkF/U0t7ejjH4QNQdX1n7eEePQ2z/CvPE6SivLCfx9N8obmvAvWkdZsUA2gcOtXxrXXMRLpcLV3sUWfsx8VQK0R4h9us7cM27i8DSBzBvujLHvY5v4e+Q77xO/MIrEBvD1l7tUCuJLN/W+qBhlmueH05F13V8tR8j/AGio46w0l31Mqqqkhg2ErnxPZQDDy1cropBxCeejHz8QcyaTZSdXYV60XSio614uGCqlX8pkfXbicfjHR3N6eeirl1F4reXW3uEN6yBsgrC4TDm0ANRo2F8Pp+9dzqj9ovtX+FyuexOSH9mCSIaJjbzAszla/FvXIv2P2cQnvnDXb+jxX9EVVX6xiKYXj+xZW/hnvIfBH4+m/jrL+T7ov7WEXjrFtyb1yOb6vd+5Vc2eUWWq1q10/Es8uslsLrlQ9yvrdjzsWHFAET9dpQvP8MsKUe/8AqUrbXEX30evH7091djDBtheXzIct5ujq/AOMo6MMxcvoRAIIARCCLqt6MedBhGSRnGurdRFAWjpBwzE/+G9/B6vaiqSuo7B6LUbEYfMAi5tQYhBD6fD6OsAhFuw/VlDaXHDYUVS0mWVhCefRnaz36DN+vspsZl1TBsJFIIXLdbTujNde/kuOBJHnSYHX8wGESvPAD5+RbMA4bY9xVFwSirwAy1ItMnIXQul3K4dWpC8tPN+P1+hBAUFxejDRyaE79RVoHY/qW9MT9DRj7dhNvtxuv1WnnYWoOu65bvsY1r8/xWZe4ritLRCX32McXnn4iydBHG9m1EZs7GuONviOEjC7+jqTOtsmx4D7/fj/b0wwR/dBq88ybxwcMJz3+QfqPH5eT1W0lgpbUR94dr8bz7BuoXNYhUqsCmg90gdUY9VrIkb2ZMbKvQO3eZI9ojaO++iWf5kg7HZnto3BFbNqHUbrbUzP+6EPnWSyjpM4TM5UuQ0TB61XH4DxlDv7MvQGwMUzR3Ht7RR1jSG1BVleTQEYgtmxCHfteK64M1yPGTML1+jOV/t5yoj5+EqqpErroNo6Qcnn4Uhh+CqP3Y9pChDxwKG98nvvBJmv/6MuXz5uD+k3VeU7yh3pZs+ugJViO/52bkjVeS/OHlVqE2vpfjbSNVPgB95GjkLfdb485Jp6As/zv0H4jpC+ByuYhcdZudrnnomILlkpn3MGY85kn/aY+lE8NGFsx/Nilk/Q70qsm4XC47D+rzT6Ccca71zOsvoGb5wsrYBvSivojxk4j85yyrk/jl72l4tZbiR+/Ff9svEI11pFpbMMOhwu9o8DCrLJ99jKIoNDy7AWPaf1Hy8/NQV78G0QjNodBuGyn3Bj3jkSOVQqnbhmftKmR7hNS2regDBmH2LcH0B0DzWBI0h3CFpKeZtQY67Zyd9G97KWXncTL2HLKIx5ChVuS2rbjWrUZbu8ry/7SnKvTAoShfLkZ7b6Xl9LyhjsRvL8d12yLrQDMg+OifaPnFrUSefZ8I4Fm2mNAffoOy+HlL4qa9jeiDhqKsWIaruZEkwGNvYDx6n6Wm1m4m8NgDhGdfRstpZ6N8WYv79l8Rf+tfiDsehi0fWWSZNM1u0IFwK+Hf3kNd9Q5Ipxt7+G5Enz5gmijrV6N8UYt+xyMY7RHUTR+QHDTUaqylpXab0AcPR1m6CP3I42idfg7uJfcTf/BOfFIQOXYKiU1xjM0b7HTliacXLJf7X/+AN18kedFc2tL5abl/AfK/5yA+/TAv/6qi2HkIPHofLb+4lfD6kNX5PruUxJ034PnZbzAa6zA++xhXVp6V9atRNn+APnce4cY6ZDSCuWUz6rK/oJ8yg/on3rY0w7XVGNf+GO30HxD71e93+Y4E4Fv+KOHZlxGZORvZWI9n/q+If/4J7EcXO3k+sbxeb47BYF9PJxn+IEZpBXpZZZrAQcsflu0SpytTO+auLdydpa6QoFtjQtlUj9z+FcqOrxDR8F53XvX19RQVFeF2u6mvr0dRFIqLi4lGo8Tjcfr160cqlaKtrc0eK/n9fnw+H6F0753x2dzQ0EAwGERVVZqamlAUBb/fTygUorS0lFgsZk/lqKpqqXWaRlNTEx6PB5/PRyqVorm5mdLSUnRdp6WlxZYQmXSz0dzcTCqVQgiBpmnE43HKOrm0ycQfj8fRdZ1AIIDH4yGRSNhTP5qmkUgkKC0ttcamBcrldrsJhUL2ODyTn+bmZtxud17+s1X57DrMDBd8Ph/xeJxIJJIz/rXnr1ut8byiKHb5fD4fLS0ttqHO7XZTVFTU5XeU/Q4URSEQCOzUyXx3IB6P5/jE6lkCW6XG8Pox/QFrKaRL27fHiWYT3TAQ7VFkqMVyYWrsP+ODAwfdQeCeX0qp68hwW8HjKh04cNALjVgOHDhwCOzAgUNgpwocOPiWENh0XMk4cPDNlsBdPVzZgQMH+xeFuJlH4MwcoAMHDnoXCm0fzSNwMpnsVeefOnDgwJK+mUUrnQmc6Bw4e/eJAwcOep68iUQCIYR9AQghkhJ4L9t4lfkzkUiQSqUwMqf+OXDgYL/BNE2buJmlplJKpJQ2R10urUU1TfMR0zSrTNPMZjaKopBKpUilUpZnCYfEDhzsdwghbOJm1nBnEAwGa4WmaZrH4/lQUZTh2Vu2MqQ1DMOxTDtw0IMEzpA4W312ubTmAw88aIVqGEZCCHGilPJtwzDK7V0OWfq2Y9Ry4KDnSZyBpmlNgwd/52UpZa3I7EIaNWp0RVtb64ORSOR7qVSqH9/og88cOPjWkTilaVpzIBCsLS+v+FhKWQss+P8DANDb9GG5OrLHAAAAAElFTkSuQmCC' button_role_mass_mentioner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACP8SURBVHja7J15nBXFufe/1d2nzz4ss7IzyL6KIOKCuKIgmivGLRLJVd8kRjFxu9ctxugbd829GtQYNWpUUFyigEsAQcQRRFAGUECYARSG2WfOvvTy/tEzPXOYA87AgN739u/z6Q+Hnuqup6vqV89TT1U9JRRFoQkqcJUkSTOFECOFEEEcOHDwY0EY2Gia5kumaT5jGEYKQDQRuJcQ4j1ZlkfJsowsywghEEI4xebAwY8EpmlimibANiGk02Ox6C6hKIoqhFilKMpYl8uFLMtIkuSQ14GDHymJDcNAkqS9ffr0GyNLknS1oihXqKqKoii29nXgwMGPD0IIJEnCNM2AEGK0UFX1U5fLNVFVVWRZzkjo8XhwN913KO3AwRHUtICu6ySTSRLJZLPpnAFFUaqF2+1Out1u1eVy2ZpXkiS65OQgSRKpVApN09ANwylVBw6OpLZt4qIkScQTCYy2HNQVIYTa2mElhKBLTg5CCKLRKEYW5jtw4OAIaWHDQDcMXIpCMpXaN4ksNZO2GV6PB0mSiMViDnkdOPgRkblp7JtxX9o3odvtJpVKOeR14OBHBkmINgRWMmxuIRCSRCqdPkwSSGjd8kkMHE6y3yC07nmYimrZApFG1D07cW//GvW7HUjJRFO/48CBAwAhSRiGkbFGQ3g8HtPj8aAoCkIIunXrRiQS6fTMtdxCYqMnEBs9AcPja+4xsv7rLt9CYPUy1B3fIAzdqTkHDpoQiURQFAVJktpqYMvYNq2rE5EYNILQaeehdcsDBAiBFI9al5bGUD0Ywa4YHg8gSA4cQap4CMGlb+NfuxKRTjk158BBFiiHO4P40KNpnDIDwxcAIXBV7cbzzSZce3ah1FYipZIYXj9aXiHpXv2JjxqPlluI6XIRmnoRyAr+z5Y7JHbg4EgTONWrP6HTf2KT17fxcwKfLkGprcrQ8lI0jFKzF8/m9Xg3fk5oygUkh4zCdKmEpl6EHK7Hs2kdQnfMaQcOWkM6XC82PF7Ck85GDwRBkgh8towu/3oDpabygCa6UrmbrvOfwfPVFwhZAlUlPOUC9K55Tm05cHCkCJwcOIJUr/4gK3i2biBQsgSRTLRPqESMnPdew7V7JygutB59SYyegOlSnRpz4OBABDY74TJUN7ER4zBVFSkatsawyUSH3iHV1+D79EOkVBJcLmLHTkL3+TtFvtjPfsOeT/bs99r7znqiv7r1oN5dO+dN9nyyB71H30OWMzXpbFumugdf3G+66K9utdOlJp3dKWXUWVfFkm/sMt1fGm3ksbb84RvvO2yyhG+8j4ol39j/13v0Zc8ne2j8w5wfVZkd6DoiGljrmmtpXyHh3rEV197dcBBrqT0bPsO1ewdIMlqfAei5hUekVzNy82m8fDZ1V/3nQb+jsq4+29rVg0ZiyGgaGxuz/i028VT7d000TvpwzeMfYplWjj8l69/iZ82wf4fT2mGZxgSITZhs1U1lZcb9aFojHA7/f2JCG0bLVNJBXunCXiDLIEmou7aDlj6o94h4DGXvdwhds0hc0BNTVg5ZPhuvPgsDRNvr1WetYcC5lxKLRjv4/tbmzCHK2fyumirIKyDx0yvapDGK+qD1KUbUVnVivp14ATTJZpxwOulUqk2a2ISTM+U/XN+A2VI9pom0ZyeFEwth9kU/rjJrT9s9rBo4vwemoiDFoygNtQjz4DWRsnunPYWk5/cApXMd58FgkB5FRZnXf9+B9G05+PxEolE7bXrSVGqeX0xFSQUVJRVULiglctP935uHPvJY6ua8lfFc7Ne3tV/ITV9ALIpx6vQ2C9pjl/2mJU2WfOsf+oedb0VJBTXPLyY9aWpGushN91O5oDQjjT7y2A6n2S+iEcSuMjj93DbypydNRe9djMgif7Z86+a8hdGjb8bzFSUVhO56IuNbW5ex0aMvFSUV6L2LwevH2KYTuel+jB59qVxVif+pNwkGgxl57l26LSPPfb9179JtVL1W0iZttvYQv+yajHaTrQ72Lt1G6K4nCN31BBUlFexdui3jO4+oE8v0+kCSELpuke8QFoaIZNzW4IbXhymkw26WRG66H6NPMSIetdeepidNpfaux0kPHplhFoZnzKL6gRcOSN6a+54lOXZiWxP9/9zSToFCyJtLYeRYEolMR2Bi5Dikr0shEso0pHr0pea+Z0mceEYmYQaPpOaux0kV9LK/NTxjFkZufkaa6vueQSvs3e4039vQVi2HvAKip0zPdHYeNxmptgrj80/aPBO664k2+SbHTqTqv+a1GZ5Ep5yf8a3NZRw6/sys8oTTGtFkqo0JXTfnLcIzZmF6/Zl5/vdcUiPGZ9Zt7+I2acMzZlFzw70Z5G245o6MdtNcB4nh4zK/YegYolPOtzgUjVK9/vPvHYYdHgILCSQJJBnzUKN7WDubwTQw3R6QOjG0wMVXEl4fytBQFSUVhGfMsrJ+6yV7zWn97N9jev2ItSUtpvYzj0IsijZpCnUTz8iaRePVt2Hk5iNWfNDy3OxLYVcZyYuvIhaLtUtUef1qyG0yo1t1DunBIxErPkDap2OLXfYbK993X88cHmwuBa+fuuk/wzAMEiPHIeJRS6bmNGtLMHMLqO1Amu/tiBfOazGjW43Ro5OnIa35GGmfdpKeNJXolPMtS+jRO1vyXTQfs08xNTfc1zaT1kOizaXW+ydMRt+13TKVd5VBLGr9/darsmrK5NiJljnfnOdpQ1rK7Ne3ou+7FmFzaYZsAOmR42zLLXTJr6yyay3bM4+CCQ033Zv5vr4DkN5rqq8JhXb0jQ4R2OgET5lIJcAEw+fD8AUwhXTQ79KDOZYCNwxEKmkPDTvTk9cGm0utCrz3Rvx+P9rIYy0z79syzAtPxOPxUFRURNFzD6G+O79Jk5xCKp3OHAIDqaGjkLZswPzF2fh8Puu5tcsJvP0y+PyErv1Du2R1PXoHIt5iRptA7OwLEPEo2mN/RG5FABPwP3wLwTE5mNdeiDLndXxPvYn6xqcwdLSVJtiFeKJpZsDrR/xiNu4n3yD/jHMpmn0BnuFejD/d0LE0B5BfrF6OsmWjbUabQOLcyzBy8zFWLUfZp6EmjrMcTsbfHsH11/vp2rWrVXZ/ug7p23L006YTiUZb8thcCrdeRTAYpKioiG5vvWjdD+SQTKUQkoQsCRDWtryioiJ8bjWjzBJHW1aS+cJfkJ+818ozEaLgF2ciaqswh40hFA635BmLwrQxqKpqyybiUfAFrEgaTd8nFryKdPsvbdmKnnsI14r3MYeOpn7I2Iz3GddciN/vp6ioiPz8/B/GC+3a+x3CNDG9frTCXpjSwWejFfTEVGTQNOTaKoSmdZ6grXvFJq1ITRXMuQ/16Qfo2rUrPp8Po5u1iMQsXYvL5aJr164tY+g1K6wfA4eR2md8p4+agOn1YwwZBWUmsY1R9pZUsLekgsjs39tEaq8Wdm3ekGFGxyZPQ/78EyRJQslimcTnl0CZiTb1AmJTzifVyoy3/DgmwTeet36PO4HkWTOofvodqhaUovzfp6xG7vO1K027ZhU2rc0wo+Mnn22Zzy/+Bdc+8muFlonP3X8hvSVFw7p6u+yMPsXg92eW2/YtqKqK32+Zs1JDXSu/bPt8MIYvYP1Y+CrBYBCPx2O9S5Jw7SoDn5/Umee3PFBTiSRJdO/eva3haJrovfpZ773oCoxtOuH1Ifsb0mdfYGnr/oNatHA8iiRJGePxH2QM7Kr4tmnaSJAaNCJjjNARpHv0sTzaJmAaKHt2ItLJTndiNWvFrndfB34/PPAMvpPOtCuwNVR1/4tJ9p2+Mbq3Y/VYICdrvKNs8JUssc3o9KSplvZauiCrnKG7nkAbPBLxbbll2i2ab1kVTWZeM9wLXqbLVdMz7hu5+URmzKKmaWzfnjTtkv/lJywrosmMTg0dg/ThImRZxrVPJ2+TaX/w+jH7Dc5sdy5Xp7WL/dWzYZgZ9dw6jlybtIGc78+oa/cWAkcjHQ4oeVgILNfXoO4uB9MkOXQMyWFjrGmljs59jhiH3qU7GAZybRVK5Z5O3ymVoSG+WkvgtWfB56fhzsfsgpXqa6wEo8a1eSbZZOqx7eu2HdlH71omVetx0r7X7IvarSE8L8+xCHDsyUROm25rr2wETow7yXLCTR6A64bL8N/y7/j//ihKz7ZOJ+9Xa8m/+xr8owItY7lYFG3ciYRCoXan+d7GVrEL+dtyOP5UIj+fjZGbj/n2K1k1uFq+xfpx57X7LTuj7GuMTtwzLsWa5p+nX9zWEux7FMSjsGhe+xXZlg0Hnq4cIOAv92TUv9RBa/WwEFikU3jXlSA0q6eKTJlBuveAln2/7SHv8LHER0/AVFyAiWddCVK48bB7oAN/vQ95ywboO4C6G60pAXnjGuTvyqHvAOIv/KvFUfTr24hO/ak9jZNNA7g2b4Cho5HmzLc0fVERBWMnoLy/AcpMut54T4dMJve6T2HiZFLjT0L67GNkWd6vtjC9fsS1vyc3N5dgMIj+1D/Rxh6fkaZqQSlVC0oxTpluWyO5K96zOp54lEQi0a407dbCq5ZB3wGkpsywxrIlS7J2QO7VH1k/rrqBnAtm2WWXc9djiE0R5BVlFBUVIXVivFTPl6usH5dfS+Rn17R4859fbI1ld263zOl2anr3gpeRaqvg3EtQf/9f9jfkXvjvyCvKEJsiFIydkPX7f1ACA7i3lKJu+woMHT2/B6GLriTdf5Dlnf4eJAeNIHzKdAx/EIRAbqzHW7ramlI6Auj+yO0Qj6JPv5jwkKMtS+fxeyAexTjmBHscE7p8tkWSFR/AS3OyVmyXJ++1npv6U/u5qjdWW+bt5g00PPL7DhHAu+J9yC3AzC3AeP+N/Va+Z+1Ki8Q33G3nmzGl1GTe+T56FyM3n9oHnrPT1T7wHGZuAdLShQgh2pWm3QR+6l7LMhg6CrFqGc2HCbTp+D5+D3XlYug7gNBDz7cpc+Nvj1JbW9sxxRKL2vPAicuuyWrhKF98CnkFxK67M6OuiEcx774epYPrEAKLXrXGzv/+24yy03sXIy14lZp2TBX9IAQWqSSBpW8jN9RZq7P6DaJh1u+InXimZRZnqXS9Wx6Rk86i8ZxL0bvlWWmEILDkn8iVezhSkDeuwffu6+DzE/vPB9B1HdfH79HlzmsQTdMTlhOjCl591vYwZ9OE8sY1dL/uEmv6qTUWzcecNhpVVTvUA9u9+q4yjAVz9/tszl2/QXnvjcybH31gjYMBjhqCYRgEHr4F1+t/t76lGbvK4JlHMW65Ep/P1640HfKRbN4AsSj6kw8c8Nu7/8flKPP3ybdphsD8x186ZLkABBb/0zKDgYaRx5LMsuQ075oZVp6xlgU8rC2BK89D+mw5Xbp06VCevqfuxfPYH+1prdbtRr/lSvx+f4fN5gye7RtSJycnh2ir1UeHiuSQ0YR+egV6UW8QEhg6rh3foHxXhlJVgUgmMBQXWn4PtLxCtO4F9jJMhERwxbv4SpYgUp3rvEokEjQ0NBAMBm3P5b6IRqOEw2FUVbU9jel0mnA4bHucZVnG5/NlvKOhoYFEIkFBQYFdObquEw6HM7St3+//3kaYTqepra1tk7a6uhpJksjNzbXvhcNhotEoubm5tjXQfM9uUE0dTUNDQ8Z3RaNRYrGYPe53uVx4vd4McrYnTTZUVVUhy3KGrA0NDaRSKfLy8uwy2l+d7Juvqqr4fD6b/Psro2z3E4kEoVAIwzCszikQoKqqqs2z0WjUCqvcpB09Hg/BYDDDWsj2Xfu7n0gkiMViB2w3+3tfxvx+LJYRUqctgQMBou2c1mg3iYcdTehnV1ubEUwTDB00DXQNUqmW/zcvuRQCkU4TXPKWNZZ2onE4cGAROB7/nphYnWpHC5KDRxI/7lRrPGu52bBzbjajNc2637SRwr15Pf6VH6B+W26R24EDB1nRhsDNK7EOFele/YmeOp3U4FGY/gAoTQ4ew0DoGlKoAZGIQTqFiMeRQvW4vivHVbYZ13c7EKmEE1TWgYOOEvhQYSou4uNOInLKOZj+ILhcoGtI8SiuXdtxbynFVbYFqb7GmmYyTWt86wSSd+DghyWw4fERnnI+iRHjwKWCaaJUVeDZuAb3+s9Qqiscojpw8GMksOH1EZp6EcnBo0FWEFoaz/rV+Fd+gFxX3bnElSSSw8eSLuqNSMTxfrkKKRJyatOBQ+CDCexuulQip/+kibwyUiJGYMk/8ZSusaJpdLaZLsvEjzmJ5KARoOuo5VuPyCotBw5+bOiUhRzRE84gMWK8Rd5YhJx//gPv+tWdRt7kmOPQu+baXmuRSiGF6kHTEIlYRrRL0+Ml3bMfpup2atfB/z4N3O49s83kGjyS2LEnYyoKQtcILpqLuv0rzE4K6JY45kQi589C2bODnJfmIIUbSfcfjJZbYK/USg4chtRYi0iliI2fROy4U/F9shivcyyLA2cMvH/oOV2JHX8GpttrLXlc/BbubV8dVATKrOPqYBfiJ5yO4fWRKh5KdMoMDI+PdJ9iDF+wSeP6iJ55AckR45HrqkgNHoXhCxA7eSpK1W7Usi1OLTtwCJxV+w47Gq1HH5Ak3Ju/xL1pnRX+prPs+3AjvuWLiJztx/AHrODucovIQtcwFRemy0V64DDSDG8yIwzcX39pbT904MAZA2fXjonRx2G6VEQ6aQVhT8Q6XUD3xrUEFs1FikVs8sqhBryfLSf49ksEFr9lBRCQFXC7we3Gs/4z/B++gxTtWKxffdQE6l5cStWqSqpWVVK9rIzY1Xf8j65gfdQEal9fhdmzH4mZ11K9rOyIy1D7+ipiV99BYua11CzaeETzDv/xSeqffBt91ASqVlWij5qwX/k6O9/Gh1/6sRJYkOpzFHpeIQiBp/QzlKrDt9leK+qN4faCaeLas5OcV54guOAVPOs+wbd8EV3/9iDetR8jJAlUN6bf37LyqwNo+MNjSFUVqEPdMEBgvjOPyIVXEI/H/8cSOD1mAkZuAfUbv8D9j8fJOaEX1dXVR7YT6V1M/ItVxIt6I3Zu6/A2wENB8A9X4/r56TSOsALz1S5d2CYwnS1fJ9ZzungwesV3hz1g/EER2FRVksOOxpQVhKbh3rLB3rzfKRAC0+3FdKkY/iDJoWMwVTcilSCwcC6u78ozOgsRjxJ443lc35aD6iY1ZiLpfgPbtfe4tabSexejr1mJLMsUFBRQ8OfbCEwsIhKJUP/k29S+vsrWztGbH7QqavK0jPvNvW705gepWbSRmkUbqVpVSfiPTxK9+UFbs++rCdKTp1G1qtJ+V+3rq0idN5PqZWVUraokMfNaAFLnzbTfWb2sjNR5MwGoXlZG/ZNv23LErr6D1HkzCV1rRdPU5n5Ew1PvkLr/OfLz821ZmvPSR02wZWh+T/WyMtKTpwHQ+PBLbb4xo0307JdhvTRr/ebn9dLPMY8aiqjak7Gndt/vrlm00S6bbDLuT5b05GkZ5dKcb/WyMpRf34K7TzHSrjL4y2vUrqmh7sWl9nPN8nHRVVnLtjXqXlxqp4ne/CCxq+/I+ozepxh270SW5Yx6ac7X7Nkvo90crAVwUATWu+aS7j8YZBnXrm3WIWSdeIyIHuxCeMoMGn96BZEz/g3Dn2Od8lC+xVoUko3z6RTutSuRkglMf5DYORcT+vl1hC6/rl15yhs+Q125GP36P5J8fxOND79EevI0fD4f+fn56H2PwjBBOWskvPos0QtmEc3tQeN/PIhr9Ucog13w6rMkTzrT2m44YAgmJuK3P0N67Tnik84i1ViP/5yjMb1+6o47NUMTpCacYn37048g/+4y9N7FhE6aQpcTe8OuMkKjJhAfPo7G6+/G++S9yIMUzHfm0TDzGmInnW2RdOsm3MM8sLmUyHGT0V/9m7VBfdF8uPBE6wzm3buou/F+4qdMw3vj5XDaEHSPn/rzZ5FoOnok/dZLqFNHYZrQcMxJRC+7htS4E/BMGwN3XkvypDNpHDo2o/xCN/wJTCzrZfal6L2LqRs9kfTwsVZo2B1bMfoOhM0bMrbkpYcfY333+2+hnDUSwzSpO38W4ZsfyCpj7LJrs8oSmn0n6vJFVrns3E79OZeQLuyD6fUT/nQ5ieLBGHmFKIvfxvOLs9EGj6TukqtJDz/Gkq+oN5Eb7mlTtm0CFfYphp3fIA9SiC5/n8is2SjvvGI989V6GmZeQ3zEeEyvH33BPBJz3sT0B6x6OW0IWvcC6i65msivbkFEo3a7iZxz8UFZAAdH4NwCTFUFISzTuZOnaky3l9SAoaQGjiA9YIgVD1qWUWoqEQc490euqrB2L7lcpIeMJnHy2SQmndXufLveNBPvCB9G6eekvH7qH/g70cuuwezZDyM3H+nWX0L5Frov+aelIbrkEvzr/STze2AsWAcXX4morSIej2PkFyJ9uBBWL8MtS0i1VWh/usGOXmGuX5PROIxAEHndp/DSHLxNGsq46zqSySSyJJAqdxO78EpMr5/oHX9G/0az8vMHiPfqb0W5uPUqXC4XrngMqXwryWQSo+9AlMrdeIeOxuxTjFm6Bv20c5CXLST1zit0D9Xg3rwes7AnaV+LDL7K76xp99070RvqML1+Eq+X4J7yEwI3zSK54oOMDijwwmOYVXvQnl4Aj8+12snWTaQKeyOq96IMGmEF4SvfmhG5RC/qhfLxv+DeG/Hu3YV783oIBEmcMi2rjKn62qyyEI2SuOAXmAu/wL/pC9RfnkfktOlWuXz6IeQXIX24EHPhPHwb11j1EcghWdgTUb0XaebVWcu29TlNZs9+mF4/5vOPoygK7ouvQPniU1L3/M7aW7xxLeQXEhs53j4UQJt0JtrgkSS/TsCHWyCvACPYBT0cQhsyEn3pVty9+uKfNaXd0UkPmcDpXv2b5n11lMrdiE4e+wpdtzfwi3jMmu+V5O8N7G56vCDJTekl6xiWDo6Fg8EgBfdci3fWmYhvy4kW9CI2YBhSbTV6yRK6dOmCNmaCFQ9q/ImErr8bRZKQPlmKtK4Ec8c2ZFm2jvHY9CVerxcCOYjqvVb0xRFHWxltWpfRkNPFgxHbN+N2u5H6D7Tev2MrgUAAI7cAsXsn5oDBVrSIVkHRzGMLMXv1Q9pVZoW/8fkw8gsRkRDygKEWadZ/hhg2psWUzS1A37gOr9eLoiho/Qcil23BaCWDq/8gK5rojm9wv/k8wSvPgTUrSfY9isjDL9Bt1Dhbk+qjJlD32DxkYXU0dkSLVR9iFPZEbN+MGG59t7FgboYG1gp6Ir75Cq/Xi9frtWSp3LNfGcXcp7LKkjvrdOT5z2Hs3UP0glkY//UKau9iRE0VoniIpTmb6kPuexRGbgHShs8xCiz5GDAke9m2atvJ08612tnGdVa88P4DYZtVXl6vF72oF9KuMoyefa36mDTFenDfYHx/ugH3Pdfhued3mGVbSR5zArGn3soanvbwaOC8QpCsVVfWOmejUwksherp8ubf6f7UvQT+9aYVLVCWSR813Jpz3l/HMmSUdayLYeBd+jY5T91HztMPfL/G79kvY1wL4D7nIsgrQP70Q1ITT7E08LmXwtHHE/23mbgWzYfxJyJ9XYo2y9LyxjEnIFftQZp+iVVOKz5AURRSI8Yitm9GlmXLZKutgh1bMxpy85jJ5XKRHjQC6etShBAYo4+zYkB9vhIRjaBPPAX/sDF0u/AXiE0Rcm64G3nQcEQrzdbcedBEWmPDWhg13jZlmyNbKopC9OYHMXIL4J25mP0GtMgwfpJVNgvnEV6yFWPaReTedBnK6o8gFqU+HLYbd/Ikq6GmZ52F/OmH6Kedg1RbhRACfego2L0TTjzdyh8yxsDa0FHoR0/IlOWZR/YrY2rlrray/OxqqpeV0X3uU/gf/E9EbRVaYwOJgh5Im9YhNUUT1a+9A3HsydTf/xzKlo0YC+ZiDBsNu3ciYtnLtnV0DL1HX7sMZVlGqq5EnzgZl8tF6ryZJE4+C+X9NxGDhiHKtyKH6q0Hb3uEgoIC3C/+C3lFGbmnTye8PoRHlul6/SVIm0sxo2Hq6+s7gcDtOJ1Q75rXtAFfRyTinX4Cm0inUPZ+h1K1B3X711YnIQTp4sEkjjvVWia574mIxUNIjj0eU0jIe3bhWbkYT8kSPCVLvj+/3TsIvPAY0ak/tZ0Kodl3Enjk9xgL5iIFuiB9W47x369Q+7cFKJu+wLjt/+D+YhX6McdjbjfgxDMQtVXooUYYNd7WoC5FwcgtwPxuBy5FQS/qhdi5HVmWrXiKpmkHgNfLtiBLkqWVKvegqirpJm1vfvohgbl/BZ+f6KIvqX/g77gXzSf85z+g9R2AGW5EURTSJ09r6Tyaw+G+9jFGjyZTVlHwv/YsnHMhDevqSRx3Mu6Hbkc39AwZ0kNG24TzLZxH9IJZ1K6pwThtOp6Hb0fs/MYuP/dKK1Knud1Au+FupJpKzGgYeeBw651rPraskB3fWORtes7s0dfqnPKKCK8PkTjuZDy3/xp921fZZSxZgndBFlmefghRU0X1m58RXfQlyq4y5Dt+hdl/EIRDSKOPtb5l6QLCzy7CNE3Eby/FNXikLZ/n5Sezlm0ykbDl1ZrMbUVRENBUHwEipWEar78bddF80o/9EfJ7wJ5vURe/hWvlYrjqBqpWVaL1H4hy+69p/Oh91JWLabjtERrW1SMKilDvu9mKstHB0wnbhNTxer3fO5iuvel+jC7dkeur6fLi48i1lYd1m2Di2JOJ/uTnVmhPwPvBm3hWL0eEGyxiDx1D7NxL0Yr6gBB4l7yNf8EriFjHzplNJBJEIhFbsyiKgt/vJzpvJZSugdt/idZ0MkRzPKNkMmnHRVZVFV3X8Xg8SJJEJBIhL88K7l5TU0MwGMTtdhONRtF1nZyclsDfuq5TV1dHt27dUBSFUCiELMt2HuFwmLy8PDRNIxQK2eNPv9+Pz+ejrq4Oj8eDz+dD0zTq6+vJy8vDMAzq6uqQZRm3223nm0gk7CmO5u+UZTlDhlgsRjKZpFu3bhnpZVkmEAhkBPHTdZ36+npM08wI+ZKTk0NNTQ3du3cnkUhgGIYdeyr1k58Tuv5uzBEBy0zWNBRFIRgMoihKVhlVVc0qi8vloqGhwa4ft9tNTk4O9fX11rBEkojH43b5q6pql3+zfKZpZi3bjPndJsuj+dnW9dE8hPH5fNTX1+P1evF4PBmx0BRFIScnB1mW93v/gIunkskDx8RqN4G75qJU76HL3/+MFGo4bOTVCnsRmzKD9NAx1hEnbjcoLqT6GpTdOzACXdAKeloWgWmCEKhbSvHPexplz85OkaFmeTnyXx/C/ezDHY7A6GD/iP7HQyQmnIx5ylF2R+eADhH44JZSNjmJhKZn7ATqbBg53YicP4v0wOHg9iBXV2AU9sJUXBi5BaS65bUExzMMRDqFKSukhozGvHw2gZfmoHxXfshy5J1STE1NDXIHw5g6ODD8D96MiMVIHsSpHQ44BAI3L7ZwqRhdc62A2RmLJppPl2/174E6A123HFX7muGGbu3zFQK5ag/BeX/F9AVIHH8a6dHHYvhzEIk4ru1f4V6zApGIE/3JTPSCntY4Weq8sNeOhjg8aDY5HRxJAjedRasX9CB0+W9BYK1FBssj3awVtabL0FucY9k6AkUh8P7rqDu+yfBoS5EQgYWvIMWjuNevxlW+FQwd5dsywjndSI04BrlyN/75z6J8a63xNV0qyQmT8b03377nwIFD4H21JmC6PWi9+1uB65oJbBM3Del0y/9N44COrtip01HmP9MmsobUWG85pJoC4FnzFSl7LzBCWB7fJnhWL8e9frUV8dKJv+XgfxOB233M5cfvE590FqbHZy2UcLmsBRRNZq8VqF0HPW3926yBD2BKaz37kRx6NJ4vStqsq26zKV8IRCRkmdiJWOYxLbqGiIadmnXwvwIZXmiwjpBIJpNOyThw8CODYRik0+kML3QbL4+maR0+ZNiBAweHH81z3BlDzH1vpNPpQzotzYEDB4dH+zYvFtmXwG22Eu27hcqBAwc/LHlTqRRCCPsCEEKkJWBda+dV8x9TqRSapmEYRrudWw4cOOgcmKZpE7d5uaUkSUiSZHPU5VIbFNM0XzZNc6Jpmq2ZjSzLaJqGpmmYpumQ2IGDHwBCCJu4sixnmNDBYLBcqKqqejyer2RZPqr1Qupm0hqGYR9y7MCBgyNP4GYStzafXS61fuDAQe8qhmGkhBCnS5L0mWEYBfYuh1b2tuPUcuDghydxM1RVrevbt/+HkiSVi+ZdSCNHjioMhRpfiEajx2ia1o3Dffi3AwcOOkJiTVXV+kAgWF5QULhVkqRy4NH/NwB4v8twTp6sBQAAAABJRU5ErkJggg==' button_vc_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADM+SURBVHja7L13vF1Vmf//XmvtdsrtJfemVxJSCSE0BSlBEAEpAjIW9KszzIztNzPqVP2qM+M485sZUYdRx8aIisgAShGpgtQQEkIKaeSm3OS23H5P222t7x/73JImKqHOeV6vvJKcs/c+e6+9Ps/zrM9TlrAsCyEExpiTgGullKuklDMBj4pUpCKvFykBu40xD0op/9txnGdLpRJW+ctzhRDvE0K8RSk1T0qJEGLsTANgTGUIK1KRV0uEQBz8iQcs0ForIUS1MeZ/tNZ3WcB04JNSyosty0IpxUQAj/1dGdKKVORVk1FzacqGcxSHWut5Wut5QoiZjuPstIQQ1wgh3qqUYiKAR0+UUqIOscgVqUhFXmEAG0OsNVrrgwAspRz9bEU6nfm/wnGcp5VSp9i2zeh6WAiBZVm4roul1OgaeQzUFalIRV5xBGMSi0sQhoRheNghlmX1CMdxSo7juLZtI6VESomlFJ7n4dg2CIEua4IKfCtSkVdPZBl7YRgShGGCwQlG1BiDJYRwJ655pZSkUikcxyEMAvwgQFcsb0Uq8pqJkhLbsgjC8DAvWI66zKMAdhwH27YJw3AMvKZszitSkYq8il50+W89gciaCGAhBHLiCUIIbNvGGIPv+0RxPPZ5hcKqSEVeXRETXOWjGdCDAKzKhFUYRcRaI6WsjGJFKvJ6ssqHkMkHIXQ0fBSXqeuKVKQir28AW4ceoLWGCoArUpHXLYAninXULyvMc0Uq8npD70FYPYzEqkhFKvLGEuv1eFMiihBRCEaDstCWDVLB7xPMMgYRhog4BATGtjGWRSW7uyIVAL8SLoIx6FQanclilIXwS8hCHhFH8FL52MaUQS7GjjVKEWerMF4ajEHmhpGBX3nzFXnzAtj8frbuWCAYBPgt0ygtWk5c04C990Uym9aiBnsxynrJ88VozEwIMJo4laU0fyn+vCWIwCe1/knc3TsR+rdQCBWpyOvJvr1uLXAcI+OIuLqO4rxFlBYsI2qeTOyl0a6Hs283Vm/XOIC1TqytlOMgNAadrSbOVKHyOdTwIBiNSWUJZh6HP30uwi9ipMQaGsDq60mucUxAnCgLkRtCFoto18NU1YBSB5OBQoDWiGIemRvBeB66ui75PPARgY8oFRDxeBTASInxUphUGn6TAhMCwgCZH0GE4UGRBKMUWDY6WwWWXSEoKy70sXOZhdZoyyJoaiGYfTyFxSsIW6cnE1AI4pr6ZPLqeMzFRkqMUslELU/GuLaB0vylRI2TsAZ6cbdvwu7ZjwgDZLGQVHd4aYJZCyh17Ca97snk82MBYBOD5RCufBtxfSNWdwdqzw4IgkTJjIrWIBXxzPmU5i1ADQ1ivfAcopDHVNUQzZhHNG0WVFWBEYBG5AtY7TuRne0Q+AkAj4Rfv4RJZwkWLieub4JM1fh3I0PI/gNYO7cgAh9jO5WZ/6YF8ChIXg0tbQxGKaKGZgrLTsVfsAztphCBD0JgLAsZ+AmhNXq8ZRFX1WFSadRAL7JUQEQRYeMkCktOJmpuReaGMUKhhvtRA714LzxH2DyFqLkVBJSOX467azuyuHdMUbxcD8JkPIqXXUvuoveQeeQXZP/9b1Cd7QeDJQqhOot//rsZ/Phfkrr/Hmr+758ghCCet4TSmReQv+AK4iktEAA2yN4BsnffTOoXtyLbthz9vYQB0az55K77a0rzF2MamkAnzoHs6cTbuoHsf3wRa8fmoyqBirzefWhzmNdovVY3IgIf46YozV1IcdEKwqmziGvqkYU8YJKJL1XZTU6sl7FtgplzKS5aiU5nsTv3kl7za6zhAaxRckpIdLYaf/Z87I7dpLauxz7QibtrG3FTC8ayiJonE0yfg9XbjSwWMZZ6ec8jFaJYwLvzR+QueDfFU85EVtWR2b8XicGUSTVRLBC1TKN4xtshBv/WG8l3tGO9548oXvPH6Jap2OueRF9/N6avD+ob0asuJXf+5QQLl1P1rS9jb1qLOYTQE8UC0fHLyV/7SfwTTkU9fj/R7T8AnYBdX3MdxVPPJP7IX1Lzn1/E3rMDow0yP4JxHIiiMbfdKIlxPUw6mywBtEb4RUQ+h4j0OHkvwDguuqYWhETkc8n1bBsQiDAADUYJTDqLcVzk8AAiistjJtBVNZhUevxcy0quVfKT3xGg01mwbUQhhwhCMGAsiclWJ8QkBuIIOTyYfD/2TgQ6nUmOsWxEfgSZH06WYUYnzyIhrmv8zUuTigt9iKsXRRgpiBom4c+eT3HxSQQz5oGysLr24e3cTDB1NmHrVLCssgsqyq6zIm6YRGnRiRjHJWpqQY4MkV7/NFZvN+6Lm4ira4nrGglbpuLPW4SzfzdyaADvxc348xYRTZqMcVxKC5fjtm1DFvYCLxPA5fWnvebXpO67g+JVV1I4bRXu/j04hSGwHIgjTFUN4UlnECw8AfnsU+j77yCetwj/yg8TLF8Od96O+4Ov4z39yLiu6+0mzPw5pbPfhlx3FtmNz6IOXbv7RcIFSyi+/Z2Y7TtQX/0Cqc3PIcrEh4gjCguX4V99CYX1T1K1YzPR0pWEcxejDnSim1rQTZMQ2iB6OrB3bUft2pYAW8fEU2cTLDsF3TIJESfrfXIjWHtfxFn7BEZIwoUnEB63BNXbBY5HNH0OQmpEby/O5nXI3m7yF7wb09CMiAIY6MN97ilU517C4xYTzV2YgFBAuGARItQw0Iuz5XnkYD/+ORejp8xAECK7urE3rEk8HJUo+dKqdxFNn41wvERZ9nZjb16P6tiNyI8QHreY8LgliaLIVqGbWpB+Ce+hu2B44A3LC1hHY6BfqccxyiKuqae0aDmFpScT1zcji3nkyDCpTWtIr38SffYlRK1TE22pFEaI5H6iCJHLoQp5YmWhs9UUl52KvXcnTsdevG0bCKfNIq6pw3gpgumz8afNwdvyHKq3C3vfLqKmFkQcE8yYR9AyFXWg49iQWVJCJkv2rh/jn3ke8QWXEz55P/aWPozlIHyfaP5i/Ldfhoki1EN3IjBYF19DYelJyBe2oL/8GeK9O0nV1JBKpxN+YP0TFP8rYjiVoSAEThjiyYPvVRiDth2MMLB9I/GOF0i3tJLyPIRfRD5xH+YXt1JqvJZCXROuNoRvOY/hT3wW95knCVunoVtbIAKZGyTzyL2kbrwetW8XcUMzxVWXkr/6D4mnNEPJgJIgFd7qR6lp24480Elw+nkMffyzuJvWQqGAv+QkqPaQg3mqfvwt7CcfZOTDf0E8eQakbRgpUvvPnyb90+8QrHgrwx/7LPaenagDXRTPOQd8CSam+ub/wt66gfzl1xIsXgH1Hqqjn6qvfo7Urd8HyyKat5jcH/0V/vIVUIxAGcTwCFU//zHebd/H3rQO/6QzGP7zf0Tt24VRNnrKZMTAIPVrHsceBfDrPCoxIUg6Pu2OjVkVEMcIv4QoFZNJUzr0TwERBoStU8mfdg75E9+Crm1AjQzhbttA9rF7SW1cgxgllqRKJoqlQIoEIFGIvX837vaNIJJJFDe3EM5ZgPZSqANd2Pt2I0t5sCx0TT3htJkYx0WEAfb+PchSMbm+myKeMgOdrUkIsmMxBlqjtj6H9fwamD0fv7aJOI4RUiAKOeKaevxlp8CLW4hv+2/cTIZw1nEIR6K3PI8VlMi6Dq6XdPQ1QiCExG17geov/RnqphuI/BLmkIlmLBuraz92Rxecfwnin7+L/sAn8C+4EjnQhygF1H7vX0ldeS76+9cTBGHyzA0Qzl+MfOph1NVnwwfejo5i8he+i8Lp52F0TP6KD5H7xGdR2zZgve+dcM3Z8NGrYOsm/MUnMXTFhyCTRcQR0vcJ5i+FbZtwPvB2+Ks/Redy5N71XvKXvp/MPbdgXXse3PhNsB1GznwHQctURDGPcVzCeYvQBzrx3n0O/NGlMDRA/rRzyb37/5B66E6c958H//EV4kw1+be9E7+hhXjSFAb/5t+JJs/A+tlP4X2r4KqzMXvbyF31PoqnnJW45qEPaUXc1Ip4+leoq8/GfPgiBl94nih644YUj40LHUfoqmqiuqZy6GSUGJowKDpGV9Xizz6e0oITMK6L27YVd8dG7PZd2Ac6EaUixrIQOk4AbNmg7IP0jNV/AG/Lc/jHLSGurUfbFv68JbjbN2Pv34Xd3oY1fylBXSM6W0M4dTZxQzPWgS6cfW1Yw/0EdQ2gLIJZx+FuWY8c7DuCbvs9ZWSQ7E1fZ2D5KfgXXknU9gLW/j3o1mkEZ15AnE2j7vkJpqeTVOtkcvXNGAt4+lGcUgE3m0UpNdbMDKVQuWFSHU9CrJE1tYdNNuOlsF98gdSNXyc+/1Lit6zCz49Qqq4lmjkXCiNY7btxH7gb2bkPBwiNgRj0jhcQP/oG7vrVydN/91/J/+3/T/GCK3AfuRt79zbkT76Nvu2/cdY+hVceJd06jfw/Xk/p+OX4xmDCAKFjdE8X8SP34j77OE77LoJzLyV45/n4az3s239Aqm07ZqCP4qqLiRetwK9tQBQKSEuhd2whuuMm0s88jnJsghe3EJ58JvGvfoH94J2kXtyK7aUoXXQN4dxFlJadgt06mfCk5chbbkH+82fwOvZiAfLLnyb3jVsovP1y3EfuQRZyyWzv2gc//ubY82rHRpB6k6yBf0/2WYQBUfNk8iedgRAStEYreRAghNHo6nqi+kkYJXF2biG95lG8F1+AKMRYNsb1EtIkKCWT1LITgkGIBF9lK2x178fZu5NiXQPCGMLWaUStU7H6urD6urEOdBLOmINxPeLGFqLJ07G6O7CG+rH6eghnzMMIiFqnEzW1Yu/ZUVY66uWPqJsi9dBd5J99HP/tlxI8fj/u9i1EZy4nOPti2LIZ8cvbcaQc6zmGAAZ6sYxGSOewihNj24jaBjJSJHHhQ1+R7SC62vFu/gbR9s2U3n4ZUdMk9MITCC+4ChpqYDhP1aKTyNz2few1jxNKCSPAo/fB+tW49fWJy33j9fhXX0e08ARKLdOoueVGzG03MeKlEdNnka2uxjgeUX6IfJiw337JT9blrgfPP4PZugFbCNJVWfJ7dhDkz8ds20TYtp1sYyPOzk0Evd3EM48jFBIZRQhbwtonME8+jKquomrSZIY79xHaEvHwPQRd+6n2bFJRQNzdQdwwiWDBUuK5x8NIhNi9nVhrUstOwvM8rL07KLW1ESw/ldKs+YnnJYG2rZgJz5tE9/SbBMAvg5iK6xoJ5i1OYprlxIFyR/gx9xIMWAq7ax/p9U/j7tqWuIO2c5BVkaUiUmu0KgNYyrFVuZESggBn1zb8hSegHRedyRJMnYXTthU5PIjV21WOi1ZhstVETa0YK7Hiqr8PEUcIKdHZGuLGFoyXTsgNdWwGVWezpFf/mvCM8ykuPZnUHTcRN7USNbYg7/0f9N420tXVGG2Se4nBLFiKfGEtojB8MICFgChG5IaS56+qKeeFT1y+RIgwQEUR2U1rcPbuoBQExLZDGITwkb+Ak88gf9HlxFFE9a6tiCgCP0b6BVzAdRy01ohMFWJkEJhJKQxIA9ZbzsU573IQhpGqGoIlJ6FbJkOYJNQkNaoky5rAx7YUjmejpUQrK3l1loXluSilMI6LURJijY7jRHmaRBHZgOd5SQM3pRIm23LwMllUXmP8UhKOM0n+AJ4HaYv4jz4NH/wEOcsiLyQiCohba8CB0EsjS35C6ikLBXiu+4YG7hEB/HuTV1pjbBdTVYuJIqzBfqwDHWA56FQq+T5bTVTbgFESq7cTu2MXspBHe6nDXEKhdQJaSyUu+cTvpUSEIVbHbmR+BJ3KgFJEk6cTpzI4vd1JfLhQQE9yMek0cVMrJl2FKBWxDnQgS0V0bQM4LvGkVuJsDXJ48JiFE4ybwn3wZ1gXv4dg0YkULroGTj4L3dGOdefNWFGI7bpgYtyNa/HPPAeWnwZ33AjDg4i6xkRRxTEyN4SubWD4U/8E6SzZm78FBzrH4tci8NGTp5NfdSm6qob0nT8ivf5ZpCUxkSYCxE++SbB/N6VP/QOllWfgNLYkQDACEYWJy6kUOkrCMcZxEEZjDnSRP/Us+MO/RE+ZQTzUjy4VMc8+Sew4cPF7jjgXpBDj3VxG350QCCknZM+VOfJDlJUElFREh5wrlUJIiRmrV0+iEsZLQxjDU7+C9U+jyyw0pQJ07wNtCJ9bjTr5jMSRK7eHklISx/GbC8Avl8AhjlGFHN7mtXjbnse4SVGCiEOC6XPRy08jdj1UqYCIwiTWewTyIAGwSMCrDuXZBOgYOTKE7OuBplaQkri+GV1dm6wZhwZRuWEipRI3uqGJuKYBq7gXdaADWcwn8UYpiZtakvPa247hqFrI3dvwfv4jwis+RPHDn0Cla5CP34/c+Cypmuqxyeg+dh/ykj8gXnwiwSlnYz/1AHapCKViWcFMwz/9XHKf+HPoGML6yXdwjRlfnJT5gtLpq/DPeQt4KVKD/XhD/YmyEwL272a4ax9BLocu5PFLATIKIS0xc47H1DVCPodQimD5aegp02DvTqRfonTFtegLz0HedT/y2SeQxQJy8zqYPpf4Xdck1vPQuYAY976OlIzwUkzrEY4xE5MYhABlIfsPIHe8QLziLbB+NfJrXxyb0BqIJk1B6Bh7sB9SaWJzyPXeBHLs6oFFQrjIUgF3zw7s3i7srnactq04O7di9XQkwLRsjO2WyakjD6LwS+U1qSz/EYdNEhHHWAc6EXGMEBKTzqLrmtCOhyyMoPLDCKPBcdFVtejqmqQaabAf4ZczvaQirk6yusSxdKeMQdc1kr7vNpyudvTKE9BxjHz2CQTgeKmxCSl3bsZ+5lGoq6f40b8lOPdSTDnxwHhp/AuuZOSjfwcjoH54A8PbNhKHwXi1leuhXtyCe+8tMKDJXXQNIxf/AeSGMWGILpUIl6wkuPgaTEstrHsSs2tbkuNRA/rMdxCvugSRz2GAob/4J3RrPWb1Y4i6Jpg2GyIwD9+N/PoXse/6Eeb4ZZjrPp2g5LXCgeshdm3HvvtmUBLxrvfifuCj1NdU0aAg86FPIu5ai/3f91G9bAWpOHxTNpo5Mon1u5JZE47VboqoYRJ2+84kOR+TrLekAstCKJkcr/Wouj08SyuKxrW5kEcm2OIYa6AXoeOE2MlWoWvrk5BRIYfMDyfrM9fDVFVjMlXJtUvFJNwlEkJIZ2swbirJZz6WWlkpZGc7ztYNBOefT7xpLfYTD+Cm06jx7TEgDMj++AZiIQlPfAu56/4S/8r3I3J5THU1unk6YngAcePXiH/yXTytkUKO32s55TT1yC+IJk2lcPmHKF35YQbOXAXSSZTJ5MkQg7r9VqKf/RAZx8hUGgqA51H64Cfov+pajOUSH38C8q470T/9LnZ7G87zqymsOBnzkT8jOnMVxkkhMlXYgY+fBlacjnAcjJdCNwM1dYnXpBMFbLLVMAmoqhl/h7FG1zXApBqwE/JSTyqfC2NRDFNVm5ybzo55XihVPrce0lnsR35B1fWfY+Tq6wg+/SWGL/8AIvKJp85G1dQR/eTblPa0oU84FZqBusaXRdi+toFg8wpnYhmTEEoz5uJuXY/0SxOYVAdjOWUmOUiY56MtqTPZckreIb7VoWut3PDYWlC7HjpbjbFtZG4EUSomD1xmt3UqM7bIl0FpPPnCS4Ftj6UdHsuou3Yc3NWPEN7YiH//bci+Htzm5oPdN9vBWf80aelQfHEL4clvpdTYCNnaZMJuXIP1q19g/fqX0N5Gpr4eodTBY57OoDr2krnl20S+TzjneIpz5ydrQ4C+HtTqJ1D33Iq9cQ2egMh1oQhi20Z0bxfFBYvBD5F33IS844fIjWtwBVgP/RydylJadiJ66ix0oYTa9jz2to1YL76FSBuiMMDbvQ3njgfxVz+KKeQS5jwIsDavxbqtkej5Z8bi18a28R77JYX19ej+XtzOdri9fO6oixwGWOufQtmKePtGTBQk8dxCDueJB4i2biDu2o8sFfF+/E38TBXhyWdQUB44Lmxah/XC83DjV4n6e7G79mHf/iDhY08eFkd/05FYvyuZlRxfHhSpMJ6HkQozMbYahQlgpELEcVIAcMSBNEQNzRjHG9fG5Rpfc+ivli382O/aDkaq8npcJzSJVCDK34lRVrecMyskKCux4K+EN5ipwnphHen1T2PyeaxMBmtijHfUmahrIrV7K2r7Bvzv/RulUukggiUWgnQ6jVtfj1VWbOYQZRbX1KMKOap/8DUKhQLhIfvpxIDlumSqqnCHBwjLb19sXof9pU9hys38NaBsm3RNDbbrIvfuJP3Vz2LyeUqlRPFpIdC2jXfr9ygWi0SA88SDyEd/STg0hHEcTHU1opjD+flNpG/5NsPDw1BVlYxzOkv1Vz5H1N9PFEW4Q324H72aaGgInPI7LBVJ/eRbmO99hZGREaiuxngp5MAB0l//AtHwMEEQoGsT3qP2O/9K7vrPUygUJmT9KVzHId3QgLvuCdQTDzI4OIiw7dew5v3lZWK9chZYlBniOESODI61sBn9UpRL6bDKLW2EQHCEhtWmnMAu1Rh4j5hjYRI3etzVFhNK9w7pzFFWHBPd77HzxljRV+B1lpWFFQZkXQfhuEcnT6IIK46QRuNYEqMmjJ1loRwbaVm/+QXEMSoMSGPQUqAda3w4lEK5LsqyEAZMKlN2T6uwgJSSxCIpJpCui3KchDWOI6wwIIPBK19PSIWwLKSJsW0FXhoZx9iBT43nIj1vbBcBEQa4UUhtJo3luuPjUiyQlUnIzRKAX6LacxET+AERBnhxiMpmsBwnuabWCL9ERkAqk3xutEYGPmkT44w+sxAIqZCeh7IsTBhgBz61notIpd80JNaxdaGVQgY+VncHMggOhoQqh4QcZ6xC5KiaZvS7l2pxK9XBwJ7IiI6GLEb/TPxuNDQlJa9obyxjMMpCZmzUS+zwaJRCWmlkCuwJW92MMqaj5x194pkk9OSlsFLpg7bLOfQ6OpXCeeE57G/eTPj0rxBK4dY3HHacMSaxhukMTiY7dr2J92KP71uLdBy8Cf8HwHFRroddXvePglO7Hk4qPX49+5BzhcAc6VwhwEvhpDMH36vrYXkpnAn116P3qY1BS4Wsqj78/ioAnmABpIQoQg30J1ZuwlrN2A5YKgnO207y91Eno55AdB2F6hQC47qYUZJLxxCWc3yVlSiIsqVPyKLx4n/jeGPWWoyRV+IVxPFvtzXrS4P0GP1eVQ3uY/ej7/4pw2GEyGYP2/nuMG7jaIrnkFanRwsBHSnmeiiIXs65v+nY3/U9vHEBLMTLYKEnVHPEUbn7xDi4jOMmdZ1Cjq9bj/Q7o//XE0A8+m8zfp4RoL10YnUAEYUJwxxFGMtK2OdyYoaIIoRfTPSAjpMa2FHXOQrHWe//Ra1mDAYnlaI2BcpxkwSJirz+5RCvyjpW02Gie2osK2GBRy1wFKJ6OpDDQ+hsLaJYSFIdj8YGhlFiSbVOYo2H/VzSaiKub0qYbUCWSsiBXkSpiK6uQ1fXJUojjpMeVPmRsvV1MV5mLD1T5HNQKiUE1/8a9CYupUilccuuvZ6YHFKRlx5CIZI5bllJ3P41Uv7WoTzUy2WhjesRTZ5O1NmerGWlLIPRIIr5xDqHIYTBkX9DgMznEqZYxxjMEe/J2A7xpCmJqywkYmQY1dcNpSLx1NnE9Y1Jkn8xjxzqRw4NYIQgrm1EZ6rGXG812I8ojJRZ82MoY+7/IdpTlPO6tTloifHa4NgQT3SBR+974idHSqQ52vP+tsePelbykGNHPa2jjcvv8hu/z/v6Xa4dR+ja+sR7C/xXLTQlXjkWOkmn1KkM/tKTMXWN6HQmicmVs550XRMgMW4qIXf8YgLyg7SXSDoz+H7ZbdYHf2+SQdbpNHFTS/KRlAnzPTKUDGzZAiNF4j4P9SOGBkBKdHMLJpNJUjWFRA70JtZZHkMwCYEo5hFBcPC8tW2Ml07cfb+Erqnn9RbMEKXC2BgTR+ClEk/mN1mYcrugpAto+qU7X4YBspBDZ6rBccYAIYqFJLyYrT64GeDob5SKSWeTVDopgDlWVu93vX8hELlhwjPegdq/G7V9YzJGb2gSa7RbZLaGsLqOaMY8cL0kIUPJxOKUByZYuBzVtY/UmkeRueEE6GL8hcnCSNJ25aA18nj7WCybaMpMdE3DeFpl515kbiRpn9rUXAaHgDhEHehEDg+AEESt09FVtUnpoAHZ04EY6k9ItWMFgkKe4mUfIFrxVshkypO2gL32GdwnHiScPhv/lLOo/voXMYX8eFgLMFXV5eYIRUymCmM7iPxIuboqk0w0nYTWTDqFSWfGlU8ZBKJYnPCGLXRtPXKwL4mFZ6rKjRcKSbta20EO9kOcVIqV3vVeTFUNcniIaMoMnKcfwl73VNlqAkpgUpnkd0ffjV+i9M73YJom4d5/B9aOrZjRAjIlMdlsOdstUcjRyrdReuu5pO+4CbVza8JJZKrw33EV0fQ5ZH54A2LfrjHdZlwHlE1p1aWYqbNwnnwAa/3qcmEy4FjoqlpEGCAKOYiTLD+TSSeAlGo8jzoMkSNDEMVJyrbngu1SuvgaSGdxH7gD1b4XnfaSFNtS8bDxNLaDnrOQ0juuxr7lm3hDQzCp5TXZFPDYAFjZWP0HsLesRygbY1tJnFHIBLyjCe6Oi66pI5x7fJlcCnA2r0s062gBAyQVSkeziEajM1UE85dhvKQQW44MYbdtS6qTahsScFfXJs3ORoaw9u1GhAEmU0U8ZdZYwzaZG0J1tifAP5YW2GiK7/so4ezjobdcOTSpEWvuCTA8RLR0JfkrPoj7/esxJ5wCXjrxNMIQa28bJpVCV9ejuvchcsPEcxei65tQne3Eza3J2FoC1dmB7N4/zrC7KeJpcxLPpDxZRX4Yu20rwYmnJ2Wane3oxknohknIgQOI4UGCU8/BZNKI2FB4z3VJAzvfJ5y/GNPeBh3tmPlLMI6FyBVQ3fsRAwfGlK4oFihe8aEk+2rfbnR1Dbq+GSRJC6TOfUmJYpkkNZOmUPiTTyC3biS1YzMqnyNctILCH/wpsRDY99yKmDI9SaWMQ1TvAawXnqN04VXE0+cgdm2DwX7i2ceBksi+Pqz2nehsI/GSk5K0WR2hOtqRfQcST2I0gcfzCOYvwVTXJBGTA12oF1+geMn70FOmYxwXa/MzyKFh5EAv8fQ5xE2t4+DPDaG6Oyhd8l78t51DvHkN1rqncKII/Rrsp31MAKxdD3vvi1Td+aNx12a0oL+cJCFiTTR5OsXTzyWcu5hwznzyF16NTmfx1vwakRsBYQEG3ZAUJRxGkI26z3WNRHPml62mQPZ2Y+3bhSzkCGbMI5o6M3FVgwDV04XavxejFCZbTTxpcrLeVQqrZz/qQPcYc33MPJHaBkzzZOTX/x5z0w1JF8nL3k/03j8hv3AFdm09asMaBmfMR/zdV9Ez5oEyUCpS+9mPEs2aT+m8S8l+68s4a35N8eo/orTqErLf/yq5qz6CnjYTaiTZb9xA6qb/gL6epH/WpCmUrvww+cuuBdeCYhFr4zrqP34FI3/5L7ibnyPz9S8QLD2Z0pUfxrv7x1jPPsHQ5/8TPWcuoj8J/1k//xHxvIWIPS8S5vMEl7yf+LpPoxuzyLb9ZG/8Gt7/fDuxqiTVY6a+Af3wPRQWnoj+xOfRU2dCSqC2vkj1f/4j9iN3J26mkNhrHsXqGCLf2IrKVpPp7iZYeCJxdS32N77EUF0T8m//lXjWPAh9Ur/8GVVf/ChU16C3PI9fLFD64CcJL/8AJuPhPPowtV/8GNGSleT+5K+J5iwEGZD95ldI3fZ9GOwDy0GUikTT5zLy1/9GtHQZ5Eqk7/wJ2X/5FMZ1ibI1jHzsc1AtSN/0AzI/+xGli95D/qqPjI2n/fyzZG/7PsXzLkM3pwnffjnRxmdxVj8Mmeo3qAWWElEsYBXyh+9GMOpWGo3s7UIMDeCv7MY/5SyieQspSoGurcd95jHszr0QlLB3bcdfuAJdW3aDx9xnja5toLT8VKKmyWPdLJytz5W3XlGEs+cTT5oKSiFyJaz2NqzOvaAswpnziFumJusr18PauQ2re98R6fmXA+Bo6cqEEHzoLlKDfbhAsaqGkuNhtCZqbEHs3w0vPEf661+gEMXEs+bDZ/6BfNNkZBgR1zfhOx5aOfhnvRPR30f+/CswYQh/cx3GHyK/aw8MDpBSFkaBGOzDufNHRM8+RkkoeN+fEs45nvzshUTzFqPv/in20BDRtFlEjS34LTMIrlyAURLxD59Cv/M9sOJk9OpfE596FmrN48RLTsa843LE4w9gdm8lvuZjFM+/DOsHX0OV3eL4uCWY5lb0I/eiz78M5h2H+eG3oTRCdPH7KcxdSPa+25BlPkR27IHCCGbmcWggXLiU8NyLYd2TRE8/gvn8DQkx+aVPoS/7AKVzL8K6++bEc/jl7QQz5qFWvQt5z0+JghL+ez/KyHmXE517EfZzTxNf/wX0ez5C8fgTkM2T8Xo6MNqgp87Cf9cHiOubUN/9GtEZF1K4+BrUXT9Gt06HznbMT/4LLr2a0innIB+6G/d/vke4/ml8mYxnMG8RpR0vwP7dkLYwd96Mv30zjhpP1nljroEnsHNHijAZAXKwH3dwNWpkAFksJECcNpu4ph7tZoi3b0x2IciNJG11Jq59y6mY0dSZ+MtPxaSzCL+I1b4Ld/M6KBWJps4mWLAsAX4cIQ90Ym99Pmko19iCv/BE4pr6MrhHsLdvQg70HtP1LxiieYuTpIGzLkDMnIucMR117kWoDc/AlvXE51yI9dh9SKWwdm5FxZrYSSGGcgQD/diFHKq/h2DyDOLlpxFbNvYN/0jw8c+ipISeDti3B9nVjhAG0pmkOMQYRCGH9cJ6RH0jprcbkc5SWHYqIp8jXvcUcamEmTIT3dNBGEboiy/FuucW+O5XMKkM4dIT0ds3YWrqMD2dmLesQkQh6mtfQO7ZRbzybILWaRTCiKqywornL0n4j/wIoq4B1q9F/dvfQX0T8VmXEAhBGIaM0Ty+jzzQAfVNmPpmiudfTlzXiPrOvxE2tSBPPgP5D/8f6gc3oNNVhJ/6AoWFy5PIgeOiF69ADvVjfeXzqJEBTOsMCiedCWecgbWnDXmgE5MbJjpuKUGmGicIUFrjH7eY0qp3IVf/Cuuf/gq1YS3ReZdSWrQi8Q7uuwPnh99AT5lFdPY7KRUL2IUc9pb1BPWNmN4eRLaGYOOzMNCLXF+Eu25GdOzFNDa9wUksIV7Sihk3AYq1ZyepoUFEXw+lt55H1DKV0mlnE8xfjLf28aTY30uPu+Aisb7GdtB1jWPgFaUC7nNPoro7QCqCRScSTZ+TED/FAvaubdg7t2DcFHHzZKI5C5I4tZTYbduw9u+BMEjc/mMZY01XoW0H/upL5CPIe2C37U1AONCHqW+Ctu1w6fspvHUV8fyl0DIlWSK2bUUolaxBT3kbLFiKWvcE8b23Yq+6mPCiq+EH9yLyBbJ//0nch+7E6BgR+ERLVlJ838eJGpsxJ50Mfox66C70zHnI/h50ECAFxFNnoTv3IXo7IZVC/OoeSKdJ64jhzv3J8mV0W9fqGrj3Vsy2zTgLl2GGBsgHAT5QXU4I0XUN0NeLOPF0mL0Ac9/tWH09qLPfQclxUG3biA9h49W+PZDKEi1eiV52Kqx9ErVpHfEffhq9ZwfyBzegslW4aPSuNiIvjRjsR6w8EzF5GvEvb0d07aMqm0H8+9/S98m/Bx8KV1wLV1wLLsiNm9Ejw0TGYMURcVMLUU0t7uMPoKOQmicfwH/gDvKf+CKy/wD64buwgXjJcqJtG9DFEvnP/Atm0mTMipXga9QjvwCliOctQj77BA6GVDaDpeRrkuX1mrWkl8MDeGsfQw31UTztXILjlxO3TKV00hmIOCozxWI88CVl0v6lvQ3v6V+haxtRne14zz2FLOYJp8+ltPIM4pYpkEoju/bhbFiD7O1GV9cSLFqR9CQWCZnmPr86aUJ+rON3xhC1TEG270J/9UbY3w7opEpn9w6sS99LkB8h6uqAv/03vDtuggd+jv7Ip5KmA4GPwmCiEH3qcsT2dpzvfoXiR/4c5i4i/QdnUVx4IuafvkqhtgkZxdhhiXjWfEqXvJewqg77+9dj2i8hOuudxL09iObJgMDet4vwpLcSzV8Cjz9APDwEjZPQQpKpa6T0tgtQ+/fA0pWJRc9kkx0Q3BQO4Myax8jC5ahH753gXBni1qnIrn3oGXMglcb09mAB1rRZFJWFWPc0amKYRUrUgW7UrBqCK67FEQLuv4PYL+JOnUFBJckRmXSG4TPPR/Z2Y+qbEIP9mDjE1DbAQB82oK/5Y4rnXkxqcIDSzm2YT31w1BVEh5po/+7EGJTymFQKarLooUFSQP5T/4TatxunsZmoZz/WyCBy3kJ0JgvFEvF5lyBrG7G/9xX03kuIzrqIuLcbe9kp6MZm9MN3IzvaUU1NrxWMjgLgV1iTGMsGHaN6OpFDg4hiATU0QDBnIfGUmUk8PSgma9XRrpSj1TYde0g9XkRX1SL7elA9HUmcWakkjDIyiOztxlv9KM6mtRjLJpy/FH/lGUl7HwTW3p04G55B5oaOsfucNFkPl52M2LgW6+Zvowp5RiMqYspMWHkmFAroUhFOnEW8/URMuYlfPDSIlBK7ez/R0CA0VGF27cD8+pd4f/xXlI5fhpk+F+qasNp7CHbtICwUcJTApKuIZx9PtGAeavUCxMhwEsYb6Ec2tRK3Tkf96WcIjluGqa5NNkvr3gdRRPyHf07U1YF/2tuwfnoT4pS3IcIQvXUDZv4SWPUuIhkjFq5E93Yhf/E/WGXST8SGYMlK6O1BNrVgpEKMDCGqa9GLV2BGEsVl19UeBGD7xS0UzzwfPXse5tv/jnz6ERwlsNq2UDjtHOLPfYVQWegpM5Ff+wK88xpEUERuXEc0eQbmwiuI0xmCS/6ASAisZ5+EpSfB1BlJGG54GGfjGuxiDlVVjQmKqL5eZCEgfu//IT5hJf4F78b55pfRs+dDXw92GGBWnpH0T8u3YeYsID5hMfLp+eXxdDEDfYhlJ2OaJmFOeity2wZUKYfGemV7Sx8Fk6/d5mYiSehAa5xNa1E9XcjTzqV04unj22BObIJWjuOJIER1tKPYmwDXdpKG6gc68Z76FeGBLtRgH94zjyF7u4lbphIsXkE8c16yX48xuE89jOxsx+gyW34sn9WYZF+erc/jZDJkLImVSkOxQNzcRGFkELl7B0bHyOf24J9+LmLO8cgoRLbtQPlFVDGXtM3ZnUPf/VOizn3U3H87wapLKH7p2xAF2PfeRvzcU0lzhFQVsq8Ha/M6gpUL8N//MaxtGxB93Yj9u1DCYBYuI7ruLxA9fcjnnkb092J37UeufYLCOe8gd6APsW8fevsm5NwF0LYd+dh9qLp64r/4R0of+wzB3h7sb3wJ/fj9ONXVY/PE2A5mTxsilUa0bUf0dWOampMN2tevxhidlPSNFmsIC7V9AzKK0C9uI3rw5zj5EdKeQ/zw3ch3XIV+7x8y5Gu8B35G/JPvIM65GDHYj1r9CNTWEn3wT/FXvhXr6cdwv/OvFGKNvOx9mH//IVgCsWcP6es/h/PkA5g4wtiJK+8882tK515A/vTzsR97kPgbXyY++0JkdwfSL2G8NKazHbV+Naa+CX3xufjv//j4eO5tA89F7NuLufBKWPsYPPUQZKtfecwciRz2PM+4rotlWWN/4jgmiqLDytFeqZsSxmAsG11TR7DwRIqnnU00dyHU1KH2tpH9wdfw1vw6qRMupyEKTLl7gxzT6jqdTYLvURKsF/kccctU8ld8iNKFV0IQYG9YQ/aWb2Ht2l6OD8pj/jzxwhMY2LaFVH6IjOcipErSQr00cWMLhSAg3L2TquUnM+T7mFIpyaX1S7gvvoCz5CT8r9+Cv7cN8fGrSfsFMk3N+NPnMBxpTBDAgS6c/m4yto3jOGhloZtbyddUUxouQjGHlckS7WkjU9+AqW+kIAQUi0l4qbeLFBp7zgJGbJcwl0uohq59pBubMUKg27aRmjKNsGUa+SiAfAnRsYdUbohMTc34885bxPC+vdiuB66H7mzHlQJr5lzyQ4PEbdtpaGgYr2gq95COZsxleHgEvWsbVRg8z8WkMvjT5zASa0wQQl8Pzr42MstPIT9U9q5ap+I3NFEs+TDYj93TiZtOI+fMZyTSGB1DqYTTtY9s5GPZFibWiFSGoLmVvJciLAXQfwBr9w6qTjmDXE83Vvd+UlOmEWWqKPV0Yqcy6CmTKQ4VDhrPbHU1tEwhXyii2tuoigPs0TrmV1C01slOH+Wun0KI1wGAx9jrGBEG6LpGgvlLiCdPx6QyyIFenA3PoDrbfzPZVN7xkDhOGFE7yZE2mSzBghOI5sxHxBpr1zacTc8m5JV4BQLvQiD7esjFYFdXY3veeBZQFEF+hMgPiVIeKb9EQSfdMkYrk6NVlxBf92fQOhv9tS/AT79HbWMjKo5gcJCCGe8l51Rlcbx0cmIcIwo5wqJPqXwtC4gEeLYFQUTA+G9J18FJpVH5YfxQE5Q/N4CnBDo2mKoqHB0T5wv4jO1Wiltfjz1qUYVADvRRiGKUFAht0J6H5SbNBcMwJs5W4aVSB/XxIgwQw4MUY9C2hVdTi1IKggAzMECR8ee0q6tJ+QWKfoRIpXCMJir5+KPJXraF53mIkdxB5wlL4VXXYFlW8v8oxAwPEUTJ8wJYVVWkSwWKYYyorsYxGl3IEQqFJSUEIcWJ4wl4nossJeOsbQu3ugZbqf/lAJ4QhhJhiCiXJJpya9jfe2d5oxG+n7jPo/nIE+qBXzGSTsqj1p9OLIyfWHgv+noZ+cIN5C97N9att6C+9WVkdwfVjY1j9a8Tjz/S9Q/9XkyITR7aJOBI9zDxu9/0/ZF+92B9ag571iPru+Tah9b3Huk5jzZuE+/npcbnt7n2oc9zpPE0xoz1vn61mgO8MQA8Wls81ldY/FYhqpcC8UE51a9ByttvZbzjGDOplZyQFLu6cIt5Ml7SBqciFTkSgF9/M2OUcT6WukNI3gjFrsa2ke278HIFJGBls1i2/abrIlGRN0EcuCJHVLHoVAY7ncV5iR5aFanIYQCuTJjXiSWuvIeK/AbeRE5YAsrKxKlIRd64it06dJGsK83NKlKR1+HqSh+xc6g81ETHcZzsEysqLc4qUpHXi8RxPMZAH2qBfcCdGOMatcJSyoP87YpUpCKvvtscRRFRFB2eNyBEbAHrjTGnHMnX1lpXAFyRirwOADwK3lE8CiGwbXvAMsb8DFhgjKkZRfeoJR412xWpSEVeG/BOXOJO9IiVUlEmk92nlFJ7Lct6uzGm9VAAH+1iFalIRV4dGcWjlBI1lm9tSKVS3ZMmtW61gL0tLa3/UiqVPun7/ilaawl6LFVr4kZXFalIRV59AEPCR1mWhVIWqVSqt7a2ZlcqldphATQ1Nd8yPDw0bXBwMBsEwSytdRqQh1rjCogrUpFXH7xlAGsp5YjneZ21tbW7qqtr9mmtd/6/AQBMatLgnQ7U/gAAAABJRU5ErkJggg==' button_dm_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABgmSURBVHja7J15nBTV1fe/t6q6unt6mX0YWQaHZXAZQEANJhLjRlg0CQJu+Igg7yfBXWJM4kMU8TGYiEQjSvJAlCi+IYrJ6wIuRMWNRQ3KpizKEECB2Wd6mV5qef+o6Z7umR4QGIZB6/f51Ifh1l3OvX1/dc49de8poSgKzVCBaZIkXSOEKBdC+LBhw0ZXQQDYbJrmEtM0FxmGEQMQzQTuIYR4RZblgbIsI8syQgiEEPaw2bDRRWCaJqZpAnwuhHRhOBzaLRRFUYUQaxVFGeJwOJBlGUmSbPLasNFFSWwYBpIk7e/Vq/dgWZKk6YqiTFVVFUVRktrXhg0bXQ9CCCRJwjRNrxBikFBVdY3D4RiuqiqyLKdldLlcOJvTbUrbsNGJmhbQdZ1oNEokGk2YzmlQFKVKOJ3OqNPpVB0OR1LzSpJEtt+PJEnEYjE0TUM3DHtUbdjoTG3bzEVJkmiKRDDaclBXhBBqqsNKCEG2348QglAohJGB+TZs2OgkLWwY6IaBQ1GIxmKts8hSgrQJuF0uJEkiHA7b5LVhowuRuXntm5Yutc7odDqJxWI2eW3Y6GKQhDg4gYUQCEkiFo/bo2XDRldbE0sShmGkkVjKqK5t7WvDRtcjsBBtCKxkYK912bBho+ub1fYQ2LBhE9iGDRs2gW3YsHE4UDq7QT0nn/Cgs4j0Ox3d44P2Nml2xn5sIRC6hmPfXrI2rMX5nx2IeMyeFTZOXAKbzdexIEusVx8aRl+OlltgETdB0tR/j8NBCj0nn8ipg/GuXolnzZtITaGjrjP48zkELpuc8Z68dxdZH7yN96Ffp6XHR4yi+oEnAHC9/y9y77w2Y/nwT39Nw7U3A1Dwq6k43n31oLKEf/prwsPPJ15WnkxzfrIW39L/PWRZG7YGtiZnt540XjTOIq+QkBvrkEMBy+MtJSz5DKQ+VjBNMA1MpxstrxDToRIcMRopGMDzwapj+8DoeTKBnicTPrmMopvHZ8wTGTCIhoYGsrOz2xJy+PnJv6tDTRTE4zgcjoz1NN7zGKGR49qkR88YTvSM4fgevQ/v0gU2E74xBDaMY/IaKTzobLS8QhASzp1b8b29HMf+vcf9lZXpUAmdcyHhcy5E9+fQNPS7eNa91XENzLsb5t+XnnbXQ/CTa9CHnkPVbfdT+Ie7WswfgOpKKCgiMmEq2a8vS/95TipB61WKqKnEzC9KeRi1HUe9/CxCI8chmkKYz/wZfvvzlptzFsEV1xO46qcoT87D5XLZbDgB0WlOrFjvfpgOFbmhFt+7r3QJ8gKIeAzvu6/i3LYBhCBe0q/D28jNyeGk4uKW64kH8cy5AwDt/LEEQ61M9i0fQziEcf4lbTawhyfd0JLnUGM++GyL32+uQHrgF2T7/S0yPDIT5d3XoaCIhh9dY2nrWY+zb/U+4iNGU/fg0+xbvY99q/dR+9g/MU4qafNwSM2zb/U+qhevJD5idMqSYDT7Vu+jcdbjhH92F/vf+DyZL/Ewql68Mlk+eMcDHVI2uYy54wEOvLSx3X4k2miadGOyrspnV9sEzqjpnG4QAjnQgBRoTJI3flIvov1Px1QcndbpaNlAIoPOxvD6kxpMaahDmICqdooM/jUrUbZthoIiwgO/02rmNSJv3QjlQ4hEIummdfkwpM82QrDxkG0433wJ0RSCgcPIcrvJyspKu1/4y8lklXswnpqf9qConnIbke9d1DJeQ4ZT+fDS5HE246QSquf8JS0PQLysnOpZjxIr6pGWHirpS8O1N2O6Pcl8lb95lOpHlqatywOXTab2yp91SNnGWY8TuGwyRn5hu/1IoP7Sq5N16V9sp7qmxiZw5takNEeVVnQSjT+5lvrJt9Jw9XTiPXof07Wv4fYQHH059VNmUD/ldiJDv4vZvHY0ZQWcKjjUThsO95Z/W5OmzwB0XU93dG1YB/mWGZ2q9eJl5Yh3XkMSh/7ppH27yVqxDEr6ENwUpHrxShpnPZ6mrRJa2Zn64DplEMoTf4A+Aq6+EHbvxOxVSvWMOUkrwMgvRKxYZuVJXFs3gttD7SVXp5PklEHIzz3RUl91JfroCZgmKNeOtNKXP2eRbPDw9IfWEZSNjxhNaOQ4pD0V1hImId/y59L6kURJH+SH77HyTBnVrj/hhCCwQYsnuiOv5tPJIMuYkoQJGK4stJ6lGDkFNA2/gPppdxIaMQpDdXZ4+7He/an/r5sI/nA8hi8bU3VhKComwpJPlkF2gOLouD7TsrQ9aJ6cPDRdTyvjmDcT0dRiRptAeNR4RFMI7Y/3Iqc86A5Wv++hX+GZMhqWP0c8r4jQyHEELpvMvtX7qFq8Eq38rLbyLH8O7X9m4Pf7Kd71KbnNa3h90JkEQyE8c3+Fb7Af86aJKI8tI+tP/0B9fg2cMsiSx5dNUyTSUt/Wjei/vB6fz0fxrk9x7NlpzbWFDyHWraKwsJDCF5628np9yf4eadnId85L5nH8+QFycnIoLi6m+P5bkPZUoF9wCcFQKL2NP85O5vP7/ceEAx05pzrdC21pXsm6EpP0y134n11I8JKr0Hr1QeteQmDi9cROPQPP68/j+M/nllPtaEx3WaFp+PmEz78Erag7SBJSsBHPyn/g/mBVyntfkXzAdDrqazEMg9YtO7ZuItZsRquqSvi8McgfvY8hSSiS4Ou+sfZt+4Ss2TcSDoeJRCLo0++CAQPRxk6kes4i8qeNRTmwt6XAtk14PJ6kye1871XLEZblJRqN4vF4aHpuNZSVowFaRid/ynT7YhuqquLxeBIjbeHzz/D5fMiyjFFzIMWPahxVWaNbswk/ez7x2fOpby1cU4hwOEzS5jiwD1VVT0hHXicTWICUYiLrOq4N61ArthO64FLCF/4IU3USGXIOsZPLyHp7BZ5VLyMiTUfUpFbck+DI8URPG4KpOsEwULduxPfK33Hs2nHcnWiR8mHJyShJbU3irNX/IjZkJpEJU3E3haz13BsvHdFEk2UZn8+Hz+eDZQuJRCKEKr8kPuU2aq+aTsG89HfS7ZmRpmnSOOtxtLJyxJ4KzI0fJUnPgIEwdmLGchnr2783LQ5bezjcskaW9xBrFw9m77I0n0NKfHSbwO0SWGrWwK3WuVJjHb4Xn8H56ccExk0mXtIXIzuX4NgriZ0yCN8LTx+2Nm46+zxC541FK+gGkoSIRfCsWkHW6pVIjfXHfeDjI0a3kGDtm8iFhbTuneuZxxBTb8c46/sEFRmpphLjqfm48vKIfI02qhevRCsrJ/+XU3G8+0p63S4X8taN1ACGx0dTU8pDskfvNrKabg9i1w7rwTPsXEsjn9cHh8OB2rx+jj61MqM2Pvi0EEcxpTKXVSu2ERsyHO6+CZY8lpnkgDHsOx0ix7fEiXWIXVaGjrp9E7nz78Xz+vNI4aC1e6vfadTeMJPgqIkYnkN/LELPK6Lh8v9D45grrE0jhoGydxc5f30Ez8p/HoS8ZqcdpQze8QB1d/7OavW5J0nE487oSV6/BoafR+zMc5E+eBdZlpOEORRcmy0nWc2NM2n4+Zw2pGy4fkZSe6aZrZdeSdN1tyUdZ/U3/8aS9aP3k9rQdHsQN/2G/Px8fD4f+p/+H9qQc7rEpHaue9v6Y9oM/OMnW+vf4mL8s/6I2BJEfmcnxcXFSN+AWKtKpxP4EE86KRTA98ISnJ9+QvCSK4mdXIbpdBMceRnR/uV4X30WtWI7IhZNp5/qpGnQ2YRGjELPybe0vRbH/ckavG+9jFxXfYjFMseGwDNmUz9jduYReec1zPn34cnJad/ae+dVIt+7yHL6vfo87sMwn71zf0X49KEYAwbSVNKHpvHXtZVh6ybM+ffhyMlJW1NHb7mH/bfc0yafmpMD/36P8MhxmDNmsz9T3xKv544THO++gvreSmLnXkzjg4tp/cLNWDiPmpoa/Jz46NzXSIex11ndsZncBffjXfkP5IZaME3iJX2pv+52Gi+dRKzPKeg5+ej+XCKnDaX22ltoHHM5uj8HDAO5+gDZ/3gS/0vPHJq8CQbrunUda2zdCIvmYV43iqysrIOuaZ0vPYNUUwm7d2K89LfDXv8WTRlpvYbZujH9xu6d8Pe/YI4Z1NaB86ffIVLzt8rnn3UDyivPp9f39mvWKxuAvgMyhUDtVOTdeS3Kc09au9pSx33e3ZhPz7d8Ad8ACJfLZbpcLhRFQQiB3+8nFAp1eENVM+agFxSh7v6C7GcXItdWfe2ysX6nEbroJ8T6nYYphEUyTUMKNoAJhuok4WSXIk04t2/C+/aKw2ojdPFPCP5wPKbTTfHNEzqkz6FQiEAgkPkB1UyG1psr4vE4NTU1eDyetElWVVWFJEnk5+cn0wKBAKFQiPz8/EO+uwyFQkSjUWIpGzYcDgculyvp4W2c9TjhkeNg3t3kLHmUcDiczO/z+ZL5WrefdLplZaGqKvX19aiqSl5eXrv9qa+vJxKJUFRUlHTgGYZBZWUlLpeLnJycoyqb2u9wOJx8z66qatpDs702uirC4TCKoiT73Wl7oVu5Mg+rDXXHFhy7thMeMZrIGcPRTuqJqSgYvhwwDTAMpHAQx54K3B++jXPHFoR2mIH5DKNFA3dQ/z1ZWXhaETTjWKSaf4pCcbdube4VFhS0SfN5vfi83oz1HJYsibJmelpebu5BZU1rPwWp8rfXn5zsbEgc1GhOl4TosLKH7HdznvbasNfAHW0qxON43nwR14a1RAcMIt6rj+XUMgzkQD3q55/i/OyTNmvjr0/gZhPa/gKFjROZwAbH6Dxwa3/RkS7aaypxr/4XbrA2XZhmGumOtF4zYRWYBt/WkH5mB/1GNmwN/PXQkQ6nhAn9LdbA/lnTke74L2tdm+Ecsg2bwF0YNoEBvF4vXq/Xng4nCOygdqlrYNOwY2LbOME18DHbjWSm19/ViJIgrx3Y3oatgU9A2Jy18U3QwMfa+2jShT2czZrX5rINWwPbsGHDJrANGzZsAnca6ha8QOXaA2lX6Be/T96vfeoNKtceIDx9Zovl3r03VW/tpHLtAczuvb9V42V2703l2gPoA88+7LKhX/yewL0LbALb6DjoJX1Rnni4JZDavLsJjZ9M49irrPu9SgEIurKSh+jDk260oi6GQ1R98uG36vvM8TNHIJpC1LzxcpvAfodC5DvfRws0EAwGbQJ3FrruEeqjJ43ZvTdGfiHGhg/w+XwUFRVR9OyfkfZUECkbSLSoh0XU3TuhuCemaWJ27014zAQrguJnGxBCpEWHaJi7JKnJG+YuSWqe6uWbqV6+mcq1B6h96o1k/sC9C5L5q97aSfy8MQBUvbWTmmVrk+mxH12T/H9Ci2VqqzXaqz8V7dWTap0kZI4PGISorkQIgT5ucrJPCRkT45qwXBJt1j71BnrPUuITpmD+sOXrFvHzxqRZMoF7F1C34IXDliv2o2uoXHuA6uWbqXprZ5e1jDovLnRqGNSuuNvJbPaNH4X20/qfbnXvpb+lHe+TmkJIQhC58MdWwpq3EN26o+s64Uk3Iu+uwKjch3Tgq7RoG5FrbiI27Lu4xgyGu28ieu7FNJwyBK1bd0xMmH0r0q1Xo5WVU3vldMLTZxI9cwSu60ZBH4FpQv3Qc4k0h8Qx3n8TpcxhpV9zI94bxiOtWEbTsHOpv+qGjG2lor36NU07pMwNc5dgerw4T3XBBQPQ8oqovXI6WrfuSFvWI3/3Ihpun417wW+R+yuYLy6l/pobicViNM64HzPLg2PUQMyqA9SNvZKshXOtBi8YQNM/n07KED9tKFJNZdKSiZeWYe7/ktorpx+WXPEBVoRNY9YtSIOyqd7wUZe0jDqNwInjfYbXj+nOOi4fMTsYDI/fCit7FHLFzv6BpUkhLUia3qsU6avdGD1KrPuBBijshtarL+ExE1CeXQSnDUZqFahNaqzHdHuILFuNc+SP8d4xmeg7r6H17of8wv9FrHiWnPdfQ6qpRPP6kR/+DdKH7xCdejtiSxCyPBBoINqz1Iph9etpuFwuK67CssWEtm5ClSXk3V+g1VVnbCvVrM1a8D8Z6089Y5xR5t0VRM+9GK2snOhnEXhzGxQUYfiyiffuB4FGuPqnmG4PoZl/QN+hwRXXIzxegoU9iJ57MdLzf8XcuZXCicNRpl1C+NQzrEAHu7ZTWFiYHG+9uAfiP18gy7Kl1XuVwrZNhy1XzONFXr8Gli8lOzubwsLCLhk3q9MI7NizE6FpaEXdCZ9/6aEjB3YiIuXDrMiVioJS+dWRPwS8PkTV/jTyJpxV+qOzMbv1RFTtR967CzO/CH3q7ci7K4iuehXcHvRP1qURWH1xCb7rx8KH7xEt6Utw7l/JHTgMo6AI3lpBVlYWcklfjPwipE0fEXjxY+gzAEkIHA9a31syN3xoPTh270QIgbvfqZYZv2sHHo8Hvag74sBXOP6+MGNbqfLULFubsf7UiZ1JZs+4SdbN1CDwfQTG/TMwC4owt3yM0afMiqCRct88qxtGc6zp+Ofb8Hg8CCHIy8vD0aMkjahJE7q0DPHFVhRFwezeG9PtQd+5Dfc/Fx+WXPrpQxEHvsLpdHbpiJWdJplr/fvE+52K7nITOXMEWq9S5NpqhKFhGiYYVpQNDL3DD9ZntAiajw4abg9aj94Y/lyQJJwb1h25Q6a0DLHhw+SkD0+fSejyqagL5xIDzNJ+iDWrkCq2oQPG5VNRnnwEvv9DNMB8eSmOvLxkfdXLN+NetYL8OybRcOeDaAXdqCvpb5H9kitQt66n7oEnULZtRqs6AL1KEbdNQtq6kfjCF61KtqzHnHoLomI7DoeD6AWXWtr45aXIeXnoJX2RPl5L7L3dKKteSW8rEKDQNC1NNvBs9J6lyBnqT10uZJI5tP0z6+ZdD1G06Hc0zF2CdnI//I/Ops7twXj3deQfX4U+/Ad4Th2MWj6E+lnz8f1lHvKendQBDD4L0+Wk8sHF5Pz252hF3RH7v0RuRS4jvxt4fbgcDuqaP9VqvryUwIcHcLfqX3ty5U8YTlVBEebWjV8r7G3XIvAxisihVmzDs+JZAhOvx/TloJX0RTu5zGpL1yzyanHrisctInfGvmQhQJJBlnGtX4Prw3eOuE29VylmWTnaxClUAlJNFY6li4g9ci9+n4+GnqXIexejrn/fCiBXXUnsvttw/P4JpD0VGICSOOMMZL38N4KTbyE0fjJSTRWuuf9NtLQ/NIUwL7yUmiuuR9m2GXHrVai7tqPvqUB/+BmMphDK1k3Ee5XCru0YJX0Rn3+GoijoJ5Ugqiut71T16mPFmt7wAQ4hCE25Nb2t/+yA5hA+8sZ1yO3ULxcUHFzmFX9HuWIq8WkzqJw2A3lvBcp//4zGM4ZboXIrtuH72/9S/8vfEVr+CSHAtWwxgT/cg9/nw3Hp1cSnzaCxOb1+0TwcI0ahjR6P2LcH/vzb5G/gXrWC0PjJBEdPsMZmTwUmkPXy0q8tV23/wZbPoGI7DkXp0nvj28TEcrvd6TGCO/q1Qe9+NP1gLFq/0yxTLkHghAZO1cLH0tmV8h1iKVCP69/v49y4Dil0dK8kqqur05wdsiynxWCqqqrC7/fjdDqpqqpClmXy8vIIh8NEo1FyW4WxiUQiybhasiwjz1mE3mcAxsTvIUkSuq6jqip+vx8hBHV1dWiahhACVVWJRqMUFhZSW1ubjMGV2pZpmlRXV5Obm4umaWlteb3eNiFs26v/YDIn6gkEAsnvHimKgt/vR9M0QqEQeXl5aJpGY2Njct2d+nWI1LKJ9ESaz+dLC8oXDoeTsbpUVcUwDHJzcw9LLoDa2lpyc3O7lAkdjUbTYmJ1OoFtHB3q//Qi5v4vkWdMSk40G98e2AT+BqCxsRFZlttEibTx7SOwHZHjBISteW0kYG+ltGHDJrANGzaOO4FNO5SMDRsntgY27MDmNmx0SWTiZhsCJ97x2bBho2sh9dBIuwSOx+MZvxZvw4aN46t9dV1vo1wlSPssLEDa6RIbNmwcf/LGYrHkWfEEiYUQcQlYn+q8StyMxWJomoZhGLZzy4aNToZpmkniJrZ5SpKEJElJjjocar1imuYzpmkON5tPnSRILMsymqahaZoVOcImsQ0bnQ4hRJK4rY9O+ny+CqGqqupyuT6VZblv6tGpBGkNw7A90zZsHEcCJ0icaj47HGpdv379VyiGYcSEEBdKkvSBYRhFyU3SKfa27dSyYeP4kzgBVVVrS0pOflOSpAqROMRQXj6wW2Njw19DodBQTdNysfdJ27DRlUisqapa5/X6KoqKum2XJKkCmPf/BwA1pTpnjv1U+AAAAABJRU5ErkJggg==' button_friend_bomber = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACDbSURBVHja7J15mBTV1f8/t6q6eu+ZYVYQBmfYRFlEBcUoLgSN4BIX3CNq/L2+RjHRxGh81RhjjHEhMWo0iaiJJmowmqio0YgbAURZBFmVGWSRYfal967l90d113TP9MAgCEOs7/P0w3Dr3lN3O/ece+qec4WiKKShAldIknSxEGKUECKIAwcO+go6gE9M03zaNM3HDMNIAog0Ax8ghHhNluXRsiwjyzJCCIQQTrc5cNBHYJompmkCfCaENDkajWwSiqKoQohFiqKMc7lcyLKMJEkO8zpw0EeZ2DAMJEmqGzRo8FhZkqSrFEW5XFVVFEWxpa8DBw76HoQQSJKEaZoBIcQYoarqQpfLdZSqqsiynJPR4/HgTqc7LO3AwV6UtICu6yQSCeKJREZ1zoGiKA3C7XYn3G636nK5bMkrSRIFoRCSJJFMJtE0Dd0wnF514GBvSts0L0qSRCwex+jOg7oihFCzDVZCCApCIYQQRCIRjDyc78CBg70khQ0D3TBwKQqJZLJrFlnKMG0GXo8HSZKIRqMO8zpw0IeYOb33zVWju2Z0u90kk8l9zrzJgVXERh5KcmAVuj+I0DRcDdvwbFiNd/UyRDKRb4dPfOghxEaMJlUxCMPjRUokcNV/gXf1Uty16xBaypkNDvZLSEKgmWaOwBUej8f0eDwoioIQgqKiIiKRSN5N895R/CXaTziVyKETMV2qzZjZ/6pbail8fQ5Kwza7mOEP0jb5DOLDx2BmjHFdynnXLCf01j+RO1qd2eBg/5PCpkksFsv5UiQrinK7oij2t1+v10uyu66919B20plEx07EdLlwb1xP6L3XCH4wD9+qpUjJOKmKgejFZSQrh+CuXYcUi2LKCi1nXUZ8+GiQZbxrlhF691UCi9/B++knIAR6STmp/oMwQkWomzcg5ZPgDhz0YQghSCQSOec0lDxsbv32ARKVQ4gddCimy4Vv+UJC815GSsTs5+qmz3Bt20zb1PNJ9a8kNmYCwbdfIXr4MSQHVYMsE3rzRfxL5iNSnYuQ+7PVdLS3EJ74TWKjx+P+dBW+FYvBdCzrDvZztbovVSZRPRLT7UVKxAksmpfDvBl4V36IumUDKAqJoYdg+PwkDxyG6Qugbv0c75plOcybgX/BWygtDaAoJKuGY3h9zug7cBh4T8Lw+jAVGSnSjkj1bGySIx0gK5heP4Y/hOELguJCjrQjNC1/Q+NRpEQcFBdGINS5T3bgwGHgPQO5rQWh62glFegFRT3m0wYMBpeKHOlAbmtGjnaAqpI6cBiGx5u/TGl/9OJyUFwobS2ONdqBw8B7Gt61y5HiUZAV2qeeR6p/ZaclGTBdLtrOnEGyagQoCp7VSxHJBJ7Vy5DiMbSKQXScci56Yb9cye4P0n7GxWgDDwRZxv3pSqRY1Bl9B/s9un1GKiwsJBwO77MKRccdTfvJ52AGQ0jxGJ51K1C2b8XwBUiMPoLUAYNBUvB+9B6h5x9HinQA0H7mpUSPOQlTdaPUf4F79TLkxu3o/YqJjzkSvaQcEATnPoP/7VcQibgz+g72O0QiETJfjfokAwPEDzmMjilnoQ2oBJcKspyWxAKRSuJ7/18EXp+DFIvkNm7y6UQmfxu9X0laZJtgGGCaSB1tBOc+g3fxu4hkAr2wmNSgakyvD7l+G66tG/Mavxw42L8YOBQiHIns84oaPj/J4aNJVo9ELypGJJO4vtiIe/UylO1bLcbMA71fKYmDD7P2w/4gUqQd9bM1uFcsRoqGSQ4ZSeyoE4iPHo8RKLA+JaVSuFctIfSPP6M01TuzxEHfZeBodP9g4D26GISKiB12NLEJx5OqHGJJdECp24LU0Uaq/yBMSca34N8EX59jq+UOHPR1Blb6DJN5fOiF/azjk2l1GUlYfshpQ5aJIJ2Adbw783eXjT2ArqEXlxE/9CgSo47A8PpBCEQijrr2Y7wfvod75YdI0TBt515B9OgpJA4eh2/Bm7vFwLGLrqb16lt2mMf/xouEbv/eTmkUPnwn3r88vNfGIPyju+k4a8YO35s69hQaf/V43mfylloC817B9+hde3XuZOq0s379b0SfYODIhOOIjp2IVlYBLjcoCigucLmsf2UZhGQxctdoIZm0nqKIpFVtZdtmPEsX4F06H2XbFjB0ALTyA9ArBoEsI8UiCF3/6tub0hAdHQSDO44b2JpIIuJxPB7PXh2PL/tefWAVbZfMJK4b9Pvj3Xt/HvWyX/+rGdjIkm17A+0nnUUsffZZaBpSNGoxbIaJFQVkBSQpl1mzj3tmmDcrzZQVpHgUV+06PEsXoK5ZbnswGR4viYMPI37k8SQOPgzT5QJNw7vg30hN9Xum/c/Nhp9c0eNj0+/v8T2evzxM4ez7aW1txSws3GvjYXb529xRnrlzYOa5uQ9vvh+uuJ7EaRcQeeA2fD5fn6m3I4G/CtVnQCXxNAN51iwnMP9fyO0tWdJUdNGQ80hZ04B8UlOSLKtylrFLG1BJ/IhJxCdMQqsY1LkQGAbexf/Gs/JDhK7tsfYFg0H8fv8OVdbwWTMovvFyWn78K4ziUnxvvIj66SpbhfZkqbLtt/+O6Eln2v8PvPAnAvfd1I1e4IU/ER91ONrwUdYgr/+EgtmzcL3/Wqe0HDWetqtuJjnuKAB8b7yIFG7fpfb5/f5caff4vdSffCZGcRmRSCSHgcM/upvIKedgeq3+UJctouCRu5A/+dBWg5t+9Ti+N15EqdtCx/TLMb1+lPWfUHLpFIz+lTT/crbdpq5tzyB5/Z3UXfaDHtudqUv0uKkYxaV2XQrv/D7Stk05dSl8+E7CU76NNnwU8pZaSs892mHgnL3eqPEYbg9CSxGY/zpKQ92XW4G9PkwhdXfCUD0YXh+ptOU5efDhmG43CIEUbsfz4XukBlWTGjKSVPVBGIECpI62vd4PTVffAunJFN1Ui6bptipbmFZlG59805689kQ8awbx0v6U3DijW3o2tOGjaP7x3fSb9xIulwujfyVNv5xtT2CA6ElnIm2u3a12RP/3ZsySMqQ1H+e4ozY//KK9UNiMNu4oGh54hn7Xno+66qNOGpVDIGuR0oaPov7WBxGjD0cfWJXTxtSWjRQ9+2gn0dGHk6qcnlO26fYHKZx5Hp7VS/IugnZdfvMspdOPso1DAK2nXQiV1daCt2E9TU1NFBcX9ykG3mcnsYxAiMTQQ0BW8Kxbgdy+64xjulTavjOTxpvup+mm+2i6Mf276X6afjKLxpt/TdOtv6X1/91I4tCJmKqKa9NnBJ/9PcU/u4bQUw/i//c/kDra0AYPJXnQGJD20Bnp875Lx8ft1C3YlvML/yjP3tAXQLnkJKgWcNcPkUR3Sa0NH4VYuxIunGzlO3EErF2BduxJNH/rvC6cFIFZt1n5LpwMjfWYxWW0TLvAenzR9zCKSxFrV1h0qgU8NgtjUFXv2zdtOpGV4Zy2tV8yE9FYDz++AlW1fLnjF11NctxRiKb6zjql647XT8v//gQ9W4M6aAzynMdz6m6ccg6mSWcfzZ0DQGLsUcTjWQdyKquRXnveylMt7He0XTITXddJHXtK50KVqUuanjmoiqbrf5nbxspq5N/81Mpz2bdwuVx9TgLvMwaOjToCwx8AScK7cjEiGc/dz/bGaFJSTvKgMeil/dFLKtBLK9DL+nf+Kg7ACBQgd7Tie/91+s26mX53XY//jReQm7YD4F62EKVuM0gS8fGT0IvLvlpLb0oj0vUz3VsvYy6cR2lpKRUVFXi6OFrERx2OiEUwp45BXTrfyhdvp/TmKyAWIXncKbk+3C8/i/S7X1BYWEjFxtX43rVUSCNURDKZJDZhkkXve9NRv9hIWVkZFY/fi/L+G7u/MHv9iFOnEwqFrLofakle808PIT9yl1WneDtll05BNNVjjhxLR0eW1X/tCvQbv0swGKRi42pcm2ssun+8H/HBO5SWllL6z6fSe4hgbruXLMC4ejp+v5+KigoqLj/ZescRxxCJREgceZxNy/X7u626VFRQ8YtrkTbXop94au7YrF2B/ts77HyZNn3tVWjD6yd+0FhM1Y26pRalbguYJolhhxA54TTcaz/Gt2he/rA5OSI4fdJKCHzvzMWzbCHommXwwjJ2iXgUuWk7UjQCpklqyEjCZ1yMq2YdvjdfRIp04F6xmFTVCJIHj0MbeCByVqSPr8SI1dVK2tGGz+fLCeub01/F5dbescYkCTR0eS7K+xOPxztX462f4/f7bStytkQ3DAOjuAwatyNt+ozCkhJbbfTVrqP92JN61758Rqxp58MNv0D/nx+TmPcy3sZtGL6A9eyV5wgGg511kiRcm2pIjjuK5JQzsS0FG9ahqqptO7Cr/tkagsEgsixjpBffTHvIyuPxeHL25Zl3xCsGo5YfYCXe8RCpOx6itZtUiRCNRlEz/9++DVVV9/pXgD7PwPGRh6IVl1vS9+MPEAmLUePjjiY5fDR6WX8rvbcMrOsodZtx1azdqZdRfPwkEqPHow2swrNkPlKkA8/i94h94yS0gQcSP+JY3MsW7hUjVqd1qnWHwfTNnVhzTV8ATdM6Jx70uBhkd52SvoXjy6KbEWvJO7TPe4XopdfSfvHVuGfdnGuSUNX8C5RhomUxYl5VtW7LTtvUY1nAMHT0zGLSE7x+zMHDs9SldrLuDuuT2CcqdGzMBEyPF6WxDvenn9iWX2GaoCjWv735GGCakEqBrmFKcu/Uby1lWa113TZ6yY11FtPqBvEjjtk3A7EDRpI311r72syerevv+CG7FMNM3lwLJeVw4PDcrqkYuPsSIS3uTRNisRhSNH2u/tTzug9F5RCIRWDus72ivdMbQ4aOzPsO0VQPG9ej1qyzEm+7pse+NGrWYGTNvb5+S4mUZ6nqDKvzFf30wmKQJNTNtZaUzTwTIq3+0nt6hg6a1vt6G4YttbPTXTVrkTpaMN3e3WxflwVmRz96ypub7vlkCfj8iFc/puzQCVSUl1NRXo7vkRegxsT3yAsU9+vXMz3y09Me+Ct6+UAwTaJX3pxrne1NnbvkSx17CpETT7XSVy2z3rVskfX/S64hfOHVYJoYFZU0PvmmZUj7fAOSJKF0XcB22Ec9zObDjyZ2ywPd3sGqZciyjGfxu1a+K64ndPYldj+GfvpbxKow8ns1VJSXI3X9XPkV88Mu/fqCCq3UbyMZLCB+0Fj8C95Ezrj2SVLniatemaHNNCPuQmwruzNyj6wkx4zHCBYiNTf0uVU2cO+NRMdPwjhoDPUvfJArlZrqif7qJkQ43Ovrb7LpNbz4Yedqvrm295boadOJTJtOvlPzYu1KzKcfxlVUhPqXh1COnox22ESi195G9Nrbcvac5h3X4dpTauqmGrTpl1E3/bKc/jFvvxa3quJ671XU+W+SPGYK7ff+ia5fvY0/zqKpuZkQ+w+6SeDMtP4qf74l7yMl4hgFRUQPOwZDVdPPhH3iqre0MHRb+vYuv2EZunTdXswTw0aRGDEGDAPPgrd2u332WrEbebuml5470fpEko0lCzBnXoC8eQM+n2+X6BV//3ykpQtyjG7Ggnm9qnuPiEasTzJTx6CqKq70uBZffSbKnCes51l157unIy1+h1Ao1I1uvneZO0gHYOUS5L89nmNFzvSPPxDABIpu+I5Vl8b6nHzMug3zqYcIpPOxi+O4t37dFsuu3kiBQIBo9CuOViHJtJ5/JYlRhyPFIvT73S+Qm7bTftH3iB37LZQvNlH0wK1IbS073s6WVtB66XXoJRUE5z6Ld+FbO/XpDZ9+EZEpZyK3NlH48M9R6rbQfsm1xCadgohFKPrNrbg2rNk9I108TltbG4FAYKdGrEgkQjgcpqCgIMfamaHRNT0cDud86vB4PAQCAdvA0xO9fOmGYdDR0WF/Sw0EAvY7upbPRiqVorm5uce9vNfrtWl1bWs0GrUtx13rnqHr9/tzyre1tRGPxyktLbVtBYZh0NDQgMfjoaCgIKesEML2aVdVlVAo1M0AFolEiMVi9jdoVVXxer12m3uqy75GLBbrA95Iho5v8Tukho7ECBURHzsB/7yX7U8/vVehsVRoQ6fXJ2B13TJ8aRoilUTrP4jksEPANPH+503kui273TyPx9PrTw9+vz8vk/dEIxAI7HBC9UQvX7okSRQUFFBQUNAt784sveXl5V/Kar0j2j3RzVdHSZJy8nYtu7M2fNm6OFbozCeFz1ajbN4IQhD7xhRMrw9h6FkMvAv74F2JY20atuFLaCniR56AXtofkUriXr7Q8QV2sF9hnwZ2933wNqnqEeglFSRGT+iUpqKX9cg8FyK9SehFmbQVWupoJTWwmsTIsSAEnkXzULZs3GdB7R042DMMvBfhXrUE19ZakqFxhE89H2EYILt6L32/lPpuIJIJjFAh4annWV5Juobng3f2iSODAwd7lIH3tj9l4JVnaCsuRx8wGFTVVqG71kMvLEZKxBHxaF4p2c3aqrgwggVIHa05wd5Nw7SidQQLoZ8VMM//8jMotetxZK8DRwLvagU211L4+18SPf5UEkcej9GvNM3EnXlS1QfRfuH3EIkYBU/MQm7sPAvbk8ErctqFxI48Ht9bL+F773VE9jUt6TKuDWvwzf8X6qqlTkRKB/sl+kRgd7mhjuCcx6zjjGnnhGxoBwzGKChE6z8IPdTlxoYeDF6pwUMxVTda/0GYXc7gmrKC3NpE8PnZuJcvcpjXgcPAewQ9HJUTumar1iInlA6doXa6QKSSVn5D7x5+x46vtWea3/znt6hftJ3oVZ3B7MwBg2l4u4b6RdsxBwzebyZEw9s1xC++pld5k6dfTP2i7d3aaA4YTP2i7aSOm7rb9Wl55J90/OyRPtlX+ugJND2/aJ+Obx9jYKPzl8uOPTBcmnHzMXFGMgspV0JnzltL0i75Hu9wINPHD8MeH7GYpapHL7racgGMRmhY/uG+uzB9Fyek6fXTsfAdEomd35/ccck1uJ9/EqpFThvFF59TemQZLXOeRNN2L0SRXjmE1NZN+/yygXxIjZ2AUVxGyyfL9tn49j0JnDnb3LU/RA9MJ8mdDhBdGTizl84uIonOM9d7osoDBluMuqkGKgZimibmgMFEp55jRX5Y8zFCCGLfu9WWyNnSOnrVLXZaZjU3Bwym6flF3fJmI185gMgN9+Sk66Mn2JK15ZF/5n1/pl6tP/2t5ei/cB6p79+Rl34GTc8vQh9YReKcS3F//3aoMWl6dRX1i7YTueEemv/+AWVlZRhnXUrj3E+oX7SdhrdrSJ5+sS1Zm55fZD9ru+9piymOm2q3ven5RRjFpRgfL845SRW54R67XPOf37IlYaa+kRvuyUur4e0aUsdNJXLDPTQ9vyinLZky+fov33gkT7+Y9mtuxfT60Z55F+34aTnt3BPax/7HwPY55XzOCaI7owphRbDMK00z+aXuC4HcA9N/CSROPM36Y+HbiPIB6LpO9KKrkTfVYtRvQ9r+Ba5jphCeMRP3ff+HGCLBkgWEjzyOaMkAwjNm4vn5D+DEEej9ymiadgEdV96EiERQhrvgudmEp51nS/bMopGvXPSq/yN+5CR8l50C1QJ9+zZazpxB4thTrIm2fhXukR5Yu4LwkccR/sbJnfWafBC6xw+N2xFVI4heem03+tlSpvBn11p/nDiCxGdrreH790vIwxQiHh/UfkrzsLG0XXcH3kfuQh6mYL70LK0XX00ymUQ7aDRmOIw0cQDS3x4nccwU2vtV0Pbje3B98C7KcBf6diuwgrFySY6fb7J6BCYm8pSD0b41mua7Z6OmyzDzAiJnzyBS3L8bLdPrp/WjhSTLB1j1Sx8H1QdWEd9UQ+uVN+ftv/Y846E/90eUZQutwAbTv0HrNbehvjPXaufnG2iZdv5uax/7IQNnXAP1/BI1r6osWVK4WzqdqnJOi7Py7wENWu9faUnajjYoLUcbNITo1HNQ/vYYHDwWqW4LypL5eP/+JPFJpyDe2QCHH43UUEdC0xCxCPFbf4PrjocIzJmNedcP0Tva0EaMQn9rPe4DKvHPOKnb+fR85aInnoY+sIroE69BjQmHHw3BELGBVZZk/ckVuFwuXLEoUu164t88HWXZQuJPPEBBy3bcaz+GlUuRFSUv/ez4U6mxExCxCGxcT3DEwdbfP7kCr9eLPPYIRN1WzAuvxPT6idzya/RPNTjvuwh/gHDpAZheP+bv7rLOTssy0uZa4t88A9PnI3XTFdY56U+WIDbXwsb1ORLYKC1HmveK9e7r78AsLiN29qVo61Pw4DOWJL1kZl5aZu06jAOHIuq24nK5bEmpv/ws2jdPz9t/env+8TAqh6Js32pFU4lFiJ99KeYry/CvWob6P6fnLLpfEwZO+/fqPZ1t7nJOWoh03Gi5ZwksddGhpT0rgbXyAYiGOuQtGzGLy9Avvw55Uy2Jd14Hrx99+Qck7/szySOPQ5YErl/fBtEIxhebUTZvoOT4Knh1DqmScsIzrkX9/k8puu8mPD//AWbNehKHHU300Rfpl+XvK774PG85Y1AV8u3X5jqozzgZY0Al0qYahBD4fD6M0nJEuB2qR8Bna3G73aiqinbgUORIB+rW2rz0vV5v7sKVpqkNOwTRWN9Jv7gMc8tGzOrhludPVn3M8eUYE0+wNIlXniUQCGAEgoiGOqSBByJtqsEwDHw+H3rFAUgNdbajTUb70AdWwZbP8Xq9GP0rkdet7O6cD4geaOkDqzDTPsL6oGp7Ieqp/1y3X91tPIpGjctR7/tdMhl5zuMYdV8QOXsGxm/+ulcCzPc9I5au57m4rIuzP3n2tPRkxBI9SHKJPSGCtQOHIjasRa61oj0Y516OtOAt5Ekn25PUGH8sYuE7iO9OQzvzO5Zz/tbPST76D1qemkfZHdfg/sO9lkruC1K/aDseWabwuvOR1q7AjHTQ0tLpmdV239PdyzU2IGIR9BOmUVhYSCDtpF48+VTE0JGI2vW2GqoPrIJVyxGRMPpRx+NyuYhedYs9sROPvJiXfrZhK1k9wqaplQ1A+mSpxRBpQ5jxynM2ff/IsRRNvxSxKkzo+jvwjj7CDmGrKAqpquGIDWsRAozKapRvTCF13FTik062+jZL+mrDDrElZibdqKxGOeMiSg8dj/xeDd5H/o5fUTDz0JImnmiVDxUixk8i8u2L7YWop/6LrYp2H4906B1j5RL06+6k4e0a+j3zKP57bkQ01aO1te4Vw9s+icixw2gZmfPQRp4IFdk3MNj7sSyDVNfIBUKAmb5HyU7P+oy0J6KLDKzC3LIRdel/rHc21pP8+Q8QhxxqT1L3R/PRpl+Gtj6FkpEkrc14/vE02qAq6hdtJzHrKTzPPwl3/RDl/Tdovfl+Wpe2IMoqUH95g+U+ln6n76W/di/39MO4n30MjjuZ1qUtRE89H/d9/0fzvLnoldWYHW0Ws0xKq4zv/QvvXx8Fn5/wig5ik0/tTP/nX/LSF1l9bJSWwxebLYlWOQQz3IaqqrZqbdauI/TsH8DnJzJ3OS2/egL33Dl0/PqnJMr6I9LSENO0rPhbP8fz5G8RjfWk/vwv2q+5DdPrR99cazn8Z6J+HDzOlpiqy4Xv6YcQjfVov36ahhcWIzVsJzXzPIzZs/LSUpf+x5LY199B+J4nrKmxYR0ulwv/32bn7T91/pvdx6O50Rrvv72P7x9PIRrraXhhMZG5y1E21SDfciXSHppjO4rI0c0f2Ov17hXdPe9niTO+Q3ziiShN9RT8/m6kdkvqxI+eTPi8KzG9PgrvvRHXp6usyVYxkLaZt6OXlBOY8xied1+zD2W0XXcnyYPG4v7ofQLP/QGpvdXaG505g+jJZyO3NBB66OcoWzfu/rfThgZCoRBut5uGhgZLperXj2g0SiKRoKioyPaFBctVMB6PU1BQgCRJ1hUq6cHx+/34fL4cP11FUbr5tGqalrdcPB63w7TKskwgEEBVVZqbm/F4PPh8PjRNo6WlhZKSEnRdp729HV3XURQFTdPs9Hz0c77RtrTYPrTZ9BOJBB0dHZSUlKBpmk2/a/tM07RDtTY2NhIMBlFVldbWVjRNs+uT6dsM4vE44XCYkpKS9Lpt2mUA3G63FSQgk37EJPjrW3DhZEKrP8LtdtPW1kYymUSWZYQQdiTMnvov33gANDc3I8syRUVFeeuwp5FIJPrm7YS2qmyvNGZ+Q1ZPn4vo4Rl5jFu74nPcC5SWlub92+fz2ZO+q/9p9v4oMxGzEQwGd7iHUhQlb7me/Iiz99CKotj1VBQl59nO6GejqKgoL323220zXE/0u7Yt+13ZdPOhaxuFEHnLZNLjRx9POBbBXDQPJV2Xrv7FO+u/nsYje7x3Vu+vwR6YHgKn9VTgyzDinmVeB30fnqceJDhxAEKIXoWm3Z/QN4PedjViZZ/Myn5mGlkMnyeCIYCpd6fl+Px+7ZCtFfw3oW9J4IyBR1FypKSZvpwbwHR7Op/Jsn3tgNnlTiMzvdKaHl/OfUc5F4g7cLCfQ1YU5fbMplgIYX0W2AsnSPIK3uIyUlUjMAr6gepGiobRKocQPfUCjCLrVjijfABScyOm10d02gVoBw4DWcYoPwCpvQWh68S+eQbJcRNBcaGXH4BIpZAi7aRGHkr8+GmY/qB1b/CS+YhY1JkFDvYb6Lpu8yp0sUJnDC/7ygptKi7aL7yK5MHjwO2xLvZ2qdZtDbEopsebdRpLdKrEGRfEbOOUaSISMUyX2yqTCRwvBFJHG8E/3oO6aqkzIxzsV+hqhc6RwJZWKude97g3NWjDwL1mOVIsgunzg+pBxGOoq5cTfOpB3Evmg+rG9AcRmoay6TMCLzyJ940XEYaB6Q8hsK5K8b71Ev45s5FbGjEDIVBVpHAH6orFBJ/+Ha7PVjuzwcF+BcMwMAxjxxJYURQMw9gv3N8cOPg6IZlMYppmjgTuZsRKpVK7dWOdAwcOvhrpq+t6t8vWJCCZj9MdOHDQd5g3mUxa57XTPwAhREoClmary5mHyWQSTdMcddqBg30A0zRtxs0c4ZQkKWf/63KprYppmn8xTfMo0zSzORtZltE0DU3TrCgTDhM7cLDXIYSwGTdzbjuDYDBYK1RVVT0ez2pZlodkHzPLMG3G8uXAgYN9w8AZJs5Wn10utWXo0GGvKoZhJIUQkyVJWmwYRlnGgJWtbztGLQcO9j0TZ6CqanNl5YHzJEmqFRk3wlGjRpe3t7f9KRKJHKZpWhF99Zy0AwdfTybWVFVtCQSCtWVl5eslSaoFZv3/AQBJelHN/7uKCgAAAABJRU5ErkJggg==' button_group_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAADJmSURBVHja7L15nNxVme//Pud8l9q6ujvd6SX7ClmAJARlRxKCgCAiiOM2uHFnvOqMOnMdl58641wd+XnnjqMzqOOMjru4oCiuoOxIFgiEAEnIvm+9dy3f9Zz7x6mq7iQsypDQDP28XvVKp6q+p77L+ZzneT7PcoTjOAghMMacAbxVSrlCSjkDyDAu4zIuY0UCYIcx5rdSym94nvdgEAQ4tQ8vEkK8RQhxrlJqrpQSIUTjSANgzPgtHJdxOVEiBOLIdzLAPK21EkIUjTE/0lrf6gDTgPdJKV/tOA5KKUYDuPHvWLo4Y+xLPA9nVh9HiLF2lePyEhbTmJ7mCBxqredqrecKIWZ4nrfVEUK8UQhxnlKK0QCuHyilRB2lkV/wxUlrMNoCTjwPiwFgpKqBeFzGZSzoKEOqNVrrIwAspay/tzSXy/+t8DxvpVLqTNd1qfvDQggcx8H3fRyl6j5yA9QvGHCNQTsuUVsHwcRuZBKjgipGCBDyjxxLY4QiyeWRUYh/YDfeUH/DfBmXcXmhrUxjNS5RHBPH8TFfcRznkAMsVkqhakCVUuIoRSaTwXNdEAKttQXvCz2xtcZ4HlH3NMJJ0/EP7EYmCUbKmvlrRrSy4Zn/r+2ClLR1YPwMThzC8EDNpB4H8Li88D6wqivTmiZu4LAmcRx3OEIIf7TPK6Ukm83ieR5xFBFGEXqMEFgiTUm9DCEgeg/jPLYWVRp87uNFEWmlRDhrHqGQiDiGNB0H8LiMKVFS4joOURwfYwXLuslcB7DnebiuSxzHDfCamjofK6YFWtd819rfaVoziaV9P02tCVI3q9MUjK5p6tr/a+/Zl8FIiZEKkaaQJIxz7uPygk/1uuE5isgaDWAhRCOM1HjDdV2MMYRhSJKmyDFGYNV9YSPAKBdq5FPUNYVo8kzcA7vx9m4nmTiJYNps3L7D+Ns3krS2EZx0Gm7PAbxd2xBhgHEAKa1p7vokEyYidIoMqsjhwXFNPC4v7DwfRWg93Vw8gvmp+8FxkpBqjZTyRbFOGSmJOyZRPfUM4q6pICRxeyfVU5YSTp2JEZK0uY3KojMJp87C+D4I01jmBAYjFWnzBMIZc4kmz0DodHwGjcvYm+1HkclHaOB6+CitUddj2cFvvGpmtdNzgMyGR3AP7QVjUP09ZDetwzl8EGEManiA3ONrcQ7tQ0TRiH2iJAiJqgyjhgdIOrpJlWtNczU+YcZl7AG4bi0fA2CwtDUvBgBrg0gi0BphDO6hfajBPmQUQprg9uxHlQaRUQRpYgH96GpEHCGiEIxBpEmDtBJxiBoeQsQRRjnjM2VcxjSAn1IDH/HhWEydbJyTsL6rENYHxiCiEBVWbTxYKUQUo8J++x1lySmn77Adpn5s7XijFCAQSYwIAnC9sXsPxuWljN4jsHoMifWiuQ4pSXN50uIERBJbFlk5T5EOWbtgYYkqWS0jw8BaGI6DzuVJiy3oTBaExEhhx5GScRp6XF4M8uICsBCIOMLpO0za1Ew0ZQZpc4sNITkeCIE5KrdSGA1SWsY6jvD27UQN9BJPnkEysZOktQM1NIga7LXgd+oLwTiCx2UcwM+v5q0D+MBujFLofJG0qQU8DxFUEUli0yqPNjsEaM9Ht0wAx0W0dxHNPQWEQR0+iLtvJ6rvMCabt6SWHgfvuLyIAWzGqv4RwjLMw4PIJx/H+D5JexdpWwfuri3IyvBT50QbDcol6ZhENHkG8fzFpC1t5FbfSeaJh5HVEiJOSPNNjd8Zs/dgXF66LvCLVwObmlas5TJjkEmMSSLMxG50No+slFB9veC6GKUQ2oBOR1UtCWRQQQwNgHKQQRXV14Ma6oc4QiAQupbN9V/O3xCQxtYqCKo2u2vUR0YpjJfB5PI1Eu7F48KQxMjSMCTxkdclJcZ10fkmSwKOE4DjJnQjbRJAqRHfNNWNCSIAnc2StHWCVIgwQIZVjHLQTUXrG2Ozt0gTVGkIb+eTpIN9CJ2StHXaiWg0aUsbOpO1RNd/ReIA4fqkcxaQdE/DFFvs+YNN+xwaQB3ej9q5xS4wQr448BuFGC9DtPRc0gkToal55MPyMKrvMM62TYjKMMYbb+jywgC4Xiw/VlZQITCej843YVwPTIqsVJDlktWq5WFkUCWeNJ10Yhfu/j2Ig7vRuSbiyTPQuYLVhnW/1mhkGCCHB9CZLHrKzMb1mlzehpyCas2PeI73QEj05JkEl11L+ZLXkkyePvJZkuLs30N25e/IfetGZM/+F4+2ShLSmdMpX/9BgnmnoTu67X2Strgks+kxCl/+DO4jD4Drj6PreCi0o9IqRSaTMb7v4zgOruuS8X3SNCWO4xc2B7pm+sYdkwnnLCDunorO5BA6wRnoxd/+JN72TYgkIWnvJGluJe2aikhi5ECvNVE9HzXUh6hWrJaT1ocWSWzLCR0HRidtCIFIE0RpCOfwARtO+mOxW60Qn7OC4ev+gnTuKVAZJvnZ9zDrH7STvWsyvOHPUO0TcTc+SssNH0QM9CD7DtukEimtRZAaTDaDbipaM7xaQSQjJqtxFCZXwPgZUA6iNIgcLmHyOXSxpWG5iGoZOTyMzmQwxRZEpYyslOy1GxBRbM0YKdCZLKZQfOrrCqukM06m9I6/orr81Yi1v0d/58sYre3xV74Zsexy3Afvo3jjJ/E3PIJRCjk4iPE9a3nUz18KtJ/B5Av2/htjr7FSQsTpES6M8Vx0sRUcB1EpIUtDjVCfiCLQgAKdzWMyWeTQACJOar8DulDE5AqIagVZGrSNG5SDqAa1Tiygc3lwPUS1jAhtlp5RAlNowmQLjYIXWRpEhOEIySnBuB4m14TJZOy9HRqoJQIZe70CdMsEq3z+S3pMkCQJURQhpGzUKIxZE9oISdI5mcqiswhPOoW0uQ38DBhNVC2TTOxG+xkyG9fhHNiLKA+RtncTzZiL7Gu14aJDe1EDvfamN5I3sKEmMzrgVK8R1sigAknynMCLEOjOKVSueTvBigvhp7/AuefXuLfehOjvsYnnnodxXaLlryY45QxKU2dT6DlAdfmrMbkmRBqj27ugtQnnyU14D9xJOm0u0cmnoidNRUgFOkbu3YO34WFE7yFEuUS8cCnxwtNwNm/Ce+xBO2GEIJm3mGj+Itx9O3Efe4h44RKS6XORwwOYTI505ixErBEDvThbNuA+8TDG849Nng9DkhlzqFz2OkzPIZwvfJLMmvtGqrAH+qguXEJ09QoqGx7GWf8QevZ8otPORB3Yg26biO7otpVvPQdxtm/G2boB4giMIe2aSrz4TNLJkxFpbdRKGbVnO96aexDVCsmchUTzF6EG+8FokpknIySIvj7cjetQe3ZQueo6dOdkhElgoB//kVWo3VtJZpxMPG8RojKMjELihYsQqYGhfrwNjyIPHyBaeDrpjDkIEsShw3iPPYTavdXejyQhOuMC4mmzYUK7nR/DQzi7t+NsfATZc5hk7nyiU5YiS8OYbA7dOQmhNdk7fw6HDx4XWtR5OgbavMCmgvGzBHMWUl24FFNshjiGsApKYTJ5wlkLMI6DHOjF270dOTyIHOhrJGy42zaiBvsaWVZHUUzPzPQ9F/AaA1ISLzqLyvmvRO7pQ3/2b+DJJ3CzWbLt7bZBQpKQ3vpdSts3E1x6NWUvQzaoUrruL0nmLkT29ZC2TcRMKpK5+Sc0b95AcMnVlC5/I+m0GVZLZ1ycrVtpuvk/8W7/Cc6mJ6ie/0pKH/kouS99BXfVXZjmVlCK+JwVDPyvT5D/+S00Pf4w1XMupvy29+Hu3gZxTLRkEYQSEQbkf3cr8vMfR1RKx65NxqCVg1ESdjxJum4Nuc4uctkcIqwiH7oH8fPvUZn0Xqot7fhCwqkvY+Az/4J//++JO7rRk6Y0rJT8fbeT/do/4Wx+HD1hIsGyyym/6V0kM6ZA1VhryXXw1q+l+aPbcbc8Qbz0PAb/+tO4u7ch9+0mOP1caPIRlYTCj79O5pffp3TdXxLPmgdNPlQSmj//t+S+/jmiBUsY/NA/4hzeh7v9SSoXXwqR/Y2mH3wNb+0DVC5/PcHLzoOWLPLwME3/dgO5b3we44GeNJ3yn/4F1aXnYvJNoAxUAjIb15P/xufI/PLHRPMWMfB3X0Tt2WHpjsnTII6Qj63FO3zwv9wsYjSN2+AOX1iCKkUkic1JHp1/bTRpoUjSOdlqXa2PLGAQgKNIOiaRtHdhHAeBxO3ZT3blHWTWPYAc6j+q+d0fwbQ+ZztHksyZB76Hvu+30N9HzpEUikWcNLHasvcwzuGDNK36HS3//HEyv70FXS1jkhjd1U5aaEJ9+Qa4ajnBl/9/+s9eQelt1yPSGPdv3gFvXAb/8FESrRl6y7uJTjnD/nSqIYEwDKmEo9wfoxEpVMOIIAwxUQiZHPFpizA7t+C9bjm851rM7h1Ull3O0JVvgWzOMvijH5fjoHoP4+3aDue+AvGP30C//f2Er3mLNX0TQ/G7XyT/hosx//L3hNUAg4EmiOcvQj62FvXm5fCGCzE9h6lcchmVCy7DSEnwytcy/NefQh7ci/vWK+01vuPV8OAq4jkLGXzd9ejWdkgiZBAQzzwZs38P/tsvhfe9FdNzgMolr2X4De8id/9tOG+/FL74j6BTSudfQjhtNqJaAschmTGXJArIXrsc/nQF7NlJ+WXnM/zmP8d/8F78P30lfPaTaMelfOGrCKbPhUKR0p99iOC8i1E7tyDe9Vp4/TL48bcIFixh+Jp3Es6Zh6yUwJOkHZMQj9eu9y0rGFhzP3EcHZfy1BfAhDYNH8VksmjPs5MsihBB1fpmgKwXHQhps6OS2P4tpPWbHAehNTIKGsX96sAelNHgeph8EWO09R2jCOO4z02z/hHLoxGCaNY8W2f85BP4xpApNOEmEcGCJZSWXY4o5CEFEQWYvTsRvYdRd/7cFmHkwNz9a8QP/5N8fy/plGmEF12Jae9EfuVLODd/gywg9+wg7p5M9I73UF52Bc49v7GmfwQ6ikhGk2JpiohSdGTru0kSpFKkD68lvenfyay+D0+CnjKdyoc/S/WKN5L96bdx08Sa6/XL8zOo3dvIfvNfSV91NelZywiH+wnbuoinz0IM9qL27cG941cU9uzArVszMehd2xDfuhFv9X1IQHzlBkqf+jzVS67Bu+NWnF1bUTd/HX3r93Hv+y1+PbrQ2kb5X75NtOB0QuVhosiG+noOktx7O9nV9+A2txAvv5Lw9deSFltx/+0GsuvXYvbsoLrsCtIFSwg7JuGUywgl0ft3k/74m3hr7iMPxE88THTxlUSr78W985dk1j+EkySEr/lTkrmnUJ09H7V/F8HyKzEH92Fu+Bv8lXfhAnLXFionLSA6+0KChUtw+g7ZEx/oQX/7i/ir70UC2lEIv/UEsNAnhH0W6EwGXWghmdiJLhQhjVFDQzg9B2o+aIosDeJv20DS1kkyeVqNcFIgLMkjh/vxN63H3bfLZmBJiXE90tZ2ks5JmFwThFWcwwdQPQctQIw+rgsTgG5ubfTg8n0foSN0UCWdNI3KZX+Cbm2C2FoQdBVwHtsGq++2xJUAfvszZH8vhYyHXnIWySlLSDZuR3//P1CuQ3FCG044TPCbHzG44jVES88jmDEXgmot3C2e2uCodV1pdCX5+Q/g93egikWaMz7Jb39CcM3b0AsXUVUujj7KcHFcZM9BMjd/jXTzE1QufR1p+0R0Nk+8/DXQ1gLliPyisyj88Gs4D9xBGaACrLwDs/JO/JYWcrkc8qavEr7+euLTzyKYNoeWn32Ppt/+jEEvC1OmUWhuxWQypFGFSphg4ogwDHC0hkwG1q3GPLoGKQSF9olUtm8irAJbniDauJ6mCRPI7NlBcnAP6fS5JMq1cWvHhY3rML/7ObJYpNDSQungPmJXwj23Ee3cSsaVZJXAHNhtydGJXUQ6RRdzqAc3ke7cij/vVDLFIu6hfUTbNhKvuJBw+lz0wb0212jfTswDI9droXV8mkKeWA2sNUhFPHkGwfwlxN1TLYuapsjyMO6+neQeewinrwejE/xN6xFJQuVlFxDNOsnmMxuN03eYzCMPkHnkAZuIgcE4LuGpLyNcsIS4vRO8DMQRTs8BvE3ryax/EFkeOn5auGbZizi2+M34DbDofBP+Q/dTfPdVDJZKmCSF9g74wb0kw0OUhoZtDbYB/Awe4ChJ1c+QtDTB1g3Ig3vJt7UhhCB1fdxd26ybMHs+STZXs1aexlU5OiwXRaAkGSCfy5GmCcb18A7tIzh1EUFbF/nBXhTGEn5CWN87iVBxRH7jI7gHdhFEEYnjWfPwje+CV1xKdcUVaATF7Zss2x+DrJTxsAua1hpyPrI0BBqiNLHr2eln4736zQiglC8QnroU3TUV4zqgUzv5Tc3FiSNcKfAzHrpm3luzTeFkc0glMa60999odJqS1u+F46KAXCaDTrXlSDQY5eHn8zhpCFEAUQRpivF8ks4p4EJ6zkXw6/UEShFKiUgT0uYitEPa1gW5ZoS2LYoVkMlkGm1hT0gc+PiSVwaEJJo6k+rp5xLOmofO5KxW1TbJImnrAM8nv/puVM+BWt2vRiBAubVkiFr5X61uWYQBRkC45Gwq519CPGk6xvNq8YGUtL2TtLUN47jkHvm9DSkdLyvDGPxHHyRYtgzOWoa4+WvIvn6Y2A5DA/h7dtAc2X5bZvcWhuIYEBZADVZCIqk1V0gTRJxivCzCz+IqZedwFGAmdFh2NAxIqhWkrvn6o9qPWlA/RcN6RyHiGAUo10NHISKoYHIFG77q78HEMUZ5jXF0xySqr3sHadcUcr+4ieyq+5CORCfaguNH/0F0aB/BX32S4Izz8Lqn2dJMQCSxNTmltFxfJQTHsxGBnoNUTjkd8T8/hp55EvT3EEcR+tG1pA+vgquvO9Z31BopGOkYU/9cCISUCDm64cNRsdOahaKUsuc96n1Z74k+uibe1BYIF9i6CX75A7SfbSwk9BwAPYR+Yiu6c5LVD8f2cP5vkImlDcb3CecsIJi3yMbXomCEoPI89MRuKtks7p7teEIQTp9NNOcUaxK7ngWwUqQT2olOWYpubraadaif6tkXEc1fbB9WGFoSRoDJFYhnngxI/F1bcPbuOG6uATrFv+83OCteQ7L0LJILLiXO3oNTHkIM9KJyeXITC+iOSSTTZoPvI6LgGMVpAKMsaeRu2Uw0dTriwlfBw/ciogCyecLzX4meNBk2PAb792DmnWZxWmy2MdI4Ip3QSTxtNkaJI60gpWD2PEx7Bwz2geuRnHQK8cyTkPv2og/txSQx4I+ynCTR6edRfd3lmKYW8v09+D0HR7YAObSX4X07iYaH0EFAGAS4SQwZMLNOxnR0QlBFANH8U0lnzoS9u5BDgwRXvB792kuQv74Ped9tyDjGe2wtcXMryWuvO1arNKrOzDN5M8+y1pqnfK/Rf0rUas6rVeThvYihGHP4AOKrn8OplBq/njS3YnLNqMHDyPaJpPKZf+P5lhPHQhuD8XzSljYLxjgcWT3rL60xhRbiybOoLDqT8nmXEix6OcmEDktcSQnKxRRbiBYuoXLxa6lcdBXhknNtfE4qC1xZu/nIRgdL3TKBtND8hz/h5xADxhjktifI3vJNRBRT/bMPU/rAp0hmnIQYHoZKmaSljaHrP8jAez4GHnBwX22xEUexvi7q0D68daugu4i+9u222CJOSOcspHLRq9HteXj0QdT+PShjrCk4Yy50TwGtSU45g2DJWRhXjNIoNhXVXHwV+lXXIoZK6OZWqq+7Ht3ZiXh8LcKAdFSDyTa+j9q1Ff9X34f9AZVLXsvQ694JYYCJY3S1QnzyIuIr34iZPtn6qBsfJRUS8qDPXk5y+RssURkGDH7g70nmTIcH70P6WcSseZCCeeAOxL/8b9wffhU9ZSbm3R8Fp/YMX4jAplI2EeaJh3F27IBzliM/8n9o7eykDWhecQXul34Mv15H4Zo/pagTTnQrtacmsY4TmSWiENXfa821fLFWbEANcMqW+lXLhHPmQzZL0t5VCyMZUDUz2nHBcxsZSOHis0hmnoRpaQO3zn1G1AsYkBLS1LbbGR6sXRvHb0LEEdk7foYpD1G65HUEi8/GzJiD7D9ozf9iC8mUmehd25A3/hP6Vz9CBAGmtR1agEyuAWDZ34P/6x8QdXcRvfwCBm/8EbJaQXdNQmebkD/5Mekt30KmCdldW0nvf4Bo6TkEX/sp6XAZEKjSMEkb0NI2skhEITgu4dVvpfeK12BybeiuqThrHiD50g34URWRzx2RumeUg7/mXgpf+gylN/9Pgsuupf/0s0DYRVN3d2GEj/OLnxF//6vIMMDJ5iC0vmn0J9fTf/m1gCE95Qzk7bejv/Nl1PYncR9fS/XQCvSb/gfpKYsJvQyiUMQxmtQDlp6NyOZtSm2HB61t1opIbbaeyRWgEyi2jFqkUls+2umBn8EYg+5Q0Np+BDdgCkVMJ1Ao1ho/pCAUpnkCdGahqYjas5PCl2+g/88/THrlmxhedAYyqKCnzYHWiciff59wzX1Es+dDF9DWcXxI4acYSzmO83eO4yBr6VmO49iL1fp5T6UUaYKstb1J80VMNlfTrLWWN4f2ktm83jLJU2aNVLUoaX0m17XvOa49TghMsQXdVMRftwp1aL9Nbctk7YIgBSKo4G3ZQHb13bjbNyKS5DjbNArVdwi5bg0EVXQYEGdzJM2tJI5PEgToh+5H3nYL7s3fQG55gqznoWbOIRksY37xU7wDe/CbmiAKEYcPIA4cJPV84tY2EscjrQzBvb9DffvfUI+uIuu6ZHUCfT0kjkvS3EyiJcnWDbh3/woqDvqBO6w2P/1skrNfgXlkNWbLBpKTF5BUQvTqe3B++l249zfkMj6ud2Qus3E95EAvzrZNJFpjqhXi7qkk0iFxfdKwjLn/Tpyb/gO59n6yJkUsPZvgFZcjHn3Y/tbkaSSOB6vuQn7rK8hVd5INq/hRFRNq0kIe3daJdjzM9k04d/wC+gbQ+3YhfvtTvEwG/Akkq+5BPbKSTBwhMll0oUiSZNB334a7cR2eoxBak06fTbKvF27/KW4UoFqnk6y+G7nyLvKFgt26pLWdpCLQd/4Kb8dmXJMisjnSYivJgV70vbeR2baJ7N5tpKnGGE1UbCHO5Ej6ejH33oa88VOwdROqaxKyaRLpynsR9/yGfKHwPBp4doeUtIbLxmt0LrRSqsEUHq9caJEkxJOnUz7vlYQLl1pNKgSyNEx25R34mx+jeu7FVnNlclZTKtWI/TYA7NRMaiFRvQdp+vfPQqqpLr+CaN4im4+axDh7d5C7/Raya+62TOoJliAICIKAOI6PIDTqe09ls9nGhnKDg4NUKhWampooFAqN7xtjiKKIcrl8xB45ruuSz+dtuKr2gMMwpFwuk9QWKs/z8DyPcrlMzhj4wCepfvAT6C/8H9wb/gbp+4Rh2Bgvk8mQzWaf8dlrralUKsRxTBRFR3zmeZ49p/IQ1Tf+OYOfuRH5za+iPnw9wvMa33ccp3HuUkqSJKFcLlOtVo+4Pt/3CYIAYwwtLS0YYxgcHMRxHJqbmxudVMMwZGBggHw+Tz6fb2wTNDAwQBiGNDc3o5RiYGAAIQTt7e2N+1utVhkaGqJQKNgwV418KpVKVKtVisUi2WwWYwyVSoVqtdq4v6OvOZvNEgQBAwMDSClpb29/3vzgei50HMcNZXtic6G1tmmEzS0k7Z01cFJjlgW4LrrYTDx1FmlbjWF1aiaxkjXzWY2AV7k101tg/Azp1FlQLmMyOctSK2vaGddDT+gg6ZyC2rsTmSYjYYfjHfFOYjyd4AgbzDd1ykFIpOMgPa/Ri9sEVXI6xWsq4GQyIw++1j3TS2KkFGjPGWGrPR/Hde3xWtvfS2OUEmhpFzjpuEid4GYzOEGVSqGI7gKyORwgLwVZz7Hn5LqoTOaZF26jkXFEFoMvGTkfA6jaOTkOspYOSxdQaMYBsvXvC2mv3fMQdRcnDsmh8evj1e+RSfEcicnkUBiIAoq+h/AzIzsVxDFeHNKSy+LUz79+T9FkCgVcKRFhlaLnQiY7cn/jCD+JacnncGoLodEaEYXkjLahJc+zTeSikIxOcZW097d+npksjutikhgnDGj2XWvynwAS64Rq4KRjMsGCxcTTZpO2d6Fb2jCZDEgHYTSq7xAijkkndtuKmnqlkBT2b+WA59W0b10DA2GIu+NJRKVM0tZpjxVAnCAqJZxD+1D7duKvW4X/+FqbVvesWdHPn+lz9F7LoxnPo7fKqK/+Rz/8o7fAeaYxRn+v/rkQAlEeJlhxFaWLXkX0i5+Q/fXNTOjubhz/VOM923UdPUcax5eHic5cRumaNxPdcTu5H3+D5o6OY85r9G8ds7H8qHO3gQxT28q5sVfus967eqipPlb9/3/IsfXrG32ez/YcRn/2fIaQnk4DnxgAG01anEDlnBVUl5yFKbTYJbuuSb26f+vb9+oZ2/Xfl9L6tMqx33Oc2pYqclSMGUhSGwet9YtuhKiUXeXdJx8jf8s38Teus6Gml9rWKUIgk4Tq4ADDcYKfy9Hc3Hx8YpVCIJKEaHiQgTAmm89TeB59wpea/GEmdC0U8nyzZyKOiWaeRDh7nm0cp9MRACpV823rprEzwh6LUdEuWcuBrpvH9eNrW4Xa6HzNVDcOiFE7K9T2D06mzyVYeh7qwF6cg/tekm1fDAYvm6UlKxCeZ5MWjuN9cPwMLV4G6fvjbXaer3DlCU/k0Cnx5Bm2DUt9kZC24brVvLXwkFPbrMxx7OeNihqOBHC99Ws92V6aRtG1zZeuARkxkv9spA3hzFtEuvIuVM8Bu52olC8h9Bq0VIhsDq9mGmpjjo8jYQxaSkQ2hz9GNoh/1lMWws4Jndbm4tifG0fuTsjxqwc22fwImSVHadI6w1xnmZU7AtDGamNGtHX9+3Ut3Yi3jbrZWh6ZuFAz40kSTFPRdloYqw/HjFqMGg9GPq+TyRhDOrrL/3G9nCN/64Tfy1oW2R/kLmmNyWRteWoSW3dsrO3M+UwAPu4sdMOfHV3bO8q/rYP4GACPmsT1F+LYmytrjLbQIPVRoDBHzdQx6P/W8mttJ8ukwQUY18cUmsZN0D/WBw8DCAPLOvvZZ61GE1FIOmUmunMyas92xL6dtUjIi0QDn5D1ow5aoY70aY/QwkeZ0PVj6+AV6igTe1TCev1l5FMA2Nhjj7veeY5Stdk94QWXkixYjMi4MDCEu/pusj/9tm2XG9cJOsBz0E0tdsO2WnWPfaoSXSgitEYMD9VIPF3LVKNR8GDyeUwmhxgeQITxSI+o5taRiSslolJGlIdHxlcC3dQ8sodUzU2SpWFbxSOxaZ2+b/tUDQzYTDpj0MUWZKVsz8EArrLXUCuo0MVWC77SkH2Ofsb+DY1eVKaplgQ0ysoSQQVRrdaIS1u/nLz8QqLTXoZ332/w1q7GuPa+oBzkYF8tk8tOBZPPI6sVyle8GSolsmsfwCAY6zTnC1DQP1qTjgZv7e+67yHVUQA2jcSNRoO6owFsjiLjjgGwHrt9mI1BpCnRhZdTveo6Es8DmcLEqbjzF+H8/neICe22SVs2Z2Ou/X2oPdtJ2zpIp86sMfgaMTyMs28XWiqSJWfbrWdcD9nfa/eEamq2sdcDe1B9h0kWLEW3tdlwXprgbN0I5WF7XlFIOnk66eTpR46/dydUyyPPRrnEC5ag2zvtDo/GoAb7kf2HCZeciTCW83A2Pko8e77tsCENcmAAtWsraXsnur0TZ9dWSBKSBUvsbOnvIV14OijH7uscxzi7tyH7e2yThlorI909jbRzsu0sGgZ4j64mPuN8Kn/yP0gndkHGByNR+3ZBEhOefZHtPAKQhDjbt5J2dFO96g2IJzfi3vyftkDfccYBPGKxjspPVnUQjyKmnFF+sXgKv+WItjpPYUIz0nnyGF+oXlZWH3usra1aI3IFgmWXQc9+Mh+5nuDgfnjPx0iuew/DF1yGt3AJweIz0ZOmYVry+PfeS/FT7yM6/VxKH/4spsXml6tNm2j+vx9FN7Uw8PF/Rg32k3ZNxr/vdkwmS7T4LDCGwpc/Q+5n36Xyro8QXPRKMB5ieJAJf/0W5OMP2bK94SGqV72V8vv+dmT8zZtp+cxfI9c/aJ+h1jChg/L1/4vwlVche3vQvk/2zl+S/eVNDHzhO8ihCngere99PaV3/hXR2cuhIPAeWEPxk+8lPOcigqvfRutHr0eXh6lc/zeIsELmzlsZet/f2yq0zskQBBT/4QNkb/mWzR/XKSaXJ1p+JeXXv5N02mwYHKDtvdeQ5vKY8jDBVddRffs7cdc+TtM/fxyxfxdDH/8CetZJNTelTPMnPkj1VdeSTukAv0C47FX43/5XdCYzDuAjNGO9PrVBStW0rRyliaU6krQ5whcePcZo03x0+KvuPB6lhZU+Kjw1xsgrxwHHJZl5Mlx9Hd7OrbjbNsB7r6U8OAiveTPpSacgvvlFzMxZhC9fRnXWyXj3/oZsFFIJKpiFp5O86yOUZs3Hae/AdEwg+cXNMGM24ctegbPyTsRtP0Uvv4Jg5jz07AWEF1yMvO0XpLd8FwMMPrGOYpriKIXJZMg8dC/pJ/+Sali147/7I5SmzqHwyCobjxwepPzOD2LmL0b+xz+RFifAm68nbGom6Z6B6SiS/vA7sH4Nw697O3rh6cgv/QPpKYsIL7yS6isuI5k6i1hryrt24E+ZSrRgEerB+6metIh0xkmYe34Dt90K17yVyvmXolbehVsatJtgTJpO+fXvRPb3knzzX+HTn6d04eUkp54Bvg/f+AJmUhfRuZdTmT2f/Ko7KfzLJykJSRoEcONNlOcvRgz2I3bvw9z2S8KVdxMot8Ggj2vgI7SuPJKwUmrEbD6CqHoGAJtRABaMaFgzqm+fOYrIknIkh3qsiVKYoEr21u+SnryYZP5i/GVX2PrYu36JV62QdE5CrroHvvB3uGctJznrIiodk1Clu3C2bUSGEemENhjsJxwcwJxxHurJLaT/+c84r7iEdOESzB0/x922iXjWySSVMmkcY/JZ1OAA6e5tyN7D0HsQikW7XUre9qV2tm1ERrEdf7hEcPggOZ0ijYOZ0EHwqmuR61bj3vAhxNnL0UvPIS0NkU6bC4/vQNz4adyBHsL/759wfvlD3C/8b9T5lxKfuYLqGedb3/7RNUS9h/AXnoZubUOuvofwgkuRO7eiv/cV/Lt+RXzGOcTt3QSujxeH6LZO4rOWkUyehve5T+DfehNi6kzCKMLMPAmxbjXOlz6DXHQWyeILiLwMnnJwdm1BpYY0SWCwj7ivF29oANU1jfTXP0JsWIdpbR1J1xyjcsJmsmkAU4wAWYgaITX6/6P+PuJ9Mcr0FSOZWqM1cl2zjy7IPvp45YwissYWa2pcl8yt3yP7wbchv/4Fkv5eSstfTfXvb6S5owPT0Y386XegNIjfVMA5tI/Uy1C+5u1Ub/ga+rt3wD9+GQ7sQay+h7S9C7FlA2rvNlRHF862TaSPrML4Pq7nIfbtRO7cgtqzj/hN74SfPYTz+e/SMmMWCjBxhGlpo3rVW6kcNb5ceZfltIwtD2TCRJKffAsBZLsm4e7ZidQGOX0W8vG1cHAvmavfivB9zI2fAiDT0oK3cwupl0VncsiDe23TuykzLfO+9gHExE7k5scQ61bhS4GTycDOLeg9O9HaoNu7iV72CuSm9cS33oRbKND8r5/EvffXNiz06x+jyiXcU5cg0wR5cB/h+ZdR+tgXSL90M/z8YZjeibj/tySFZkDjADkB2XoLoDEsJ04VuZ41Z/yMrXmtv3J5yNZeuTxks7UwkjwKlKMAfowfLCAjIa8gO/rl1F4u5D3I52xPX8cdcz6wHOpn+K8/Temv/gG/o5u2+24n/50vQpIQzz2F8sz5mGyOVDnkHZfkvIthaBDxikvhvBWor/4Tzmc/bHsqD/Zj9u9CT5sJh/bjhiF6ygwol3CHBxFtHZggQMyeh3n3R3DuuQ33mnPhwfuJ551GVRuMTpGVMtVXXUv08gtwv/a5kfGHBmCgF6fGapuObshm0eUKTi6PWXouutiM0iliQhvi4H4cQHRPtUUr+SI5ID37QrRykGkCza2oQweQQPXSaxEH9pBueQIzdQbacckc3Ee67DJM5xTYttGWWtYsONPUjBECCbiLXs7g//023pKzcIf6YaAXF3Cmz8aUhmF4gOStf4Ha8Aju+94EO7dA2WC2b0J3dsPuXcgdW5CZF8fWMM7T+mPPs3ZxDuxFFzbaZnP1vGc/Y1+uD641pU2+ibR7KqbYeuymX0eb0nVJItTOncjS4EgG1tHXIoV1gw/tR/T3gEnH1pOIY0znFKqvuBRRLODdfyd66kzU0ADs3EL19HNAG/TVb0XPW4Beei5864vWXD3nIvSmx6DnAGKghEk1oqkFM70ds24NTlOR6PRzEPfcRmZogGT+IlLfRx46gD57GalKMN3TEXGIXP8Q1aEhfGNw45hkxlziJWfhrrkHeg4iBsu2vavRKKkwWiO3bYTew/C295JufoLkgktJD+5FBhVM52TUHb/AURJn6xNQrWL+8m+J928lOecizK9+jAwC0j+5Hn3Fa0knTUEvPhPx6Bp01xRMWyfi5FPRf/kJkuVXIJ58DLnqbut7Oy6iNIjasRlz4WXwjvcTnfdKkvmnQaWMiGNkpYyYMBE9bzHm0H7Sfbvh7PNIdILonIwsDaMDjXBcTPdU0rYC7tQZOAd2jy3t+zSYPDGbmymFv2Ed6uDekSQNpWoMdI2Jljbmpid0UL3sWvsQ3Myzx2sFiKBK5o5bcbY8MdLTyDyFDy4VcqgPtWfbyNaYY8S/Mdkc2Vu+Rdo1hdJlr4FLroFSGe/Wm1A/+y7p29+P7DmIXriY0hln4K9eCTd9BTk4gD7tDMLr3ovcvxu1bQN6/25E5yT03kH0mnuRTc1IY0gfWYUsDSGzWXTvQZzbbkEFVYIPfQjmfR21+XG8L95AXB4G38M4CnfjeqKzV9TG34PavpF093ZrutXutXrwPtSqu0kveQ3VM87DtHciHl6J3rEV0XcYdm6xDfQe+B3Oo2uIl7+K4byLu/Zh5Pe+DBM6YcWrSc49H73oHOTG9YjNG1AXXEqKzeYK3vsxRH8f3g0fxN3wCG42a2PUfb14999O9exlpB/5Ryo9B8l98R+ozpmHyOZRAz3oSVPRcYjY8DBm/27cJ58kWvRy+PhcnH174Mn1iNZ2TO8h9JnzMCctRN7/u7GXOPMU53NENVL9laYpSZI8j9VIplbf64zSnGIktDRKo+rWdsrv+jDROSts+uXoxeSY7Cw7hjp8gMKnPoD76BrLRj/ddp1CQJrYbolpMrYejtZQbCWc2EVJ2m6PJAmi5yCe52E+9jlS5WC+9Gl0EsNAP86OJ8lPnUHSPY1yGEFQtX5eFCL7DpE77QwGfn8XrS0tiAWL6X98HbnSILkFpzEcJyTbt9A0ZSphdzeV4QBKQzgH95JJY7K+j9AppnMK5eYJVOIYggCpU0QYoHZvo7mlBRDI3kOYKdMZMpLg4qvgPR+DH3wV92ufw5s2g+r2zRSiKn4mQzrzZIaVS5wmMDiIs2Mz+dZWmD6HkhSkYQKlIRQGecnVJG9/P+b9b4JqBcIAsXsb+Sggm8tZgkkITFMzQecUSnFi78HenWTaO2yf8N3byOZyqGmzKR3Yhzm8n8KSMxmME3QYIaIApRRm51byc+dTzXnET26maXiA3PGq1HrOU0STpmmj/PHEFfQL29pGHFP5clR6oxAYL1Pbr7eWeFEvCXwmn7WWNif7DllgPm2yhgW3cd2xl9ChFKLvEN6OLeQNVvPUSApxyhKCkxYi7/gFYuXdjSIrJ5/HP3wAZ/tW+4CxBVgCELks3j23k/VclE5R999OzoDT3Ira/DjZUoXY93D3bEdueqIR7ZOOxC+2WAZaKeSebWQ2rLfW0ejxm2sNAnVC5S3vRnR0owf6YOl5OJsfxzxwB+rwfrI9+xFK4TRbsLuPrCIXp8S131PZDF5YhQfvI2d3h7GbJTY1ES1YhOw7jL7/t2QbqbjgtUxAKNVo/yoP7SezdbNtkVM7PjPUi0k1aTaHE1SRD/+erDaQzeOuvIt87bdqrQ8xmQz++jWIRBMBsrV1zBdfnNgwknIw6tmBbov8c8cyy40ewBwZPhJgvAx6wkTbKK+2AdqLTmpWimifSHZ0E4CgSpzNEvQdQmx4BLepiXwmg6i1kjHGoHJ5CqMK5RtD5gsUa4XqesJECrVjUsfBzRXs9ifGoPJNNB11vKlZPjqTw8nmcZ9q/FqxQPyyCwjOWQE5DzE0jPza55GPrMTN+KjmFtvKp/Z93TIBXwgyRxX20zbqutME3TwBXSnDyrsQxRaypLi1ThrGGAve+qKfySIyWQqjwoP186xfIy1t+PXfzGaPuMejr7l+bi+G6qkTC+A/IuvDuK41n3MCUmmXfTmKMxf1ZdOqBB0V7K55AP8NavSPmDyuh9y7k8JHrmd47268egngKNPumSbbaBNQH3XMH3L8s36uHApf+jTc+Cm7eVqaEg32k0ti/HzhKU3QpxtvpC+zhNIQ2X//LOVyGRFWIZslfZaeZs9m7v4h1/xiAe6J9YH/GDu/2EJy6stIu6ZYU3d0d47RpvToTvvVCt6au+22jmn636vThhDWFx4eoGoEblMRNcbyc2V5mKgSNMxiBHjFZlzff+5gMAZRLhHFEeSbcDyPl1j/lD/IBx5zACa1faxEFD8zAT36M4mt8fX9/x4q+OmAMspsHnvrzFP3iXo+xj1ae44D+GlIrDExOZSDKTT/8cV+L4H+VmM5K+h4zZ1x4B67kMlRvv7YA/BLBIzjMi7PxyLpHL3Cj/Xcz3EZl5eq+fxU7Ybl0So6TdPjsq3KuIzLuDx3SdO04f8erYFDwK83pa7viwQ0+s+Oy7iMywtnNidJQpIkxzSOF0KkDvCIMebMp7K1tdbjAB6XcRkDAK6Dt45HIQSu6/Y7xphbgHnGmObR20YYYxpqe1zGZVxeGPCOdnFHW8RKqSSfL+xRSqldjuO80hjTfTSAn26wcRmXcTkxUsejlNIWXdRaRmWz2YOdnd0bHWBXV1f3Z4MgeF8YhmdqrSXoRqD4j9nwalzGZVyefwADjb27lXLIZrM9LS3N27PZ7GYHYOLEju8PDQ1OHRgYKERRNFNrnQPk0dp4HMTjMi4nHrw1AGsp5XAmk9nf0tKyvVhs3qO13vr/BgBv4qitCbBJjQAAAABJRU5ErkJggg==' button_image_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACCTSURBVHja7J15eBRV1v8/t6p6XxLS2UBAQAmorIqAC6KIIDI6iuL+ioA/HXVwZnydEXF0XGZcRtxHceYVREccVFxRXBBURAEBZZWdsErInnR6r+X3R3V30iQRkAjRqe/z9JN09a2655663zrnnnvvKaEoCknYgeskSbpaCNFDCOHDggULrQVBYI1hGC8bhvG8rutxAJEk8FFCiA9kWe4pyzKyLCOEQAhhqc2ChVYCwzAwDANgsxDS2eFwaIdQFMUuhFisKEpfm82GLMtIkmSR14KFVkpiXdeRJKmkQ4eje8uSJN2oKMo4u92Ooihp62vBgoXWByEEkiRhGIZXCNFL2O32RTabbaDdbkeW5YyCTqcTR/K4RWkLFg6jpQU0TSMWixGNxVKucwYURSkTDocj5nA47DabLW15JUkiy+9HkiTi8TiqqqLpuqVVCxYOp7VNclGSJCLRKHpjDmqKEMLeMGAlhCDL70cIQSgUQm+C+RYsWDhMVljX0XQdm6IQi8f3LSJLKdKm4HI6kSSJcDhskdeChVZE5uTYN+O4tG9Bh8NBPB63yGvBQiuDJMQPE1gIgZAk4omEpS0LFlrbmFiS0HU9g8RSk+basr4WLLQ+AgvRiMBKE+w1PxYsWGj9brWlAgsWLAJbsGDhCEBp7QJGjz2BulOGoOYWmrF0mnLvzWkwQ5YRiTjulYvxLl2AFK6z7rAFi8AtBUOWQZJTI3JEIgFG8yu8wr0HUHvWBehOF0JTzbG5JKXPz/hrGCAEutNF3aBz0XLy8H/yNnKwxrrLFv57CGw0Y+MOFYl2HYkc19cko2FgSDIiHsXz7SKU8pJGgbPwiadRO3gkhsOJo3gDjq3rkGJRDElqZHkBhGFKnijsQKTPQCI9+2Modvxz30SurjgsykwMOpfyh6bhWLGYnJtH/SI7TPiGOwgPPItEUY/0MceKxfhm/gvbFx9ajPqlWuBQv0FEuvfJsMAAelYOWbNfQYqGze8uN6F+ZxDqfyaG3YFz0xr8H7+JXFt1QPW4Vi5Brqmkbsj5RHv2w3C58X46G/uubT9o7VsSMU2nqqqKNm3a/KI6S+1fniE07KLG7e0zkFifgfievh/vzCkWq44ogXW9RaaREvntiHXpDrKM7vER69gVZBmEZJI3+Yl1PYHaEaMR0TAgUPMKSRzVGUOWcX/zJd4FHxy0G+xZNA8pXEdw+CXEuvVEzSvEsWG1eR3DwKDBVFlzbZVlbHt349i6HhGLHuAYYd/vv5zpOK3HyYSGXYSIhDBm/BMe+N/6Hx98Hi4bT/CKG1BeeAyn02kx6+dsgWNdulM79NeogQLTzU0RVkqRV0p/N2x2In1Pre/whgGqimfZAryfvYcUCf8oGVwrlyDFogRHjCaRfxThU/JNC6w3+Bh643nvBv8LTcW5bgW+z95Hrqn8UXJUPvMWsb4Dyb/+Aqpue4BEUQ9EJETWtMdxzXiG8G8mUTt6HIbLg7yrmMB9v0NeszSDOLVjbiF62tD0MdvGNWRNfQzbFx9klEtdP1VGLishetpQfG++iHfyxHpLes+zGZZ039+bQrx3f1M98+cgPfRHfH4/brfb/PHJP1PWrgPqoGHUXHA1zo9nEbnqZqpv/jO+N19Eqqul5poJzcqekik8aBiGywOAVFGG7/2ZuJ97IDk8GUH5w9PwfPwWSsmutM5sG9eQe+056G07Uvng1HT7G7bpUM5NIXLVzYTOuTBDv/u2o2TeZtxffGx6nMmHXf7VQ5D27Pj5EDhyXB9qh16E7vUjhYPItdUNLG6SuLLc4DvmX0DoGvbN3+FcswylrASRiB+SLI71K7HtKibWrRfRniej+bJAN0DX6smrG43Mp9A0dLcHLTtApM9AhJog6/2ZhyRL6a1/heTNN1weqsf+gZjHRyTZsQG09p0pu+sJ8i4ZiCzL6G07Uv7gVPRAXqZ3U9SD8nueJnDFYOylu5sslyjqke5swYQKoRBej4fy6XMzxq8AwVFjiOS1Je/2Mc3rcv5sxLg/YPQ8CbfLVU/eJPJuH0NNbS3hcJhYTk79tY/vC917NZK9zYTLcH63HKBJmfRAHjXXTCBeXUn2zOfqh2Idj4EGD59EUQ9K73oaep6E1r5zRpviu7aR0wLnph5GTd2Dhu0ACHXvDR27mPc5FKJs5TLycnORJOnnQeDgWRege/0oFaW0eesF5KoKhKaRmRFAmIQRAkOSM84XaqJFXU+prhbX8oU4Vyyuj2Dvz/c1DISuU3vupYQGnEm43xmHTGDcXuzXDCe+8GN4+jUYOZrItb/DPms68T+NhYFD4Kn/YHToQmW3PuRtXk34qpvQA3mIObMwfju6/lpzVkL3XlT+6kryn3+4vtz6VRg3jYZtG2HSo3DdrRki1N32EImiHkjrV6Pf93tYPB86FcGzr6MOGkbFuZcR+PDVpvW4ZwfuObMIXTyGutV1xDauwb5tE1JdbdpaZfn9ZPn9ZqdPndi9F9KCj9GvHZ4he/WNk8i76ULUC6+pl+m8Xo3c8kjvgTinP4Hc4Hry69PQbh+f1pk24hKkncUo1wxDXTg3rd9Y74FED/Fcp9NJ7eU3mEOHd2fCHdeZ15r0KFx5A9W3PUDemKH1yTA6dkH6YBb6zeb9EskUVYfNAuuHGIU2HE4QAufG1UhVFaBpqG0C6B5feqoHIcAwkCtKkSKhDML+UN2G04Vhs6O7vRgOlzkVFQ0jYhFEImG627rWzCBOBe0g2gE4vltOrOsJqAXtDkgnxg9F9J9/DGPJp+Tl5aEv+ICKkaNh/SrifxqLz+fDs+07qtavJHb6OahZAVRNwzN5Itw7gWAwiPLMLOyyhJrXlnjSohm+LCLRKOH+Z5gd7KbR2L/fRnZ+PtK0R6hofzSJcy+u9456nISIhNDP64XdbicrLw85Wos26TrKZnxKfPAIYu/+G7vd3mT7fI9OhPdmErpkHIkBg+st/KgxKBvX0GbypAz3H4AdW9GvHY7b7cbv98O44eydvRLjuN7UBoNkz55BzhsvUFlZifzwVBxZZuAvnLKUXh+xeBxX6nrrV6HdPj6ts4qdW0nk5qP/36PISz4jLy8P3vk3ZSNHt8i5jB6PHshDem0a4s7r8fh8eDweaKDfqm59CWxelQzTh9BvHo3H48Hn8+23T7fCMbDZbaVwEKGpJI7qRPUVv0HLLQRFAVlJ/3WuXIL/lSlI+4kwazl5xI7rS7zoBLRAIWpuAYbdYVpKLYFUVYFcU4ltxxbTbd6++ZDdb9MbUE3HQbEduloWzsXn85mucerY3j3Y7XazQwByg4Unuq4jyzKR17+Coh6ogNqUtg0DPZAP5XuRdmwmu4G75tmyjuoMt7TAHGNuNYgDZfu2t6At0Wi0WQID+DaswH3fzYTDYaLRKNqNk6BbT9SRoyl/8HkC141E2bur/oTVy7HZbCZ5U2P4HVuJ9x1IvF1nCFcRn/QYjBqDBjQV8cjIRLFlQ4bO0o7d5nX1+q3Y22Lnakcdbf5/6Ti4dBxBzPyuGe50p65oG75NPiVDSJKUJu/PL4glBEhy2jXW/dnovmyw2TMJrNiI9eqP/u6MZgmsZQeInnQ6kYFnoea1TUfJpWANcnU56DqGzY7WJoCWk0e8czfCpw3D8d03eL74ENuOrc1b5APyvyWTvHLLqKlBDu6kT1vb+Ng+gR21qAdiZzHGqmXmwQ2roVtPGDm6UcBb2Y+7Zuwzbm38uxdVVffbDlmW8fl8Zied9X9Eo1FCpbtJjP09lVfcSO5jd2SUb+6BoOsa4Stvom7UGNODmD8nrRd2b4db72vyPJutiQdqya6MnG7N4WDP1b3+/d/Y7Bw0LdnPQnWHNSnkT0RgKXOllGIDm62eDEkii3isWQcj3vUE6kZeTrxzESCw7SrGtnkdyp4dKKXfp11vQ1bQ2uSi5RYQ71REvKgH0V79SXQqwr3wI9yL5iGikR/bGFBkU96fCD90s6MnnW527MFdsNlsaSLEXpqbYY1FOIyRW2COZ4MVGTrMIN7OYtT2naGHt3kS25r2Nsqnz0Ut6kHg9nGNIshOpxN5/SoqAN3jIxKJ1I87j+nW6Fpqx2MQFaUY2zYS6zPQrPfB25FemYLLZTq88b88TaIFdfljz7VtWG3+8+rU+vFvU0TPzm7w3D98WwxaviZJSkaXTRJLNVXI4aC5gEOW662wLGPfuLrJ9crRvqdQc/UE4scej4hG8c55lazpT+B/5yXci+dj37oeZc9OlJJd2HZvw7lmGZ7P3id75j/J/vc/sO3YgubLIjjycoLDLzmwp+gPjWqPYJpdw+VB/PYuAoEAPp8P7bm3Ufuekhkf+3wOuD2oT76CVtjBHIr9ZlL9ODJFtDXLwe1BzFlJft/+FBYWUlhYiPu5N2Grgfu5NwkEAk3K4VxjRlorbv4zNf/7YKYLOWgENeNvTXsIGW5r915E734q40GgB/JgyYLMFMYDBpOdnY3P50Pc+wzqyEtbxTyrY/YMpIpSOP9y7Hc9kdZZYPRY5AVbEWvryO/b/4jNff80Fjj5MSQJ2/fbafPPh9CyA8kgVsqyKSh7diDVVGfOIfc8meAl49Gy2iCX7ML37gwca78x10Lvr+poGMe6b1FKdhIccSmxXicTHjQcoal45s/+cZsbWmhhy4+Bc/lCwsMuwrj1PkqacieTDyb3jGcJDR6B0b0XZW9+3ez1vJMnEj75DPTuvSh9Y0mm7ipKCT80EREMNjl+806eSPiEE9G79STSsQuRi69trP/1qzH+cT+2BtaIcAht9DhKRo/LqMuYfCdOpxPbisXmHPfI0VTuMyww56cKjziJve+/Su01E4iP/R0lY3+X6dW8No3ylcvIzc09IrL9BLZeNJiuEaDryGV7sG9ag33zWuyb1pr/r1uBVF2ZsbzRcDgJXnQNWlYO8t7dZM14FufqpY3Jm3LTG7rqDZVaVU7WrKnm1JGmETpzJPEu3X6E+TNA00HTjsjN8d9zE8oHb2Qe/PwjeOzutHuq6zrSnh3kTByPWL+qvtz6Vabbtw/yLzsV6YNZmQeXf4Ux4QrknVvSAZ6mkD92GPLr08xr7xNp5tWpGMnodoY1+nQO4rWpmXWNHpSuyznjGZzTn4RwKFP2x+6G8lLILagfXx4huJ97AOdT92a2u7wUXp2KNnE8Ho/nsLrNGVRwOp2G0+lEURSEEPj9fkKh0I++YOmfHkH3ZeH7aBbuxZ+a87oHiGi/QdRcdRPoOv5XpuBcsTiTvJKM5ssi3r03auFRGLINKRTEsX4FSsluRDyaYS3VwvbUjr6OeKciXEvm45vzGlJd7QHLk2jfmdrR40m070zh/151YOckElRUVOB0OslOWqLq6mqi0Sj5+fnpG50q13C6ASAYDBIKhQgEAumAS+pYukO53djtdqqrq7Hb7eQkF05omkZNTQ3xZPpR+eGpaKPHwWN343vxiQxy7ntNp9OZjsTuD6FQiFgslq4nFRxyOp3pOqKpxQ/vv45n4lgkSSIYDKbr8ifzjqcNdThMXV1d2v222+243W6CwSCGYZCfn9+szprSr67rlJaWpu/DoZyb7p/RKOFwuF6/sozb7c7Qa2lpKbIsNzsUOVSEw2EURUnL+hOshRaZFuwAr2U4XYTOvQTDZsf11TzTbW5AfsPhJDzoXMKnD0Nrk5sRJKsbMRrHd9/iff8/2HZvT9ep7NmJa9E81Ly2RAaejXPttzjWLDs4C6xqpgU+wHbYFIXCgoL684HsrCzIyso41lQ5AJ/Xi8/rzTiecawBUudXPvMW8b4D8b75IjmP3G4+IM44j6oh55sFl32JLEnN17Nvm/cDj9uNp7mIdnqN+QGc06Aut8uF2+VqPIxwONJlm9NZU/qVhMgoeyjnNpQlLU8z7cjPyztgPbbOMfCPDPrEi3qiZuciBWtwf/FhendSesZl2CjCZ4zAcDhRyvag7NiCFIuiBfKJH3McsR4nYThdZL30FHJVefo817IviPU6mWivAcS698ZWvAEpFDxwAhvaEXOhD3isvGop8b4DqRs1hrpRmcshxYKPMBbPx3aExmgWDjOBD3UlVhMx3ANCrHtvDEXBVrweqbIsI/NevEt3on0GmnuDv/sGz5zXsO3cak4jKTbCZ/2K0LBRxI89nmiv/ri++qR+IYdhoOzciujRj9jxfXF9+THiAAlsYGBo5qaH1ryvyPXc34jpOrGzz0+vw6W8FObNxrjjOlwuF5IsH9Y2GIfQFywcaQv8I6B5/aBpZmBrH4sX69UfLVCAUrIL79v/RimpX+kj1ASeuW9heHyEzr6A6Emn4Vj1dYYVlmprQFXRvT6Mg1mUkUrh8zN4L1T2vx4k8uTdRCIREsm83rIs4/J6fzAw9ZN5BTP+AVMnU1NTA0egfovAhzualoibq6aacL8Njw8UBfumtc1u67NtWYd06tnoWTlm+QYETkWrhaYf/FsWf0Z7el0uV3ohRKtw7Z1Oa2/wT4zWk5VST07XNGXtksshDYejWQtqOJ1mzq2mnDUrz7WF/xoL3FKJ3Y2DvJaayFy33DD7/O5tiGiE6Imn4Vi1FMfqZRlldX82kVOGYjg9KBvWmGurG9abToQnJb1i4yAaYT0ELFgWeP9Pkt3bEfE4an47DFvm4nfnt4uwb1mHYbNTc80thIZegFrYHj07h/hxfai+4Q7i3XrVR7BrqzOfDfntzOj199vNNdQWLPxSLXBLZaU82OvYN60lPGi4ud+1W08c33yVngcWtdW4P5yF5stCbd+Zul//D6FzLjIzZ3j9IMkINYF7/rsoW9dnRLC1/HYkunQ361i9FFFTyY+wv1YU1YJlgX/wSVKyE/vGNSAE4VOGouUWZPxu27oe/8vP4PnoDWzbNoHNhu7LNldirViE/6UncX36XqOdR5HThpLo0AWpthpb8QYzF7UFC7/YMfARhHvhR+YyyY5dCA85H99bLyEauLzK7m0ou7fhXDQfLb8QQ7EhherMed4mNvBH+w8mOuAsUBTc895F2Vls3XELlgX+6azwLhzffYtQE0T7n0l4sLnyal/IFXuxr1uJY/UybFvXN0neRNcTCA8fhe7LQtlVjH3dty2SpaMlUTP5ZUoX701/gvf+snIqV015p8XbVDFrMaE//t1ibmskMID3/Zk4l3yGSMQJjbyc4BU3ogUKDuoakUHDqR3ze9S2HVF2FeN77XmUPTtbVTuD905B7XQszvN6QxcBE64gMnwUNacO+8V0Lq3jMSR276CuruXeURW4ZCCxO64jHA5b7KUVvtxMxCJ4Z7+C0FQig84l2u90Ep274v7kXRyrliDCdQgtc67YkMzlGVphB8LDRhHrPQDDZsNWvAHv61Oxbd/c6qaBYv0GIX29AHXzd+Tl5SGWzkftF6CyspLKN77CyCtMpzr1vPEinkf+hNHuaKoemoaaTCYn7yom55bLCF91M5EzzwPMdKyuj95EqgsSuthMVZNzy+VIFXupfOrV9DW9Lz6Ne8pfM2SqfGkeeqAAPZCH540XEXW1hC4dl87VnDqnaso76HkFGC4veiAPx8K5ZN12NYnB51E74W609p2RdxWbG/dXfo3UqYiq+6eQ6Gtm31A2riHnmrMJ/fHv+5VbXl2/vzkx+DyqHn6BvFH9qb7rKSJ5Ben2+P9xP+FhF6EW9TDza18ysFl9ie+3E7x3CpHho9LyAGmZQhePSZfPvvcW5NVfUzP5ZWKnnwOQbq9lgZsjcSKO990ZeN9+CbmsBC1QQPDy66m46ymqbn2A2itvJHjJuPSndvwfqbz7GSonPkq03yAQwnxfz8vPmAGvVjiH635vJuqIi1FXVlP76AzCN/4ZRVHIz89H73gsugHK8B7w6lRCF48hFGhL7a1/AwPs3R0w4Qq09p2p7DWQeJduGBiI312J9No0IoOGE6+pwjOyD4bLQ+WAs6i9YSIiFEIpssGrU6kbeRmRSGbAT+vQGbZvQu6qEHrjJerGTMAx+U7EMRIs/4q6AYOJRCKo3Xti1NUhndIO6bVpxE4/h9qcQmr+9HdsSz5HKbKh7d1jEnP1cqL3P4ueV4B9RE+YcAVqUQ8qL7/xgORuuBdY69AFqaKUshVL0zIoRTZY/hW1l9+A41+PoDxxj6mXrr2b1VfdH/9OrN8gnNeem5ZH37KeiusnEh1wBu6xI6CLQNu7h6qLxhC+6rfETzrV9Jbu/i2x08+hpntfi8A/CMPAtfBjsp+9H9fnHyDv3Q2yjNqhC9FThhAZPML8nHkesd790XLykCIh7BtW4X/xCfwvPN7q3OYMAk/5K77efnh3JjFdp27MBCrveRaj3dFmGtM7rofiDeR88jYAoawAnhefwij9HvVfs+Hp/5ideuNatNwCpPnvwZJPccgSUkUp6t9uTaerMVYuRQ/WoHbrgTZvI46jOuIZMyzDDTXaHY3h8mBMf9p8kGxdg+uN6UTPGIH4bAucdCpSWQnRtslyzz6AJEm4ZBlpZzHRob/GcLtJTLwOp9OJd81yxM5iKGyP2vcUpEfvQt+ynryv55nyte1wQHI33HOc6HoCYvsW5GOOy5DBJknISxcQfWcGDllCREKoX87FNf3JJvUV7X8G8qfvkfjyEwKL5yJVlKLv3oF+zoVo7TsTfuED2GrASaeCz0+8qgLD5SE66yscw36N97YxxBZ8dMQTDfx0LrRhtFiCdrmsBN/rz6MVHEWifWcMrx81vy2Gx48hS4hYDLm8BClch1y6B9uWdS0WrBLNLe1sIbhcLlyPTyIcDhN5eDpq567UduqGVFGG9tUnBAIBEr37m4ntgKqnZmJb/hV6yS6k118w80Ytno/eoTPy1MdxuVxoXj+irARJlrGd0MesaO03+BZ9THjdSqJnjCB28unEn3uL3EsG1Lv0yb3Dxppv8Hg8BO+dQvyEvsjFm1Aev5vYX59D/34nyqlDzHLvzcSbk0PE6zPra98JsWMruq6bG/ELj0IqK4GTT0cDEu/MMBMPHNUJPZCPtG4F+mXj9yt3wyySan47RMluSLqyKRlq8gpg83c4HA5odzSivBROGULN0682qy+RrFfq0MWUZ/Uy9OtuRb7nFrSXnk7XqQOyy4Vv+yaC19xCrHNXYpNfpM2mtch7d/7yLLBht4MkoRa0M5PYtRDkvbtxLl+I6/M5+F6fin/642RNfRT/y//A8+EsXAs+xL5+ZYtGmtXcQgyPv8WVXjFrMZUvzasn8rHHQc8TUVYvRz3lLNMCn38F9DmF0IVXY3v/dcSQkaYVGjMcedF8tCEjkSpKEb+63LQsCz5CURTiJ/RFbFmPLMskjj/RTMhW2J7KZRU4ZZnsP1yOtH4VRihIVVV9Ol+tbUekncWwbSOyLBPrNwix6DPE+JGoF/2PmQxv93aM4/uY5TDT5CY6FyG2rEcI0Dt2QTntHBKDzyN6xnDElvVIO7aYFfz2LhRFoeqhaeb4uKJ8/3InZWkYFGPDamggg9zxGHMc/OU8pGS/E9s2IYb8qml9CYGIhNCO642iKKabnXT1RSSEdtZIsrOz8f7lKcTaOgJn/4rYgu3o511K4LarUJZ8DuEQVclMIa3PAh9iRg7btk3Eu/Uk2vdU5GAtyvfbM1/CbRjJl4wZmWulU8nuxA98AEMIRCxan61DCPMtDQeakygtA/u83MyoX7+tqRguN5GBQ9Cyc5Ary1p0HO1/6j6qJ9xF6WIzibiIhHDNmUX8zusRT85E2lmM/uQrVACOj95Em/T/cJ06lMhVN2Bs0VF3FSOV70U3DETv/hAJYWzbiC0317Qmu7ZhUxS0wqNMl3Pp58gL51I96VGY9CjyrmLsd/7G1FmyXWpBO0RZiZlaCXAs+4LI6LEweiyOhXPRAKO6EuPk09PlMAy0Dp2R58zCOfdtIgPPIvHSR9TuLMZwedB2FuP55G1YOJfErfdReut95lr1Sb/BGHwuxv7klmWzWxhGemhB8Uakk05Ny6Aea6bO1VYtw26zEel0LGLRZygLPiR+5fWN9CXLMs7XplI35haqLxuPvKvYzLu9bSOe1PFvqpAqynBMvpPK+e/jmv0fQtfeQujiMUgVZTgn30ls+yb4idLmHJSXuG9OLJfL1Si4cVBTB21yqbvgauLH9wG7I2kRhUkWTQVVNXcdqQnzu66bxBE0SFYnJ9PQKmZe5lRKWmEmshOpB0DaPMsYP7hRsMGDQ9PMjRApOfRUyhw9LYswdAyHC8PpQgrV4p39Hxxrl7eo4lVVJRgMphOpCyFwu93EZi2GVUvhzuvTv6XyLmmaRlVVFYZhZORFcjgc1NXVpTMjlpeX4/P5cDgchEIhNE3D7/cTDAaJRqNp6+n3+zMsXCr/VOotCqFQKD1OdjqdRKNRsrKyiMViGeVS9aXydKmqapJLVfH7/Tgcjoy67XY7Xq+XRCJxQHLXP3sNysvLadOmDZFIJC2DqqpUVVWRm5uLEIKqqiocDgcOh6NJfWVlZRGNRgkG2sL0D5AWf4b05xto06aNeTyZu0uWZbxeL3a7vdnjh332IhbLaEuLExjMXMahoRcS7zMA3d/GJKeumxke9SRxNNXMN6U3zAEi6t9eKJlveEBRQMhJIifzTUtyhlVudqVyymqmXiWakkFTk8RV6481tMSSBAYoe3fhmT8b27aNhy2SXf5ZMfI/H8ExdXKjNwBaOHREbvozdWNuSX+3L5yLPu48HA7Hz0Lfh4XAFg6RxA0skYWWR0NrmvIuDte7jFqawIp1O1sfcq0EdD8pfkmZQiTrdlqwYBHYggULR5rAhpU2xoKFn7cF1n8GKVQtWPhvRFPcbERgVVUP6wuKLViwcGBo6uXrjQicSCSO2JvWLFiw0Lz11TStkXGVgEaLhxvuALFgwcKRJ288HjfXcSc/AEKIhAR80zB4lfoxHo+jqiq6rlvBLQsWDjMMw0gTN7UEVZIkJElKc9Rms1crhmHMMAxjoGEYDZmNLMuoqoqqqhiGYZHYgoUjACFEmriyLGe40D6fr1jY7Xa70+n8TpblYxoubE+RVtd1KzJtwcIRJHCKxA3dZ5vNXnXssV3nKLqux4UQZ0uS9LWu6/npRdIN/G0rqGXBwpEncQp2u72yY8dO8yVJKhapTQw9evQsqK2teTEUCp2oqmobrHXSFiy0JhKrdru9yuv1FefnF2yUJKkYeOz/DwCMSzs3bRbgYQAAAABJRU5ErkJggg==' button_status_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACMxSURBVHja7J13nBXV+f/fZ8rtd3fZRpHelRZFkVjAFgy2RBQ1asT2+xq/gN+oiTFqbDE2jEnsJhI1asRuVCxYwQKigNJFOkjZvnv7vTNzfn/MvbP37t5FiAHRzOf1mheXs2eeU2Y+53nOc855RmiaRhYe4EJFUc4WQgwVQoRx4cLF3oIIsFRK+biU8iHLstIAIkvgfYQQr6mqOkxVVVRVRQiBEMLtNhcu9hJIKZFSAqwWQjk6Ho9tFJqmeYQQ8zRN21/XdVRVRVEUl7wuXOylJLYsC0VRtvXo0WuEqijKxZqmne/xeNA0zdG+Lly42PsghEBRFKSUISHEcOHxeObquj7a4/GgqmpBRp/Phzeb7lLahYs9qGkB0zRJpVIkU6mc6VwATdNqhdfrTXm9Xo+u647mVRSF0pISFEUhnU5jGAamZbm96sLFntS2WS4qikIimcRqz0FTE0J48h1WQghKS0oQQhCLxbCKMN+FCxd7SAtbFqZloWsaqXS6bRZVyZE2B7/Ph6IoxONxl7wuXOxFZM7OfQvSlbYZvV4v6XTaJa8LF3sZFCF2TGAhBEJRSGcybm+5cLG3zYkVBcuyCkisFFXXrvZ14WLvI7AQ7QisFWGvfblw4WLvN6vdLnDh4rsLbW+oRLpbL1qO+SmZzt1QYlGCCz8ksHg+Sjy6I4OCVO8BRH94NKle/dEa6wh9/B6+FYtQUkn3ybpwCfyfhFlShvR4kZpeWIGGWix/EMsfQKo6Zmk5ZkkZlteH5fUhfQFA2n50QCoKSjKOSKcww6VY/iAgsPwhzEAIKxhG+oPZdAnZxW8lEUeNNjv/d+HCJfAuINl3X6ySMiyfHxAgBJgmvi+XInXdTlMUO13Tkf4A6e59yVR3RViWQzyp62j1NejbNiM93tx2FZusmoZZVoFRXkWm8z4IKcE0QVroNVvwfbEEJRFzn7qL7y+BJY6y+48iPmIU0hvA8vmRPj+YJsIyUVsabc2oCNA0m6iWhRkIkRw4jHTvAWAaCMNAqgpS96Bv3QSGAdKyHW6aZm9GsSyMkk6kBgwl1W9fkBKRTiEyKcyyCrTabehb4rvVSRe9/BZiY4/Dqqhy0oKzXiD019tQtm4syNtw7/MAlE+esMvlfJN7v/GzvOi3xEcfSWbgUCfN9+FblPzjbtSlnzhpmcN/TN2tfyc46wVKbpjssm03YI85sTJde2FUVGMFQijxKFpTPVpTfatGVDX70j2gqiAlaqwFrbkBraketaURrbEBrbEBtbkJJZWwD1iomq2xNR0UBcXIoERb0BrrUKPNSK8Ps7yaTLfethmv7L4m1z08i8iESQXkBYiNO5maB18iM+RAJ83q2pPUD0aTsSSNjY27VM43ufc/0cbmc6YWkBcgeegx1Pz5nyQPO7bdPbGMQSQScdm2R0xoy9otGkqYBlL34Nm6kdAHs1BaGm0N3FhPavAIpNdnk1cIrEAYtbmR0LuvYPkDWZMgWydFRYm1IEyTxJCRyHCJTeBgGBkMoa1YhL5xNVL3In1+YocdS2L4KFAVhGXaZvVuaF/8F1eRGTgUsWkd8varYOYM+w+9B8K0h5EjD6H+oiup+t+f2qe+snVwdrztSp2+yb3fAC3X32e3sb4G+cLjcPPlBW1k5CE0XnEble+8jK7rhaacuzz53Z4DIyUoCmpzA/qWDSix1hFZq9uGd80KzEgzIpPGu3YFSqwFJR5D3YGC8Wxai7lqGUoqidLchGf9l6iNdYjsTjKp6Wj12xGKAI8XxO7TvkaX7naZzzyMPus5Sisq7Jc42YI1+WRqZi5B7juClkgE3+SraZp8jX3jyENILk+Q+c356O+/hjn0IFomXULy0GMc2fqqpZROvxP9/ddInDW56L2pg8cSmTCJsntvwv/Eva0m/a9ubZce/dWtBWa+vmopne64qsD8beeEHHoQsXEn2+SdeDjqpjWESkoIBAJOG+umPYZ5+DgafnE1naffXnB/+rKb2HbG/0P6gyj1tYRnziDwwM3tBoj44eOQ/qA9VrfJlzl8PHW32Sa5GQw7fdSRvMZpjxXkCc5+lciESXgXzaN88skFfZTfH95F8yi76f8Kpjzb3l5N4P1ZjkUlEjGqzz6q3bTo+0tgkXVcFRmF1brtBD6ZjVlWiRJrQavdhpJM2Pl3MCDo2zbBgvfxbPgSJRZB37LBIW/BqK/pjnbfXdC/XAbjToaRhxIKBm3y5uYpikKXE0dQU1tLWkp8xUzTeIKK6n1ovGV6OxM8M3AoddffTcXPxhY3a+MJ/Nl+bUqlEckkPl9hKbl045o/E5kwqZ382lseovLC49G2by5aRuqwH9ld+tbLqJvWUFlRgZI3HVEUhco//47m6XeSnPMG8ZISnB7oN4j08RNbjbyKKprPmYrx+SeUzH3TbsMjb7Yzy3P50k0NlM14oGBKUizfjuRZFVVOu1OWRWNTE53Kymi5/r528lL7j6bmzzOonji6oI2xwSOgZ1+7H2Ixaj//lKrKyoI839s5sE1gxZ7f5hFJ6h6kz4fa0oT+1Xq0+hqQEitUghUuwwqXtl6h7JX77fWjRprRN61FbahFqhoyn6jCNrnR7Hkyu7Gj/U/ci7ZoLow9lsaFjTROe4yW6+8jcVar86a6qorO1dX4n7iXspMOsBMXfAR9BcycQfznU7AqqhCvPmun5a6Vi8EfpOGEM/E+dnfRe3cWyaEjEYkYTP1Zq/wFHyErqqk/4cxiZ04LLAyWLSIQCBR9aZWtGylduYjqqipbM+cweDjqa88WtgeIjRpLJpMhdeJZZAYORVm5pLDdT00HIDFiNMlkm7X9p6Z/rTxRX9Pazqk/g7qawoHr8PHExp2Msmkd3Hltq7yZzyB79KHuslsKy+zZFyXXjlGdnegYe5UGtnaTFxpFAUWxSZZXRrpHXzK9ByKQkMnYeTxem4iK0jr/zZ9DSQskCGllvcxppNeH1L1o2zair1mJEm1BIuwBQ9VAVZBCsDtnYZWTJ1B32kUYA4aQzGmccSfTNPkafB++Rdmvf95q/udpaJ/PR1lZGfzxt2g3XkIkEkG791k8qoJR1ZX04OF2s8OlJJJJfEXujeYPinn9K4usMEh/EHHuVDwnTKTkuUdQp55CU1MTyWSSRM4sLrI6Ydul9ei63mE/CkVBtF3N2LgWc/JEgsEg4XCY1Av/oPG3d0CohFQ6TfDlJyh/7mEaGhpQb5uOt7ST7VfIacZQmFQ6jT8nb+Vi+O2FhMNhgsFgO3nmyEPtOj96D+rrz1BWUYG+4D2iTz5IdOrvWgezg22LxvrbH9Gf+ivBsjLbcvnDJdQMPxDzqBOI/uGXBIPBrKMjhpXXDnYXV/ZKE9pZ5y0csdKDhhM/4njbGSXbaGtFaSVubsnIWRPOpmdNc+nxIowMvoVzUetrUaItdp6c6S6UrErevah8+kGSySSZK88jFovBLQ9B/31tL+3Ds6g+b9wO70888xEMHIoBGEVnDt/slQk/9wiNv70DOfIQUkDtsRNQ6msJzH6VLndc+fUCOlXsesy0dV+i67rz0itNDXZ6l30cjZ++6k6YMAkTiBfzvOdbBmu+wOPxOMRy5GXzGVVd7f+88hThcNiZzgTee6WAwEbnfewfN95D5sZ7aGr3MGLE4/FWAidiKIritOO/y4nlELNNBWq34v1iMVYg2H44E/mqwyruJRfZgUHTEIaBtnmtbSK21x3sqcBePp8Pn89nP+i/XEMsFiN+z7OYh4+j7tjTqHzj6Q69vEbOk734UzvxiyUwaBjkzSG/CbwvP0HpmpU0nzzJkWlVVBGdMIlkVVcqfzOp+IuyLTs3HrI/8tUnd2ymnzUZX54jjWhLgU+gwDlmmiTPmkx0wiREIoZ851XnHr7aAJfdWNzn0IG8do5Oj6fDv1mB0NfMi4LIXgMhnvWkxqJ7XcDHPe/EatMB3mUL0Dat3bn5qdyB0aLYSzNKrAUlGmllbIEG333N2/72akQ8TvWJw9v9LRgMImu3EgWMcCnpdLpoxydHHma/xGP7ouu68/Kl/vFmUW1cFPv0Kpy75rRM/nu5fAGeJfOJ56yEu5+GI4/DGHkoLS0tlJSUtB+U/vU4kYnnI48+kfRj9+Bp2FaUuM3nX4r//VmQTKIWPP6OX/zkD0bbj/eW36D88378fttYTl93N//OyXRnD/0Jp8PTD7Zae0edWEjudV+Q3n80XDsFHr+3OMkBq7q6wFm3N0HZ4wRuy0lR3LTuyAq3ZeRdBQ4rUXz5yjR3+xqkvnIJVkUV2//+BsmzCncdxX9xFfGxx9mWwStPFZqDwUItIP1BxJTfUVFRQTgcxnzgRYz9f1i80Lx77SkD8MMjMbr1dpZH8pejAGpeXkzNy4uxjjiBcDhMly5dqJjzml23RKy9syjPQeWb8wZUVhN99A0il9/a+pJ37UnTtMec5a3k7VeT+XeCQhw8lrKyMsLhMOKGezGOP+3fcyjOed3+ceq5xA/7seOwajnjokLl8fFs+8eFl1FyyiS6dOlCly5dKLn+LsSyKOqctXTp0mWvI+23Z0IX82726Edq0HDQ9fYHDdqSvtjGhezfpaYjLBN9/Zd4vliMEmlu1b6WBdbu3UhQev/N1N3yEHLwcJoGD4fcWm0+CZ7+O2LjajyVlShbN9radvBwkgvqsM4+Ct+CD4iPOxl52Y1sK2Y6hkocMrW7N6che/Yl+soicue4lC+WYA0a5ogIzH6V6IRJ1N/29+L124GmLL1hMqneA7AGDSN2yiRip7Q3t+X9tyHWf0GwshJzZ6ccn82zB5rjJ9JQbKpQ1WWXpwnqhEmYg4YRveNROjrTpr//Gp4P3iR92I9omfYILW2179/upL6+noqKCpfAHSHdfz8Sh/4IKxhuM19VHM+1Q9SOdh7lXjrLxPfpB2hbN9kEzre95e49haQu/YTK44ZSd919yFFjoLLV7GLlYnj1Wax7fk84HHZG9OBrzxKdMAn8QWrHn07Vtb8gbVoY409pvXf2G7DgQ3su2G+Qo73b3fvQbZRdP4XGyb+z1yrjMfjng1jhUnsOnRsD7riSlGWROeL41jpuXAuzXsS6+fKvddBUnzeO2kv/gHnwEc6aKGAvaT1yN8ycQUlZGYqi7DyBn7gXXzBM8rQLIRAs6DPOmQKVnTFNc5eeR9V546i59VGsMVmnYV0NvP0ynH5BQb7yK86h7tKbMY7M649s2fKxewiXl7M3Q/h8Punz+dCyBwJKSkrsedF/eo549V+QwRC+pZ9S8tITjsmXGnIA6QFDkF5/HjFF6ymjnMks2vukCkxrRQXDQF+/Cu/yRSjNDUhVI37MT4geewpKLELJ03/Du3yRbVLvRkQiEZLJZMFL5/F4CAQC7TZYxGIxZ59wSXYJJxKJFDyDQCCAx+OhqakJj8dDefalKnZvJpOhpaWFTCaDoiiEQiGklEQiEcpyyyTZe+PxuFNHXdfx+/1Fl5CKIRazze18U9nn8xFss4klk8lQX19fsPSSn+4soQHxeJxoNOoMUrk+i0QiSCmprq7+Wnlt01taWojHbb+2cs4UrOvvhpnP4Pv1OU65xfqj2POqqalBVdVvVSPH43E0TXOUwB7bC13giMpb0/Uu/wzP6uU72CW1c14/KezVRyWVAtMoNLuLXXnOL5k9jph/bPGbIBwKEQ514OFs07fBQIBgPmmk7PD+Lp07F8godq+uaVQU0RpOvo7u7aB+HaHD+9vI0DWtXb07Sg/4/QT8/vYa2ustaN/XyYv+6laiEybhWTSP8v/9KSXhMFbXXjSceREWwNZNBfvRd7Y/qquqdqmP/itMaLOs3PaUCqWNmSvylp1EIZeL9Z+qgbRQ67ej1m5DZNIFWaWqItUi41UgiFHZGWFZaNu/QrjRPL7z8L/+HLHxp5LefzTb5hZ6y8WmdcibL0ct4mn/LmLP7cRqq4Rzc+DeA0geNAbp8YFltm7OyG38yJnRO/BSC2nZp5kMA++ST/B++r69tTK7wQNAbay3zeo8s9as6kpy2IEYXbojkkm0zWvxrFuFVrvVZcF3GMqS+ZReN4Xm8y9FDs5b1pv5DHLqac50QX4fCbzHNXBlFzJ9B9tOrHzyqmqWwGrr/ukdLaILgchkUJob8CzNboJQVaTuRWluRF+9DLW2dTSWqkamex8Sh43DDIQRqQRKz35YJZ0IvfWiy4LvOLzvv0and14iGo2SzvskSTAYJBQKfW/a+a0T2LNqCSKVtLdCSqvQdBZ52vdrpsJSURGmifrVOpSWptY50+a1qE116F8uQ4nHQFGxgiFEOoW2ZQP6mpVY++2P1D2Y5VXEDxrjEvh7Al3X6dSp0/e6jd86gfX1X6Kv//KbC8pp53wHg2mgf7kMkUqixKNIj5dMrwGYnbuh1m5DX7uC4Nv/QqRTpAb/AMvrdc6iunDx3STwnoicIFuJZnTvQ6bPQNvBZOXmp6Jw66Wz20p0MAeWdkgdy0LbvA59w2pEIoYwDDvyh2F7pTO9BxIf82OMfXqhbfuKABLPysUEZz1vk3jgMNSmejdyhAtXA+8sMj37ET/8WKTuRTjLP8LeFqlk576qSsG2yXYDgmWHnzUy+ObPtj3RSTt4nTAMpNdHuv9+JEcdQTobvscsq4R0KmvGL8O38EOU5ga0um3uW+Hiu0vg3RWVsqMypO5BBkJIrx9pZDcF5PZGK0qrM2tHXmjLxPIHEKaJFQgiFbW1DUKQ7juY+JEnkO63nxMwD0UhPeQAzKouBF9/Fs/yRfi/2mAfTXTfCxeuBt7JOfAXiwlFmpGqirBMWtd8RYcnmNoNCLmgdopA25R1YkmJ1D2khx1IYtQRZHoPbBfSR+oerFCpvdRkWXkWgAsXLoF3rgI1W1Drt+fr051Q4bJgTixMo90OKhkIkR40jPiRJ5Dp0RfnaGHuPmmhRJrxrliEWrfNjlbpwoVL4F1DetBwUsMOtHdSmWahwyr/qGE7LWwHq5OKivbVerwLP0Kt3epo3uQBh5AcfSRG157tyasoqI31+D98C8+ST1Drajo87BC/+BoSR5+A2b2P3WGrllJ+ztEA1D87D9/HcwhOu2Kve7Dpk84mNn4inS7+CcmzpxC54DKqjuy7W+R3BHPYKJquu4vyS05HbNmwW9rZ8I+3MQYOxf/G84Svu7hduQC1z8+n02/OQ5/96i7Lj/36dqxQ2JFdDJEb7ic9ZH8qTh39X0DgNprSrO5GevgoZydVK3kVULMbOQrmwK2RJqWqojY1oDbVObu4rLIKUsMPInnIMWSypHMOL2QdYmrNVnyfzsE3712UpvodPrzEEcfhue8PiMfuxTj2VIzbHqL+8lsof/IBzO59SN5xDSIe3+lDAHsKqZGHIpE0NzejDBiCsmIxtbW1VFVV/cfll5aWFs2TGTEKq6KaxqWL6NSp0388mkXy7CmYPfqg/3gYiVVLEYEAoVCooFz/JdciEjEan3mE8vJyNG3XXvnkwWNQ5r1HNBrtcANIesj+iCULaWhocA6afI81cKGbTMQiqLXb7CB2ptm6gUMRILLkVXPxrLImM9ImvJRoq5fjXTgXtb4G6fGSGnko8SNPxKzqkj0HbLYeSVQU1KYG/HPfxv/Rm4hYdIfaI3bKJPyXn0P6pX8SDofxfPIO0aenk/AHifYZbOe77PdE//wEsUSMsuunoM9+lfjF1xA77XxnTTn06N0E7r+J2nfXoq1cQmb/0QXpmbHH0TL1WszufVA3r8OqqKb0T9eirltF03V3Odo/+NyjBKddQWbscTRfcbsdwTKv3IKB51j7kyvyxvtQqrthVXZGLo1Q4w/i/eBNSn91tqOp2sovIGGRstKjjiiQH4/H2rVX+2o9LVPs+FPGk7NpUhS0mi2Er7sY2a2XoxWBHbYlZwXFTzjDyVP6p2uxSsoc+Zm//ouqiaMRQpA+6eyCcq3cHoP31tDQsy/q5nWORdB4/7+cZ5FvWeVrd7N7H8xT+6DNfZfYIUc7Z6DVzesou+ES1CXzsSqqEZFm9BPOoO7qOwm8MoPA/TcVlZ9TCiIRdZ53zlJouOsp51nk3o2vw54LNdDBHNOz4jOCLz5G6PlHCL3wqH09/wihZx8m9Ox0Qs/8jdCMvxKa8SChGQ8QenY6gZefIPDKkwRmzsD34ZtoG1cjvT6SY8aTGHscZnW3QgdYdk+1vnEt/ndfxrvoI0R8x0cmkz8+FXXTOhIvPEZpaakT3ib0wB8I3Xwp5tCRdsZZL6IN1JESmg44jNTQg4hOmor3jqsR/RRY8BHRg8cSPfRYpD+IsWoZ3n19sHIx0YPHEq/sRvMVt6N/PBttoI65fSvSH6T57Zk03DodTzadqT+zD9FXdKVl6rV43puJOkBDblhD4/FnYBitDrjgtCvsCBt3Xov5mwswsud2tZ8ejHhqOqnDfkQkEqHx1r8XlZ+PYmV5b7msVf4LTxRtr/nU3+wwuzOfgYmHYvTsS+arjUSjUTIHHg5A4ycf0Txlx23JjD2O6KSpaC/9086z/HOazp6M8vc70d5/05Z/RD/nEzOelx4vKDdR3RXiMcQdV6P+8izM7n1oGD6a5jseRwZD9rM4ahBGeTUNZxSayeHpf7R/HDWIxKixJI4Yj//yc+CoQZi+II0nTyI99CCkP4iUkvTVfyR0669J3HQpDdMeKyo/3XcQEglX/g/q9Zc49YlcdCUiFrOfxVPTiR5/OolEYi/SwFktaJZXYXTtidrcYCvUdBq1bhsdR7QrvF+YBqLtkUEhSP1gNPGjT8Ks6mrPZ50IHAJhGqjbN+Ob+xa++bMRya/vGKNzN1j/JZqmtTO7/H4/RrceqAvnYt58Of5wmKgAIs2Y82fjf+4REmPGo5z7f8gefVDen0W6R187isZvL0QPhbASccxtm0ke8xNkIEDmygvtWFBLFxDr3R95/GlQUU3ilHPhlHNbtWtpBVosRvKUc1GGjiS4dCGZq/+HhKo652DNYaPs0DwLPiQ8ZH9aKqpRbjwT1n2BX9NI1NeQuOBXUFFVVH6gbotj7op4+7Jio4905JesWEC6SHtTqRRWz/5oiz5GHzycREU11ufzUVWVzKDhKJvWYa1fhRLfcVviJ56Jtmgu6d//knA4jFy6gOhp5xONRpF9+qPNfQ9P1nR2ZmnZcj2BAKk+A1DemYl87RmCPz2bFsCsr8XMBqo3VrSePrPCpaRSKbzZ44uZ/Q5Aqa+x63nMSajvvkL6pX9SXlpKbOXnpDt3Iz7sIFs/nX4B6sK5xF58nJL9fkDj4eOKyqeyM8o7r8DH7xLqug/NgDnnDbShB2AMGop4exXeDavRJo0jHo878cG+dQJL3dZgmZ79iZ5ynv1Rs9yyjmHkEVi0MaOzDqxswHaloRbvJ3PwLF+EyG7EMLr2JD1iNFZpeZa8VuvBCEVB27ga/7uv4Fn+2S4dF5TBcEH85pzzRl23ikyfgYjPP8Hr9eLrN5iIP4hY/AnJ2x9BDj0Add2XaH+6ltRND2Bt2YSyTy+UjWuxhCAQCJCo6oxYvRxy6ZZlH17vsg/KhjXI7r0RXyzBHN8+SF7p2UfQdMXtmNX7EDtlElowRNn1/1sw9xSJGHLuO8gLLrVfnpefpKy8nEQo/LXyrYoK+7wsUH7O0dRffktBWYHVy0ln5Sfvfw5jyP7t29t3sP2Fic/nI394pFMHPVsHUbsNTdMon9Refn5bjN79EXPfw+v14vf77f7ZuBbTNJHd+6Au+1NBzCrZrZdTrqqqtpm67E82EXr1s/ulU/ZAft9CJWEBVl4wALPLPogNa1D77YtZUQVLFxLw+9E0DaN3f9S572F262HLfGkG5oln4Om/LzIbb7qYfC64FHW6XR+Zq8/6VZRMu4LIis9IjhlP6qDDSD/wApWnHrz3mNDa1o2oDbUoqQRmZWcyPfuR6dmfTO8BZPoNJtNvX/vqn/dv/yFkBgwlM3AomcHDMXoPAI/HPuubZ5IbfQeT3m//7PeCW81mISWe1cvxz34V72fzUCJNO71NUl+zEuuAH5K5/GbHlKt/dh6x8RMxF3yA2aMPfLUBXdcdk1C+MgProMMRc99DXHA8xsk/h0AQ8dUGZL/BiHWrnGgVZvc+sOwzhACrsjPagCFkxh5HcsyxiO1b7PSefdF+chZVPzgIdc5a/Pc/R+i6u2iYs4HyJx8gePtvEPU1GM1NRKOt83mza09EXQ1CCKzBI+wvDwCaptkDz5qVHcqvrq52yBu/+Bpq313brqx45+6O/MyBxdsr9h1hv7RLFqD0yHq/ew/EmnCu3cY1K+HKaUXl57dFqd2OOXosuq6TPulskmOORXv9edSTzrTbOueNAgvJGDDEKVeMm1CQx+zaE2XjWkTOcXnVH6mursb7j1moc9ZSXV1doPGM6m6I7VucUMXWQWPQNM32TFdUw0tPQr99UVYsRvx1GgSCZH50MiIXp7qN/E4Tzy1enx8eRe3HNfhUlbJLz0BZuRgZi+zUlyeVol7ijqJYfIPL99k8vMsX4Vm2CO+iuXiXfIp32ad4ly7AuyzvWroA77KF9r9LPsG7ZD7eJQvwfPYx3o/ewf/WS3hWfG5rXymRPj9G1+7Zj4TnmdtCoG1Yjf/NF/B+Msc2m3ehvoH7fo/2+nMY5/+SmnnbabztYfR5s5GnH068c3ekP4i59gtURXFMQgDvpx9gTDwPY1UGLRdwr6kBq1c/ZKTZJtGY45wHGXj0bkQ8Rub1JbRMudaWu+JzPA//BVFXg/Gnx6l9fj5K7XYyU0/HfOohRF0Ntc/PJzbzM7SNa1GvuQhFtIbQFdFmrB59EA+/hpWn7ZDSGXh8j9xVVH40GnXk+F/8R/Gy8uR7P32/aHu1xjr7WTz9Pr4PZtmfOXnnCyI/n2K3fdM6vM898rVtCT35IARCRBdHaL70RjwznyFz1w3ofQag1NfA+lXo2bYhJUpDa7myp63hcnnSfQch1q5Cn/U8+gdvwoWXUTNvO0bv/mhX/4KGhoaCd0CJRTDGn4L161sJPj0djp9I08JGkgePwTvtasyP3rID7m3/Cs+W9eiL5iHH/hirA/nNA4cXr8+CD/B88CZNV/2RpoWNiOoueG75tW1ZdBRJJmevto2J5ff7d2ryvKswy6ucT4jK/DO+RZEfAD7nhBKIRAK1disiHs07DNGb+E9+TmrEKLAkat1W1JqtaFs2on+5zD6NFI/+2/XOxUpyHETBIIFAACkldXV1dOrUCU3TiMfjpFIpOnXqVHCPz+cjmUxSWlpKNBrF5/MRCAQwDIPGxkYqKysBaGpqwrjiNjjzIjjhAEoatjlxsHJOHa/XS0lJCVLKoukFTrhkkkgkgs/nswPMmaaTp66uzvaqdyC/0PdYvKy28ou1V1VV+3MpqkppaSnNzc2YpmlrH9Pc6ToYhkFLSwumaSKyU5BAIEAqlSIWi7VbujFN0yk3GAwSiUScfm5paSlIz4XR1TSNkpISx/pw1nizeXJz8lwMMk3TCAaDeDweGhsbnS9FtLTYsd5KSkqKys9kMkSj0X+7PqlUqiAm1h4j8O6C0as/iaNPIj1oBEq0GW3zOrQNq9HXrkTbvK51bXkvhOzWi8a7n3aWDtTN69Af/gupR+6ioqJir/sKgIu9YH3/+0bg7zraarj8kd2Fi68jsOZ2ybcLIcT3PmqEi924Out2gQsXLoFduHDxbRNYukfqXLj4bmtgy7LcXnHhYi9EMW62I7BhGO7yhQsXeyGMIkui7Qic+yiWCxcu9i7tm9vI0pbA6baZ8yPZu3Dh4tsnbzqdRgjhXABCiIwCLMx3XuX+mE6nMQwDy7Jc55YLF3sYUkqHuLntlYqioCiKw1Fd9zRpUsonpJSjpZT5zEZVVQzDwDAMpJQuiV24+BYghHCIq6pqgQkdDofXCY/H4/H5fMtVVe2Xv3E6R1rLslzPtAsX3yKBcyTON5913dPYv/+AVzXLstJCiKMVRZlvWVa1s0k6z952nVouXHz7JM7B4/E09OzZ+x1FUdaJ3CGGoUOHdW5paX40FosdYBhGJ9x90i5c7E0kNjweT2MoFF5XXd15laIo64A7//8Ah8oQvFoopzsAAAAASUVORK5CYII=' button_nickname_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACEzSURBVHja7J15nFTF2e+/dU7vG7MzIDvKoqACEpUgGFEUjOYmilHxqqifqwYxRs17E181qDfGJL5GFDXv1agxmqgQjHpxQXEjIIqiskT2ZUCG2Zfe+yx1/zjdPd0z3cwMmgjm/D6f84E5XafqqefUU89SVc8RDocDAEVRXEKIq4QQlwBjgCA2bNg4JCClDEspN5im+TTwGJACEE6nE5/PN1hK+TYwVAiBEMLmmA0bh47wIqXEMIzM9YmU8rvAPjFu3Pi+e/bUfGYYRl9FUWzhtWHjEBVi0zQxDANN09B1/VMp5Ymqz+dbHI/Hj1dV1RZeGzYOUQghyChYIQRSymrTNOsdsVh0gqIoXaQdwOvx4PF4UFUVW7Rt2PgXalzAMAySySSJZDIrk4qioKoqqqpimuZsUVFRYQBKrq0thMDv9yNNE8M0bW7asPGv1LZpQXU4nbicTgzDoD0cxkzLopQSTdNIJpNJpbPwmqaJ2+1G13VbeG3Y+Lq0r2mSTCaJxWIoikIoGMy6uBkzWgjhVnLNZl3XcaiqzUEbNg4RGKZJPB5HVVU8bneeT0yu9jVNEyklDqfT5poNG4eYEKc0DVeOAGfQRYA7B7Rs2LDx9UPTNNQC1rEtrTZsHAYwi8SjHLk+cPo/Nrds2DgUUUA2HT2eAXwBkoOGkxw6Er2qP6bHixSHkwKXHf9ImcMMidA1HK3NuPbuwL1zC46WBoRh2APGxiGPHglw4shjCE+dgV5RjXQ4rUFvSmvB6nBS2BnBzQqwBFOCNNHLqkgMHYEy8VR8n60msHYlSjxqjxAbh7cAx8ZNInzqdzFCJQjTwL1rC67d23C0NoNpwOG0/VKSP+OYJkiJdLtJ9R1AcugIDH+IyLemYoRKCf39ddRwqz1KbByeApwachTh087F6FOGGm4j+MYS3Ds3oyRiYOiWLByueyxzhVkoeD7/FOOTcsLfPp3E0FHERx+Po7WR4PvL7VFi45CFUmhcZ67oCVMwSivA4cC/8nU8/1iL0tYMyQTouiXE+mF6GToYhnXpGiKZwFH/BYFVy3E21AIQH3lcHj86X+GbfsW+lftoeGJZ0TK1b26l7rlV2b9jF/+IfSv3Ebv4Rwesu1A7vXnmm3ClTjmL5t88xb6V+7JXwxPLuvAhdcpZ7Fu5j7ZfPPSN50m3ApwLbcAwcDhRW5pw7dyM0FLf+BnNWbcX574aQKKXlBctF4lECGu6xacRY4hd/fMuZerq6vKYnkgkaE32joe57fw7ofXGX9F4z+Mkvn16/pgcMYbWubcSuelX1t+aRmM0bmvgQoEe6XSBlCjRdpREomsQ6Bt6Kck4wjBBUYqX64T2WVdgVg8sUibn3sK7KB1fiveZh3pGT3eBuG/g1fzDq4mfd5nV3+f+AMNEx/XcHwAI/+AytMlndeXRN50/vdHAwjStQJWUyH+n84SKaglvD0Ps4uNVSK+f5l/94YDlPB4PJTfdRcvaFuKz5+ZPAPMfpnZVLbWratm/fBuRm+85cHDxmluoXVVL45NvYPYbROTme6hdVUvk5ntofPKNbF2NT76BdsqMvGeNMRNp+e2fsmUKlcvUF589N4+2DF3aKTOof35Vlt7O/cnUUffyuuyzzQ+9gNlv0AH7lUgkSF58rcWvu26g34Jb6VddTb/qaoLBIPz8KnjsPqv+cy8uyJf9y7dRu6qWupfXEbvmlq6T7fyHs2UKldNOmUHtqlra5z+cx6di9UVuvievvvb5D1P//Cr2L9+WVy4+e26372b/8m20z384y/P9y7cdkGcHjkKbaT/RNK1o1UEsGUm3B72sCqNPKWYgBEIgEnHU9hbU5kbUSNuht3mkl5F1+e5rKAK08ZOIXXMLvt/fXXRwFjKh655YhjlybEd9Xj/hH6Q10B3zupqXF15D/NJ5KJvWU3b56cTi8ayZnX0ux+Rs/o9f03fFqwDofQfQ+KvHkOVVXco1zX+QqktOI7bt82x97ad/L4+28A8uw2xvI/rDK8Hrz9LbdsVPcL/1MkptDQANty9EP+u8vDaS406iccGzVF0wqSgv248+ASqqUDevp/TV5/J+C/j9KELQdvdNuPbVUPrac2i5/B18JMb073cM3/JK2i6dh3PjJzjT/e/M69xyItyG48n7aYxZJnk0p65i9TXeeDdaJ55nnhM5y5BtF15LbO6tBXle+eOLUDesoa6+3hL00cdjDhxq1RGLZXnaMxM6b6o2rWCPadBr6VUUUoOPIvydc2j/7kW0ffdi2s88n/bp59E+YxZtM39I+5nnER9zAqY/eGiFswW9osehKJg3z0E01VumdDdaJhcNF1xtDajGeph3kWUm3nc7Ih4lMuP8rrP9pOnEr7oZZdN6+l4xveve9VgU7rvdqufiadBUj1leSfKc2ZimSdNF11rCu3RRnmkqNq1Dev0kvndJ/qAdOKyjvvtutwbo5dfD7u1Fn2096XRLeGt2dDw7TKC8uhhjwNCi1oVhGBjjTwbAt3FtwTI+n4+ysjLKX3uu6/Mjx+b3a9M6a+I4carF6zMvsHi9aV1Bszxx/EldG8w14TvVF4lG0WZeYJV77D6rzGkjs+VyJ+7YxddY7yanPpG2JFpuvjsviGwOHApLF6Ee5aDvOccefBQaaVjCa+i9ipSZLjex4yfRftYsoidPIzVwGEJL4di/F8e+3ShtLRjBEhJHjaH91LMJTzodvbQCKcQhEu0TWS3ck2igz6Gi7tkOLzyN9Ppp+tUfupQp9Fw8kUAfZw1Y77uvUP3xO5SUlKA8/EvE2BB9px2Zr8GqBxC+82FEUz1VV0wvWKf7lUVUL36UyspK1DXvwpsvW4IYKiEWj2P+7Er8YwNU//J6fL9fgu/3S1AWr0SOsgaKEQgVrK+kpAQW3mUNwniU6ivOpLq6GpfLhfz7m9lnU5pG/MRTAfA/9SDVix+luroav9+POXcWyp6dRKfOLBx11rSC47Dz5XK5Cr4LZc9Oqn95fZYu/vx/s3QlUyn0Pz6Aa5Sb6ivOJHDvk/h+vwTHw4vhh1daPPIF8uvbvJ7qBbcWrE8CkctuAJ8f52t/pfrx31JVVYVr3y740SyLT2n62s69BCqqcL7yfLa+UCiEuOeniHdeRRsxBn3MxGzHRTxK9S+vp7KystsotKNbDazr1r89NXOFIDHmBCKnfw8jVIra2oRn/RrcWzegtLcgDAPT40PrN4DE6HGk+g0mdvwkpNNF8N1XUKLhHpvmRiAEqqNb2qSiILQUaritd5H0HprSSjqDSfvdN6GMPwk9bUpz5w0HfC6VSkHAyt7r+/C9rJ/s8XgKlo+fd3mariqMMRNRN6zpUsZbtxcAVVXx+XzkctPv9+P3+2l88g2iI8b0qG+Z+jweD4qiYAJKLJbn16faW/P7VD3A0tS3/o7orb/L1+idTMuvEq6a7R3mdiBAc0uT5TZU9sPlclFdXW35q51M3qIxi93bCtaX0aryiMEWX7d/njY6FUpKSmis2YbZWAeVfUmlUpgDLHNYO38O+8+fU7AtfegIYGnWbO6x9XfgkZ/2f2XPM3Po1QOInfgdjJJy1JZGAstfxLPuQ4TRsRSiAs7aGlw1OwhPmUFyyAjio8fhqtmO5/NP88oWQ3z0OBKjxyE93nSgjY45yjTz9jpLpwu1vRX/2r9bL7m7TCMHYc37fD5SqRSJm+cgFq0gPOsKxFOPHDjE0NuMJ431iA/fRc6cRdu1t1A29/u9prP+tgcxR4yxzNv1H1s3N6+HkWPh7Fk9m9fikRxPSeliBmcmpaLDyuvH7DeosG/30UpLQMZMINANHYnZc1GfvL+DlpzJv1CCxpYLryH5g8ss7fj2K2mfpB2+2A033tnNXC669rOg52jlrMq8WV3XIdine4UUKinI3y8pwDl7hnuI5FFj0fsPAtWBZ+PHeDZ8VFQgHY378X+0Ar2qH4Y/RHzUcbi3f46Idy/ARlU/9H4DrKWujMBKa1+zZW+kJx4pQVGRLg9GoA9SUa3o+j8BoVAIbc92zBeeRl51I/z6sR4s9IazflUmMFJUwzzzCKkF81FeXUdq3EkkZs/F88xDPaYvHA5jTpwC8Sj+sy2T2el0omka0SeX9SI+0M2ktO1zmDAJbr8Onu5KX1VVVcFz506nE1a/hdizE33EGJLnzMb98jNd3/2YiTTdtgAhoCRHgLuNbh9n+bjue/8Tx6LHssLW+r/vPbgXHm6zrI6jjiHPZhoyAir6pkVIwsZPOvzpn1/VpZqSkhI8Hg/t3fG3t8tIBwOjvArpcqNEwzj37kSYBz7Vo7Y0oLa1ghAYJeVItWcHpHxr3iP06vOElv2V0LIl1vXGEkJvvEDozSWE3vwboTdfJLT8JYJvvUTozb9Zk4Ou/fNWnxTFSgZ4900oa99HTpiUjdQWK8/HlsaJTZ2ZXVIw+w2i4flV7F9Vi3b+FXm+tsvlwrzjBkQ8Svh7s3tFXyKRsAaI14/zmp8RDAbxeDwkHl5iCdxXAKfTCWmfWP1fN1E+aw7V1dWW3zf/AcTGCE2LVxceC6qK0+lELnrC0pg/v5f2+Q/nR6lvuoeGBX/BHDiU4IvP9JiuVKrDdVJPmkowGMTv9xO95T4458KDWKgQcPdNiHiU+CnTs8tLRvVA9AV/Bp+/gx9PP4RoqkeceyGh+Q9k+VE+aw7qeztoW7m3V4HPnmvggwngJmIIw0Q6nJihEqRQEBgHNqfc1vylJOKIHprraksjaksjhxo6TOnL4fkVUFFVXKO6XMQW3oWYeT7mqGNp+vXj+X3cvB7n4sdJ3NLhR/bp04emD9+Bd17FmHE+kZvvQRRYaiqK1e/C2bNonXsrdFrWADADIb5MVjSXywVLn0WZdTnGlDO79Akg9KfiVoPf76d14V1Zkz42/fvEpnd1FVyvLcHzzEP0ajr+eCVMPbNonUZl316950gkgnz5WeQFV9J+6TzaL51XkB+qqmatskLl/H/94wGXinIDewepgXvuFLp2bkZtrke6PSSOmYBRXlU0GCTdHpJHHo1RVmk9u3srIpXkcEcoFLKi0n97+sBBEo/HiqjOPM5a/sh9Ma8upnLO9IJayuv1Ys6dhWiqJzrjfOTA4T0Lyng8MO+CLm3x7uvZJaLUkKO+tAb2+XyYl59lmYyN9R0/blqH/8E7C5rFuTT6/X6Lzvtu77Ikw6Z1OJ+4n7I75/Z+Yll4l7XcE4vm1cd9tyOa6jHLq3pVp9/vR/7sKqufuXU+9wcrxpBb7u6buvansR7n4icI/tfPDl5hVlRUSNM00TQNKSWBQEfooPHa/0QPleHcv4c+Lz+Do7mxW39YujyEZ8wiPnEq0uXGvXkdgTdewFG319oUkiO8sROmED3xVKRQcDTWUvLi0zga9/c8QqwoyEKTQwEShZTp4FX3/nz4tHOIjZuMFJLqewszNxqNEg6Hs/5LZ8RiMdrb23E6nZSXl2dN2NbW1i7PhMNhotFo3gsPBoMHbKehoQEpJRUVFcTj8YJlCj3buS2fz4fL5aK1tRWXy0VZWVnRNuvr61FVNduf3D5lTNLctmOxWDbY43K58Pl8RSPshcz9WCyWZ/q6XC48Hg8+ny97T9M0mpqa8niWe9/j8VhLYOl3EolEssHDDE3hcBgpJVVVVd3W1/l+NBolGo1m6wwGgyQSCbRPWlCb66lMb1rp3J/MKkEuzwrxt/OE0dbWlg2OJRKJAiZ0wf23dGSy6EYARDKO/52l1sL+cSeSHH082pCjcO7agrO2BjQdI1SCdsQQ9D5lYBqojXUE33wRR1Ndj5erjPIqUsNGYfpDVrAqG8hK/9/soFUKBUdbE65dW1BiPVjCkN3wA/D7fPgzA6lAGZ/Xi8/rzfvd43ZT3bdvl2eCgQDBQKDgeyjWTmVFRbe0FLpfsC3Io6tYfVWVlV3uFetTXh10z88umtjtzkujWqwOp8NRsP1C9/PeSae2MuV6U582ZSbhXz+OuncnVddfiFK724pLPrjIWh/+ZHveuy/Yn2742x3vvnIfGEBtbSL018dx7t1B9DvnYJRVkhw7keSYE9LH99LH+ZIJPBvXEnh3aY+0e4d9qRKdMpP4hMlIlzu93VPv2DmWOeaYswSmxGME/v4a3vUf/VMDWTb+PaBpGk2LnkBcdyvGwGHUL/kgv0A8SvCPD/zT6XAcUPl0VsA9rFR6/Wj9B6NXVIOaPhiQa+pKmU4IkM6GccQQ0HUr+0VPZmjTwLVtI0aoBOkLpLd7pg9eGEbHv5lTVQ4namsTjv1fZHeV9RR2ij8bBQXH6bSW4C6bAb94AKae2WGFfryKkkfuRtn40Vc6fnq/EyvX3+xJA04nyXGTiJ1yFkZVf6TbbUWhdR0Rj6HEIqBrVoTa4UACySOPJjVgGCIWxfOPtfg+W43a2tStILv+8QnOrRsL0Ca79lSAMEyElrSzbtr4ylBSUkKkbg/xOWflBeECgUDBHM7/Eg1cVHi7kWH9iMFEzr4I7cijMQMhRCqBc8dm3Bs+xlmzDaW9FTLbGIVAur3o5VWkho4kNfhIjGCI+IRvkxo+Gt+H7+D5/BOEXnxDh9A12xS28bVCURRCoRChUOjrswS6kd7Mp9IOWCp19DiiMy4gNXw0KAru9R/hfe8VHF/UoETbraWhAppPrd+Ha8cmTF+AxDHjiR9/MnpFNZFp38MsKcP3wTvfiGUlGzb+dQKcK2hCQCb3cyYC3UkQtaEjiZw1C234aIRp4nttMd7330Rt2N+tuZrRoko0jG/12zi/2E3k1LPRK/sRPWkaIpnEu3ZlwQMI0uG0zherjhyzuXNy+k7mdPaYoLUEJfQUSqQ9b3mri7dhm9w2DhX0OgqdXmvtEoTKxJJ8AWJTZ6ANPgpME9/ri/G99bIlFL01RxIx3Fs3IPQU7TMuwCitJPrtM3A01OLataXLAYT45OkkjjsxvRdadux9NkzrEIaR+dtIR6KFFVATCjhUcLgQmob/7Zdwb15XQIht2DgMNbAsKMBq19+A5NgTSB15DEgT95qVeN95BRFp/1KRN+fOLfg+eIfIaedgBkLEx05EbahFSW8cz8DwhzBKK5Bub87po/QasNEpIm2a+X1xOJBON0oqgenxYSLyXHxZjB82bHydCrjXPrBQcvJD5Wtg6faSmDAZ0+NDRCN41ryHEmn7Sgj1rPuQxHEnog0cRmLcJDwb1+KKhvO0sHfNO7h2bEJmPofa2WzOPUmV+U1kzGcBimqlkq3d0+2BCxs2Dh8fOM+uVXJM6E6zgaoiYjFELIJ7w8c4vtj1lfmLQkvhWbcGM1SCWeQ0j1pfi1pfe1gxO3HJdYSvvJHK7ww7rOhuWrwazwfv4f/tfxT93bXxE4K/uPYbIRQtj7yId+UbeJ5eWFgT9h9Mw5IPCS28q2iZQ0OAs6lluvq/SjyK753/h3PrBpy7tvR8E0YP4d74MSCtVDy1Nd0fwj/EkUwmaR82Cuem9YcV3c3NzXhnHpu3/zjv9z6VGAOG4uzm4MbhgtbSKrRxJxF49r+LxJEkDZOtdV/3Wy9/7fQq3clvdimpS5IniXPXFnwrl+H8YtdXHgRS4lG8H/0dz2cf9DjNzqGE2LW30vD2DupX19F279NomoZSfQRmZd+8+5kZvfmp5dSvrqN+dR1Ni1cj+w9GmzqT+tV1tDzyIvWr62h4ewfa1JkAhO94JFu++anlND9lfQImde4lNC7dkC2fOtdKNNd279PZ8pl2c1GsreD3LyGyLozsPziPzoa3d6BNmYk+wsrwqO7ZQezaW2lavBpt6kxaHnmRpsWrs7R019foT39D49IN2fLhOx4h+tPfZNsyxn4LIHsv82zmfmfeF+JBMZpyhTP1qjXBts5fiOw/OMuPDJ9TqRQcMRgRjyL27abt3qdpfmo5sv/gorwv1q42dWZe+cy7Le4E9/ZAf3r9V2RTyx4Kbvs/HyKbA+zgMmVGR48nctk85DP/jXPBfJKTz0CfMBk5+EgMUyLPHo9j0RMkJ5+BlJKmG/4PumnCMIF6w2yMAUNJTJhMy/jJ1ot+4WnEtFGWgH7rVJpvuof4hMlw8TQcP7kEfcQYnDu3ED/mBFpvuBNzwR2I4QqupYsIX3odLRddS3L8JDhtJK47f0xy8hl5A1/X9YJtxb81lZa+A1GaGuCLXRadHh9i2ihEY72Vl/k4KxlbZOIUoqedTWjuLGIv/QVt5FjMSBhzYlW3fQ2Pm0RsyFGYSMx5F+JY9ASJKWcSbWlCTBuF9PpJTp5O69W3EJ14itXvEU5EQx2xTjmmIt8+k8hl8zBf+BNiuIK6aR3hS6+jra2tIE25aGhoyB4FrDh1KE233o9WXgWnjczyOXH5T6DfANQ9O2n845topqT0f55GorSyIO+LtavrOq1zb8N88yXEcAWlZgexcy7utTQcOLG7roM0Md1upMPBvwtMtxvZi8TuuTAMg+j5V6Ds2Umfh+5EW3AH5RMrMPbtQZZXUbrwLgKN+9BNE6WpgUgkgvrYf+FurMP51DKM+62zssa2zyEQwvHJ+1S+/jzs2mIJ295dGCdOxfvuK5Rt+RT9xWesbA+1ewmfd7mVCeLOhcjtJsnzL8f0+tGbm8DnRyxdS2rqTPr89HLU9R9mabaS63VtS3xRgxh1LGrNdsLl/TCnTCf40jOoe7bjPusYPHPPg34DLcE/fw7eD1fgrNtDqv8Q8PkpeeJ3BAIBdNNE3buzaF/NbZ9DZTXed14hsOFDDNNENNZT+eg92Q/Pm+vWoJ1+DgwaBn9ejr5FQx93UjolccdEFDt3Nura96l67NdW9pK1qzHLq4rSlItAIIDSbwDumu20jRqHOX4SpQvvoqy9Mctno/8gxNAR6CPGYI4cS5+lf8E0zYK8l95A0Xbb29ut5H4/vBKWfoZY9xF9br7kqzWhHbU1YBgYJRVog4b3ON3N4Qy9qj/6EUNAUVDbWnr9fDweR1QfgdpYh9vtzuZ/Mk4+DQDne1YyNRHsg1qzHffJp6H99xJ0KdG+qIHn/mC92DXvoQwfhXvHFit9y5ARSK8ffecW5KBhuDevx+FwoA4fjSyvwli3BoaNzMs7rB7loM8ZI5F/WoiYPQ3lo5Uow0bQ9tsnkf0Hd0xYplmwLXPXVkR1f9T6fSSGH22NiT07KCsrIxgMWmd9h4+Emh2oK5aRGjsBKSUy/T0j57tWX5VgH5SGuqJ9Nd9/K9unLG8a6yzijhlvTTIb1iIHDrPybKX75z3Glzfo4/E4YtgIPDutCcjlcmH2G4Bas7MoTZ0nXzl0BErdF6SOOzH7vnL5LDd+gkznbVaa6kl961Ti8XhB3pfPPKZou4qiYM44FnXR4ygNteiz5hC+45GvVoA9n7yf3ZQRm3QGqeGjMP1B6yPfQunYqfVlrrxI95d4tid1dCmbDtKpKtLlxiivIjZ5OlrfI6wgRedsED3UwEKAMWh41v9pfmo5HDMuO+ObpokYNhLHjk20nWQJtnfueXg/fBdOPwelqR5d15GDh6HW1uQJhfHSnxHxKNrIY5FSYqTTtpr/+BQ1FkX99mlUHj+R0lmXY65rw7ziRpQ1daj/4xLElWdjrnqrS1rXYm3x6iLk4CNRt2zo8JWPHp/1l1OzroJBw3F88C7i41XoI8aQ6jugS1/prq9nWgnsnR+twDRN5NgJuHZstiaI4yaiNDWgb92IiEdxT/8eVVVVBH7xAImPGvJcAU3TUBr2kzhxihU4PO8K+M5MXK8vKUiTa8fm/DiAplkpkL6ogZ1bsysHUkqMB59F2bMTo6nBEpxlL6CsWUHixCnoul6Q99HZ1xVt1/XzexEbIzifWIDxi3mIpnqUSO9jPQdUqa6tG/C9v5zYydMwyipp//7luLduxLX9c5T2loP3i3O/fCAOZORLuhbiy7UpukbWpduNfsQQkiOPQy+vBC2Fe/N6vOs+OLi2/rgQec+j1K+uQ+zZiff2H5GYdWV2xs8IjLlsCXzwHmL21UTWhRE1OxANdQhFoE2YjPT6UffssAZWeiCYQuB89jGic35M9LzLLO23dyfK7q2YTy1E3nY/DUss89i1+EmiC+7A4Q+RmvNjmDUHmuoJ/e52xL7dHQO3SFv6gGHI8irUmh2w9FkcF8whcpmVz8m9+ElS770Ov1iAs3YP8QfuQFz9U2KXzkOp6t/jviKA4yZmg0KpVMr6tEptDZqmIfoPQq3ZjhQC9S+PkrziBupX10FTPcH7bstzBVRVRU/zoH51HcSiuJYuQnnstygLF3ehSX3zb10mX2JR4tffbvnZK96g/brb4LrbEJvWE7xjHm1HWxaBe+tGUkJgnHUeyoxZUID3xdrVly0h9eJfUKZ9l8Qrn1kTwtr3iy7THXBYd06p0yVjgRAkjj+Z6NQZmMESy4w2jXRq1py9x90tIWVPNeUIT8ElqgL7mYsJcMF0OrJwOaGAw2FtTFHVjp1Z1tSIzHwnOJXE8+n7+Fa8jtreexNa13VaWluRUuJwOOgTChFPJDAMgz7pUysNjY2EgkEcDgfNLS3ZsplUq8FAgKbmZspKS3E4HMRiMRLJJGWlpcQTCcJha6Z2HHUMxmMv4ftwBe67f0Jbe3s2hU3A78fn8+WVV1WVYCBg5YfKGbSF2iotKaGhsTF7PxwOE08ksnV7vV4aGhvpEwrhdrtpaGzE7/NhGAamlD3uq9vtJhKJZDOMZMq73W4i0WiWb931I8P7DA+EEPh9vmzKnEI0uTtlyGhqbsYwDMrLyojFYtn+ulwugoFAtv7KigoMw6C5pYWy0lIryl+A98XadblctLS2Wjmj0zzo04MTTT6fj0g6HVImpU4XAfYWSDmCEBh9ykiNPJbU8NHp1LEeerfpUBxAoIsI4Fe1rpwxrRUV1BxzOk2T0JIorc04dm3BvXEtjn27D9mjivEf3Urksus7tM6KZZQdRPDDxuEHn8+XzWfWOwG2cUggkaOFwDo8nptgzca/nwA7bLYcPjjQd5Ns/HtCsVlgw4YtwDZs2LAF2IYNGwctwNJOH2PDxiELeaDDDJnvn5qH+bE9Gza+qSj0TeI8DSyEKPrhYhs2bHyNprKiFBdgIQSKoiCEQNd1WwvbsHEICrBeIE+6IoQwcwVYCEEqlbKF2IaNQwQZxVoAYcXpdDVlCjkcjqwvnEwm0TTNOh1iB7ds2PiXQkqJaZqYpmkdc+wkg+m/NzqCweDOpqZkZUZwHQ5H9sHMZcOGjX+txu1sFXcW3vT1jKOqqu+W9vb2IzUtVZYpnHnYhg0bX68QF0Jaqe6QUj7qUBRl1+DBQ97avXvnNE3TSrt72IYNG18fTNNEUdT9pim/Y5pmUh0yZOinDodjZGlpWT3IuGEYbtM03di7tGzYOJSgOxyOpmAwtKKqqu+Z+/bt3Qfw/wcAvDvr4Il4O6YAAAAASUVORK5CYII=' button_embed_spammer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAAB0xSURBVHja7J15fBXVGfe/Z5a73yRkT4RgQEEqoLggFQELCiLqWxeEKhXRbop0sfrWulv7qlXrWqtdoFbFgiguNOAKShHQCiqCRQSCqCzJzXr3ZWbeP+beubkkIVgDBDu/zycfyOTMmeecOb/zLOecZ4SiKKThAH4gSdI0IcRgIYQfGzZs9BQEgfWGYTxlGMZfdV1PAIg0gQ8TQiyRZXmILMvIsowQAiGE3W02bPQQGIaBYRgAm4WQxkUi4e1CURSHEGK1oijDVFVFlmUkSbLJa8NGDyWxrutIkrSrT5++x8iSJF2hKMplDocDRVEs7WvDho2eByEEkiRhGIZPCDFUOByOVaqqjnA4HMiynFPQ5XLhTF+3KW3DxgHUtICmacTjcWLxeMZ0zoGiKPXC6XTGnU6nQ1VVS/NKkkR+Xh6SJJFIJEilUmi6bveqDRsHUtumuShJEtFYDL09BzVFCOFoG7ASQpCfl4cQgnA4jN4B823YsHGAtLCuo+k6qqIQTyT2LCJLGdJm4Ha5kCSJSCRik9eGjR5E5rTvm3Nd2rOg0+kkkUjY5LVho4dBEmLvBBZCICSJRDJp95YNGz3NJ5YkdF3PIbHUobq2ta8NGz2PwEK0I7DSAXvNHxs2bPR8s9ruAhs2bALbsGHDJrANGza+CpRvSkNiRw6mdfQZGA4nIBCahv+tGlybNyA07YDLE73oSppm3thlufILRiDt3P61nhX85Z0Ez5tOr0d+i/vpP+63Nn2V5yRHnUHr1B8RP3aEdU3dtB7P6mV4/3Snzbz9RWAj/XOoIVlSju7xY6gOEAIpFkXEY6DpB6U9+/rMXY1NlJmnS772M5viCYjFcLlc+7VtXT0netGVNHcweSUHDKZlwGAipZUU3z7LZp9tQmdaIaHlF4KsgBAgBHKwGaWl8eBPR/NnQz/R+c+2Td+4QdU69cfmf2oW5Lb1r/dBoI7kGefTPOI0m337xYTW9UNuGUl3ukkVFGEoCkiSSeCmACIe7RFt8fv9+LzevZYJpc3Tgkd+S/LIowmPP9e8d+Hf8d17HclRE2madRNa72pENEz+nPtxz32kfT0PzqfplNMBcL39Ovn33dDORG+99Y9W/W2f0Rba4BNpueJ64sNME9j76vNIodY2JkbHy416RRV6UQli+1aMWRfi83rx+9PJXebcQ6MsE5/xM6LDx+BdvpjUpT+neeaN+Bf+HSnUSsslsyxzO3/2faj/WtJO9sio8Rhusz+lhnr8NfPwPHZH2nSfSOB3c/C++jzKri9onXwZhtuLumk9xZeejl5RReOds0kOGNyu7V/nXsv6uHgm4dO/a5XpqB273tiM51+vAhAefy4iGqZ02tj/ypX6RvjAWn4hui/fJG+awEprIyKVOuTa0jzuHDhqaNbvPG868ZZmklN/YA1aw+2lecYv4JWFuAM7szdfcCnJqn7ZuMDI04hX9ad08gjLRA88/po1uNo+I1pSQcmvplskDNw5G72oxCoTHn8u0ue1XRtDO7cjf1GLVlyGcsrp+Dd/lPP3wr/cReTBm2lpbSXu95M5wBr81rCcdicHDCZw68P0mjUF18drOpVdLyqh5ZJZJJobKZj3WFbeqv7QZpJKDhhM3U0Pw5Dj0XpX57Q98cU2Crvh3ujFM9u5Dh21AyB81DGQfldGOEz9h+9RUlz8lV2pb4QJrRUUmsGrDIEVBbm5EZHqAVtCp1xO8MNWdq7c2e6n9dYOAkFV/VEeuNU0Oe+7GYDEjJ8hbd+KdIRsXt+4DjxeWs6ZlnvErLgMefb9ZpmLxsH2rRh9qgn80NQSoWvuIjlgMNLGj8y/9xMwdiBsXEdq1HgazpgCQOTiK00tunGd+fe0+av3qd6nJvd6+HYQkHriVeqeWUnrrX/MaavH46GivDzXKjlqKNLyV7Pm9sZ14PbSfMX15rnYsy/Oyt7WLJ8/2yTPMSOIxWI59ckL5mT7IlCHNvECDAOUS8ab12sWABDvpntbp/4YEQ3nuk1/vQ8MaL7mDrS2wdSqfkhLnjXLDC+zDup/43xgQ1HQnS7Tt+0EqV4lGKpqlpEVhK6jNNSBpmE4nBhd3H+wEE6mCAaDuRcXzUP/w+30Kiig4tm/mAMiEkabOBRVUagoLyf/3bfMvvHn5w68RfMw7ryG/Lw8KrZ9TK8/3G5OcMeeRCQSITb4eEQ0jH7mUJxrV1BaUkJFrJWS638A0TCJMROJJxJEho9GRMMYV07GuWMbZaWlVMy5ByVt9nUF9V9LKB7dF7F4AVooSHj8uYTHn8vOlTupe2Yl0Ytntr9p+1b0SydY5K64bAKioQ5j0DG0BoM4F82l8IQi9DOHIv9uNt7HFuJ9bCFMudy83+fPPW63cR3ary7H7/dTse1j1M+3mhr7L79HvPMmpSUllL74ZLfdGz/7YnPSWzQf6YYfmfeWl1Mx5x7U5S9jHDWU5oHDss+IhNFnTsbn9VJRXk5pSUn3+MB6D4pCa/58wiefhrrjM1wbP0R0csgiWVppklSWQZZR6nciQq0YQKqolPCpk3BuWIvz47UH3qyePxt+/YPOJyivNzfy/+VneL1enC5X9lo0jCRJ9CosxABEsCX7vgwjW27F63i9XtweDwbgXPGyScSScuKJBFpRmWmGbzWIA3V7yCLKKojFYuhFpRDYjbR9M/nFxQhJwgA8tZ/QOmq8FWXf2zhRVJWy3/6UYDBIMpkkcdwpcPFP0E4aQ/PMG0k2NeBfPC97w0drUFWVvLw8q151+1YSw0aQqKzGiDSRuP4+OG86GhDuKBait1lx2PIJDocDb7p/rel783/w+/1IsozesLvb7k0d1tf8/4WXwYWXEcRMI9kWicOPJPXJ+znv1Of3fy2+9VgfOF49kPDI00mW9Ta1aSet1D0+tMKStO8rgSSjNNQhEnFzUGoaySOPJnb8SDxvLsb7Zk1uMOYABbG8XQSx2qJtaiNTVYf2OU+Zw+HoeDLUNAyPZ+/WjsdHKj3BGQYo6QSHX7ftAGz7GO03MwkNOp7o40sIXzAD5wtP7JPsuq4RuehKQudNNyekpYvTEbtW+PIzuPo3HVsCqtr+4q4v2vdvN9yr+/K67oyCwqwZ/RXe6SFFYN3tJXLCKCLHjMiavqlUp/N9qrAU3e0xy0kSyLIZgU6mTSJdM7Wu6iBy6iSSffrhe+U5HNs2mRH3QwT7RKRTToPVr2Utk1ETMdxexLZPzYnh81pSvathsK9zEqtqttzhAyDYkO3r8t5dihC65i5C503H10GEVpZl8jd9QCwaxvD4CIVCWFNK/4Ht321Vf9OM3rbJ2hBi3PkrpKcfxe12m1rtlof5qpGOr0Oczu5VP/lonywuvaDgq73TQ8kHTvQ9kpZzLiZ8wmgMl9uKKLOXhmq9ikBVLfIiyciB3W1MZZGuQwYhSPY9kpapPyY05kx07zcsd/24swl9f5ZF3uZZN5mDftMGVFXFtX4NeLyIxR9SOmw45eXllJeX43lsIWw18Dy2kKKiIqtc6sGn0cr7mC7bT64n0iYy2xmc75j+eeiMCwjc/Id2S0yNjzxvTirr1+QeWz1qKLGbH7J+DTz+mhkFf2d5bqbUk8ZQUFCA3+9H3PYIqUkX9oiudy6ai9RQB2dPxXHTA1bfFk2egbx8K2JDiNJhw7t9k02P0MC620tk2LeJDhuJ7nJbmzHaLgt1SuDisvTuK9OEloPNyI31oGsWf616ZBk0Dd3rJ3zqJJJV/fG+tQTH9i3Z8vsjCj3l8nb+kGVVPfJbXB2s5/5XiISI//QWdv30lqzG2PgRxh2/RMnLw3PvdUROHI1+1FDqnnsnV7M01BG56zpEMIi/Tbn6he9mZ/vPa7uMRKv/WoLzlYXEJ5xH6ozz2XXG+e21WEMdxr035prMkTDa5MvYNfmyPcrdgMvlQv1gNbGRp8GkyTROmtz+wSXlB30c+2rm03rJLBIzfsauGT/LtT6emUPgw/coLi7uXsvs4GvdI0yte9JY0xTOEE1Rsv+m9ze3l14mVVSK4cwuIcnNDUjh1pwyKGouiWUFFJVE/0G0TPkhoTET0T3eg9L+5ngiN5L8dfDs40hrV2Z/f+sVjDOH4nA48KT939IpJ5vLF22xZiXGrO8hf77F8tWLfz41t675s9FXLt0nMXrdNhPHg7fBmpV7TDBhqFmAcWJZzrMAWLYY8czsXJkmj7LKueY+guvxB8062kSLue9mCNRBcVnuMs1BgOexO3A9dJspl2VK1MH82WjXXY7X6+0WszlnMnS5XIbL5UJRFIQQ5OXlEQ6H97/WdXmIHD+S6DEj0N3erNaVTVMXRQFJRq37Ev8/56F+Udtu54/Wq4iW82aQPOxwi+ju91fhq5lnBaoMh4PwWRcRGTUBQ1ZAS4GmmT+6ZvrBuo6jdiPepYtwfLYFjO7xjWOxGM3NzV3HNgoKcLlchMNhgsGg9XsGdXV1yLJMUVFRu7ozAbK298ZiMWtS8Hg85OW1D7AEg8Gc9+xyufD7/TlBGl3XaW1tterKBKQ6krGz9reVJeP3ud1uq65YZvNDzQK8181AkiRrac3lcpGXTm9szQGRCKFQyFr/zkxOwWAQwzAoLS0lmUzS0NCAt+0uMKC5uZlYLEZpaalVp67r1NXV4XK5KCgo+Fr3tm13JBIhkV6akmUZj8eTM2F19E73yciKRFAUxZLhwBNYSCQr+xA6ZQKJysOzhM1oyLSWFJqG+/1VeN5+DbmlsVPt3frdS9B6FZta1eHE9/oLeJYvMQ8ytI1qHzOC8PjvmmQ3e9+cENIERteQgi14VryK+71/IUVC2Nj/2JPAbUljo2sCH/C90KGR44gOHWGarJ1p3R3b8S5fguPTDQgttZeIXpEZqU4TX6SSKLu/RCQS7drg/GAVau0nhMeeRWzEWHRPJhKb3tObSqEXFBE64wKSVf0pePJhe7QcCOw51Ox0Tj07iBUZdjKG052z7JMhrxSN4F67Es87y5DabFboDKmyw8wtlOm6pFArUnNDpwEpqaUR//NP4Ny4jvD480gMGGxqbgzTT04lQZaJDz7eHhk2Dk0C7++dWCKZwHB50ks+ac0pBI5PP8bz9quon9eCrnUpg+FwkiqpwFDUdARaIDU3IMKhLu9V//MBedu3EDv5NKJjz0YrrTBnfkkGKQnpnUc29j+cc/9A/ux7aWlpgfTOJxs9WAMLA5Da+LyKitTciHf5YpQvP9tnE0p3e83dLxkNLiRzA0cssk/3S+EgntdfQC8sITrunPRhCDk7sdg4YHC5XPs9CcE3FQd8pBrpzRYZ8qI60A7rS+v3ZxEbMdb0afeFwL2KcjdiCIGye0d2B1ZX5ndlX1ov/QXRU8/M+tGKAqoDnPZgsmFr4I6R0ZiZNV7VAQ4Hqar+tF7+S5zHj8RbMx/ls0/3utUxVVyG4XCYGlsI0HXkht1dHiE0XG5iJ44h8p1JaBV9zOcbRm4UXLI/pmrjUCXwfk7s7lv6EtGTvkOyTz9TA1skdoKqEj95HMlBx+B5+Vncr7+IiHS8pKUVFGNIchuTuBWppSm9b7pjJPseQfg7Z5EcOMQMpCUT1g6uzI4vkUzgfmWhHQ21YWvgDv2d9WtwbN9CZNQZREeebp7jVdr8yAp6SQWhi64k8a1heF54Csem9bmRZUlCzy/MElgI5MYAUlOgY3Pb6yM6YizRE0ah+/NBN8yIsxBm0EqWwVBQajfhff4JHB+sskeGjUOTwAciK6VobcZbMw9l+2Yi50wj1W9g2nTNDSAlBp9AqrIvvtm/x7n+PXP3FObRLS2/ILtPWgjkwE6Ix9rJrnv9hM6/jPiAweYOK00DyQBNAlk3ryUTuN9agnvJAuTALqsfbNiwNfBe4PzoPZQd24meOYXYqRPTOZ1zzXndl4deVIYhyVZ+Z62gyMxCKQTmaSMJuTHQof9reH1oJeVmWU3PugjpH+WLWjyvvYhj3bv7HACzYaOn4KCvl8gNdfiefBj/n+9G2brR0rIZ09hkbO55YK2oFNQ2ObAMAzmwq+MAlqaBnmq3v1kkE7hXvUHen+/GuWZFt5BXGzKcxifeoG71bupW76Z+2VYiV9z4PzOYwtfeTfC2R3u0fA3Prj4gz4pccSOBmvX7XdYes+DpfOdN8u79Ne5XnkPEolkCp8/x5hClpCJ9Aslct5UiQeTA7lzy7+kXWPVJKHU78C+YjffFp8yjh92E5lseQqrbieMoJ/QTGC/NIzT5MqLR6P8EgWMnjSYVbCEU6pn7yFNllVD7KY2Njfv9WVr5YYjPNtPQ0LBfZe1ROxbkwG58f3sA/8O3oWzfnLu8kzlOKElpAruzB/gb680IdIfkNbLk1XXca1aQ9/SjONe/161ZK7Uhw9F6V6P9ewWyLFNaWkrp/dfjG1FOKBSi6dEXaXh2taWdw9feDUByzJk511vufcqagQM16wnUrKdu9W6Ctz1K+Nq7Lc2uDRmOUdk3596OtH1n9e+J4G2PtqunftlWYtOuMsk57Srql221tEumbMOzqzEq+9L4xBtovatJXjADY8L5lqyZMtqQ4VadGXnql20lcc406/eOtPee/RabdpVl5WQ0VGdtzMiVeVZy0LGIXV+iqmqn8u2pBf/bNiSrByB278BY9H7O+9aGDO9wHOxN1kOGwGZLdFMb3/0rXMuXgADDkc0qqecVoJX3NpedFNVModNYb0aVO/TyVQzVgdxQR95zf8NbM79bta41+Xz0Lo4Vr6H94jbiL2+g5d6nSI45E4/HQ0lJCVpVf3QDlAmDYf5swudPJ1xUQcv/vRv1nbdQBqgwfzbxU04nGAyS6DcQAwPxs4uQnplDdNQEEi1NeCcdi+H20njSd2j98XWIcNi6NzRpSjtt31n9e5p7sdETcF79fahZQGjSFMKDjsNwewmuepN4PI5WUYUI1FHv7UVo+ixct/8cxg5EKyylYdL38P/192ZlYwcSHT6G6KkTcf/yErOMy0vTudOJp1P86G8vRRmgYhjQPG0mvivPR1r8LNHjT2mnvVNHDcEIhUz516ykdeqPcf75HpQHbkXrXU3jkcd02sbmmx4CAxxHOTFemodeVIL+xTa0a+4kdtJoPDMmQj+BtnsnTedOzzlPHLnixg7L7GsbtD7VaIOPw3n1NOQ591vvu+muOTgyss76nnW9M1m7yt/VY/cMyoHd+Gf/Ht/fHkCu+9Kyg7WiMvT8XtkD/5KEXL9rrz6s6503yZv7x27Xunui4JppuI/2oK97j4TbS9Pv/kb44pkYlX3Ri0qQfv0jqP2EwtdfMGf4/CL8f7qLeEkF+qK1MOVyREMd0WgUvaQMaek/4Z1lOGUJqaGO1P+72kotY3z4b/RgC6mBg9He2ITzsCq808cTieRuJc3rpP62iI47C/mtl0m8OJfCW36C59RqokOHmwnkVi1FURQS/QYibViLrCiIaJjYTQ+g/uYP+BbMxrjjl4QHHWumlNm2Cem0c5CX1ZB46WkKWwM4N36IUVZJNP1VCePXP8DlcpkLCM8+TnjjRzhkCXn7FuLxeHYur+yL4fZi/PEOJElClSTkfy8n9uJcnLKEiIZJvf0a3sfubN/Gsj4kh41APHYXAEXpPtcXzSN12jlovauJ/G0JbDXg+JPBn5fTL9FxZ3VcZl/aUGHKzT3Xk9z8MfmrzEQI4UtmoReVED3/UlKbkvDwP8zr/QZ1KmtXBO7ZX2bQNNxLF5naN20KayXl2QwcGZ/2i1orC2W7iaB+J566HQdMZL/fj//2qwiFQkSXrCdcehj0G4TUUI+28nWKiopIHpMmxwkjab3iVyhrVmK8/QaEg+iGeQBc612NvOF+3G43mi8PUb8LSZZRjz7WfNCGtfhXvUrkPx8SGz2R+ImnkHjseYovOCnrk067iuDlV3dYf1voRaWI1hbcbjeKouDz+RBV/Yht34ouBLIso5eUweaPcX5Zi/fUaupveYRkv4EkTzkdZ0sTUmUftM+2IPcfhFZUAuvX4knXlzr8CORVb6JV9kFK1+k+YhChdMI9r9dLpLQSsetLZCU7JJMnjDKJ/M95+AoLacnI4HRCZV9EoA6uuolQB30ojR6PDiRfnEthYWG2z7dtQu9TjXzrT9GeyB4Z1QEjnSgPMPu/gzL67+Z02QbSebqMf84jr7CQVObZgPTJR+gTh+YOmmlmnuyOZHV0kS/60Ni132ZXVKrqCHC4Ld9YaknnwOps59QB2FFlVPbN8WcAnJMuhOJS5FVLSYw41dTAZ38Pjv024e9OQ61ZACeMRPrPOlLTJ5gD5LiTket2IJ011RxEy18xtd/RwxBbNiLLMslvHWdquvLeNL7XgEuWKfjFVKSN6zDCQZqasrGA+LEjOqxfUTo4Bl5+GKLvkQRq1hO+9m5SZZUYHp/lL2q9q2HDB8QffZ6mJ5dS+purcP75HvM5gXoSJRWI3TtQvthqJo8/cTSKohC+9m4zz/RL/4D+gxC1m1BVlfjYs81B+k9Ty2hV/WHn5zmTS3LgUOtzLnJVf1OGt99AkiRSZZWIbZ8iOulDORMTueom5Kr+hL87DWn7VoQQiGgY7TuTKCgowHfLQ4gNIYrGnZWTTKCzMuKIrttAOkc0iz9EDDvZet8CMKr6ofyfiyk59kTk5VtxP/ocveLhzmXtIoPmIXfsRvflIaIhpJZGRCKBum0TIhw8qDKJHZ/h+/tDhCdeYAUnWmfdjO++m9AX/QPJn28mhHvwaRr+sghlw/vo1/8Q5/ur0Y77NsYWHU45DdFQh9baAkNOML/IsM0cKHpRKcYX21BVNR3d3IL877dwrHiN5ut/T/PaJkRpOY47r81JP+P8oOP699TA3mfmwOgJhGs+QN6+hdh1lyOW1aD3qSaxMU58yPHWhOJ+cS6pPtXUrd5N/L4ncT33ODz1CFIkRGri+ejX3mXWN2kyzWubiJ00Gue9N6CtfB2jb3+MYAuKolg+tRACuaq/6fN9+G6ObKmySkT9LlOLH3m0KcO693A4HKQOP8LU2O+v6rCN6mvPo654Da7+DYG5yzDcPowtn6CqqinfmAk0r20ictZUnPfeQOPSmhwfuNMyVf26bAPlh6G8/BxAzvv2PPEwIlBH6v6nqF/4LlL9bpKzphCveaZTWbsce3um1PG63UT+R5Y9uhvRWIxQKGSlS1UUBZ/XS2jeClj3b7jhR1bidI/Hg8/rJR6P09Jq5u9yOBxomobb5UJIEqFQiJJ0FsP6QIA8vx+n00koHEbTNPLz8ggGg0TTOacURSE/Ly+HBJ3V79kjyXs0FrOCW06nk/y8PBKJBM0tLda9iUSCkuJiNE2jqbnZaqfP67XyUkVjsZzcWW37weFw0NDYaD0/EokQi8cp7NULwzCoDwQo7NUrx0IIBoPohkF+Xh6pVIrGpiZKiosRQtDY1ITL6USW5U7bmJEp8+0hp9OJz+vNaa8sy/h9vnaJ5Tsrsy9tiEajCEkilUqRSCSs920YBk3NzdY4yPR1pq0dyZqzVBeP7z0nltvt/p9ZtzxQCLxZi/yne3DOvrcdcWzY+CqI70Fgxe6S/Y/iU6sJBALIdsI2G90Mm8AHisTdnNDbho1DMohlw4YNm8A2bNgEtmHDRg8isGGnkbFh49DWwPoh9M1cGzb+l9ARN9sROJVKdcuXw23YsNG9SHWQsLEdgZPJZLd/AtGGDRtfX/tqmtZOuUpAu3N4mc8i2rBho2eQN5FIWIcbMiQWQiQlYG3b4FXmj4lEglQqha7rdnDLho0DDMMwLOJmvq8sSRJS+ltiAKrqaFYMw5hrGMYIwzDaMhtZlkmlUqRSKQzDsElsw8ZBQOZggyRJyLKcY0L7/f5a4XA4HC6X62NZlvu3PcWSIa2u63Zk2oaNg0jgDInbms+q6mg64ogjFyu6rieEEOMkSXpX1/VS65hSG3vbDmrZsHHwSZyBw+ForKo6fKkkSbUic4xw8OAhZa2tLX8Ph8PHpVKpXtgHHWzY6EkkTjkcjiafz19bWlq2SZKkWuC+/z8Ar8Y5qjZRM5QAAAAASUVORK5CYII=' button_avatar_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACAdSURBVHja7J15mBTVuf8/p5beewYYZhh2GGVRBhA3QEFccUMTUeICCUa9bmh+CV41UaOo0bjFaERJ7o37GgGXIIqioGhgFJEroAIKw6YDDLMw093TS1Wd3x/VXdPdMywSB5DU93nqmZ7qc06dc7q+9S7nPW8JTdNIwwNcpijKBCFEuRAijAsXLvYXNAIrpJTPSSn/bllWEkCkCdxVCPGWqqoDVVVFVVWEEAgh3Glz4WI/gZQSKSXAN0IoJ8Vi0Q1C0zSPEKJC07Qhuq6jqiqKorjkdeFiPyWxZVkoirK5e/eeg1VFUa7SNO0Sj8eDpmmO9HXhwsX+ByEEiqIgpQwJIQYJj8ezSNf1YR6PB1VVcwr6fD686fMupV242IuSFjBNk0QiQTyRyKjOOdA0rVp4vd6E1+v16LruSF5FUSgsKEBRFJLJJIZhYFqWO6suXOxNaZvmoqIoNMXjWC05aGpCCE+2w0oIQWFBAUIIotEoVivMd+HCxV6SwpaFaVnomkYimcwvoioZ0mbg9/lQFIVYLOaS14WL/YjMads357ySX9Dr9ZJMJl3yunCxn0ERYucEFkIgFIVkKuXOlgsX+5tNrChYlpVDYqVVce1KXxcu9j8CC9GCwFor7LUPFy5c7P9qtTsFLly4BHbhwoVLYBcuXLgEduHiPwQtnFgyfexLSFVFev2Y4ULMgnaY7Ysx2hdhhguR/hAyE5ktBMJMoW6vR22oQ62vQavfhtpQjxKLIJLJ/WA0LlzsRQLvOwgsnx+jpDPJrr1Idu1FqnMPpO5xyNrqXyDVtVea+TZZtdpq9E2VeDZV4vluPUpDPcI03F/bxQEH4fP5pM/nQ9M0hBC0KyggEo3u1U6YhR1I9OpDoldfkj0ORnq8uUTNP5ze72CPVPY62Zbv8K5difebFehVm1wiu/hRIxqLoWkaiqLsewls+fzE+w4ifuhhJDv3BEVpSdZ0R53vFAUQrUriHAJL2xgwuvbA6NyN+IAh+FYtx7d8MfrWKpB7Z3fVtqfmYnTvTcmEE1GqNrT59WoffRWADpPO2Svji115E7FhJ5DqW+6c8/3rXQqe/gvqisXNWtLI09l27xME33mVgilXu0z8savQqc7diR51HImyQ5GqmkvY7M+KAkJp+bk1aZyRvBkCS2kT1bIwO5YSLSoh0WcAgY/fx7/iU0Qy0bZjHHm6c2NvPf9ySh68yXlytskDsXMPEkOGoXy2iLr6etq3a9fmD6ds4mYQP/Zk4ocPp/1t1+D7aE6uBEkZiMZGwmE35doPgX3ihY73G8T2U8cRP7gcqWk2IVW1+dA00D3g8YLHB14f+Pzg9dt/sw9/wD4yn/O/92bV8/gwOnen8fRxNJ4wBitc2KbjbDrpLERTFDasRZ54FrGmpr2j2eyFSLqGKY+R6luOqNkKf38QyoR9nNgPliwEf5C6G+8l5cbV710CWzR7on/wQ1GJHjachuPHYBSVNEtVVbX/ahpouk1cbxZx88kaCII/CIHQLo5gunwgh9AyGCY24lQaRo/FKCpps/HGRo5GbFiLqJgPHUuIXvybnO+N8qOoWlhF3f3Ptqhbd/+zVC2swig/yimbOZc5qp+aS3Lk6Uigafwktsz82P4RjziG+JdNzne7qiuBxv++h6qFVSRHns6WWcuoWljF9imPtTouo/wooqPPQdRsRY4biXrvDRQUFFBaWkppvIGSSeegfvgOFJVQe+XNLVY2EpP/wOb3vqFqYRVbZi0jeuVNLa6xfcpjTpnWyiVHnu70MXtsO2ovv0xmvDWPvppTrvG/73HGn/ne7Nwjp8zm975h+5TH2D7lMaoWVrH5vW9alGmrY99JYKEQGzKc6DGn2JIvX+rqHvvw+mypm03cQB5Z/cFmcmYI7ZA1/TkQaCa5P014fwD8GSL7iB85ksbRYzGKOv3gw4389z1IfxD54Vy0Jx5CNEWxTj+XeDzulFFXLEbdVEm83yAaGhpy6if7D0ZsrKT63VkYnbpR88fHiR97ck4Zo285NVMeIVnStdU+1MSaSJZ0/V51aybdglVUbNu3GyppbGxs0W5ixCm2pfLuLNSNaygqKiIQCDTfVIpC0UO/x3fxaVh3TSYWizVXPqgfqV/+GukP2gKjqJiGX1xL4/BTclTz2OhznDLZ5eovuDLXBh99Ts7YdtRefpnI2In2PFsW9fX1jlYRGTvRGT9Acsgwqh96qUU2jFj/wcRG234GGY2y7fNPW8uYceCo0PG+5USHnogVCObatxl1OUNen7+ZZA7xssiXIa2jOgey1ORsVTrQsmx2W2kSJ4YcQ2zEaKxQwQ+rPh99nC2h7r4O/+YNaCuXQ/9BREadmVPO/8kC6FhC/LxLmgly1nisomLEovnouk7859fY/785o1lVLROwcpmtqo65CM+zj1B49uF2A0sW2t/Pfomm3aibc+MFQmi/GG2Xufu6nDxpDvlLu9kfvlhKIBBo1a5XqjZQsHIpxcXFOeSm/yCUt2bk9gOIHj2KVCpF4qzxGH3LESuX5/b3H4/b99HgYTkPQcD+blft1WyFay+0y1x7IWzb2sJfERt9DsrGSnjw1ub2Zk9Hdu9NzeQ/5l6zR1nzOI7u5CSbOyAJbHQoIXr08Vj+QC55db1ZZc6xXQPNRMtTf/F4EYBIpRCGiVCUXJXbkz68/lzbOdtOzpbgPh9Nx55CYsARSE3/QcabOGs8ZrfeiE8WoKoqgUCA0JwZ9lyc/JMcu9A/Z6YtFU4YQzKdMqXpuNPsc689j8/nI/TAbwkPLkBeMw7t0RkE/voKnpmLoP8gWwKEC4nH43j15v77fD5KS0sp/NPvdquug/dmIRfNo7i4mNLS0lzy5aOuBl3f8ZwpitLyAbBhLdakcQSDQUpLS2n/6jP2+VAByWQS76zn6XBkEfKMQaj3Pk7gr68Q+OsrcP6l6XJhZ54Am7C/u4xwONxqe4kjjrXH+fRU1DnTKSoqonTJ+4Re/FvubzZ0lD3n//sn9L/dQ7t27WyT4K5foWysxDxxDNHs5dVYNGccxcXFB6YXWmoaTYOHYubbvBl7N+Osykhhj7eZ2JoGqmaXFwpq7VY8ny1EX/k5ak010uPF6N6b5BEjSB0yuDnow3HiSLAkaBIsCzQTTBM0A4xM2/bRdOzJaN+tR9+49t9fqzvtPPtmOP08+Npgc/aXJ5xB/Ldx58ZXVyxGW7UC46gRxONxPB6Poz7Linn40jdG0/SF0LccA2htJXtne7i/V93G7QQCgVYlbwu0L/r+KYgrv0bXdccLrdTX2udLuzqaQPKmB2HsREwg1pqTLltjWLMKj8dDMBjMbS9dzijubP/zxj8Ih8POvAfef4PItb9vFjKd0qbEHVNJ3TGV+haTGCUWiznXoSmKoij73JvetgQWglSXnsQPHWKTK1ttzkhex+71NpNX92SRSwVF4PlsIaFnp9qT3asvRlk/MA20DWvwLppH/KSziZ11ETKUN6FK9pKSCqYFlpbXvkqqzwAShw1D3bYFpWnPA1mszj1I9R+44wKBILHfP0z4oVuapeUXS4j0K6fpkuvwJmJYRcUo781CSyfab5jymK0GbqxELvvUrrRqOfQbCGeO26W3+HvVbajfJSm1zZvsDwOGIN98ceem0/hJ+J5/NMs50LBDqW2aJvHxk4iMnYhoiiLnvenU4dv1MPmOVuvtTAvIhsfj2fHvFgjtvLI/iOzZF2J16ad0ZL/In96mBLa8PuKHDEF6fDsnr8/fLH013Saxqjl19FXLKZh2N2bnHkTGX43R51Ck1wdSokQa8M2ZQfDVZ0DTbBJnVPVcMWMfimUTWclyoKWvkzhsGN5ln6Cs/2aPxxwbfzXSH0Q8eCty6p25X/bqC298hhx2AtFo1Hma++fMJDJ2InLUaUTSDw/rtecJ+nw2CY4YYd/Qo8rQdd25ERPPzGVXcWV7UndXtpzv9edoHHcJ8qSzSD47FU/t5laJu/2S3+D/8B2Ix1Fznus7vvHjhw2zf64/3ojywjT8fr8tlW97hD1ZkFJiEfvDmPPh5Wa1OXniWbnkrlxFcsgwuPUaeO7R1u9nwCop2e15+tHbwGZhBxK9++Wu9WbU5mzy5tiwGRVac1To4PTHsQra0Xj5jaTKj3DIi5RYgRCxcyaSOHIkvvdmoW6qzMsqIuxDKDZpM2q5nqW+e33g9WKU9cfoefC/NebYqDNs59XUO5vtqMwRb0BftRx6lBEbe3GON1pbtQKOOIbUiFMQGyuhYh6+NIEB+6Fwze8pKioiHA5j/vU1jCHDW+9EMFeafK+6u3PTVG3At+Bt6FhC5Om3abzunhwNpP7+Z6mfZGsY8ftu3rO14KGjaNeuHeFwGHH7oxhn/myP+upfkA4kOe9iYiNOcxxWDRdckVPO+/EH9ofLJlNw7kTnNyuY8hfEFxHUBWspLS3dL0i7cwlsWT9YSh2jU9dm6SuETRwtjziZvxlSZ6SisOso2+vQ1n1N4sgRmMWlabvWyo22QpLqOwDP55+gVm/B6N3XJqsTkqlkSWQBSnaopmgmOZAqOwT/B2/tGXmvvNlWf19+AkVV8Xm9Leay4KX/oWbIMMwxF5D853OORAxUzKehnx3VJBfOQ9d1VEUBKfF9+hGxU89BTr6Dza2pkaECWxv5br0tbfsPIr5kG9b4E3e7bqvayk5QOOVqEr36YPUbSPTciUTPndjStp52L2LdKoJFRZgtDe/WpfvSCnvJ58xx1Lam4heX7sDZ0np73n8+hzp2Ima/gUQeeJrIDsajL3gTz0dzSY44hYb7n6Ihnxb/+yA1NTUUdeiwW9c9ICRwqksv0LUs1TmjPmeirPIcWNnkTZPeatcBs7Qr2pqVKA11Nnmdw7T/mhb6l5+DwF5jtmTzd5Zlh1NmT7SiZKnQmt3H9EPFKOu3586rk8bY672/vZRAWvVr7UZRN1bCIYOJlnTLUUtFxvZ+/QWb/BnST7kK7a2ZuQ198La93JFeW81EXwXfmuHYbNVnnE/o1it2u+73RcnFp6BOfwI25Dn+liy0l2qm3klBOPy9pJbv+an4nnwYYtFcT/ODt9pLPx07YZrm9+pn8cWnoCx4p/nEtq3OslQ2Olz/c7TpT+YuMaWvLZ+dSjgUYn9Di91IoVAod+H930Dd+EmkuvXKVZm9vqz1W1+z9NWaHUr59qtnyb8IP3I7Ru++RC+8AqNHWTpkTCIScQIzn8T/5ss0jbmA2NkXIf2hNElFyzjq7BjqjKSxTDANSKVQtm2m46Vn7PGYa2trMU1zl8sKmXJFRUXODW5ZFjU1NViWRceOHVt4giORSM5Sht/vx+PxsH37djweD+3bt7cfJNEokYgtawoKCvD7/btVN1OvsLAwR33f5YMrGiWRSOSoyj6fj0AgkONgSqVS1NbWEgwGCWWRIXPe5/NRWGiHtzY1NRGJRByPs8fjccYhpaS4uHiX7eWfb2hooCkdzqr84hqsKY/A7On4rv+Fc93MeJqampwHReba2XNSXV2Nqqp0yJfIbYympqa9txspx/OckXYZFVrTmpeLHGeS2nKTgpQkhwwnfvJP8M98ksKVyzC79sQs7QapFPq61WhrVpI69DDix55iq+yWaavaUgEVkOmNDkI6qnLONRTFdmypMif6Z0+wuz9oa+UURdkp8UOhUM4NmU2WHBM4GGxe7vgedVurtzvY3Xq6rtOpU6fdOu/3+x0H1o76uzvtRa6/l+jYiXiWVtD+6p9SUFCA1bkndRddgQVQtbHFg3J3xrOv1n33+jKSbWeqzUs2zhpvhrxKjs2bQyzLQl/+Kf43XkCr/BqjzwDMki52eQnSq2J07YVUVdRv11Pw0O+JnT2e5BEjkD6/vYSU6UeGxMhWtiIqdllFsfvp4oCBf85MYqefR3LIMLYsyvWWi42VyLuvQy0o+NGOr03vViGtrMgrNTcwQ9Psc4ra7OTKcWGbBJ9/DN+bL5MqP5zGX91Gqqy/LUFNww7IoNmRpX+5lMBb0/F9+DZm9zKMbr2bSWop9iKAELR4T6pD5vSDxM2JfUBBXf4Jhbddw/ZLfoNMR58BdojktT9D1/VWJf2Pl8A/YGJ3ddsWjK49kdkOo6zgCUe9pmW2jdDf78c39zWiF11FfPQ5dpijaTY7pzLkNU1EvAnj4ENpuPoWlIY6pMeLiDYgfcG0eiyby2f+5j8w0tdXt2xySXyAwbvgTdrP+yeRSCQnDDMYCNhmxY/4925TCax/u47EwCNz459zyNt6qhzf/Dfwvf0KsQsuJ37aWKTmsYmbs1HfPjzLF+Ob/wYilUIGQkivF6WhHikU4sefQeqwYUhfwL5Wpp4gl8RZf/W1q9w7/gCErmltnuBgvyDwD5mVUt3yLSKRQIaz1FRBs0e4FckrEnG8b04nVdafRMYpZZr20pCUudLXIaSCVBRIJhCJODKVsr3b2ctIlmI7seQOJLB9ddS1q9w8li5cCQyg1VTj+eZL4h065gZV5Nuf2XVWfo66cS2J0WOxCts3p8XJUYOb6ycHHUWq3yDbLnacXxJUFen3246yrICPFuZCVh+0davRVi937woXLoFtadqEd/liEoOHIoO7t2tDqa9FWCZmcSdb3c5EXeVHiKWJp69ege+DOWAZtmoOkEwgvT4Sw08idehh9vm8yK3WpLCn4n20Tevcu8LFjwZtG9gpJfqGNfiWLkSkks3SNFsC5sEo60/sgisw+g1CZhLVWXmky8Q1K2pa589rU0qEaSIydrOjRueFYWb1QVu1HO9HbyMiDe5d4cKVwI6gNFL4P55Pqt8gjFCBTTgrK/NWntfb7NKDpjEXAla6rNn8fStOp1T54Rj9BuYR1baZZWbZitakb5YKbRj43nwZtY0cWLGrbqHppDGY6aUtbfUKOvziJABqZlTg+3gBwftvOOBuLnPg0dTd8wRWUTEFU++k8dLJFJ9QRs2MCvzvvUFg2h/2XDZ06Un1K5/Q/sZfon/wZqtl6qa9jv9fc/E9N9WVwP+WM2trFYG3Z6Jsr2teCsp2TOWrxmraySVlrtma7c3OSGDda+ee8gfsw+dHev32jqVMUIZsfQNEBv43XsT7r7ltkmY2ev19xMZcgP7kw2h9dbj2Qoxuvam57o/ILj0xu/Um/uE7P1j46v6E2Hm/RGzbgtpHo+HBWyk4pivV1dWY3XrTtLTCCWvcI8Hw3XqKh5ZQN/0pDMNoleCpIcNoWrOKRCLhEvjfhXf5YgKzX0I01OWu57bmVW51LTpvW6CqpqO48pamsmOfdxZEn27f++Hb+Gc+iVJb3SYSKHruRLx3X0fqmamEQiFKFs8j8PLjWJYk0ru/XW7ynUSWNVI9fy2pUWc4Urt6/lq2Vmxha8UWYlfZ2/Oq56+lbtrrLc6nRp1BzYwKtlZsoWZGBdXz15I8e4IjiTLla595zym/bfYKtlZsybluvgTLtLm1YgvR6+8DoPaZ95y60evvI3bVLTltJc+eQOPt02g6dSxmv3LkX15Cn7mI5D1P0O48e9eSuexT+NllLertbh+i199H7cyPKSkpQZ50ds7YM9IZIHXX30jc8hA1MyqcNmtmVBC9/j6SZ09ga8UWts1e4cxBa9fanbk64AkM4P/XuwRnvWCTxTDSJDZ3voVR0DLRu5onhZ1zWTHVWRv1HVJnq9+A94O3CD7+J9Q2clzFTzsPdWMlTa8+S2FhobN1MPTXuwjd/RvM8iPsgu+8htZXR0qoP3wEifKjiEy8Fu8DNyMOUmDJQiJDRxE59lSkP4ix+gu8h/hg5TIiQ0cR69iF7Tfch/7xB2h9dcwtVUh/kO3vzabugeeQwZBd/sR+GB1KqL3gKhquvRXP+7NR+2jI9WuoO/OCFpLM7HGQnZHo1HL4x+P2tsGizpjde8P6r1H7aETfn0Nk4rVo/3zBbuvLz6mfMAnv7y61E8k9eCvWpHEYHTuR+nYDkX6D7cRxpd2ITL4T/7S77Xr/fIn6CZNy813tpA9WKAyVX1NbW8v2G+5DWfcN2qnlmN16U3PmhQRmPm3vkioPES/u7JQFbK1nw1qi6aT01pRfoQwqpO6Ge5055NoLnWvtzlz9RxAYy8T/7uuEnn8MrXIVpBJgpNXp7KUiaP0VK4poucMoeyNEhsTOzqO8HUhp8oqmGP5XnyE07W7UDWvabLhGpy6w7ms0TUPTct0Nfr8ftUt31M8Wwd3X4ff77e41bsf85AP8M58iftzpiPfXwBHHoFRvJtm9zN7v+7vL0HUdvSmGUrma+Mk/QQYCpH57mZ0Eb8USO6mAlKRGnILRt5zEV3GYtwo6lthbLqMR4udejHxjKcEvluK5/OwclVZ26Wnvbf7d5VC5ig7vvmZLvrJDbJPlqUfQNA3v+ZegLV1E8s5f28n7ViyB4k5Eirsii0pQ1n9DwYAhyO69kcsWI7t0R1RvRplwFdIfJHrLnzG/NuD8SxHBkLOLaqd9KCwiOWAIYvO3iEn2Hmzr9v+HvmktxUNLsO6aTLKkM+r6b9A0DbWsL2Lzt+i67khPc9ZLECqw53/2S/h+dSsUlRA/92KM1Sl45EXnWiIa3elc/ecQOCP5KuYTnnY33g/mIOIxm8AZtTrfHs5RibMlbmb3UiuvXclOl5O3x1hbv4bQY38g+MSDKNVVbT5WGQy3yNmUPHsC5sCjSfXui1izEq/Xi++g/vZOqGWLid/3FMmho1AVgf7nW+0MiN9thK49UTasRQhBIBDAKu5ke83T5y3LIhAIYJZ2RVm/BuW40fYFs9OzlgmsuyYT+NmxqNOfwNr8HdFzJ2I99EJOgjajzwCUmmrMhe9SWFiIMfhoe79y7z72uFZ8RjAYxOh1MHxjj8Hv99vX3rAWc9gJ9jN71otOBkxz2afQqQtizUoo62fvvc3qlzyqU06CvR32oWIeVlEJctM66NoT0RTFXPMVoVAIIYStVvfu45DW7NYb+cVSVFXFTD8EWbcaq/xwxJbv8Hq90KUn6qrlLeaKinkUTjh+p3O1fxE439nTRoe27mvCf3+A0P/ci75sMSSTLZd48lXnHNs2W6qKluGaam7WSbVmC/5ZLxC+9wZ8c19HNMXafIz6mq+wDh9O6rq7QUpSx9k2VvT0cZiffmirot+uR9c0UkeOtInxxktYR41ELHofcemZGOf8HAJBxLfrkQf1R6xdbT8QpLS92l/8HwKwOnZC6zOA1HFnED/uVMSW71C3pxOw3fQnSoqL8T7zDuqCtYRue5hIRRUdXphG8L4bETVbMbbX29Iv3ffk0cfb0u+sC+Gw4UR/OgF99nRE1562CrxuNaqioFRvwRw2Cl3TSJ49gfhxp6LNeQWlfIhdDrDKD3fqmP0HwbfrEbEI5rDjCR4ymPbnXYz4IkLB5DvsjBe76sPwE5H+INYb/0Ag7JRBw08kdsP9VM9fi+zcwyG4OMpOF2sWtEMcOZLoTyc4D0GrqAS5cpmzndDqUYb2k/EUDz4SdcFa/NNmErrtYWoXrN/pXO3VY1fLSBZ78ZXYsQjeua+hLVtMashwkkcdR2rIUGSosPX3AWeTNc+etbcE5sg+e4CVq9GXfIRn0Xy01SsQqeReG5//sT8Q79QV45Jfs/WSX9vax4ynMG/6L2JpiWuuXYWiqiT7DULZWIkFeD79iPi4X8K4X+L9aC4mIOtrsXoehLLmKzRNI5VOEG8ueJvgko+IDDue1JzlNGystNv96nP8c1+Fj+aSumwyWy+bjLqpEu3mK4lv/hZx4llUv2q/PVBfWoF1yxUIn8+ZGzMUtvvz8AvUAN63X8G86b9QHp8N1Zttk0AIQi/+jfob7yWyPIJoiqLPnk7qL7ejPTodK20+GKXdENWb0foMwPAHMRd/SGDjWmI3PUB09v8RTc9L459vg3DYlog76YM+6RZSTVFk5SrCzz1K3dBRWM+/R1PNVjz338y2ZUsQsSjmb25HueQM1FXLMSffQaRmKyIWhTWr0I49hZQ/iFW5Gk3T8Dw3laajj8P483NUp+ckde35cPChu5yrfYkWGTn8fv++0e+FQIYKMMr6kRp4JKkBR2D0G4gMF+4GecnKrmGgrl+D/tXn6Ms+QftyKcrWKjuQZB8hGo3mLBMFg0ECgQBSSrZt20b79u3RNI1YLEYikXCyY2Tq+Hw+4vE4hYWFRCIRJ9uFYRjU1dXRsWNHAOrr6zFuuBcuugLGHE5B7Wa8Xi+NjY1O8nZN0ygoKEBRFLt82hnj9XopyNoXW/fMPFi2GG6+3CkTCAQIBoM0NjYipXTKG4ZBQ0MDpmk66n0gECAajWJZFuFwmGg0immahMNhtm3bRocOHZBSOvWy52V3+pBIJGhsbKRjx45IKZ2xqKpKKBTC4/E4WU86dOjg7ERSVRUhBB6PB5/PR21trTP/2e1kz8mOzu8LJBKJnIwc+w+Bc/QCHStUgFVUgtWpC2aPgzC79cbs1AVZ0MF2VmG/LE0kE6ibN6Fs3oi6aT3qxjUoW6tQttc2q8kHMGSXntQ98rITJKJuqkR/8mEST/2FoqKiPc5dvO39StS/3Y/38Qd2/naGNsT+0If9DT8OArv4fiTOkxCaphEMBneayHy3CLRtG+EslXafkHg/6INLYBcuXLQJgRV3Sly4+PFCyVfFXLhw8SMlMLBPXlLswoWLXaM1brYgsGEY+8Vb11y4cNGSm7skcCqV2u9e4OTChSt9LWedPZ/ALSIc8neEuHDhYt+SN5lMIoRwDgAhREoBPst2XmW+TCaTGIaBZVmuc8uFi70MKaVD3EwUnaIoKIricFTXPfWalPJ5KeUwKWU2s1FVFcMwMAwDKaVLYhcu9gGEEA5xM2GgGYTD4Urh8Xg8Pp/vS1VVD8p+yVOGtJZluZ5pFy72IYEzJM5Wn3XdU3fwwX3e1CzLSgohTlIU5RPLskqcEK0sfdt1arlwse9JnIHH46nt0aPXPEVRKkUmhLK8fGCnhobtT0ej0cMNw2jPXshY6cKFi90mseHxeOpCoXBlSUmn1YqiVAIP/v8BAPZB4wjg9XlhAAAAAElFTkSuQmCC' button_server_cleaner = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABncSURBVHja7J15nBTVufe/p6q6ep/B2QVkGVEgDoyKKAZwVAQR0FxQDEZeicT3VS5qYjQ3LlxFk7hcDUpegRgXVCQuIKgEjRBcouK4gIqoqMgoaIDZp/ellvtHTfdMT/eAC8sMqd/ncz7dXX3qnOc5Vb96nrM9JRRFoRUqcIkkSdOFEBVCCD82bNjoKggCm03TfMw0zQcMw0gAiFYC9xJCvCDL8hBZlpFlGSEEQgi72WzY6CIwTRPTNAG2CiGNiUTC24WiKKoQolpRlOMcDgeyLCNJkk1eGza6KIkNw0CSpF1HHNG3UpYkaZaiKDNVVUVRlLT1tWHDRteDEAJJkjBN0yeEGCpUVX3T4XCMUFUVWZYzMrpcLpytx21K27BxAC0toOs68XicWDyecp0zoChKnXA6nXGn06k6HI605ZUkify8PCRJIpFIoGkaumHYrWrDxoG0tq1clCSJaCyGkc1BXRFCqO0HrIQQ5OflIYQgHA5j5GC+DRs2DpAVNgx0w8ChKMQTiY5ZZClF2hTcLheSJBGJRGzy2rDRhcjc2vfNOC51zOh0OkkkEjZ5bdjoYpCE2DOBhRAISSKRTNqtZcNGV+sTSxKGYWSQWMpprm3ra8NG1yOwEFkEVnKw10o2bNjo8lAO6Y6/LBMefgqRyhGIZBLf+n/g+nwzQtfsK2/j0OgXH8rKBU+dRHDkmWiHFZMs6Unz2RcSPeZ4TFmxr7wNm8BdmrwjxxIeehKmQwUhQJIwVZXA2MnEjzoGhGRffRs2gbsiwsf9mPDwKkyXGyQJZLk1KRi+fFrOPI94v6Psq2+j20NWFGWuoijpHUgul4tE9oqPboPYwKEEqyZi+PIsyyvLILUSWFFAUTC9eSR79cPxzZdIgWb7LrDRbZBMJjN2Cx5SFjjR50iCVRPR83pkktfhAIcKqtNKThdan3IC50xHK+lp3xU2DiELrKrd0gInS3oSGHcuWmnPbPIqDlBTBFYtMisO9KJS9B6FqDWfIkXD9t1go9tZ4ENiOFbvUUBg3BSSh/fOTd6U9U39llodD10nfsIogrEIec88ihRsse8QG90K3Z7AhstN4IzJJHr1t0grSdanorRaXstlTpNYUSyCmyYYBmhJoqPHIwea8a5ZsV8tceia2wlXTcAoLE4f865Zie++25F2bj+0LMXoswid8zNiI89IH3N8thnv2mdwL12Qka/+jofwrllJ3tz/tBn570RgU5YJnPEfxMsHtVrdTsibSg7VssKpKSRDh6QCQiI06QJENIz31ecR8dg+l7X+4bUkj67IOh4eN5nIsJEUXvsLHB+9e0jcVKFrbic4ZUY2qY+uoPnoCqKlvSmYd11mOyQ1RDCI32/HUvwuyBrEMrC2LnWHFKyaSGzQsZiKo81tbk/ejgTuLLnc4HITPHcmkeGn7HM5w5ddT/LoCsSOGrjiAigXVjp9IGxYj1lYQsNl16Hperdp+85S9MLZbeR98sE2XcuF9RuIn/dzWk4emz4n/UC2017TXgncXRAecTrRyhGYqrPV8kpt5E25y7nImiK22i5P6tPtIXL6OftcVq2st3WDLluMY83TFBYWUlZWRlksQMnsyYiGWszBlQSDwYzzAnMXsmv9znQKXXN7lqXbtX4nydFnUbtqE7vW76RxwUp2rd9J851LsuRovnMJu9bvRK8Y/oPqCMxd2KmugWmXWl9uvByuuwS/32/pWlZG2fw5qIvnAxA550KSe9j1Frrm9nR9Kb2Mw/tk1zd3IbvXbU3nq121ichl12e46CmZU/rnyvdd6t29biuBuQvTbbd73dacsh0UC9wdEK08ifCI0zHcnnYLNRQrqSo4ndmkTbnPiqON6IrDOtZ+emk/LPBQP//I+jJsJF6vF4fD0XYBJInSsyuRK/MzRv/rH15LZNzkzJtrygzq73gkq/yG2XPS/erEhvWIHTXEBg4lEAhk5EsMqkTsqKHuH6vQdf171xHZXpP1sAHQK4ZjFBYjtmyCxxZQUFCA1+vNyFNw/+24f3cVXDyeaDSa+yEwdyGhKTMyxgoSx42g7p4nMsLKpOQ33W11GIXFBC66guZpl2WUGRk3OaM/nsoXPHnsd64XIDKoMt12ZjhM/Qfv5gp5YxO4I+JHVRA8dRKGxwemgZSIA6LDVFEOi+twtJK8HdnTFruNxFJy30+huZYuQHnvTag6k+aNTTTfuYTA3IXELpydzlNcXExJSUnaCmhHVyC2fAg/G9Pmbm/ZhDZ6HI3jf5pZgceHctE4K9+tV+N461UoKiF23sy2djv7Qotcb76Mw+Eg+ts7f1Ad7QMgpq1d5YnWDf3BO6iqiqqqOdsj/4UnKCgoIC8vL+fgV2TcZKQdNTDvxjb3e/UyzCP60/Dr29L6pOXP4abHKkcQi3UYy2jv0m/ZZHlyJ1aRTCa/db1p9ClHemG5lefE0nS0SJvAexrZ7N2PwLgpGF4/CIH74/c47PFFqN/UWGRMW1JnO+KqrSPPreQVkjXVJIT1XZbbkVjF9c5r+0X2otlTUO6ZC6uXERt5BpFxk2mePSenuxurGIaIhjEnDEXd+DrFxcWUxQIUX38JRMMkqs7KnKtftwrzzZesfGVl5K9ZYVmZ0yal80VPGW8de2YpLpfrB9fh8Xj2qK/T6dyzV9IJueMnVVly3v9HHPfdTo8ePSz3+w9XIu2oQT99EuFwGOeqpRScUIg5YSjyHQ/i+fMKPH9eAT/9hVWQz58p/5ZNGS79YSsfbc2XRyKR+Nb1tpngMMbsqXi9XsrKyiguLrZHoffYjywsoeXMqej5BSAE6tc1+F77O3JjHXmrn6SlRyHJAT9q18dNzft2IG/7p6QQ1qidDJgmzg3r8D67ZL/pUPTUfcRiMZLXXmzdDLc9AAMGExt5BrWL11By8bhW967Ucgu3mSSAug7liNLDicVibU/fYAsejydtFeXN76B8uhlt+ChisRiqqqbdZ7P6JVzFxYR/YB377TqX9rK+3HIvyVvupTmr/xQmEong9XpJXD8PpsxAByI5yspwab/4FFVV0y691NyYkU//DvWmfkuSdNBHzbuFBdb9+QTGn49WfDgIgVK/G/+ap5EbrdtO2bkd/zOPotTubO3rtre6HSxvirgZ3yXUjzfif+Au5Lqd+1UXl8vVNrAzfw7+meORX1uDMXAI9Weeb7mge7FupseHprXb0xxozgrG7/poA3i8RGdeneU+y7K8T+roCMcHb1tfKofvtR3adx8ySOfx7flEtxez79HELpxNaMoMRDQMq5dZ6ckHLfe3M/najT1833rbRlFDXeIFCF2ewKbTReDMqSR69wdZRg40k/fichy7vs50ybZ+jH/lI8jNDW2bF6R2pO1I3Ha/lZpP8S/4Pcr2L/aLDrvXbaV21aac/3m9XtytDw3Nbw1kyTtqIBLO7Nu1T6cemR3crEP/y/33p632qxpPaPSZGe4zsE/q6Ah58zvIX9fAoKFEp1yc+2FcMZy6p9YT/MmF2X1UQK35tG0UuxPZjG2fEK08ydLvtt8i/XIa3msvxvv7X+Lo0//7DTR+y3rbW/WD0efdO4ENoy2szkFOpiwTGHMOifKBIMuIZJy8F5ejfvV5TjmdG9/At/yhzpdE5ggXJO/+F/6Fv8fxyfv7TQ/Hlg8xCovZ/dCLxH42O+O/yKXXE6maYFmSvz2Joeu4NlvWUzz/ASXHnkhZaSllpaV4Fq2AbSaeRSsoLCjIrVtrkj98G+XTzTDsxyRHjbXmoKtfwuV0gmnukzpyJf8zS62H0U3zabpxQcZ/oWtup37+4+i9+8PyhzP7lKm+81uvWl8u+TV5516Ulivvpj8hPgoh/3MbZaWlbdbvpCp65Ofj9/kQNy9Am3j+XixC7pBR37ZeqaPVPdC86E594NDo8cR+NMxaqIFJ3pqVqF98bJG3M0/n5b9h9CggPO1SjPyCNissBIjM/psIBfD/6Sbr4u3HOGD5i26l/rYHMAcNpXnQULh8TvaT9KmHENu3ohYW4rrzt0SGn4IxaCi1K97KlLmhlsgd1yJCob2+7sZT/TKBgdbqL3P9S2n3GcC3j+rIHnG/F3XAYBLjzyU+fgq7xk/JyiOeX4b+p1vw5+dnu7n/fB719bUkRo0lcOcjBDral/vn0dDYiPe9amtaaOJUGidOzRakuOw7yf1t6816qHU1C9xVVmKFT6wicvyo9EIN/0vP4dz8DmjaXs/1rHwU9+onEaEW0DTQNYv0ht72JNM1/At+h/r6Gkxj/66Akj58m8KzjkE8vxzqazMbfMsmmHcjxrW/wOPxICQJEyg+/2RrmqI9NqzHvOIC5B1f4PF49rqKyfnsY5ZlB3j2rzidzoz/90UdudJhN89GnX9zeqomQ9cH5mFefj5erxeny5W1usgEDvvN/0FZtjizrVrbyVxyLz6fD+fSe3Eunm91Azrkob4WikrRW1e20YkO36fePZV3MFZiCZfLZbpcLhRFQQiBz+cjEokc1KdKrGIYwTE/wfDlgyThfWMN3jfWfrc1ypJE4LLriI2djOnxtS3gaB3Q8i36A56nFyOiB1bXUChELBZD1/WMKRW3253un3bM397VdLlc+Hy+tCUNh8OEQiHy8/Nznm8YBg0NDRiGQVFRUc5R5B9aR6fXMRYjGo1mTOeoqorL5cLtdrdNDyaTNDY24vV68fnaBpPC4TDRaDTdVrnaKRqNEgqF0n3TVJ5QKIRpmhQXF3da/g+pt66uDlmWKTjAFjkajZLa/tslCRwfVElwzE/QexRac73vv4nvpeeQIt99l5Dp9hD4v/9F/NSJmF5/msTeJ/+C99E/IUJBbNjoTuhI4C43Ch2tHIHhzwchcH28Ed8rq78XeQFENIJz43pEUwMkE6Alca96HM/j99nktXFIoMsFdtfzD8NUHIhEHNfmDUjh4PeWJ9l/IOHxUzE8XkjEcVa/hPfhe5Aa6+wrb+OQQJezwEr9LoSuYXq8hKsmoBV/v5hVWmkvgufNRCsug0Qc9f1q/A/O2+8LNWzYOJDIionlUNU9bvPa70+UcIhknyMx/D0wCkvQS3vi+PLzttHUbwEj7zCC515Mst9R1kKNb77E//B85K+32VfcRreGpmldOyqlY/tW/M8/idzSCJJMYvCxhCddgJF32Lc633S6CJ41lcQR5aBpyLU78f31zyhffW5ffRuHvgVWD7IFBpCbG5EDzSQHDMb0+tH6HInpdKNu+wSxB9lMWSY0firxwceC4kCKhfGvWIzzsw/tF7bZsC3wgYTzow141z2HiEdBSERPm0hk7GTrbQudIHzqJGLHWCu3RDKBb/UTqFs27XHl1sFC+Df/Q2317ozU+Oi6vZ4XvHkRLXc9tsc8TYueJTb98i6hpz7kRBqWV2P27Guzb390ObuycO431uJ5+W+IRByEIDzpAmIjTrfed9QBkZPHEB020vrPNPD+4xmcH77bZd9EqJX2RH5tTdti+Z+NQevdn4arb9vjecn+R6Pv/DpnRAwAs2dfkseNIPrFp8Tj8YOuZ7LyRIzCEpo2v2e/d/rfjcAA3hefxvXmOovEQOi8mcSPHZHxhsHY8SOJjB5v7W+VJLyvr8W9cT0i2XUD1Gv9BiB2fYPb7aakpISSbZtxvvYi+pATiEQiGRa6YXk1+hAr2oV+RH/45itkWaZp0bNZ1rtuhbWlL/mH+5BlOWc5Zs++NCyvTh+PzMpem52smkD96s3UVu+m7uVtJKsmAJA4Z3rG8cQ50616X96WIU9k1hwS50wncPl/Y7q9aI+/mrH9rmnRsxkyxKZfTuOj69Jyts/XUcfO5I/MmpOha8rqB29elD7eXpfIrDnUvbwtXXZt9e496thZ+TaB9wTDwLfiEZzvvYlIJjEdKqGpl5AcOASA+OBjCZ/xEytKhyTh3vAG7up1luvdldUqLMH86L2MpY1KKIgkBNFf3ULspFPwXHwWlAv03TtpmjyDRMVwTLcXfdUTxBaswPT6cA52wekD0QpKaJw2C+/Tj8D2bVDho+myG3KWE7j0WkQ4jHK0A558kNDEn2bFpwpccSPqK6uRj1Iwv/qCponTiFcMp+WqW3AvutU6/twTNE+fTWSU9fDUPvvIkmfLJkInVaE/eb8VSmj1Mpg6kpaWtl1i2qAhmKGQJcOG9QSmXYrzL3ei3DMXvXd/Go+qpOWux3LqGMohf6SoJ6EZV+D63a/g9IHoBSU0TLyAyKwbiJ8wGtfPx0O5wDSh+fhRxEafRWjGFTjvugExZhBaQQliRw215RU5dYyX9MpZ/sH2KrpFRA6RiOF/ZD4YOvFhozH8+YTPmop2eB9ix45ALygGw8D91it4v+eyywPqVlZNwHR7MV5bg6K0XYJE+UCkms/Qx/4HZu/+RBa/0HbSa2uIDBluhcExTbTRVjA27ZO29eGGP594SU/kr7YiFAVz/GT0HOXou75BG1iBWPcZzq+2oswYRyQSyVifLCJhYuf+HKliGN7NG0ne8P8I3f1XTLeX8Jy7Yc7dVr6GWqK9+llyXXcJDp8PIxpB3/U18Xgco88AlPfeQvV40uuNzZ59LW9p4a1IkoRDkjDe+SexZ5fiuvJG9GgY7Zuv0Ebl1lEPBrLkjyYSiGiY2H/fg+O0iTiXPUj41qsRPh9SaS/iM69CLHraqjfYQmTM2SjvvUls8Xx69OhBdMsHJAwDafosjBw6huO5y4/5fBntZhO4o6Xy5ZHsexTC0FC+3Epi8HGY/nyS5YPReve3BpdNA6mxHqV2J8m+A9pen5LewN9uU5xpgmm0vZkh9RswJRmlYTfKzh37d2DniHLrhq/5FEdrLCV9yIkkjxuB46rpmOPPRZ57Jfqj/7+tHQDjjoeQtm/DGD3O2plSnrnZzwB4dRtS9StW4Lre/XOW43S7UbZ8QOyUs4gPH0XizyspOu+kjLIKLhpDw9W3oZf0InzuDBSvD1E+EGXZYrTftgXLMwHz9gctuYTA4/EQLS5FbP0YuXwQicJi+ODtDE8jecJo69y/PYGvoICW4lLY+rEVR6tnX0R9LexBR6ffj/TJ+9nyn9qfupsWkCwfSHLUWJwtTUSmXISIhJF2/wv5zutJ3Dgf84N3MEaPRdr0Lk6nE1VVCfYbgPzmKxhDT8itoyxTlKN8918X2hZ4j6O1p59NfNgoTJcHJGFtShDCek2o5LG2COo6RkExoUkXgNz6dobUZ4rIpgm6lRdNAy0JehI0vZXIRqu1j1P0x+v2L4EP74P0ySYMIRBCkKyaQOCKG3G+uIL4s0sRt96HftpEejy3BO2XtxA+fyYFV04jMGAw1HyGHGhCA7j+j5Q8cActdz2G1m8AheeNoK6oBPPrL5FlGREN5yyn4f5V9Lj1alxXTSPwwPMYHi9NTU3pnTWRWXMInz+TogtPIxJPEKk4Dq2lGTkUxBhxKt7BlagVx9E89178D84jetSPMGs+S4es0Xv3R/7obhhcaZHuww0Z4WySA4ci7aixwpH1OdLK/8YcJEkiWdoT8eXniJZG9Bw69rj5ypzyN9y5BKmsFyUXjaHlx+OIz1tC3OOH3v2Rf3Uh0pZNJO9/zhLgo41IkRDGkQNxORxEZs2xZPj6YcSRg9Bz6Bg/dgRNJYdnll9fRzwe32sAvwPbB+5CETkwTWtBRzyOSMYR8ThSS2NrakIKtiCFg0jRMFIyjpCt+TEhQBgmwjAQmo5IJhGJBCIRb00xRDJhHdeSCD1pzS8LgRSL7HedEuUD0Y8/GfMLg9rq3TTdsRhH9avoV/wUj8eD96kH0yFoI5Om4bzrBhpfWo1RVAr/2oG6diWO19fCJb+mtno3Wr8BKDdcRmNjIyISQb/qZsQJozstR319Lc3X/5HmjU2IkjLU235j7W5plc/9zKOI+lrqVrxNePX7KNu3Ic+5FPWxheDxEl79Pk13LMa5ehnBu29C61OOGWxBURSSp1gDRPo/X0RpqrfuqadeQ25XvlbaE1G3C0VR0AYcY+Xf9C6qw5Ee3FPXrMipY8urf88t/8olaEf0p7Z6N/F5S3AtfxhuvdqKKHnPUrSV1Sj11iAVX36G//G/YAyuJLQpSHTMJEuGVU/gWroop45KrvIfW2D5dgcxIkfWdkK3291pwG0b+w6BQCBrmsfr9abDtcZisfRUkSzL+Hw+VFWlqakpvTc1GAym40opikJeXh6yLNPY2Iiu6xQUFJBMJnOW09m5bT0Nk+bm5nRgO6fTSV5eHpqmEQgE0ntlUzI3NjbicrnweDxomkZTUxNFRUUYhkFjY2PW3tlgMIhpmukyU/mFEDQ1NeF0OvF4PJ3Kmet4SubUwFJKtqamJjRNSy9UisfjFBcXo2malf+hFxClPTEnDKWoqAhd13PqmM7fofwDiXg8vuf9wDaBbRzq0Kom0nzzvek3Oiifbka+9WrMt14hP0eYn64Em8A2bECWNVVVNSMKSXchsGJfShv/jlAUhaKiom6vh2RfShs2bALbsGHjYBPYXmxuw0Y3t8BGF9x6Z8OGjdzczCJwar7Mhg0bXQsZL5vrjMDJZLJLvLTJhg0bmdZX1/Us4yoBWZtmM16MbMOGjYNO3kQi0bpMWKRJLIRISsDG9oNXqT8TiQSapmEYhj24ZcPGAYZpmmnippaMSpKUEQ/L4VCbFdM0l5qmOcI0zfbMRpZlNE1D0zRM07RJbMPGQYAQIk1cWZYzXGi/318jVFVVXS7Xx7IsH9lxMXvqKWCPTNuwcfAInCJxe/fZ4VCbBgw46nnFMIyEEGKMJElvG4ZRkl4k3c7ftge1bNg4+CROQVXVxj59+r0kSVKNSG1iqKgYUhoItDwSDoeP1zTtMOx10jZsdCUSa6qqNvl8/pqSktLPJEmqAeb97wDdhFrawDFecQAAAABJRU5ErkJggg==' button_hypesquad_changer = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAACH1SURBVHja7J15fFTV2ce/d5k7exISkgCyGJSlNWBdUFyACm6A6CsKLsEiyltLEbWo1aJV0WoVt7pCqwi1bixaLYJVBBUVUERl0YICqYAlZF9mn7u8f9yZOzOZCSAawLf39/mcTyZnzpx7tt95nvOcc54ryLJMAgowURTFcYIglAuC4MeGDRuHClqAjYZhPGcYxtO6rscAhASBDxME4Q1JkvpJkoQkSQiCgCAIdrPZsHGIwDAMDMMA2CII4rBQKLhdkGVZEQRhtSzLxzgcDiRJQhRFm7w2bByiJNZ1HVEUq7p163G0JIriJFmWr1AUBVmWLelrw4aNQw+CICCKIoZh+ARB6C8oirLK4XAMVBQFSZIyErpcLpyJeJvSNmwcQEkLaJpGNBolEo0mVecMyLJcIzidzqjT6VQcDocleUVRJD8vD1EUicViqKqKput2q9qwcSClbYKLoigSjkTQszmoyYIgKOkGK0EQyM/LQxAEgsEgeg7m27Bh4wBJYV1H03Ucskw0FmudRBKTpE3C7XIhiiKhUMgmrw0bhxCZE2vfjHixdUKn00ksFrPJa8PGIQZREPZMYEEQEESRWDxut5YNG4famlgU0XU9g8RiTnFtS18bNg49AgtCFoHlHOw1gw0bNg59tdpuAhs2bALbsGHDJrANGzZsAtuw8V+CLCOWkQg2bNiwJbANGzYOpARG1+1tJBs2bAlsw4aNAy+B9xG1E6ai5RUk/mvrtvBBukUsiaCqlD562x6ThSsm0zj5Vvyv/BXfAzfnTFO1bAtiXTUlY08+6J0V+tU0QgNPI9673IpzfrYa/0t/wfH+G4fsIIsPGk7tfc/gfevv5N3x631KHzj3UiKnnG7FOb7aiHfpq7iff2K/87UJnAatoCO6y53gqWCG1p9/JGiJqxAM4vN6c9dVN6itq6NjUdFBK2PzHU8SPPP8rPjoMQOJHjMQ/2N34XvxyUO6nYNxFaGlBb+/bX+JgRvupWX0+GxS9y6nsXc54dKuFD70u++c73+NCq2TskTvKaBrJlFF0QySBLIMUiLIjoMe9lqHVthbGuMgBbV8AMEzz0cIB+Hph6CnkArzZpuT0CVXEY5EDloZ97Wt95QmXDE5Rd55s3PWM3rh5TSddMZ3yvf/U/gB18BCisCSlCKtopjBoYDiPHjBobSLFKxauYvoqIqs76oXrad60XoAauavZPeyLeidu1M7dylVK3dRtXIXgRvu3WO+baWLH32COUiXL0G890by8vLo1KmTGR65Ffn9t6BjCc3njktpDeUDsp4dqZickX/ghnupWrmLSMXkLCnYOl4rH0Dj/X/LKGft3KXEBw3fY31q5y5FLyjct/a9+Crzw21Xw+8m4vf7M+qpzHnEXEqcW0G81Y252NQ/sHvZFqpW7qJ60XpCv5qWs1zJNG2l271sCzXzVxK44d6MtLn6rnWa5juetPo+HZGKyRl9kavddi/bQvMdT1ptlxw/7aZCJ/x9gCilpG/ysyiCIB48dbqdLmS4ly0idOb5NJx8BoUvz0FRFGtw60XFiPOfoaamxpII1Q+/CN17pjp89HgixZ3peFNKRayduxQ1bU2bK52yfBHCFb/B6Hccbrcbj8eTkb7jTeNpbm4mFAoRKyxE7nEkdX+cjV5UnJGnuHmD+TmuIgSD1neN0RgFkQgulysj32S8UtY7Kz8AtXc5dXc8RuElQ1Cqv81ZH7V3OY3jJu99SZZoQ2HTeoznnqCwsNBq3yQKn7qXpp3/JjznT4Q9HtzJL47oQ3zkmJQWWVRM8y+moK1bg3/V0jbbOZku1lhPwUuzUmXpWkaga1lWn0R1naKHplnkDbRS9UPJJU44SHV1NSUlJUQSdpZc7VYw5SJcX65N/b7v0dZ4MYJBatd9QseOHRFFsR2s0OnSV3akJK7TBU43uD0HP+wrLrqSlnXNGdIlGQx3al3seP8NpB2VMOBUIpFIyhh29gXmgNj4aYpcbi94fcjXVZgq4EO3QSiIOuhMGgaebg0CtXc5wqYNcOkwM93QPrBpPeqgM6k/+yKzk3Ztx7NkIXTvSXBDgNq5S2m+48kMqZCUyoqiEKr4tUUGhvaxVFC9T7/9M54l81uyMFOt3bQe3F4azrkUXdeJjqow67OjEqZcYqaZcklGG7ZpuEpqGevWoChKFnmTyH/jJQoLC8nLy0tF9u2P+MbCzHIBwROGEI/HU+XatCGnWh45emBGfwJmHsl0ixeYZSw/jmBi4gsOv9BMl1zSJPrNmr3TtAohHMxcEjz9EBjQdMM9aJqWSty9Z6oeJ5RaHijbZxspKX1lGRwOk7wuN7g84PGawes/eMHjaxfh7n3ndfB4CV93V4rAJwxGqKuG557A4XCkEv/1cYzF8ygqKqLTwqdwLjEHQvTEnxOPx4mUH4cQDmKM6I/y6QcUFxfTKdJM8bSJEA4SGzKcWMIPkv/Bm/FOGA6LF6AWlhA683wCo8dbKplWPiClsiXz/fUYlP/8m5KSkpSqvR/wPXAz/qPzMK4eg/zEQjyzXkF5eRX07W+OV38+kUiE6HGnmP8vmIPjrZfNeq99F8/rL32n5zmdzj1+n0Xu7dvQJ4/B6/XSqVMnOvz92UTB84jFYjgXPU/h8UUYI/oj3Tcbz6xX8Mx6BS66MpHOb7WzOWMFYcTRKIpiqu93X2OS0OMzvURWTMZwexGWLIB7rjcnz7R+swyMoyrMiW/RPMRbfplaEjxzP44V/8To25/GPsdkPDe9HsXFxe2pQgtpKrRsSmCny/zrcJhxSQPXwVCh02e2vWHebPjdxNzfbQxk/OuZdQ8tY67AOPV0Qo9Px3nCELSuZYhvLESUpMzB9fo8/H6/RWrfmhVEL7zcGlh6UakpnbYZxICa1k1c2plIJGLl6d/8OZ47JxMKhYhEImiTpkGffqgjx1D7x6cpmjgSefdOtG5lEAoibt9CQZoK5qncTPOgM/erScMLVkLvclRAzdnkBmpxZ6veXq/Xqrd35duELr+m/fq78mscDodlhRYb6834TodZnhxj0x6C0ePRgFCOLDI8PtbuRhRFCgsLc9ezczfz86YNeL1eS+uSqnYg1VWjFZaYqvhhPcy8x14BY6+gBfP9KBmax+G90DZ/Zqneoih+J2v6/hMYIdP6nK5GK0rCGi2Za+EDz+DvRmDA7/fjzbGNtFvItv6533+L0JnnE+4/ED2pPq96F2+rNWROaZE2YAzPntV8w+NDVTPpIkkSfr/f7OSFTxGJRAhWf0t8wnXUXzKJjoktFgPTh1K6Cia2NO238S6pGhvrPzEjN2+APv0gbe25L/VuC451H5sfjh6w17SRism40vaDCTRnaj7pa2tNI1IxmcDo8aZWsnyJ9Ru+/Qam3pnzd+k+0vdY7lzPTZh9dF/e3jMoKEyp0cHAd36pwveTwOlSOKFKexc9j9b9CCInn2GSuR0lsGPzepwrlxE+52K05Oy/PxJ4P41Z8ZFjMY46DqGuGuO5J3C2nrFPPQPeWpBSqU4cYn7YtcMcJDsqUbuWQXnb6r7hcFgGmKKbrsg6sOFyuZA2racO0L1+wuFwKt/De0OwIWWp7XVU7ockJIVlZCk9LJMwx51qDv4hPXE4HBY5o88uzZDGSuVmYscMhHMugvl/zlrf7gnSxjVIOyvR+vYnPHoC3jfn5zR01d9mWqKZ/SBSxnBse+BHfjbQbMs/3oT4wkzcbtP8Fbv9MfbH+5sYaDY/tLIp6J27oxeVpI3PDXvX8AC9oCBtZfrd+CLmEA0pK+6egiAktpKS20imKq326EX+/TdT9Ntf4Fq1zEzTeo/WoXyvIO/8N3l/uo2iX48GSUYvKMqxDyzvQz1yWK5bhxzWbceKJaYxa9go1D7lCB+vQJIkFIcj8zcTpxI96ngwDCKXTiY4/EJzLfXCn5EkCdfGteDxIixZR8nPTqBTaSmdSkvxzHwFthl4Zr5CUWGhmQ6om3wrTdf/MaN88UHDabpyqiUVdV238tUfe4l44vmhq6alrKSJuogtiYF40mmonXuAYZjbTWknoJL1MdxehKt/T1FhIX6fD23Wq6jHnJSRzvnRe+bnX1xN6NSzrfJZ20N7aWv/q8+bE8jtj9Bw2xMZ3wVuuJfaR15E61oGC+daxqTvtPtw4hAK8vPx+3wI059AHTk2+/dtlTN9GTXzbrMfTxtBcMrtYBjonbpT/8fZ5pIokdz5j+cQ66ph1MUov/+T1b9FYyYgrdiG8EWAkp+dgKv1mn9PY/aHU6HTpLAgmFJYFImePIzw8DG4l8yn4LZJxMuPJ3jpr4icNMxcG6frGMk89lVd+PdXeF/6C66lf0eIhIkddwqh83+B4ctLVU4QEpOQRHvCvWaFtY3QlvpMx1KaZi8mXXEV5s9G3L4FV1ER4v03ERowGL1vf6pf+SizaeuqCd13M0IggP/+mwgddSx6n36Eu/ckfMHl2V2xaQPG43fhyM/HlUzftz91Ty1KpQkHMyzCrteeo2XsFRjdexJY/DnJ1b64eUOGxdr1yQeEzjofY+qdVOVSOROqomPFEpQPlhI79QwCD/zVyk/aUQlFezfIuJ5/HOXInxA7+wKiZ4+m6uzR2fVcsgDt0Tvx5+fvc1+5PlttTkojx1CfS+Uv7vTdjZlvLCQwejzxCddRNeG6tg2Ar8+jefwUYhOupWrCtZlax/xnqF3/yfc64bf/J7FykTgRWq66CbXr4RiCgLzxE/KnTaTD1EtxfrgUVDWVQ8YEILYZ5J2V+B++hcKJI3AtegEiYXSHQstV09A7lmbPTIk8f4gTQrSRxnv/TeYsXGtanxVFyf7NTRNh+7aEYaQann4I4+aJeDweBFHEAIrHnmRuHaRj7UqMKZcg7diKx+Mx011+BtKCZ1JbFWkWWObNNi3ZioLT5bLSiyvSrM7vvYnxj5cy6iLs+oaC269OlTFknvTSP/84I53/jknIb7yc+dz33jS3xhL7sLphYAAdbrwMecGcjO0Ybca0NtuxdegwfTLKI9Oz67lpvdl+V4/F6/Va9Wwr3wyr9vOP45zziFm/9Pweus3sl46laJq2z/kl+9+xcE5mnvNmp9oykc49625cj7aqT201zJuNdvOV1ljY1/bJmtBcLpfhcrmQZRlBEPD5fIRCob0yv+amB9A7dEztuXr95l+XGxwKzrUfkn/n1QihTFUndvSJhC6+iuiJPzclcusDH2kSWf5mC+4FT+NeMh8hnFmmlqtvI3zeOAzFmSl9BcH8X9cpPa1s7waRSISmpiZ8Pl9OIxZATU0NkiRlWCVjoypomPYgwpIFiNdeQseOHVP9s2CVqeoN7UNhcy0tLS3E43EkScLr9VprsIyDAoFAhlrocrnw+XxZxpRgMEgsFsvY9nA4HDidzpzlb25uJhwOm+153zOoYybAvNn47r7OSh+Px60yiqKIz+dD13UCgQD5+fnWAY/WZXS73SiKQlNTE4qi0KFDh4xyBgIBy6Dl8/mor6/H6/Xi8/n2qV/C4XBGPRVFweVyZbRfPB7PmW8y3uVykZ+Q1uFwmEAgYFmcFUXB7XYTCAQwDMPatsnV323FB4NB8y0miTyFLwJQuxvhtF4Z20Ct6yNJEm63O6PP2npuxm5AOIwsy9Za+fup0G1t4QDRE4YQGToK1z9fRlBTpgJl3Uco6z4yiXzpJKIDBmcSGZB2VuKZ9xTuJfOyiAsQO/ZkIj8fiSFKoMazLeO51jNtqVcuV9YJpCwNK8d+XMuFE8zHvPHKHn+/tw6xVC2fb58GttfrbXOiyYW8vDzr0ENAEnNuATkcjpxlbP2ctsqYq/65yllaWrrvau8+9Euy7LnyzRXvdrtzTp6tn9PW/msyPj54BPX3PYO0s5LCay7Gu+sbABofeI6o24tQ+XXWxLu/46wdt5H2QmJDp2XSrTjWr0HevjV7myFB5ODFVxH8xTUYPj8IAs4P3yZvxm8R62tyZ604CUy8AT2vAOKtXvYkioCUWGO3j1MCS7oC4qcr0Re/lG19tvH/Go4VSxB3VKJ1K6Omle2CcBBj1gxkWT4gZRHbtOTtLezJthWLgqZiuFwmOV2eNvPxvjgL5bOVEI8jNNbjf/xO03LXRvpgxWTTYhoOIQRbIBoxiayp5taRpoGh73s9vmOQanZbayj9hgm4nE4crS3e+9um7R4O1XL9+ELRtRchrngzy3bBlecifvQOXo+nfZ691zWw17tva+CbH8y9Bna6cK5ajvfvf0VobgRBRN65bY/7smr3I2h48Hl8zz5iqtzxWJtptc7dQNcxZJnQqAoig8/GcHtSe9Gyw9zSAkpP79Uus15TUxORaBRFUcjPz0fMYUmvr68nrqoUFxfn/P5gIRgKEQgEzDW/x2OL0+8B3TAIBAKWjQHA5XTmtF38UAhHInteA/8QXimjg85C73QYnhdm4fzoHYy9HKqQtm+l4PoKpP9sBzW+x+eLu3YQ/8nPCJ53GbGjjjHXzfGYSVxRzNinbi/PXnn5+eS1arPW6JCmVh9KHsY8Ho919M/2fPb9IAhC6lRcDh4dCMjtVDPifY+mafqTONZ9jPf5J1DWfbRHKZxrnZwlqXv0Ivg/lxHrNwBDkswtKcMAI2EEk2yHfDb+u/D9jlLuKT7xN15+HI3TZ+J853W8L89F3r7lO5NMLywmdNYFhAcPx5DlxHpXTVmcRSl7K+lH5tbHho0fxoi1r9gTCVv7xxIEoqecQcNds2i5bIp5bnkfCGa4PIRGjKX+948RGjrKVEtiUVNlVuOmRE8e/cxxoORAIDTpVuoWrqZ69W6qV++m/tll1nd1C1cTvHHGIdnxyXKnI3buOGre2fbD2wweeM5qn+rVu2mZPrNd6xYfMoLq1bsxumSe8W6ZPpOGma/ZBAbIf2Emylcb96AWJ89Kp05ZGQ6F8GnnUD/tYQKjLkX35bc5AUROHkb9rX8icO44dKcrZW2Ox03VOf36V/rJLUFAqtpJ3n2/bX+D0I0zCJ1zMY45jyD3dsCUS1C7llF3/R8xuvRA61pG5P239skoeKChdToMqquor69PDfw+/RFqqy2vIj8EWqbPRD38SFwjjrYu+IfPGk3TyWe2H4F/eixiXTU1n6/JeJdu7KhjMLb8i6amJpvAju1bKJh9P3nPPYZUtTNFqNaqrOVeJ+X8zvD5CZ11AQ1T7yZ8yhkYaf6rYr3LabhmOs0XX4VWUGRK3FjUJK6mmltE6fknXfiIIkI8hmfhM3SYPBrXmy+3LwH6nUDwgvE477me+LOP4/P5KFmzHM/82ei6QaCsr5lu6l0E1rdQ88424kNGWNKv5p1tlkQKTTJdrtS8s42Gma9lxceHjLCkfN3C1dS8s43YuePQ+p2QIf2T0j4+ZAS1izdSvXp3xnMzBnlZb4StmzKspWppF4R/f40w7cEMSRyadCu1izcSvHEGtYs3WnmnaxvBG2dY5ahbuBqtn3kDKXr8IIQNn6Ju+ZLi4mJK1iyn8Pgioq8+R2TQ8Kx6xYeMIHjjjAztIKnJGF16UP/ssoznJKVsy/SZVnx42DkI32xFkqSMW0p6UQnawCFE/xXJaN9k/ZLtFUv4FmuY+ZqlLRhdelC9ejfxISMITbo1ZxnaaoNDU4VOwLX2QwrvmYr3lb+a+7Kt96ySJJazPVVqJZ1pGTORhim3Ex44lObLptA08Ubih/cyJXtSVdbT9nYRMp3oJYJz7Qd0mFqB76kZqQvd7YjI2Rci7agk/Pe/kZ+fb12x8826G989v0ErP85M+NaryL0dGAY0Hnsq0fIBBMZPwfnALQhHiLB2JYEThxA45SwMtxf1qy9w/sQFm9YTOHEIoY5daPrtDBwfvYfc24G223Tz07RsMfX3zkZJxDPlEoIXjCdY1JnmKbehvLsYqZeM8c1WGkZenHWvWOtWhjpmgjWYq1fvJnrqGQhV3+L44lMMt5cabweMLj0Ijr0C+R8vECruhIEBd16LeO2lqL3Lqb94EqFJtxI5cTCeCcOhp4C2excN549H0zQ8r7+EOvwC1HWNND/4PKFJtyLLMsU/G0Dg5vuz6tX4ySpipV2g8mtLO9C6lhHZvo363/wBDFD6OmHKJWhdy6jvP5DAjTOIHj8I1+VnW/FG1bcZhym0fidguL0YlV+b7ZXW7oHxU5D/8YLZXl+uo3HcZGKxGFr3I4h/u51AIED8+EEmqdesJDB+Cq67roOhfdAKS6gbeQmhSbe02QaHvBVaCAfxvjIH55r3CI6/huhJp4NLBEFKEU5PEC79umKC4GqPXrR065mKT1ePM9bSYpbzAKm+Gt+8p1A+fm+P+8c/NNTSLvDvr5FlOevUjdvtRu3SDenTVWj3XI/b7ycgAC1NaB+/h/vluYQHD0e8/FqMbmWI779FrFtP87bQ7ybi8PnQwyG0qp1ETj8Pw+MhfvNE8xjgxrUEDz8SY+RYKCoxbyal3U4K5hchB4NELrgcsfw4vBs/JX7LLwknHAEkpYnh9iJUDMNYtTxV8I0B1A1rcb39KrFwEOOU0wkePQCxrpr4H36D8O5WxNdewFgyn/z8fBrrqlF9eYSGnoPetYzQnLS7yu+/RTgcxjfzDwgP3ULLtIeJdu5KdPwUIqVd8Gz5MrteJZ0xKjejH34kwqp3cTgclvagLXoJ/4Y1hCZch/qXRTDYVMG1r74gcuVvkN55nfiHb1NUUEBDXTX6pvUZ2kX86BPM9r38bBxuN4IootVUETlvHPJnq4jddR1+vx9j41oCY68gUHyY6cRv3cdIkkS8T3/EHZXoifEe+f2fcJw2EueC2QTvuZ7Qu1vbbgOf79CVwBmzwY5t5P/hOvLv+Q3ytk2gxQEjpeo60rx2uNwJB3iulBtYUTJD1i0lKc1lrek4TwC8i1+kcNpEnB8uPaDktYxsXn+WR4akaptUUZ1OJ64j+prX+NavITJjLrEThyCJAo6HTUd3+n92wGE9ELdvQxAEPB4PenEpQqDZitd1HY/Hg9bpMMRvtiJ2PRxpcysnbT0FWL2c/HE/R1rwDHrVfwheMB79Ty9k7FVGh44yB/Oq5RQVFVFSUkKHMZebd5M/fNuclDZtQDjqGMIjLsQx5xEkScLoWALvLMHj8SB1PwK9qARxwyfo3cqQ7rgmoxz6+LOs9afb7abk4Wn4rr4Q6Y2XUQ/vRai0a3a9aqqQZdmUoF98hiRJaImJjU5dCTyxAEkQEHd/a954CgVh9XL0bmXoGz/D7XYjdutpluubLRl9o3XubrWv3+8327dqJ0ZZL9hi9pPb7TbLsX0b2sDTTLV70Ys4HA50nx+hpgp55zY6/rwMliwg3rGUwPhrUK69fa9t8KMgcBLOD5fS4ZqxeJ95GKGpIWUlluQMEpokdqfInHTH41AyL/9bvzHTOtd9RIfpk/HOe8oc5AcBjq2b0I89ifj192SsU4PDx6Ct/cD0S/XtN6YUSahfxusvoQ8YhLDqXYQrR6Kef5lJmm+/wTiiL0LlV9ag07qWwRefm9ebO5Yi9zqK+JARRAafhbD7P2Z8957I51VQ/LMBSCu24Z75Mr7bH6V+xTcUvjgL74ybEOqqUZsarZtBycEs1FYjCIIlpZJEMSo343A4kKv/g3HuxQjbtxGd+yiucy/FcHvRzrkIRVFouPcZ5M0b0Re9iBAOop02koKCAny3P4rwRYCiYecQe/OLjHWy+8ifQL9jkTesxcAwy3/KGal6bd2EeNJQszx5BQgDBhP8n3Em8YaONNt5/FlIq5ajDR2JWGfWQQgH0QYMQpZlmqfebREvXQLHevbJ2b5iTRXawCE4HA5i544jMvgs5H++gtgj4Q748N7ooy+3yqfPXkzD35ZTcufVOP9yvzkh1ta02Qbt/baIdns7oRAK4n3+SVzvLiY4/lqig87CkBPO7lo7hFcTQXaYhqr0MiQlsMOBvGsH3vlPo3y+OuOG08GA58m7iJR2Qb3iOqqvuM60ByycizrtfwklJK62bTOSKGaoX85PPiA8ZgKMmYDzg6VogNFYj97jCMSt/0KWZeKDE2rjijfxrf2AlhN/TvyfG2jeUWnm+691uN5+jejA01Affo4awPHZauJTLoIjf4ow9BxqXjHv9Do+W41+61WILpfVpmppF8SNn5rtn4jTOndH/Nd6dEFAANMw6fZivPAXHA4H4uFHmgQfNoq6i65E3rwR4dpLTBew82cTGH8NjZ82INbV4HzgFuqXLyavoIjma26jevVua6nlXrKQ2C2/xNXrKMIDTyP+7Jupeu2oxPXph2ibN6BNvZNAXTViKIixdTPyijdRK67C2Kqj7qxErN2NbhimZ5Pk80eOQdpZafruAuS0+unFpbDly+z2DTQR/N39BNa3IISDKIsXEHt0Or4hZxM4rwJj+WZadlSa6XdU4lq1nPDds6w6uRbOJfLcEzjLehGZcG1WGxR26NBuxyohx1lot9udcbbzh0Js4GkEx1+LekRfc12s66ZxStNM0sYTxipVTTNYAYKIEI/ifmMBntdfzLpffLCRvA+aRNJLoWEY1NbW0qFDB2RZJhQKEY1G6dChQ8ZvXC4XkUiE/Px8AoEALpcLj8eDqqo0NDRY94wbGxtRf3sfXHoVnHMsefVVKIpixicMVE6nk7y8PAzDyBmfsb3T0oIoihlX/kKhEKqqkpeXR/3LHyFUfo06/izy8/OJ3/oI0bLe6GNOQRRFNE1DURTy8vIQBIFIJEJLi+lzUZIkfD4fiqKgqiotLS1WWZJLhGQbNTY2oh4/GF5YBpcOI+/LT3A6nTQ1NRGLxSxLcvIucENDA4ZhZJwHzs/Pz3h+0iaRfj8ZoKGhAafTmdW+mqbR3NyMpmkZ5dM0jaamJjRNM1V7TcPv9yNJEo2NjZZ6nOzzttrgh0Q0Gs2o+wEjMJhXAcPnjSN80f+i5xemDFZJIif/JuMFAeeqZXhf+rN5Tvq/7Jik0aUHDY/Nt64vSjsrccx5hOjcRykqKvrOHgz3yTg3ZCQNM+aYkuzKUcg7tuL3+2mc9Q+Mqm+RplZkTQbf26J/2RQCV07FOMpHYWFhu0qsHzsOKoFThwi6Eqr4NdFh55p7wNbWk26pz/KWL/H+7TGUz1cn3PD8d6K1NJVlGa/X+4PP7BkkTkgnWZYpKCiwJorm5mbLq0h7DMyWlpYMzyY2DlECW2r1MScTnHgDaq+fmutcQGhuNL1xvPY3hEjY7jEbNg5VAidECuFzxxE+rwLHv9bhefZRpF077FtFNmz8KAhsw4aN/Saw2Hq9ZcOGjR8Psv1Ctz7GaMOGjUMCubiZRWBVVdtle8KGDRvfD2qO3ZgsAiede9uwYePQkr7JgyatCZx1CyDjZcc2bNg46OSNxWLmue9EABAEIS4Cn6Ybr5JfxmIxVFU132NrG7ds2DigMAzDIm4kEjGlrSgiiqLFUYdDaZQNw3jeMIyBhmGkMxtJklBVFVVVMQzDJrENGwcBQuIl7aIoZnkY8fv9lYKiKIrL5fpSkqQj0s+gJkmr67ptmbZh4yASOEnidPXZ4VAajjyy1xJZ1/WYIAjDRFH8WNf1EuuER5q+bRu1bNg4+CROQlGU+u7dD18uimKlkDyBVV7er7S5uemvwWDwWFVVO9BeTt9t2LCxPyRWFUVp8Pn8lSUlpV+JolgJPPR/AwA7Wx4mp7es5gAAAABJRU5ErkJggg==' button_reaction_adder = b'iVBORw0KGgoAAAANSUhEUgAAAPAAAABBCAYAAADvwylCAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAIGNIUk0AAHolAACAgwAA+f8AAIDpAAB1MAAA6mAAADqYAAAXb5JfxUYAABvSSURBVHja7J15mBTV1f8/t6q6ep8ZZhiGHQYQRAFxQ4KyCG4sYhQVFV5x4Rd/ESFqNKIxiiYaRdw1Go2KxjWCvhqRIC6IiLggIhgBZReQWZiZ7q5ea3n/qO6e7pkBAVmGpL7Pc5/puX3r9Dm36nvPubfqnhKKopCGCkyUJGm8EKKXECKIAwcOmgvCwErLsp63LOtvpmkmAUSawO2EEHNlWe4tyzKyLCOEQAjhdJsDB80ElmVhWRbA90JIw6JRbZNQFEUVQixRFOVol8uFLMtIkuSQ14GDZkpi0zSRJOnHDh06HSVLkvRrRVEuU1UVRVGy3teBAwfND0IIJEnCsqyAEKKPUFX1E5fL1V9VVWRZzmvo8Xhwp+sdSjtwcAA9LWAYBolEgngikQmd86AoSqVwu90Jt9utulyurOeVJInCggIkSSKZTKLrOoZpOr3qwMGB9LZpLkqSRCwex2zMQUMRQqi5C1ZCCAoLChBCoGkaZhPMd+DAwQHywqaJYZq4FIVEMtmwiSxlSJuB1+NBkiSi0ahDXgcOmhGZ03PfvHqpYUO3200ymXTI68BBM4MkxK4JLIRASBLJVMrpLQcOmtucWJIwTTOPxFKT7trxvg4cND8CC9GIwEoT7LWLAwcOmn9Y7XSBAwcOgR04cOAQ2IEDBw6BHTj4byWw5ZS9KtGLrmTrx1t3Wn58cznaFTc2C12rH32N6kdfa6R79KIrD5pO8VEXsfXjrdTd+ugeHZcceMZuHbe77Zp72W8eOH54X6r/ZzKx3sdj5WyKOFSgt2zNjvMmEjp51H6Rb5aUUnfxZHZMvOGg2mm26Uiib39SpkVNTU3ed7WJJPF4/KDopQ0/1/57zImEw+E9Pz6l79Zxu9vu0A2hTbP+VtIelMjxg0i27UzdGeejHTcY0+PbKzkHoyQ7dKF25AUkuh5B9NiBeycng1eegi6icXnlKQASZ15IVNMOrs1Q/6SdZeF94VFaHNMCHvnjQdHHbN2BZI/eSKtXQMtWRG9+cA+Ozw0f90W7Zl4aQNlXI4Gluu2/ikJ42GhS7cvxf/YB6ub1YDXPnUymP0i0Tz+0E07G9PpBCCyX62fLDQaDBPz+/MoHb2b7gKGYJa2IaBo+ny/7VWjaX9BOO7v++NeeJTBjat7hRq/jCU2YQvzEU7J1rjUrKXzqPlwfzc1rmytPxDQCc2cRmDGV2LhJ1E662W507ADi/46RuuEy9I5dqJ10M0WP/gnPC49mPXXdtXfk/Z7/ndcpmHZl9v/UwOFU3f00/ndex/AHs22l6kqCc17G9/idu9Vf0XFXYnn98OITiCl/wOw/hIimNe7DBra51qwkOHtmkzJ3t13kurvQBo/ALCkFwL1sCUV/+g3Stk3ZNj++9z2+j96xPfhpZyNiGq3GD81rc7CwzwjsW/EF4cHD7fBZkogf0Zdk+WF4Vy7F8+0yXJvXIwy9WRDXKGxBomtPor37kWrdAWQZhAAh8Kz+er/8ZuS6uzA7lCOqK/KepKmaOZ9U9155bcPnTCBW2obSGyZkyVT156eyF1mWQN17UTXtYUouHIxasaVJeZbXT/icCcRNE//2LY30qorGCJpWNoQW8ThqeXeqHnwZo315fvh52tnEevalbOyARvVNTRf05Z9T8Mn8nw5rB4+w++Xvj+AecDKJ088hes4lBOa9mq9rA9tS3XtRM35SY5t2s13DgRMgcXR/Kh54mVbn9UeS6gNU7fCjoGMXu081jcrlX1DasmVem0N6Fdr35SICi95BWCZIEkgyZrAI7RfDqDnv/1E75lKixw0iVdYOxIE32vQFSHTtSejkM6k551JCp5xDqm0nm7ySBLKMe8Magh/O+Xk/NPZywstDbFu8La+Ez7HJaL3+fHb3V+S6u0h174W0agVcNMwOtYf2gFVfow88jeozxmY9lFlSinh7Vn5Yvupr8PrZMeoiTNMkNm4Sqe69ENUVMPlCu819t0BUIzXifIwnplM0+hhbz6WL7e/nvNx4sLliKkb7ckSuXpMvhE3rMDuUU3H1HY3tzp06rLIHQa3fYFI/8Vx9bNwk27b33kKWZYLvv2UPsqMuyNs+lzhznG3b5vX1tk2+0PbcuQTczXapgcPRTjsbafN6u48yus95FatDOVXX/jlf0Y5dkOam+79fWTYzRrPzwOZOVrt+Eqkk/sXzkWuqiAwbjV7WziYHArNFS+ItSoj3Og65phKlcjvKj5tQKrYh11Qha2FETEMkEwjD2HtrhISlKJgeL5bXj1FQhF5cit6qLXpJa4zilpgerz2ApD0ukoQwDHyffYhv8XzkUC375UHSVV/D27PgkT/iLyjAAmK9jkXENMwRfVBVlcLSUuR4COOmiVS+8AHJwcNJvPl3/DOmwm2TCYfDKI/OQpUl9NI2JA/vYw8KwUJi8TjJvv3t/9/9J/K/XqWopATXrCeJP/8woVAIDWiZM0XweDwUFRURl0TeXYjYsSchYhrWleeibt1g67V0AbGHb6funpkYfY4jommoubbdOJFgMIjf7yfx+nPU3DgDAgUkkkmUXUxLIqf+0u6Dx+8m6POhfDQXefVKjJ5HoZW2Q62rtBdJjz3R1u/VZ3C9M5uCkhJcSxcQeutlopdMyeq+2+1OGGxf70/ei+uVJ/AXFeHxeOCOKVT0OQ5j6Cgid1yNPxPGRzXMSefh9/sJBoNZOf8xIXT2ovh2Ga5tm4j2H0qs/1DMQE52WsWFUdYeo7QNie69ELEoIhlHJOJI0YhNYF3HEgJZi+D/+B2U6oqdd5UQaCcMIdmhq+1FhcBSXJgeH5bbi+VSMT0ekNIhcvqYDHFBoG5Yg/+Td1HXrULo+yDEf+UpuHGi/XnkBXD9HeALwKN/Rp3/Gr7MhQKYJWW2Z1hnkQQqG5pX1oZ4PI6qqsReXQzde6EDTWlpWRamL2D/s+hdfD4frjRxPB5P/W/uznqGzweV25E2fU9RTpjo/XgeoZiG1bEriUSinsBrV6OqavZil2p35KyJ7vwXUwOHo2dC3fdXE8bOnZpB8tLfYN53E5JkD1gAvPUKfr8/a5t/8btZYgK7366snf3h9kdI3f4ItY1CA41oNFpP4JiGJElZ8jYXKPtDqFxbTfCd2XhWfE7shCHEjx6AGSxMT0ANe1FLkrEUBcsMQDrrgL3KVr/aJsUiBBbORSSavrWR6Nwd7fjBmIHCenLmkrTh/6T/mibq5nX4li5C/W4lUlTbp/ZnPBFLFxC/fQq1D78Cd/8NXyyM599L84mySyIF0HWd0LS/oKfDQuvrL+wvV6+AHr1h5HlNHquq6s9blASUdIbSJm+7NRjsXHux+BcbduaudRh6JrE7rqkn0R7atqt22cFuZ/D6sTp1h2j6VpsWaZbJHvdfEG+auLZsoOC1mZQ8fCuu7VtAcYHbDWq6uD31n1U3qCq40kVxYRSWYEk7v6dsBgtBVuo9qiSBothFThfFZReXastXVYLvvUGL5x/Bs/zTfU7eRhHJv5cS+MdT4PNTe8tDGDlTBHnzeohqTd926iJgSFcsyyKeCWkHd8F17Tj8Uy/F/8x9KG3b55/MaMT+cNIpP0tnEY1CyzLo3L2Rx7S8fsSmtfukb2IDT7PnoE3ZPudVaNkK7ZJrbDKuX20fNGpsvk5H9csn7Z62u+Wqnfa/ue7bvAiiOcx5DxyBc0dSWcEMFKQJlCarx4uQJORwLXK4DimZQDJ0JNOwM2DKCuoP6xD6zhdBXFs3IofrEIaOSCWQUgmkeBxZC6PUViEl4zZ51fxBwwoUHNCFtMBf/4y8egV07MKO395VT+6VS8HnR7y9nFZH96N169a0bt0a3+OvwToL3+OvUVJSkl1NFlf9gZKSEoLBIMbj/4t+9C/yB4uvltgfhp1JbNCI7Ap25T8W8+PibSTOHFff2L9zD+RZugh8fvQHXyR15HFZ8tZO/oOty/LPyXmjx16vylteP9a813G5XFnbM6VkoX1rzBw+hng8jvvTD+0DL76K6ElnZHUKXXBFntw9bjfxWgrGTMj+bsG0hxDfRJAXrqN169bNkrT7PYRuNNfp2A2zsEW9t7QnbYhEnMJXnkCu2o5R3ArL68WSZCyPDxGP4v52GSKV3LnyVdsp+Nc/0Evb2ETXDYRpINftQArVEB49nvgxJ9r3qDMeWkikuvXE/GwBciJ2wDq6+N7fU/ngSxijxhKe+yrB1V8RmDGV6PGDMA/vQ8XsT/O9YHUF0bumIsJhPEsXET3tbKxrb+fHa29vYoQosIn3wqPIp5yF0aM30XufI5orb9UKap68l+LiYtubH96H+NIqzPFDmxhw7iLesy/m4X2ofvKf+XptXod140TcP3MuGM3cOrrzt3gLChoPzh/NRVm2BP3o/kQGj6TlR3NRF80nedKpRGY8SyQ3ism5vebai3ahe2YSahjdPXkf1dXV2QG0ueLAeGCvr37+Kcs2kV0qZlEJCIFcU4X6/Te4V3yBZ/mneD/9AM/yTxHJ5E/Kdm3ZiPerJXhWLsWz6ivca1agbN+CFItieX32IpHHmy4+8PqwgkW2DgcQ8srP8b09C3x+ojfcnQ2lW40dYN+eyMXSxViTL0TevBa/30/BtCtR5s7Ob/PhPPv2B0DXHtlQr/TS0xrLm/MqVnqlW1VV/JnvvX4qh49tlP9M2raJkt+MRVo4r7GcwV1xuVyN5qV7gniDW0e+nawFBBa/a8+3TzmLVCpF8e8uRnn1mbyVfWP6TY0Hyz1tV1WRf7fgvluw/v5Is1uwanK64/F4LI/Hg6IoCCEoKChA0/btvDB2whBC4yZh+YM581MZEYtSfOc1uNZ+u1+ygNRdPIXYL4bZc21ZtlejZRn3ssUUPHUf8o6Kffp78Xic2tra+kWsJqBpGuFwGFVVKS4uztaHw+G8fvd4PASDwbxk+w3b+Hw+VFWltrb2J+Xl3v7I1QOgIJ0DvLa2lqLcVXLTJBKJEI1GdyonlUpRXV292/V70le57XLl5OquqirBYLDJ39qTdtFoNDuoqqqKz+fL9gNARUUFsiwfdI8cjUZRFCUb2jcmcCCAFo3u2xC6fWdqrvwDZmlrex6aXqRybfiOFnf9FmlH5X4xVht+PpHR4+w5r6JkCex/4+8EZs9EZBZ9HDg4RBCNxfIIfEBCaNcPG1BXfw2JRPo2kgVC4P5sASIS2m+/616+BLm2qt77KgpSLIp72ScOeR38R0BWFGVahtFCCFyq+pOPv+0VibdsJNWhHLO4JcguPJ9/iH/W0/uVSFK4DikSRu92BFagAGEaBF58DPfnC6GZPJftwMGeQNf1vLeHNgqhA4FA3pxnX8IMFpHodSzC0HF//RkifmBWgVOdDyN1WC9cm9ehrP12lyvbDhw0Z8QahNAHlMAOHDjYtwR2cmI5cHAIw0ns7sDBIQzHAztw8J/kgXeW/c6BAweOB3bgwIFDYAcOHBwiBLb3+lqKK69kMmo0B2jXT6d61pJdtql57A3Ctz222/XNDdr107N6Vs9agnb99H0q08E+mgMfbJheH2agELOgCKOgCEv1YPr8WB5fPWlNA0kL26l4tDByqBYpXIsUCSFSqQM6izd69yM2ZASWz8eOwlKK65p+rtvo2BVr2RIikQiBQOAn65sb4icMQlqygEgkQsm5/dmxYwfC49npTqI9ldmcbXcIvDtEKC4l0b03yfLu6KVt7WwbDVOY5P6f81mkkkh1Nbi2bMC9+mvUA/i0VWTCFNwL5hA/fhDG6edgvfI4QghSg0cQmnwLRvty5B/W2ylhl38Gp4+h+prbmqyvuulee5tdTKNo2lW4Pnw777eiv74Z7fzLshkWA88+jO+xP+W12fHce5glZZglpfhnP4tr9deErpialVt4/y2obz6/U1lW207U3PW0ncInrUf48t9itC/HOLcc5ZMPqLj3OUrP6Yd+2JFUp20E8M9+Fv89v0O7fjqxISMQsUjWzuIpYxFbN+bpmStTGzAMbYyduVP+YT1Ft01BXvHZHttf89gbmKVlWZ0KHvkj0dPORu/eC/mH9ZSc2x+jdz9qb32okd6pwSOo+930RuegbsbzJE46FQD3ovkUXjc+r58yOmdsDN/2GLHTz7EJtmYlAMUXD0O7fvpP2nhIhtDJTt2oO/sSIsPOItn1CMyComySOnv/sFyfKkdJp8mR69PmWB4fRlk74scMoO6CK9BOHmUnat/feo8eT6pnX7jlSqSN3yPadyaZTGK17UTd76bj+vRDlO4ujO3b7OhixVLiN81ouv7q21AXzEE+TMHauJaakRfk5Z0yevcjMmEy7hm/R3SVYOliIicMJhbLfxzV6FAOG79DPkxBm/0cddfcjvexO225b75M7fhJxI48bqeyQtfegeXz4zqjN1bldmpGXoDvyRm28KE9iLXrjFRdQWVtHXW/m4604XuU7i545Sm0MRPQStqQ7NIDCwum/gp52hSM9uXs6NM/Lx928Kl762X2G0xsyHC8v70YhvbA8PipOXtCXvqh3bVfP7w3ViRi67R0MaELrsD9xD0oD0yz9TjsKGrueho1fQ6YfGFW79DkWxqdA23cJJLHDsAz4ii45SoSJ51K3eFHE7r2DrBAPdwNky/M2hi5fjqJ4wbiueQMmHwhevdemGtXUf2rqcRPGITv0uHQRWBs39bIxkOTwEKgDR2N3rpdfsbIDGkzea0yubIyubPc7vySk08rOmg4qc6HNfbg+xjhi69C/eeLJJNJPBXboFtPDMMgMfRMLJ+P1NSJeDweAiuX2nmKR43F8vkb129YgxTViI+5BOutZfi/WYb6q9F5F6e84jO8s2cSHzQcsWAtHDsAqfJHEolEto3VtpOdpmbmwyiKgnfCJCyvH+3m+zG+02Hs5Qh/gNhH7zQpK96mE4mTTkWa/SzWulWUntcfZeIooj37IlVXwIY1eI7si9i4Fmnc/8fy+TAvHY7L5aLk3f+157VdemKWliG9/xZ8+gEBzd5tZiycl7dJJnXEMVmZ0imjkT+YQ/LNFykOVeFetRyrrO3e2/+XO5EkCZckIX++kPgbL+CWJURMQz+6P2ZJKbExl6CvScHDL9l6F5YgtMbnIFVTjeX1E5+1GPdpZxG4bgKJhfPwznwQq2Ir+hP/zMow1nxDvN8g5A/eIvXxu5QsmY9UXYG5ZRPmqb/EaF9O9Jm5sM6CYwdAsKDRAHQIemBhJ67L5GrOkDdD3Nw8WrnJ8HZVVLctaz8+URb99c0Y7cuJX/IbjO90tDETsHr2IZVKYbTpiLRpHaZp4vP5MFq3Q6r8Eal95ybrFUWheMIw5FefxvxxK9qYCZgPvJi36Tx822MkTxiMLAlc99vJ2s2tm/M2/CeG2lkerZVf4vf7SZV3tzNO5CRqs44vw3jgpSZlSUf0tcn1/Wr8fj9CCIqLi3G164jYuBZZljFatUVs34po2wGRtiUYDJI6qh8ipsE3X9qh6Tdf4fV6sTp1tes3rMnLXGm0bmfL7NoTs6QUY+WXeL1eFEVB79wNed3qPO+0O/anjhto2//WywQCAczSMoiEcLvd0LYToqoC0a6TnZ+sYRK7Je9TOH5Io3NQ9PbLBC8fCZ8vItGxK5EZz1IwZgJ1D7+CLATS9i12H0c1WPI+ZodyzJXL8Hq9SB26YJa0QlrxBVaHcuRpU/KT5k04PS8qOTQJbJkE3nsD5cfN9qKyJKc9rqve47o9dkocr50SB0+D4q5PlyMkCd9H83Bt+G7/qdy2E9r5l+H549X1J2RoDyyvn+Sp9qs6zI5dUE48ldTgEcQHnY5Yu8rOaNtEPVPvofKDdRS/9Dj+6TcgqivQ62qJROq3WiaOG4j4ZAHi8pHoZ/+PnQxvy8a8C9ho09HO8rhhDbIsI7QIRv8h+HseRYvzLkF8E6Hg2tsRJwxuUpaUiViOOh7rlF9SsWQ7ydHj0dOkVRQFo2NXWL0CEQlnbTF690P75XiUD/+F6HVM1uMqipIdzIQQeWlZszJ/WGcndj9+EIqioF0/HbOkFbz5Uh7hd8f+VI8+tv2A3LGrPZB8/J6dV7qsLWLDdwghbL3PGkdp3+ORF67D+9hsArc+xI6FGxudg8o5KzBHnE/JdeNQPv0Qohqh9ECRmnA68ifvYwwdiVRdYdsY0zB6HoWiKHaYnZ4iiZiGcfJIioqKCNxqJ84rGTbqZ6ftabyIlc3PfOCgrl9N0ct/JdW+HL1NB4ySMswWLbHcHpvI6RQ8dogt5S9gmSZCCyHtqELZtgnXd98gb920y2yWP3vh6oqpuBfOIzHzIYoKC+38w1oNNcuWkDrxFNRnHyLWbxCp5+YR2rzefkvE5vX43nuTWP+Tm64/9SwqX7MXNFzLlmDefAWSx5M9F+4vPiJ23qVw3qW4F83HAKzaHciSlG2jl7VFpD26AAIv/ZXaG+5Gm/MVGuCZNZPw/beidDuCVBOy1PfeQF80n9TEawml29f+7T5cA89AHz4GIiF70W39GgLvvUGk/xBSz82jGlAXzceccgHK1HvQYxrWhjW4WrZE69IDsS7tfXOuK0kLkxg+BrFtM/5/PEVkwhRqR56H/MN63Pf8nsTid3G3aLHX9uvdjrQHkq+/QHW5iHXuhvhkAa5nHiD5i5PR73+eynRfpyaPhW5HIIaOanQO5GgY7dKr0cZMQKquxDPj9yRWr4DRF2CtNdF/WI9UtR3TspBlGU/GlrGXI/+w3s7lvWFNvY1f1iBVV+Ke8Xt2vD+H4hYt8gahPY5fG24n9Hq9Pzsu/29AJt9Uw3xOoVDInn96vdTW1qLrun1B6ToFBQXZHFa7qgdwu90UNMjWmMndBHbOrHg8TmFmAMmEmuEwlmVlj9V1nVAolA1H/X4/Pp9vl7LC4XD2PcGZ9pk6v9+Ppmm0SF94uTpn8njF43EikQgtW7bM9oksy436KiMz44Uy+asURcHv9zdKzL6n9uu6Tk1NDS1btkQIQU1NDW63O+/c5Pa1ZVlN1sfj8axusiwTCASQZZmamhosy8rb3ldYWGi3L2kDM+ciLVmAdPMVtGjRokk5e5qAP5FI7Ho/sENgBw72DrErbyYyof71Leqi+ZiXjcDtdv+s++UOgR04OEDI9bK5Ucm+QkMCK06XO3Cw75D7IrkDAWczgwMHhzAcAjtw8J9CYMtJpePAwaHtgXf1QmYHDhwcPDTFzUYE1nW9Wb7I2IGD/3Y0fKl6kwROpVLN/p2oDhz8N3pfwzAaOVcJaLRxNpl03lzgwEFzIm8ymcw+T559rYoQKQn4MnfxKvNlMplE13VM03QWtxw4OMCwLCtL3MxjrZIk5b0XyeVSaxXLsl6wLKu/ZVm5zEaWZXRdR9d1LMtySOzAwUGAECJLXFmW80LoYDC4Xqiqqno8nn/Lstw1d1dEhrSmaTor0w4cHEQCZ0icGz67XGpNt26Hva2YppkUQgyTJOkz0zRbZR+Szom3nUUtBw4OPokzUFV1R8eOnd+XJGm9yGxi6NWrd1koVPespmnH6LreAuc5aQcOmhOJdVVVawKB4PpWrcrWSJK0Hrjv/wYAPllHpHSNE/wAAAAASUVORK5CYII='
DATA = { "website": None, "myspace_name": None, "last_name": "Bizness", "reposts_count": 0, "public_favorites_count": 0, "followings_count": 2, "full_name": "Nonya Bizness", "id": 12345, "city": "Los Angeles", "first_name": "Nonya", "track_count": 123, "playlist_count": 0, "discogs_name": None, "followers_count": 54321, "online": False, "username": "some podcast", "description": None, "kind": "user", "last_modified": "2016/09/29 05:31:52 +0000", "website_title": None, "permalink_url": "http://soundcloud.com/some-podcast", "permalink": "some-podcast", "country": "United States", "uri": "https://api.soundcloud.com/users/12345", "avatar_url": "https://i1.sndcdn.com/avatars-000067787890-onwv2r-large.jpg", "plan": "Pro Plus" }
data = {'website': None, 'myspace_name': None, 'last_name': 'Bizness', 'reposts_count': 0, 'public_favorites_count': 0, 'followings_count': 2, 'full_name': 'Nonya Bizness', 'id': 12345, 'city': 'Los Angeles', 'first_name': 'Nonya', 'track_count': 123, 'playlist_count': 0, 'discogs_name': None, 'followers_count': 54321, 'online': False, 'username': 'some podcast', 'description': None, 'kind': 'user', 'last_modified': '2016/09/29 05:31:52 +0000', 'website_title': None, 'permalink_url': 'http://soundcloud.com/some-podcast', 'permalink': 'some-podcast', 'country': 'United States', 'uri': 'https://api.soundcloud.com/users/12345', 'avatar_url': 'https://i1.sndcdn.com/avatars-000067787890-onwv2r-large.jpg', 'plan': 'Pro Plus'}
# parsetab.py # This file is automatically generated. Do not edit. # pylint: disable=W,C,R _tabversion = '3.10' _lr_method = 'LALR' _lr_signature = 'leftpuntobipuntoleftcomarightigualleftcor1cor2leftmasmenosleftasteriscodivporcentajeleftpotrightumenosumasleftpar1par2leftt_orleftt_andleftdiferenteleftmayormenormayorimenorirightt_notasterisco bipunto char coma cor1 cor2 decimal diferente diferentede div entero id igual mas mayor mayori menor menori menos par1 par2 porcentaje pot punto pyc string t_abs t_acos t_acosd t_acosh t_add t_all t_alter t_and t_as t_asc t_asin t_asind t_asinh t_atan t_atan2 t_atan2d t_atand t_atanh t_avg t_bigint t_bool t_boolean t_by t_cbrt t_ceil t_ceiling t_character t_charn t_check t_column t_constraint t_convert t_cos t_cosd t_cosh t_cot t_cotd t_count t_create t_current t_current_user t_database t_databases t_date t_decimal t_decode t_default t_degrees t_delete t_desc t_distinct t_div t_double t_drop t_encode t_enum t_exists t_exp t_factorial t_false t_first t_floor t_foreign t_from t_full t_gcd t_get_byte t_group t_having t_if t_inherits t_inner t_insert t_integer t_into t_join t_key t_last t_left t_length t_like t_limit t_ln t_log t_max t_md5 t_min t_min_scale t_mod t_mode t_money t_natural t_not t_null t_nulls t_numeric t_of t_offset t_on t_only t_or t_order t_outer t_owner t_pi t_power t_precision t_primary t_radians t_random t_real t_references t_rename t_replace t_returning t_right t_round t_scale t_select t_session_user t_set t_set_byte t_setseed t_sha256 t_show t_sign t_sin t_sind t_sinh t_smallint t_sqrt t_substr t_substring t_sum t_table t_tan t_tand t_tanh t_text t_to t_trim t_trim_scale t_true t_trunc t_type t_unique t_update t_use t_using t_values t_varchar t_varying t_where t_width_bucketSQL : Sentencias_SQLSQL : emptySentencias_SQL : Sentencias_SQL Sentencia_SQLSentencias_SQL : Sentencia_SQLSentencia_SQL : Sentencias_DMLSentencia_SQL : Sentencias_DDLSentencias_DML : t_select Lista_EXP Select_SQL Condiciones GRP ORD pyc\n | t_select asterisco Select_SQL Condiciones GRP ORD pyc\n | t_insert t_into id Insert_SQL pyc\n | t_update id t_set Lista_EXP Condiciones1 pyc\n | t_delete t_from id Condiciones1 pyc\n | t_use id pycSelect_SQL : t_from Table_ExpressionSelect_SQL : emptyTable_Expression : Alias_Tabla\n | SubqueriesAlias_Tabla : Lista_ID\n | Lista_AliasSubqueries : par1 t_select par2Insert_SQL : par1 Lista_ID par2 t_values par1 Lista_EXP par2Insert_SQL : t_values par1 Lista_EXP par2Condiciones : t_where EXP\n | emptyCondiciones1 : t_where EXP\n | emptyGRP : t_group t_by Lista_ID\n | t_group t_by Lista_ID HV\n | emptyHV : t_having EXPORD : t_order t_by LSORT\n | t_order t_by LSORT LMT\n | emptyLSORT : LSORT coma SORT\n | SORTSORT : EXP AD NFL\n | EXP AD\n | EXPAD : t_asc\n | t_descNFL : t_nulls t_first\n | t_nulls t_lastLMT : t_limit NAL t_offset entero\n | t_limit NAL\n | t_offset entero NAL : entero\n | t_all Sentencias_DDL : t_show t_databases Show_DB_Like_Char pyc\n | Enum_Type\n | t_drop Drop pyc\n | t_alter Alter pyc\n | t_create Create pycShow_DB_Like_Char : t_like char \n | empty Enum_Type : t_create t_type id t_as t_enum par1 Lista_Enum par2 pycDrop : t_database DropDB id\n | t_table id DropDB : t_if t_exists\n | emptyAlter : t_database id AlterDB\n | t_table id AlterTB AlterDB : t_rename t_to id\n | t_owner t_to SesionDB SesionDB : id\n | t_current_user\n | t_session_user AlterTB : t_add Add_Opc\n | t_drop Drop_Opc\n | t_alter t_column Alter_Column\n | t_rename t_column id t_to id Add_Opc : t_column id Tipo\n | Constraint_AlterTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2\n | Constraint_AlterTB t_unique par1 id par2\n | Constraint_AlterTB t_check EXP Constraint_AlterTB : t_constraint id\n | empty Drop_Opc : t_column id\n | t_constraint id Alter_Column : id t_set t_not t_null\n | Alter_Columns Alter_Columns : Alter_Columns coma Alter_Column1\n | Alter_Column1Alter_Column1 : id t_type t_varchar par1 entero par2\n | t_alter t_column id t_type t_varchar par1 entero par2Create : CreateDBCreate : CreateTB CreateDB : OrReplace_CreateDB t_database IfNotExist_CreateDB id Sesion OrReplace_CreateDB : t_or t_replace\n | empty IfNotExist_CreateDB : t_if t_not t_exists\n | empty Sesion : t_owner Op_Sesion Sesion_mode\n | t_mode Op_Mode\n | empty Op_Sesion : igual char\n | char Sesion_mode : t_mode Op_Mode\n | empty Op_Mode : igual entero\n | entero CreateTB : t_table id par1 Columnas par2 Inherits Inherits : t_inherits par1 id par2\n | empty Columnas : Columnas coma Columna\n | Columna Columna : id Tipo Cond_CreateTB\n | Constraint Cond_CreateTB : Constraint_CreateTB t_default id Cond_CreateTB\n | Constraint_CreateTB t_not t_null Cond_CreateTB\n | Constraint_CreateTB t_null Cond_CreateTB\n | Constraint_CreateTB t_unique Cond_CreateTB\n | Constraint_CreateTB t_check par1 EXP par2 Cond_CreateTB\n | Constraint_CreateTB t_primary t_key Cond_CreateTB\n | Constraint_CreateTB t_references id Cond_CreateTB\n | emptyConstraint_CreateTB : t_constraint id\n | empty Constraint : Constraint_CreateTB t_unique par1 Lista_ID par2\n | Constraint_CreateTB t_check par1 EXP par2\n | Constraint_CreateTB t_primary t_key par1 Lista_ID par2\n | Constraint_CreateTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2\n | empty Tipo : t_smallint\n | t_integer\n | t_bigint\n | t_decimal\n | t_numeric par1 entero par2\n | t_real\n | t_double t_precision\n | t_money\n | t_character t_varying par1 entero par2\n | t_varchar par1 entero par2\n | t_character par1 entero par2\n | t_charn par1 entero par2\n | t_text\n | t_boolean\n | t_date\n | id Valor : decimal\n | entero\n | string\n | char\n | t_true\n | t_falseValor : idempty :EXP : EXP mas EXP\n | EXP menos EXP\n | EXP asterisco EXP\n | EXP div EXP\n | EXP pot EXP\n | EXP porcentaje EXPEXP : par1 EXP par2EXP : id par1 Lista_EXP par2EXP : EXP mayor EXP\n | EXP mayori EXP\n | EXP menor EXP\n | EXP menori EXP\n | EXP igual EXP\n | EXP diferente EXP\n | EXP diferentede EXPEXP : EXP t_and EXP\n | EXP t_or EXP\n EXP : mas EXP %prec umas\n | menos EXP %prec umenos\n | t_not EXPEXP : ValorEXP : id punto idEXP : EXP t_as EXPEXP : t_avg par1 EXP par2\n | t_sum par1 EXP par2\n | t_count par1 EXP par2\n | t_count par1 asterisco par2\n | t_max par1 EXP par2\n | t_min par1 EXP par2EXP : t_abs par1 EXP par2\n | t_cbrt par1 EXP par2\n | t_ceil par1 EXP par2\n | t_ceiling par1 EXP par2\n | t_degrees par1 EXP par2\n | t_exp par1 EXP par2\n | t_factorial par1 EXP par2\n | t_floor par1 EXP par2\n | t_gcd par1 Lista_EXP par2\n | t_ln par1 EXP par2\n | t_log par1 EXP par2\n | t_pi par1 par2\n | t_radians par1 EXP par2\n | t_round par1 EXP par2\n | t_min_scale par1 EXP par2\n | t_scale par1 EXP par2\n | t_sign par1 EXP par2\n | t_sqrt par1 EXP par2\n | t_trim_scale par1 EXP par2\n | t_trunc par1 EXP par2\n | t_width_bucket par1 Lista_EXP par2\n | t_random par1 par2\n | t_setseed par1 EXP par2 EXP : t_div par1 EXP coma EXP par2\n | t_mod par1 EXP coma EXP par2\n | t_power par1 EXP coma EXP par2 EXP : t_acos par1 EXP par2\n | t_acosd par1 EXP par2\n | t_asin par1 EXP par2\n | t_asind par1 EXP par2\n | t_atan par1 EXP par2\n | t_atand par1 EXP par2\n | t_cos par1 EXP par2\n | t_cosd par1 EXP par2\n | t_cot par1 EXP par2\n | t_cotd par1 EXP par2\n | t_sin par1 EXP par2\n | t_sind par1 EXP par2\n | t_tan par1 EXP par2\n | t_tand par1 EXP par2 EXP : t_atan2 par1 EXP coma EXP par2\n | t_atan2d par1 EXP coma EXP par2 EXP : t_length par1 id par2\n | t_substring par1 char coma entero coma entero par2\n | t_trim par1 char par2\n | t_md5 par1 char par2\n | t_sha256 par1 par2\n | t_substr par1 par2\n | t_get_byte par1 par2\n | t_set_byte par1 par2\n | t_convert par1 EXP t_as Tipo par2\n | t_encode par1 par2\n | t_decode par1 par2 Lista_ID : Lista_ID coma id\n | id Lista_Enum : Lista_Enum coma char\n | char Lista_EXP : Lista_EXP coma EXP\n | EXP Lista_Alias : Lista_Alias coma Nombre_Alias\n | Nombre_Alias Nombre_Alias : id id' _lr_action_items = {'$end':([0,1,2,3,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[-145,0,-1,-2,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_select':([0,2,4,5,6,13,17,198,202,207,210,224,313,391,396,453,487,490,593,],[7,7,-4,-5,-6,-48,-3,-12,-49,-50,-51,336,-47,-9,-11,-10,-7,-8,-54,]),'t_insert':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[8,8,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_update':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[9,9,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_delete':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[10,10,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_use':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[11,11,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_show':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[12,12,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_drop':([0,2,4,5,6,13,17,198,202,207,209,210,313,391,396,453,487,490,593,],[14,14,-4,-5,-6,-48,-3,-12,-49,-50,322,-51,-47,-9,-11,-10,-7,-8,-54,]),'t_alter':([0,2,4,5,6,13,17,198,202,207,209,210,313,391,396,408,453,487,490,513,593,],[15,15,-4,-5,-6,-48,-3,-12,-49,-50,323,-51,-47,-9,-11,466,-10,-7,-8,466,-54,]),'t_create':([0,2,4,5,6,13,17,198,202,207,210,313,391,396,453,487,490,593,],[16,16,-4,-5,-6,-48,-3,-12,-49,-50,-51,-47,-9,-11,-10,-7,-8,-54,]),'asterisco':([7,20,24,26,76,77,87,88,89,90,131,132,133,136,139,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[19,117,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,117,-165,250,117,117,117,-148,-149,-150,-151,-154,-155,-156,-157,117,-159,117,-161,-162,117,-152,-167,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,-186,117,117,117,117,117,117,117,117,-196,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,117,-221,-222,-223,-224,117,-226,-227,117,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,117,117,117,117,117,117,-144,-198,-199,-200,-215,-216,-225,117,117,117,117,-218,117,]),'par1':([7,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,79,80,81,82,83,84,85,86,111,112,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,195,196,213,216,308,311,367,368,369,384,385,390,394,410,440,444,445,446,450,461,462,482,483,488,500,504,507,527,531,532,533,538,545,550,565,574,600,618,637,640,],[23,23,23,23,134,23,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,23,224,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,307,23,329,23,394,23,23,23,23,23,23,23,23,472,498,501,502,503,134,508,23,530,531,23,541,545,546,568,23,571,572,23,23,592,600,23,23,632,641,643,]),'id':([7,9,11,21,22,23,25,91,93,97,98,100,101,103,107,111,112,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,135,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,192,196,203,205,212,216,225,307,311,316,326,328,329,334,335,367,368,369,384,385,390,394,398,399,401,403,406,407,408,409,413,419,423,426,459,462,477,481,488,508,510,513,514,530,531,538,545,546,561,567,568,571,572,574,600,631,635,641,643,],[24,92,94,24,24,24,24,195,197,-145,206,208,209,211,213,24,225,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,246,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,295,24,24,315,-58,-145,24,337,393,24,-57,411,-90,413,424,426,24,24,24,24,24,450,24,454,456,459,463,464,465,468,471,478,486,393,337,478,24,-89,413,24,547,548,552,553,393,24,24,24,393,596,602,603,393,393,24,24,637,640,393,393,]),'mas':([7,20,21,22,23,24,25,26,76,77,87,88,89,90,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,311,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,388,389,390,394,397,429,430,431,432,433,450,462,488,491,492,493,494,495,497,509,531,536,538,545,570,574,580,581,600,622,],[21,115,21,21,21,-144,21,-166,-141,-139,-138,-140,-142,-143,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,-163,-164,115,21,-165,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,115,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,115,-159,115,-161,-162,115,-152,-167,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,-186,115,115,115,115,115,115,115,115,-196,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,115,-221,-222,-223,-224,115,-226,-227,21,115,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,21,21,21,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,21,21,-217,-219,-220,21,21,115,115,115,115,115,115,-144,21,21,-198,-199,-200,-215,-216,-225,115,21,115,21,21,115,21,115,-218,21,115,]),'menos':([7,20,21,22,23,24,25,26,76,77,87,88,89,90,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,311,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,388,389,390,394,397,429,430,431,432,433,450,462,488,491,492,493,494,495,497,509,531,536,538,545,570,574,580,581,600,622,],[22,116,22,22,22,-144,22,-166,-141,-139,-138,-140,-142,-143,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,-163,-164,116,22,-165,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,116,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,116,-159,116,-161,-162,116,-152,-167,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,-186,116,116,116,116,116,116,116,116,-196,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,116,-221,-222,-223,-224,116,-226,-227,22,116,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,22,22,22,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,22,22,-217,-219,-220,22,22,116,116,116,116,116,116,-144,22,22,-198,-199,-200,-215,-216,-225,116,22,116,22,22,116,22,116,-218,22,116,]),'t_not':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,327,367,368,369,384,385,390,394,436,437,438,439,441,443,447,448,449,462,478,479,486,488,499,511,524,525,531,538,545,563,564,574,582,584,585,586,596,597,600,601,602,615,634,],[25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,412,25,25,25,25,25,25,25,-122,-123,-124,-125,-127,-129,-134,-135,-136,25,-137,-145,-115,25,-128,549,562,-116,25,25,25,-145,-145,25,-126,-132,-131,-133,-145,-145,25,-145,-145,-130,-145,]),'t_avg':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,]),'t_sum':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,]),'t_count':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,]),'t_max':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,]),'t_min':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,]),'t_abs':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,]),'t_cbrt':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,]),'t_ceil':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,]),'t_ceiling':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,]),'t_degrees':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,]),'t_exp':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,]),'t_factorial':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,]),'t_floor':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,]),'t_gcd':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,]),'t_ln':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,]),'t_log':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,]),'t_pi':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,]),'t_radians':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,]),'t_round':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,]),'t_min_scale':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,]),'t_scale':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,]),'t_sign':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,]),'t_sqrt':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,]),'t_trim_scale':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,]),'t_trunc':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,51,]),'t_width_bucket':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,]),'t_random':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,]),'t_setseed':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,54,]),'t_div':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,55,]),'t_mod':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,]),'t_power':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,57,]),'t_acos':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,]),'t_acosd':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,59,]),'t_asin':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,]),'t_asind':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,61,]),'t_atan':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,]),'t_atand':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,]),'t_cos':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,]),'t_cosd':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,65,]),'t_cot':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,]),'t_cotd':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,67,]),'t_sin':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,68,]),'t_sind':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,69,]),'t_tan':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,]),'t_tand':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,71,]),'t_atan2':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,]),'t_atan2d':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,73,]),'t_length':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,74,]),'t_substring':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,]),'t_trim':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,78,]),'t_md5':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,79,]),'t_sha256':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,80,]),'t_substr':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,81,]),'t_get_byte':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,]),'t_set_byte':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,83,]),'t_convert':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,]),'t_encode':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,]),'t_decode':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,]),'decimal':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,]),'entero':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,387,390,394,462,475,488,496,498,501,502,503,521,531,538,541,545,557,574,575,576,592,600,628,632,],[77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,77,434,77,77,77,522,77,539,540,542,543,544,560,77,77,583,77,522,77,610,612,619,77,636,638,]),'string':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,88,]),'char':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,185,186,187,192,196,200,216,311,367,368,369,384,385,390,394,462,472,474,488,518,531,538,545,555,574,600,],[76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,296,297,298,76,76,314,76,76,76,76,76,76,76,76,76,76,516,519,76,559,76,76,76,594,76,76,]),'t_true':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,89,]),'t_false':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,]),'t_into':([8,],[91,]),'t_from':([10,18,19,20,24,26,76,77,87,88,89,90,131,132,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,581,],[93,112,112,-233,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-232,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,-218,]),'t_databases':([12,],[95,]),'t_database':([14,15,16,106,109,214,],[97,100,-145,212,-88,-87,]),'t_table':([14,15,16,],[98,101,107,]),'t_type':([16,468,548,552,],[103,512,590,512,]),'t_or':([16,20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[108,129,-144,-166,-141,-139,-138,-140,-142,-143,129,129,129,-165,129,129,129,129,129,129,129,-154,-155,-156,-157,129,-159,129,-161,-162,129,-152,-167,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,-186,129,129,129,129,129,129,129,129,-196,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129,-221,-222,-223,-224,129,-226,-227,129,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,129,129,129,129,129,129,-144,-198,-199,-200,-215,-216,-225,129,129,129,129,-218,129,]),'coma':([18,20,24,26,76,77,87,88,89,90,131,132,136,218,222,223,225,226,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,261,264,273,274,276,277,278,293,294,296,299,300,301,302,304,305,309,329,337,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,392,393,414,415,416,418,424,425,434,436,437,438,439,441,443,447,448,449,452,469,470,478,479,481,489,491,492,493,494,495,497,499,515,516,523,525,529,534,535,536,551,563,564,569,577,578,579,581,582,584,585,586,587,588,594,596,597,598,599,601,602,604,605,606,607,608,613,615,620,621,623,624,626,629,630,633,634,639,642,644,645,647,],[111,-233,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-232,334,335,-229,-235,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,111,-167,111,-186,111,-196,367,368,369,384,385,387,-221,-222,-223,-224,-226,-227,111,-145,-236,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,334,-229,481,-104,-106,-121,-228,-234,496,-122,-123,-124,-125,-127,-129,-134,-135,-136,111,513,-81,-137,-145,-145,334,-198,-199,-200,-215,-216,-225,-128,555,-231,-105,-114,-103,574,-34,-37,-80,-145,-145,334,-36,-38,-39,-218,-126,-132,-131,-133,111,334,-230,-145,-145,-109,-110,-145,-145,-117,-118,334,334,-33,-35,-130,-107,-108,-112,-113,-119,-40,-41,-82,-145,-111,-83,334,334,-120,]),'t_where':([18,19,20,24,26,76,77,87,88,89,90,110,113,114,131,132,136,197,218,219,220,221,222,223,225,226,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,309,337,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,424,425,427,491,492,493,494,495,497,581,],[-145,-145,-233,-144,-166,-141,-139,-138,-140,-142,-143,216,-14,216,-163,-164,-165,311,-232,-13,-15,-16,-17,-18,-229,-235,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,311,-236,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-228,-234,-19,-198,-199,-200,-215,-216,-225,-218,]),'t_group':([18,19,20,24,26,76,77,87,88,89,90,110,113,114,131,132,136,215,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,333,337,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,424,425,427,491,492,493,494,495,497,581,],[-145,-145,-233,-144,-166,-141,-139,-138,-140,-142,-143,-145,-14,-145,-163,-164,-165,331,-23,-232,-13,-15,-16,-17,-18,-229,-235,331,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-22,-236,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-228,-234,-19,-198,-199,-200,-215,-216,-225,-218,]),'t_order':([18,19,20,24,26,76,77,87,88,89,90,110,113,114,131,132,136,215,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,330,332,333,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,393,424,425,427,489,491,492,493,494,495,497,537,580,581,],[-145,-145,-233,-144,-166,-141,-139,-138,-140,-142,-143,-145,-14,-145,-163,-164,-165,-145,-23,-232,-13,-15,-16,-17,-18,-229,-235,-145,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,421,-28,-22,-236,421,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-229,-228,-234,-19,-26,-198,-199,-200,-215,-216,-225,-27,-29,-218,]),'pyc':([18,19,20,24,26,76,77,87,88,89,90,94,95,96,99,102,104,105,110,113,114,131,132,136,197,199,201,206,215,217,218,219,220,221,222,223,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,306,309,310,312,314,315,317,320,330,332,333,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,393,395,397,400,405,411,420,422,424,425,427,428,436,437,438,439,441,443,447,448,449,454,455,456,457,458,464,465,467,469,470,473,476,478,480,489,491,492,493,494,495,497,499,505,506,509,517,519,520,522,526,528,534,535,536,537,551,553,554,556,558,559,560,573,577,578,579,580,581,582,584,585,586,589,591,595,608,609,610,611,612,613,615,616,625,629,630,633,636,642,646,],[-145,-145,-233,-144,-166,-141,-139,-138,-140,-142,-143,198,-145,202,207,210,-84,-85,-145,-14,-145,-163,-164,-165,-145,313,-53,-56,-145,-23,-232,-13,-15,-16,-17,-18,-229,-235,-145,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,391,-145,396,-25,-52,-55,-59,-60,-145,-28,-22,-236,-145,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-229,453,-24,-66,-67,-145,487,-32,-228,-234,-19,490,-122,-123,-124,-125,-127,-129,-134,-135,-136,-61,-62,-63,-64,-65,-76,-77,-68,-79,-81,-86,-93,-137,-145,-26,-198,-199,-200,-215,-216,-225,-128,-21,-70,-73,-145,-95,-92,-99,-100,-102,-30,-34,-37,-27,-80,-69,593,-91,-97,-94,-98,-31,-36,-38,-39,-29,-218,-126,-132,-131,-133,-72,-78,-96,-33,-43,-45,-46,-44,-35,-130,-20,-101,-40,-41,-82,-42,-83,-71,]),'par2':([20,24,26,76,77,87,88,89,90,131,132,133,136,153,163,188,189,190,191,193,194,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,279,280,281,282,283,284,285,286,287,288,289,290,291,292,295,297,298,299,300,301,302,304,305,329,336,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,392,393,414,415,416,418,424,429,430,431,432,433,435,436,437,438,439,441,443,447,448,449,450,452,478,479,481,491,492,493,494,495,497,499,515,516,523,525,529,539,540,542,543,544,547,563,564,569,570,581,582,583,584,585,586,587,588,594,596,597,598,599,601,602,603,604,605,606,607,615,619,620,621,622,623,624,626,634,638,639,644,645,647,],[-233,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,244,-165,264,274,299,300,301,302,304,305,-232,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,339,-167,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,-186,357,358,359,360,361,362,363,364,365,-196,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,-221,-222,-223,-224,-226,-227,-145,427,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,451,-229,480,-104,-106,-121,-228,491,492,493,494,495,497,-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,505,-137,-145,-145,-198,-199,-200,-215,-216,-225,-128,554,-231,-105,-114,-103,581,582,584,585,586,589,-145,-145,604,605,-218,-126,615,-132,-131,-133,616,617,-230,-145,-145,-109,-110,-145,-145,625,-117,-118,626,627,-130,633,-107,-108,634,-112,-113,-119,-145,642,-111,646,647,-120,]),'div':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[118,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,118,-165,118,118,118,-148,-149,-150,-151,-154,-155,-156,-157,118,-159,118,-161,-162,118,-152,-167,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,-186,118,118,118,118,118,118,118,118,-196,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,118,-221,-222,-223,-224,118,-226,-227,118,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,118,118,118,118,118,118,-144,-198,-199,-200,-215,-216,-225,118,118,118,118,-218,118,]),'pot':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[119,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,119,-165,119,119,119,119,119,-150,119,-154,-155,-156,-157,119,-159,119,-161,-162,119,-152,-167,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,-186,119,119,119,119,119,119,119,119,-196,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,119,-221,-222,-223,-224,119,-226,-227,119,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,119,119,119,119,119,119,-144,-198,-199,-200,-215,-216,-225,119,119,119,119,-218,119,]),'porcentaje':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[120,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,120,-165,120,120,120,-148,-149,-150,-151,-154,-155,-156,-157,120,-159,120,-161,-162,120,-152,-167,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,-186,120,120,120,120,120,120,120,120,-196,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,-221,-222,-223,-224,120,-226,-227,120,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,120,120,120,120,120,120,-144,-198,-199,-200,-215,-216,-225,120,120,120,120,-218,120,]),'mayor':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[121,-144,-166,-141,-139,-138,-140,-142,-143,121,121,121,-165,121,121,121,121,121,121,121,-154,-155,-156,-157,121,121,121,121,121,121,-152,-167,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,-186,121,121,121,121,121,121,121,121,-196,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,121,-221,-222,-223,-224,121,-226,-227,121,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,121,121,121,121,121,121,-144,-198,-199,-200,-215,-216,-225,121,121,121,121,-218,121,]),'mayori':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[122,-144,-166,-141,-139,-138,-140,-142,-143,122,122,122,-165,122,122,122,122,122,122,122,-154,-155,-156,-157,122,122,122,122,122,122,-152,-167,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,-186,122,122,122,122,122,122,122,122,-196,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,122,-221,-222,-223,-224,122,-226,-227,122,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,122,122,122,122,122,122,-144,-198,-199,-200,-215,-216,-225,122,122,122,122,-218,122,]),'menor':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[123,-144,-166,-141,-139,-138,-140,-142,-143,123,123,123,-165,123,123,123,123,123,123,123,-154,-155,-156,-157,123,123,123,123,123,123,-152,-167,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,-186,123,123,123,123,123,123,123,123,-196,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,-221,-222,-223,-224,123,-226,-227,123,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,123,123,123,123,123,123,-144,-198,-199,-200,-215,-216,-225,123,123,123,123,-218,123,]),'menori':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[124,-144,-166,-141,-139,-138,-140,-142,-143,124,124,124,-165,124,124,124,124,124,124,124,-154,-155,-156,-157,124,124,124,124,124,124,-152,-167,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,-186,124,124,124,124,124,124,124,124,-196,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,124,-221,-222,-223,-224,124,-226,-227,124,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,124,124,124,124,124,124,-144,-198,-199,-200,-215,-216,-225,124,124,124,124,-218,124,]),'igual':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,474,475,491,492,493,494,495,497,509,536,557,570,580,581,622,],[125,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,125,-165,125,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,125,-159,125,-161,-162,125,-152,-167,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,-186,125,125,125,125,125,125,125,125,-196,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,125,-221,-222,-223,-224,125,-226,-227,125,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,125,125,125,125,125,125,-144,518,521,-198,-199,-200,-215,-216,-225,125,125,521,125,125,-218,125,]),'diferente':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[126,-144,-166,-141,-139,-138,-140,-142,-143,126,126,126,-165,126,126,126,126,126,126,126,-154,-155,-156,-157,126,-159,126,126,126,126,-152,-167,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,-186,126,126,126,126,126,126,126,126,-196,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126,-221,-222,-223,-224,126,-226,-227,126,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,126,126,126,126,126,126,-144,-198,-199,-200,-215,-216,-225,126,126,126,126,-218,126,]),'diferentede':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[127,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,127,-165,127,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,127,-161,-162,127,-152,-167,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,-186,127,127,127,127,127,127,127,127,-196,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,-221,-222,-223,-224,127,-226,-227,127,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,127,127,127,127,127,127,-144,-198,-199,-200,-215,-216,-225,127,127,127,127,-218,127,]),'t_and':([20,24,26,76,77,87,88,89,90,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[128,-144,-166,-141,-139,-138,-140,-142,-143,128,128,128,-165,128,128,128,128,128,128,128,-154,-155,-156,-157,128,-159,128,-161,128,128,-152,-167,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,-186,128,128,128,128,128,128,128,128,-196,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,-221,-222,-223,-224,128,-226,-227,128,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,128,128,128,128,128,128,-144,-198,-199,-200,-215,-216,-225,128,128,128,128,-218,128,]),'t_as':([20,24,26,76,77,87,88,89,90,131,132,133,136,211,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,247,248,249,251,252,253,254,255,256,257,258,259,260,262,263,264,265,266,267,268,269,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,299,300,301,302,303,304,305,333,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,397,429,430,431,432,433,450,491,492,493,494,495,497,509,536,570,580,581,622,],[130,-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,130,-165,325,130,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,130,-161,-162,130,-152,-167,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,-186,130,130,130,130,130,130,130,130,-196,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130,-221,-222,-223,-224,390,-226,-227,130,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,130,130,130,130,130,130,-144,-198,-199,-200,-215,-216,-225,130,130,130,130,-218,130,]),'punto':([24,450,],[135,135,]),'t_asc':([24,26,76,77,87,88,89,90,131,132,136,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,536,581,],[-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,578,-218,]),'t_desc':([24,26,76,77,87,88,89,90,131,132,136,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,536,581,],[-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,579,-218,]),'t_limit':([24,26,76,77,87,88,89,90,131,132,136,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,534,535,536,577,578,579,581,608,613,629,630,],[-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,575,-34,-37,-36,-38,-39,-218,-33,-35,-40,-41,]),'t_offset':([24,26,76,77,87,88,89,90,131,132,136,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,246,264,274,299,300,301,302,304,305,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,370,371,372,373,374,375,376,377,378,379,380,381,382,383,386,388,389,491,492,493,494,495,497,534,535,536,577,578,579,581,608,609,610,611,613,629,630,],[-144,-166,-141,-139,-138,-140,-142,-143,-163,-164,-165,-146,-147,-148,-149,-150,-151,-154,-155,-156,-157,-158,-159,-160,-161,-162,-168,-152,-167,-186,-196,-221,-222,-223,-224,-226,-227,-153,-169,-170,-171,-172,-173,-174,-175,-176,-177,-178,-179,-180,-181,-182,-183,-184,-185,-187,-188,-189,-190,-191,-192,-193,-194,-195,-197,-201,-202,-203,-204,-205,-206,-207,-208,-209,-210,-211,-212,-213,-214,-217,-219,-220,-198,-199,-200,-215,-216,-225,576,-34,-37,-36,-38,-39,-218,-33,628,-45,-46,-35,-40,-41,]),'t_set':([92,468,],[196,511,]),'t_like':([95,],[200,]),'t_if':([97,212,],[204,327,]),'t_replace':([108,],[214,]),'t_values':([195,451,],[308,504,]),'t_exists':([204,412,],[316,477,]),'t_rename':([208,209,],[318,324,]),'t_owner':([208,411,],[319,474,]),'t_add':([209,],[321,]),'t_to':([318,319,471,],[398,399,514,]),'t_column':([321,322,323,324,466,],[401,406,408,409,510,]),'t_constraint':([321,322,329,436,437,438,439,441,443,447,448,449,478,479,481,499,563,564,582,584,585,586,596,597,601,602,615,634,],[403,407,419,-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,419,419,-128,419,419,-126,-132,-131,-133,419,419,419,419,-130,419,]),'t_foreign':([321,329,402,404,417,418,463,481,486,],[-145,-145,460,-75,485,-116,-74,-145,-115,]),'t_unique':([321,329,402,404,417,418,436,437,438,439,441,443,447,448,449,463,478,479,481,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,634,],[-145,-145,461,-75,482,-116,-122,-123,-124,-125,-127,-129,-134,-135,-136,-74,-137,-145,-145,-115,-128,564,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_check':([321,329,402,404,417,418,436,437,438,439,441,443,447,448,449,463,478,479,481,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,634,],[-145,-145,462,-75,483,-116,-122,-123,-124,-125,-127,-129,-134,-135,-136,-74,-137,-145,-145,-115,-128,565,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_enum':([325,],[410,]),'t_primary':([329,417,418,436,437,438,439,441,443,447,448,449,478,479,481,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,634,],[-145,484,-116,-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,-145,-145,-115,-128,566,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_by':([331,421,],[423,488,]),'t_smallint':([390,413,459,],[436,436,436,]),'t_integer':([390,413,459,],[437,437,437,]),'t_bigint':([390,413,459,],[438,438,438,]),'t_decimal':([390,413,459,],[439,439,439,]),'t_numeric':([390,413,459,],[440,440,440,]),'t_real':([390,413,459,],[441,441,441,]),'t_double':([390,413,459,],[442,442,442,]),'t_money':([390,413,459,],[443,443,443,]),'t_character':([390,413,459,],[444,444,444,]),'t_varchar':([390,413,459,512,590,],[445,445,445,550,618,]),'t_charn':([390,413,459,],[446,446,446,]),'t_text':([390,413,459,],[447,447,447,]),'t_boolean':([390,413,459,],[448,448,448,]),'t_date':([390,413,459,],[449,449,449,]),'t_having':([393,424,489,],[-229,-228,538,]),'t_current_user':([399,],[457,]),'t_session_user':([399,],[458,]),'t_mode':([411,517,519,559,],[475,557,-95,-94,]),'t_default':([436,437,438,439,441,443,447,448,449,478,479,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,634,],[-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,-145,-115,-128,561,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_null':([436,437,438,439,441,443,447,448,449,478,479,486,499,524,525,549,562,563,564,582,584,585,586,596,597,601,602,615,634,],[-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,-145,-115,-128,563,-116,591,597,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,-145,]),'t_references':([436,437,438,439,441,443,447,448,449,478,479,486,499,524,525,563,564,582,584,585,586,596,597,601,602,615,617,627,634,],[-122,-123,-124,-125,-127,-129,-134,-135,-136,-137,-145,-115,-128,567,-116,-145,-145,-126,-132,-131,-133,-145,-145,-145,-145,-130,631,635,-145,]),'t_precision':([442,],[499,]),'t_varying':([444,],[500,]),'t_key':([460,484,485,566,],[507,532,533,601,]),'t_inherits':([480,],[527,]),'t_all':([575,],[611,]),'t_nulls':([577,578,579,],[614,-38,-39,]),'t_first':([614,],[629,]),'t_last':([614,],[630,]),} _lr_action = {} for _k, _v in _lr_action_items.items(): for _x,_y in zip(_v[0],_v[1]): if not _x in _lr_action: _lr_action[_x] = {} _lr_action[_x][_k] = _y del _lr_action_items _lr_goto_items = {'SQL':([0,],[1,]),'Sentencias_SQL':([0,],[2,]),'empty':([0,16,18,19,95,97,110,114,197,212,215,227,309,321,329,330,338,411,479,480,481,517,563,564,596,597,601,602,634,],[3,109,113,113,201,205,217,217,312,328,332,332,312,404,418,422,422,476,525,528,418,558,525,525,525,525,525,525,525,]),'Sentencia_SQL':([0,2,],[4,17,]),'Sentencias_DML':([0,2,],[5,5,]),'Sentencias_DDL':([0,2,],[6,6,]),'Enum_Type':([0,2,],[13,13,]),'Lista_EXP':([7,134,150,162,196,394,545,],[18,245,261,273,309,452,587,]),'EXP':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[20,131,132,133,136,218,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,20,247,248,249,251,252,253,254,255,256,257,258,259,260,20,262,263,265,266,267,268,269,270,271,272,20,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,303,20,333,397,429,430,431,432,433,243,20,509,536,570,580,20,536,622,]),'Valor':([7,21,22,23,25,111,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,134,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,192,196,216,311,367,368,369,384,385,390,394,462,488,531,538,545,574,600,],[26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,]),'Drop':([14,],[96,]),'Alter':([15,],[99,]),'Create':([16,],[102,]),'CreateDB':([16,],[104,]),'CreateTB':([16,],[105,]),'OrReplace_CreateDB':([16,],[106,]),'Select_SQL':([18,19,],[110,114,]),'Show_DB_Like_Char':([95,],[199,]),'DropDB':([97,],[203,]),'Condiciones':([110,114,],[215,227,]),'Table_Expression':([112,],[219,]),'Alias_Tabla':([112,],[220,]),'Subqueries':([112,],[221,]),'Lista_ID':([112,307,423,530,546,571,572,641,643,],[222,392,489,569,588,606,607,644,645,]),'Lista_Alias':([112,],[223,]),'Nombre_Alias':([112,335,],[226,425,]),'Insert_SQL':([195,],[306,]),'Condiciones1':([197,309,],[310,395,]),'AlterDB':([208,],[317,]),'AlterTB':([209,],[320,]),'IfNotExist_CreateDB':([212,],[326,]),'GRP':([215,227,],[330,338,]),'Add_Opc':([321,],[400,]),'Constraint_AlterTB':([321,],[402,]),'Drop_Opc':([322,],[405,]),'Columnas':([329,],[414,]),'Columna':([329,481,],[415,529,]),'Constraint':([329,481,],[416,416,]),'Constraint_CreateTB':([329,479,481,563,564,596,597,601,602,634,],[417,524,417,524,524,524,524,524,524,524,]),'ORD':([330,338,],[420,428,]),'Tipo':([390,413,459,],[435,479,506,]),'SesionDB':([399,],[455,]),'Alter_Column':([408,],[467,]),'Alter_Columns':([408,],[469,]),'Alter_Column1':([408,513,],[470,551,]),'Sesion':([411,],[473,]),'Lista_Enum':([472,],[515,]),'Op_Sesion':([474,],[517,]),'Op_Mode':([475,557,],[520,595,]),'Cond_CreateTB':([479,563,564,596,597,601,602,634,],[523,598,599,620,621,623,624,639,]),'Inherits':([480,],[526,]),'LSORT':([488,],[534,]),'SORT':([488,574,],[535,608,]),'HV':([489,],[537,]),'Sesion_mode':([517,],[556,]),'LMT':([534,],[573,]),'AD':([536,],[577,]),'NAL':([575,],[609,]),'NFL':([577,],[613,]),} _lr_goto = {} for _k, _v in _lr_goto_items.items(): for _x, _y in zip(_v[0], _v[1]): if not _x in _lr_goto: _lr_goto[_x] = {} _lr_goto[_x][_k] = _y del _lr_goto_items _lr_productions = [ ("S' -> SQL","S'",1,None,None,None), ('SQL -> Sentencias_SQL','SQL',1,'p_sql','Gramatica.py',318), ('SQL -> empty','SQL',1,'p_sql2','Gramatica.py',322), ('Sentencias_SQL -> Sentencias_SQL Sentencia_SQL','Sentencias_SQL',2,'p_Sentencias_SQL_Sentencia_SQL','Gramatica.py',326), ('Sentencias_SQL -> Sentencia_SQL','Sentencias_SQL',1,'p_Sentencias_SQL','Gramatica.py',332), ('Sentencia_SQL -> Sentencias_DML','Sentencia_SQL',1,'p_Sentencia_SQL_DML','Gramatica.py',337), ('Sentencia_SQL -> Sentencias_DDL','Sentencia_SQL',1,'p_Sentencia_SQL_DDL','Gramatica.py',346), ('Sentencias_DML -> t_select Lista_EXP Select_SQL Condiciones GRP ORD pyc','Sentencias_DML',7,'p_Sentencias_DML','Gramatica.py',352), ('Sentencias_DML -> t_select asterisco Select_SQL Condiciones GRP ORD pyc','Sentencias_DML',7,'p_Sentencias_DML','Gramatica.py',353), ('Sentencias_DML -> t_insert t_into id Insert_SQL pyc','Sentencias_DML',5,'p_Sentencias_DML','Gramatica.py',354), ('Sentencias_DML -> t_update id t_set Lista_EXP Condiciones1 pyc','Sentencias_DML',6,'p_Sentencias_DML','Gramatica.py',355), ('Sentencias_DML -> t_delete t_from id Condiciones1 pyc','Sentencias_DML',5,'p_Sentencias_DML','Gramatica.py',356), ('Sentencias_DML -> t_use id pyc','Sentencias_DML',3,'p_Sentencias_DML','Gramatica.py',357), ('Select_SQL -> t_from Table_Expression','Select_SQL',2,'p_Select_SQL','Gramatica.py',376), ('Select_SQL -> empty','Select_SQL',1,'p_Select2_SQL','Gramatica.py',382), ('Table_Expression -> Alias_Tabla','Table_Expression',1,'p_Table_Expression','Gramatica.py',388), ('Table_Expression -> Subqueries','Table_Expression',1,'p_Table_Expression','Gramatica.py',389), ('Alias_Tabla -> Lista_ID','Alias_Tabla',1,'p_Alias_Tabla','Gramatica.py',395), ('Alias_Tabla -> Lista_Alias','Alias_Tabla',1,'p_Alias_Tabla','Gramatica.py',396), ('Subqueries -> par1 t_select par2','Subqueries',3,'p_Subqueries','Gramatica.py',401), ('Insert_SQL -> par1 Lista_ID par2 t_values par1 Lista_EXP par2','Insert_SQL',7,'p_Insert_SQL','Gramatica.py',406), ('Insert_SQL -> t_values par1 Lista_EXP par2','Insert_SQL',4,'p_Insert_SQL2','Gramatica.py',411), ('Condiciones -> t_where EXP','Condiciones',2,'p_Condiciones','Gramatica.py',416), ('Condiciones -> empty','Condiciones',1,'p_Condiciones','Gramatica.py',417), ('Condiciones1 -> t_where EXP','Condiciones1',2,'p_Condiciones1','Gramatica.py',426), ('Condiciones1 -> empty','Condiciones1',1,'p_Condiciones1','Gramatica.py',427), ('GRP -> t_group t_by Lista_ID','GRP',3,'p_GRP','Gramatica.py',438), ('GRP -> t_group t_by Lista_ID HV','GRP',4,'p_GRP','Gramatica.py',439), ('GRP -> empty','GRP',1,'p_GRP','Gramatica.py',440), ('HV -> t_having EXP','HV',2,'p_HV','Gramatica.py',447), ('ORD -> t_order t_by LSORT','ORD',3,'p_ORD','Gramatica.py',451), ('ORD -> t_order t_by LSORT LMT','ORD',4,'p_ORD','Gramatica.py',452), ('ORD -> empty','ORD',1,'p_ORD','Gramatica.py',453), ('LSORT -> LSORT coma SORT','LSORT',3,'p_L_SORT','Gramatica.py',461), ('LSORT -> SORT','LSORT',1,'p_L_SORT','Gramatica.py',462), ('SORT -> EXP AD NFL','SORT',3,'p_SORT','Gramatica.py',469), ('SORT -> EXP AD','SORT',2,'p_SORT','Gramatica.py',470), ('SORT -> EXP','SORT',1,'p_SORT','Gramatica.py',471), ('AD -> t_asc','AD',1,'p_AD','Gramatica.py',480), ('AD -> t_desc','AD',1,'p_AD','Gramatica.py',481), ('NFL -> t_nulls t_first','NFL',2,'p_NFL','Gramatica.py',486), ('NFL -> t_nulls t_last','NFL',2,'p_NFL','Gramatica.py',487), ('LMT -> t_limit NAL t_offset entero','LMT',4,'p_LMT','Gramatica.py',491), ('LMT -> t_limit NAL','LMT',2,'p_LMT','Gramatica.py',492), ('LMT -> t_offset entero','LMT',2,'p_LMT','Gramatica.py',493), ('NAL -> entero','NAL',1,'p_NAL','Gramatica.py',500), ('NAL -> t_all','NAL',1,'p_NAL','Gramatica.py',501), ('Sentencias_DDL -> t_show t_databases Show_DB_Like_Char pyc','Sentencias_DDL',4,'p_Sentencias_DDL','Gramatica.py',506), ('Sentencias_DDL -> Enum_Type','Sentencias_DDL',1,'p_Sentencias_DDL','Gramatica.py',507), ('Sentencias_DDL -> t_drop Drop pyc','Sentencias_DDL',3,'p_Sentencias_DDL','Gramatica.py',508), ('Sentencias_DDL -> t_alter Alter pyc','Sentencias_DDL',3,'p_Sentencias_DDL','Gramatica.py',509), ('Sentencias_DDL -> t_create Create pyc','Sentencias_DDL',3,'p_Sentencias_DDL','Gramatica.py',510), ('Show_DB_Like_Char -> t_like char','Show_DB_Like_Char',2,'p_show_db_like_regex','Gramatica.py',530), ('Show_DB_Like_Char -> empty','Show_DB_Like_Char',1,'p_show_db_like_regex','Gramatica.py',531), ('Enum_Type -> t_create t_type id t_as t_enum par1 Lista_Enum par2 pyc','Enum_Type',9,'p_Enum_Type','Gramatica.py',540), ('Drop -> t_database DropDB id','Drop',3,'p_Drop','Gramatica.py',545), ('Drop -> t_table id','Drop',2,'p_Drop','Gramatica.py',546), ('DropDB -> t_if t_exists','DropDB',2,'p_DropDB','Gramatica.py',555), ('DropDB -> empty','DropDB',1,'p_DropDB','Gramatica.py',556), ('Alter -> t_database id AlterDB','Alter',3,'p_Alter','Gramatica.py',565), ('Alter -> t_table id AlterTB','Alter',3,'p_Alter','Gramatica.py',566), ('AlterDB -> t_rename t_to id','AlterDB',3,'p_AlterDB','Gramatica.py',575), ('AlterDB -> t_owner t_to SesionDB','AlterDB',3,'p_AlterDB','Gramatica.py',576), ('SesionDB -> id','SesionDB',1,'p_SesionDB','Gramatica.py',585), ('SesionDB -> t_current_user','SesionDB',1,'p_SesionDB','Gramatica.py',586), ('SesionDB -> t_session_user','SesionDB',1,'p_SesionDB','Gramatica.py',587), ('AlterTB -> t_add Add_Opc','AlterTB',2,'p_AlterTB','Gramatica.py',597), ('AlterTB -> t_drop Drop_Opc','AlterTB',2,'p_AlterTB','Gramatica.py',598), ('AlterTB -> t_alter t_column Alter_Column','AlterTB',3,'p_AlterTB','Gramatica.py',599), ('AlterTB -> t_rename t_column id t_to id','AlterTB',5,'p_AlterTB','Gramatica.py',600), ('Add_Opc -> t_column id Tipo','Add_Opc',3,'p_Add_Opc','Gramatica.py',615), ('Add_Opc -> Constraint_AlterTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2','Add_Opc',11,'p_Add_Opc','Gramatica.py',616), ('Add_Opc -> Constraint_AlterTB t_unique par1 id par2','Add_Opc',5,'p_Add_Opc','Gramatica.py',617), ('Add_Opc -> Constraint_AlterTB t_check EXP','Add_Opc',3,'p_Add_Opc','Gramatica.py',618), ('Constraint_AlterTB -> t_constraint id','Constraint_AlterTB',2,'p_Constraint_AlterTB','Gramatica.py',633), ('Constraint_AlterTB -> empty','Constraint_AlterTB',1,'p_Constraint_AlterTB','Gramatica.py',634), ('Drop_Opc -> t_column id','Drop_Opc',2,'p_Drop_Opc','Gramatica.py',643), ('Drop_Opc -> t_constraint id','Drop_Opc',2,'p_Drop_Opc','Gramatica.py',644), ('Alter_Column -> id t_set t_not t_null','Alter_Column',4,'p_Alter_Column','Gramatica.py',653), ('Alter_Column -> Alter_Columns','Alter_Column',1,'p_Alter_Column','Gramatica.py',654), ('Alter_Columns -> Alter_Columns coma Alter_Column1','Alter_Columns',3,'p_Alter_Columns','Gramatica.py',663), ('Alter_Columns -> Alter_Column1','Alter_Columns',1,'p_Alter_Columns','Gramatica.py',664), ('Alter_Column1 -> id t_type t_varchar par1 entero par2','Alter_Column1',6,'p_Alter_Colum1','Gramatica.py',674), ('Alter_Column1 -> t_alter t_column id t_type t_varchar par1 entero par2','Alter_Column1',8,'p_Alter_Colum1','Gramatica.py',675), ('Create -> CreateDB','Create',1,'p_Create','Gramatica.py',690), ('Create -> CreateTB','Create',1,'p_Create1','Gramatica.py',695), ('CreateDB -> OrReplace_CreateDB t_database IfNotExist_CreateDB id Sesion','CreateDB',5,'p_CreateDB','Gramatica.py',700), ('OrReplace_CreateDB -> t_or t_replace','OrReplace_CreateDB',2,'p_CreateDB_or_replace','Gramatica.py',705), ('OrReplace_CreateDB -> empty','OrReplace_CreateDB',1,'p_CreateDB_or_replace','Gramatica.py',706), ('IfNotExist_CreateDB -> t_if t_not t_exists','IfNotExist_CreateDB',3,'p_IfNotExist_CreateDB','Gramatica.py',715), ('IfNotExist_CreateDB -> empty','IfNotExist_CreateDB',1,'p_IfNotExist_CreateDB','Gramatica.py',716), ('Sesion -> t_owner Op_Sesion Sesion_mode','Sesion',3,'p_Sesion','Gramatica.py',725), ('Sesion -> t_mode Op_Mode','Sesion',2,'p_Sesion','Gramatica.py',726), ('Sesion -> empty','Sesion',1,'p_Sesion','Gramatica.py',727), ('Op_Sesion -> igual char','Op_Sesion',2,'p_Op_Sesion','Gramatica.py',739), ('Op_Sesion -> char','Op_Sesion',1,'p_Op_Sesion','Gramatica.py',740), ('Sesion_mode -> t_mode Op_Mode','Sesion_mode',2,'p_Sesion_mode','Gramatica.py',749), ('Sesion_mode -> empty','Sesion_mode',1,'p_Sesion_mode','Gramatica.py',750), ('Op_Mode -> igual entero','Op_Mode',2,'p_Op_Mode','Gramatica.py',759), ('Op_Mode -> entero','Op_Mode',1,'p_Op_Mode','Gramatica.py',760), ('CreateTB -> t_table id par1 Columnas par2 Inherits','CreateTB',6,'p_CreateTB','Gramatica.py',769), ('Inherits -> t_inherits par1 id par2','Inherits',4,'p_Inherits','Gramatica.py',774), ('Inherits -> empty','Inherits',1,'p_Inherits','Gramatica.py',775), ('Columnas -> Columnas coma Columna','Columnas',3,'p_Columnas','Gramatica.py',784), ('Columnas -> Columna','Columnas',1,'p_Columnas','Gramatica.py',785), ('Columna -> id Tipo Cond_CreateTB','Columna',3,'p_Columna','Gramatica.py',795), ('Columna -> Constraint','Columna',1,'p_Columna','Gramatica.py',796), ('Cond_CreateTB -> Constraint_CreateTB t_default id Cond_CreateTB','Cond_CreateTB',4,'p_Cond_CreateTB','Gramatica.py',805), ('Cond_CreateTB -> Constraint_CreateTB t_not t_null Cond_CreateTB','Cond_CreateTB',4,'p_Cond_CreateTB','Gramatica.py',806), ('Cond_CreateTB -> Constraint_CreateTB t_null Cond_CreateTB','Cond_CreateTB',3,'p_Cond_CreateTB','Gramatica.py',807), ('Cond_CreateTB -> Constraint_CreateTB t_unique Cond_CreateTB','Cond_CreateTB',3,'p_Cond_CreateTB','Gramatica.py',808), ('Cond_CreateTB -> Constraint_CreateTB t_check par1 EXP par2 Cond_CreateTB','Cond_CreateTB',6,'p_Cond_CreateTB','Gramatica.py',809), ('Cond_CreateTB -> Constraint_CreateTB t_primary t_key Cond_CreateTB','Cond_CreateTB',4,'p_Cond_CreateTB','Gramatica.py',810), ('Cond_CreateTB -> Constraint_CreateTB t_references id Cond_CreateTB','Cond_CreateTB',4,'p_Cond_CreateTB','Gramatica.py',811), ('Cond_CreateTB -> empty','Cond_CreateTB',1,'p_Cond_CreateTB','Gramatica.py',812), ('Constraint_CreateTB -> t_constraint id','Constraint_CreateTB',2,'p_Constraint_CreateTB','Gramatica.py',846), ('Constraint_CreateTB -> empty','Constraint_CreateTB',1,'p_Constraint_CreateTB','Gramatica.py',847), ('Constraint -> Constraint_CreateTB t_unique par1 Lista_ID par2','Constraint',5,'p_Constraint','Gramatica.py',856), ('Constraint -> Constraint_CreateTB t_check par1 EXP par2','Constraint',5,'p_Constraint','Gramatica.py',857), ('Constraint -> Constraint_CreateTB t_primary t_key par1 Lista_ID par2','Constraint',6,'p_Constraint','Gramatica.py',858), ('Constraint -> Constraint_CreateTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2','Constraint',11,'p_Constraint','Gramatica.py',859), ('Constraint -> empty','Constraint',1,'p_Constraint','Gramatica.py',860), ('Tipo -> t_smallint','Tipo',1,'p_Tipo','Gramatica.py',878), ('Tipo -> t_integer','Tipo',1,'p_Tipo','Gramatica.py',879), ('Tipo -> t_bigint','Tipo',1,'p_Tipo','Gramatica.py',880), ('Tipo -> t_decimal','Tipo',1,'p_Tipo','Gramatica.py',881), ('Tipo -> t_numeric par1 entero par2','Tipo',4,'p_Tipo','Gramatica.py',882), ('Tipo -> t_real','Tipo',1,'p_Tipo','Gramatica.py',883), ('Tipo -> t_double t_precision','Tipo',2,'p_Tipo','Gramatica.py',884), ('Tipo -> t_money','Tipo',1,'p_Tipo','Gramatica.py',885), ('Tipo -> t_character t_varying par1 entero par2','Tipo',5,'p_Tipo','Gramatica.py',886), ('Tipo -> t_varchar par1 entero par2','Tipo',4,'p_Tipo','Gramatica.py',887), ('Tipo -> t_character par1 entero par2','Tipo',4,'p_Tipo','Gramatica.py',888), ('Tipo -> t_charn par1 entero par2','Tipo',4,'p_Tipo','Gramatica.py',889), ('Tipo -> t_text','Tipo',1,'p_Tipo','Gramatica.py',890), ('Tipo -> t_boolean','Tipo',1,'p_Tipo','Gramatica.py',891), ('Tipo -> t_date','Tipo',1,'p_Tipo','Gramatica.py',892), ('Tipo -> id','Tipo',1,'p_Tipo','Gramatica.py',893), ('Valor -> decimal','Valor',1,'p_Valor','Gramatica.py',978), ('Valor -> entero','Valor',1,'p_Valor','Gramatica.py',979), ('Valor -> string','Valor',1,'p_Valor','Gramatica.py',980), ('Valor -> char','Valor',1,'p_Valor','Gramatica.py',981), ('Valor -> t_true','Valor',1,'p_Valor','Gramatica.py',982), ('Valor -> t_false','Valor',1,'p_Valor','Gramatica.py',983), ('Valor -> id','Valor',1,'p_Valor2','Gramatica.py',989), ('empty -> <empty>','empty',0,'p_empty','Gramatica.py',994), ('EXP -> EXP mas EXP','EXP',3,'p_aritmeticas','Gramatica.py',1001), ('EXP -> EXP menos EXP','EXP',3,'p_aritmeticas','Gramatica.py',1002), ('EXP -> EXP asterisco EXP','EXP',3,'p_aritmeticas','Gramatica.py',1003), ('EXP -> EXP div EXP','EXP',3,'p_aritmeticas','Gramatica.py',1004), ('EXP -> EXP pot EXP','EXP',3,'p_aritmeticas','Gramatica.py',1005), ('EXP -> EXP porcentaje EXP','EXP',3,'p_aritmeticas','Gramatica.py',1006), ('EXP -> par1 EXP par2','EXP',3,'p_parentesis','Gramatica.py',1011), ('EXP -> id par1 Lista_EXP par2','EXP',4,'p_funciones','Gramatica.py',1017), ('EXP -> EXP mayor EXP','EXP',3,'p_relacionales','Gramatica.py',1024), ('EXP -> EXP mayori EXP','EXP',3,'p_relacionales','Gramatica.py',1025), ('EXP -> EXP menor EXP','EXP',3,'p_relacionales','Gramatica.py',1026), ('EXP -> EXP menori EXP','EXP',3,'p_relacionales','Gramatica.py',1027), ('EXP -> EXP igual EXP','EXP',3,'p_relacionales','Gramatica.py',1028), ('EXP -> EXP diferente EXP','EXP',3,'p_relacionales','Gramatica.py',1029), ('EXP -> EXP diferentede EXP','EXP',3,'p_relacionales','Gramatica.py',1030), ('EXP -> EXP t_and EXP','EXP',3,'p_logicos','Gramatica.py',1035), ('EXP -> EXP t_or EXP','EXP',3,'p_logicos','Gramatica.py',1036), ('EXP -> mas EXP','EXP',2,'p_unario','Gramatica.py',1042), ('EXP -> menos EXP','EXP',2,'p_unario','Gramatica.py',1043), ('EXP -> t_not EXP','EXP',2,'p_unario','Gramatica.py',1044), ('EXP -> Valor','EXP',1,'p_EXP_Valor','Gramatica.py',1053), ('EXP -> id punto id','EXP',3,'p_EXP_Indices','Gramatica.py',1058), ('EXP -> EXP t_as EXP','EXP',3,'p_EXP_IndicesAS','Gramatica.py',1064), ('EXP -> t_avg par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1071), ('EXP -> t_sum par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1072), ('EXP -> t_count par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1073), ('EXP -> t_count par1 asterisco par2','EXP',4,'p_exp_agregacion','Gramatica.py',1074), ('EXP -> t_max par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1075), ('EXP -> t_min par1 EXP par2','EXP',4,'p_exp_agregacion','Gramatica.py',1076), ('EXP -> t_abs par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1081), ('EXP -> t_cbrt par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1082), ('EXP -> t_ceil par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1083), ('EXP -> t_ceiling par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1084), ('EXP -> t_degrees par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1085), ('EXP -> t_exp par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1086), ('EXP -> t_factorial par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1087), ('EXP -> t_floor par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1088), ('EXP -> t_gcd par1 Lista_EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1089), ('EXP -> t_ln par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1090), ('EXP -> t_log par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1091), ('EXP -> t_pi par1 par2','EXP',3,'p_funciones_matematicas','Gramatica.py',1092), ('EXP -> t_radians par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1093), ('EXP -> t_round par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1094), ('EXP -> t_min_scale par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1095), ('EXP -> t_scale par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1096), ('EXP -> t_sign par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1097), ('EXP -> t_sqrt par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1098), ('EXP -> t_trim_scale par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1099), ('EXP -> t_trunc par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1100), ('EXP -> t_width_bucket par1 Lista_EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1101), ('EXP -> t_random par1 par2','EXP',3,'p_funciones_matematicas','Gramatica.py',1102), ('EXP -> t_setseed par1 EXP par2','EXP',4,'p_funciones_matematicas','Gramatica.py',1103), ('EXP -> t_div par1 EXP coma EXP par2','EXP',6,'p_funciones_matematicas2','Gramatica.py',1108), ('EXP -> t_mod par1 EXP coma EXP par2','EXP',6,'p_funciones_matematicas2','Gramatica.py',1109), ('EXP -> t_power par1 EXP coma EXP par2','EXP',6,'p_funciones_matematicas2','Gramatica.py',1110), ('EXP -> t_acos par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1115), ('EXP -> t_acosd par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1116), ('EXP -> t_asin par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1117), ('EXP -> t_asind par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1118), ('EXP -> t_atan par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1119), ('EXP -> t_atand par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1120), ('EXP -> t_cos par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1121), ('EXP -> t_cosd par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1122), ('EXP -> t_cot par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1123), ('EXP -> t_cotd par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1124), ('EXP -> t_sin par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1125), ('EXP -> t_sind par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1126), ('EXP -> t_tan par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1127), ('EXP -> t_tand par1 EXP par2','EXP',4,'p_funciones_Trigonometricas','Gramatica.py',1128), ('EXP -> t_atan2 par1 EXP coma EXP par2','EXP',6,'p_funciones_Trigonometricas1','Gramatica.py',1133), ('EXP -> t_atan2d par1 EXP coma EXP par2','EXP',6,'p_funciones_Trigonometricas1','Gramatica.py',1134), ('EXP -> t_length par1 id par2','EXP',4,'p_funciones_String_Binarias','Gramatica.py',1138), ('EXP -> t_substring par1 char coma entero coma entero par2','EXP',8,'p_funciones_String_Binarias','Gramatica.py',1139), ('EXP -> t_trim par1 char par2','EXP',4,'p_funciones_String_Binarias','Gramatica.py',1140), ('EXP -> t_md5 par1 char par2','EXP',4,'p_funciones_String_Binarias','Gramatica.py',1141), ('EXP -> t_sha256 par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1142), ('EXP -> t_substr par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1143), ('EXP -> t_get_byte par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1144), ('EXP -> t_set_byte par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1145), ('EXP -> t_convert par1 EXP t_as Tipo par2','EXP',6,'p_funciones_String_Binarias','Gramatica.py',1146), ('EXP -> t_encode par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1147), ('EXP -> t_decode par1 par2','EXP',3,'p_funciones_String_Binarias','Gramatica.py',1148), ('Lista_ID -> Lista_ID coma id','Lista_ID',3,'p_Lista_ID','Gramatica.py',1158), ('Lista_ID -> id','Lista_ID',1,'p_Lista_ID','Gramatica.py',1159), ('Lista_Enum -> Lista_Enum coma char','Lista_Enum',3,'p_Lista_Enum','Gramatica.py',1168), ('Lista_Enum -> char','Lista_Enum',1,'p_Lista_Enum','Gramatica.py',1169), ('Lista_EXP -> Lista_EXP coma EXP','Lista_EXP',3,'p_Lista_EXP','Gramatica.py',1178), ('Lista_EXP -> EXP','Lista_EXP',1,'p_Lista_EXP','Gramatica.py',1179), ('Lista_Alias -> Lista_Alias coma Nombre_Alias','Lista_Alias',3,'p_Lista_Alias','Gramatica.py',1194), ('Lista_Alias -> Nombre_Alias','Lista_Alias',1,'p_Lista_Alias','Gramatica.py',1195), ('Nombre_Alias -> id id','Nombre_Alias',2,'p_Nombre_Alias','Gramatica.py',1204), ]
_tabversion = '3.10' _lr_method = 'LALR' _lr_signature = 'leftpuntobipuntoleftcomarightigualleftcor1cor2leftmasmenosleftasteriscodivporcentajeleftpotrightumenosumasleftpar1par2leftt_orleftt_andleftdiferenteleftmayormenormayorimenorirightt_notasterisco bipunto char coma cor1 cor2 decimal diferente diferentede div entero id igual mas mayor mayori menor menori menos par1 par2 porcentaje pot punto pyc string t_abs t_acos t_acosd t_acosh t_add t_all t_alter t_and t_as t_asc t_asin t_asind t_asinh t_atan t_atan2 t_atan2d t_atand t_atanh t_avg t_bigint t_bool t_boolean t_by t_cbrt t_ceil t_ceiling t_character t_charn t_check t_column t_constraint t_convert t_cos t_cosd t_cosh t_cot t_cotd t_count t_create t_current t_current_user t_database t_databases t_date t_decimal t_decode t_default t_degrees t_delete t_desc t_distinct t_div t_double t_drop t_encode t_enum t_exists t_exp t_factorial t_false t_first t_floor t_foreign t_from t_full t_gcd t_get_byte t_group t_having t_if t_inherits t_inner t_insert t_integer t_into t_join t_key t_last t_left t_length t_like t_limit t_ln t_log t_max t_md5 t_min t_min_scale t_mod t_mode t_money t_natural t_not t_null t_nulls t_numeric t_of t_offset t_on t_only t_or t_order t_outer t_owner t_pi t_power t_precision t_primary t_radians t_random t_real t_references t_rename t_replace t_returning t_right t_round t_scale t_select t_session_user t_set t_set_byte t_setseed t_sha256 t_show t_sign t_sin t_sind t_sinh t_smallint t_sqrt t_substr t_substring t_sum t_table t_tan t_tand t_tanh t_text t_to t_trim t_trim_scale t_true t_trunc t_type t_unique t_update t_use t_using t_values t_varchar t_varying t_where t_width_bucketSQL : Sentencias_SQLSQL : emptySentencias_SQL : Sentencias_SQL Sentencia_SQLSentencias_SQL : Sentencia_SQLSentencia_SQL : Sentencias_DMLSentencia_SQL : Sentencias_DDLSentencias_DML : t_select Lista_EXP Select_SQL Condiciones GRP ORD pyc\n | t_select asterisco Select_SQL Condiciones GRP ORD pyc\n | t_insert t_into id Insert_SQL pyc\n | t_update id t_set Lista_EXP Condiciones1 pyc\n | t_delete t_from id Condiciones1 pyc\n | t_use id pycSelect_SQL : t_from Table_ExpressionSelect_SQL : emptyTable_Expression : Alias_Tabla\n | SubqueriesAlias_Tabla : Lista_ID\n | Lista_AliasSubqueries : par1 t_select par2Insert_SQL : par1 Lista_ID par2 t_values par1 Lista_EXP par2Insert_SQL : t_values par1 Lista_EXP par2Condiciones : t_where EXP\n | emptyCondiciones1 : t_where EXP\n | emptyGRP : t_group t_by Lista_ID\n | t_group t_by Lista_ID HV\n | emptyHV : t_having EXPORD : t_order t_by LSORT\n | t_order t_by LSORT LMT\n | emptyLSORT : LSORT coma SORT\n | SORTSORT : EXP AD NFL\n | EXP AD\n | EXPAD : t_asc\n | t_descNFL : t_nulls t_first\n | t_nulls t_lastLMT : t_limit NAL t_offset entero\n | t_limit NAL\n | t_offset entero NAL : entero\n | t_all Sentencias_DDL : t_show t_databases Show_DB_Like_Char pyc\n | Enum_Type\n | t_drop Drop pyc\n | t_alter Alter pyc\n | t_create Create pycShow_DB_Like_Char : t_like char \n | empty Enum_Type : t_create t_type id t_as t_enum par1 Lista_Enum par2 pycDrop : t_database DropDB id\n | t_table id DropDB : t_if t_exists\n | emptyAlter : t_database id AlterDB\n | t_table id AlterTB AlterDB : t_rename t_to id\n | t_owner t_to SesionDB SesionDB : id\n | t_current_user\n | t_session_user AlterTB : t_add Add_Opc\n | t_drop Drop_Opc\n | t_alter t_column Alter_Column\n | t_rename t_column id t_to id Add_Opc : t_column id Tipo\n | Constraint_AlterTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2\n | Constraint_AlterTB t_unique par1 id par2\n | Constraint_AlterTB t_check EXP Constraint_AlterTB : t_constraint id\n | empty Drop_Opc : t_column id\n | t_constraint id Alter_Column : id t_set t_not t_null\n | Alter_Columns Alter_Columns : Alter_Columns coma Alter_Column1\n | Alter_Column1Alter_Column1 : id t_type t_varchar par1 entero par2\n | t_alter t_column id t_type t_varchar par1 entero par2Create : CreateDBCreate : CreateTB CreateDB : OrReplace_CreateDB t_database IfNotExist_CreateDB id Sesion OrReplace_CreateDB : t_or t_replace\n | empty IfNotExist_CreateDB : t_if t_not t_exists\n | empty Sesion : t_owner Op_Sesion Sesion_mode\n | t_mode Op_Mode\n | empty Op_Sesion : igual char\n | char Sesion_mode : t_mode Op_Mode\n | empty Op_Mode : igual entero\n | entero CreateTB : t_table id par1 Columnas par2 Inherits Inherits : t_inherits par1 id par2\n | empty Columnas : Columnas coma Columna\n | Columna Columna : id Tipo Cond_CreateTB\n | Constraint Cond_CreateTB : Constraint_CreateTB t_default id Cond_CreateTB\n | Constraint_CreateTB t_not t_null Cond_CreateTB\n | Constraint_CreateTB t_null Cond_CreateTB\n | Constraint_CreateTB t_unique Cond_CreateTB\n | Constraint_CreateTB t_check par1 EXP par2 Cond_CreateTB\n | Constraint_CreateTB t_primary t_key Cond_CreateTB\n | Constraint_CreateTB t_references id Cond_CreateTB\n | emptyConstraint_CreateTB : t_constraint id\n | empty Constraint : Constraint_CreateTB t_unique par1 Lista_ID par2\n | Constraint_CreateTB t_check par1 EXP par2\n | Constraint_CreateTB t_primary t_key par1 Lista_ID par2\n | Constraint_CreateTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2\n | empty Tipo : t_smallint\n | t_integer\n | t_bigint\n | t_decimal\n | t_numeric par1 entero par2\n | t_real\n | t_double t_precision\n | t_money\n | t_character t_varying par1 entero par2\n | t_varchar par1 entero par2\n | t_character par1 entero par2\n | t_charn par1 entero par2\n | t_text\n | t_boolean\n | t_date\n | id Valor : decimal\n | entero\n | string\n | char\n | t_true\n | t_falseValor : idempty :EXP : EXP mas EXP\n | EXP menos EXP\n | EXP asterisco EXP\n | EXP div EXP\n | EXP pot EXP\n | EXP porcentaje EXPEXP : par1 EXP par2EXP : id par1 Lista_EXP par2EXP : EXP mayor EXP\n | EXP mayori EXP\n | EXP menor EXP\n | EXP menori EXP\n | EXP igual EXP\n | EXP diferente EXP\n | EXP diferentede EXPEXP : EXP t_and EXP\n | EXP t_or EXP\n EXP : mas EXP %prec umas\n | menos EXP %prec umenos\n | t_not EXPEXP : ValorEXP : id punto idEXP : EXP t_as EXPEXP : t_avg par1 EXP par2\n | t_sum par1 EXP par2\n | t_count par1 EXP par2\n | t_count par1 asterisco par2\n | t_max par1 EXP par2\n | t_min par1 EXP par2EXP : t_abs par1 EXP par2\n | t_cbrt par1 EXP par2\n | t_ceil par1 EXP par2\n | t_ceiling par1 EXP par2\n | t_degrees par1 EXP par2\n | t_exp par1 EXP par2\n | t_factorial par1 EXP par2\n | t_floor par1 EXP par2\n | t_gcd par1 Lista_EXP par2\n | t_ln par1 EXP par2\n | t_log par1 EXP par2\n | t_pi par1 par2\n | t_radians par1 EXP par2\n | t_round par1 EXP par2\n | t_min_scale par1 EXP par2\n | t_scale par1 EXP par2\n | t_sign par1 EXP par2\n | t_sqrt par1 EXP par2\n | t_trim_scale par1 EXP par2\n | t_trunc par1 EXP par2\n | t_width_bucket par1 Lista_EXP par2\n | t_random par1 par2\n | t_setseed par1 EXP par2 EXP : t_div par1 EXP coma EXP par2\n | t_mod par1 EXP coma EXP par2\n | t_power par1 EXP coma EXP par2 EXP : t_acos par1 EXP par2\n | t_acosd par1 EXP par2\n | t_asin par1 EXP par2\n | t_asind par1 EXP par2\n | t_atan par1 EXP par2\n | t_atand par1 EXP par2\n | t_cos par1 EXP par2\n | t_cosd par1 EXP par2\n | t_cot par1 EXP par2\n | t_cotd par1 EXP par2\n | t_sin par1 EXP par2\n | t_sind par1 EXP par2\n | t_tan par1 EXP par2\n | t_tand par1 EXP par2 EXP : t_atan2 par1 EXP coma EXP par2\n | t_atan2d par1 EXP coma EXP par2 EXP : t_length par1 id par2\n | t_substring par1 char coma entero coma entero par2\n | t_trim par1 char par2\n | t_md5 par1 char par2\n | t_sha256 par1 par2\n | t_substr par1 par2\n | t_get_byte par1 par2\n | t_set_byte par1 par2\n | t_convert par1 EXP t_as Tipo par2\n | t_encode par1 par2\n | t_decode par1 par2 Lista_ID : Lista_ID coma id\n | id Lista_Enum : Lista_Enum coma char\n | char Lista_EXP : Lista_EXP coma EXP\n | EXP Lista_Alias : Lista_Alias coma Nombre_Alias\n | Nombre_Alias Nombre_Alias : id id' _lr_action_items = {'$end': ([0, 1, 2, 3, 4, 5, 6, 13, 17, 198, 202, 207, 210, 313, 391, 396, 453, 487, 490, 593], [-145, 0, -1, -2, -4, -5, -6, -48, -3, -12, -49, -50, -51, -47, -9, -11, -10, -7, -8, -54]), 't_select': ([0, 2, 4, 5, 6, 13, 17, 198, 202, 207, 210, 224, 313, 391, 396, 453, 487, 490, 593], [7, 7, -4, -5, -6, -48, -3, -12, -49, -50, -51, 336, -47, -9, -11, -10, -7, -8, -54]), 't_insert': ([0, 2, 4, 5, 6, 13, 17, 198, 202, 207, 210, 313, 391, 396, 453, 487, 490, 593], [8, 8, -4, -5, -6, -48, -3, -12, -49, -50, -51, -47, -9, -11, -10, -7, -8, -54]), 't_update': ([0, 2, 4, 5, 6, 13, 17, 198, 202, 207, 210, 313, 391, 396, 453, 487, 490, 593], [9, 9, -4, -5, -6, -48, -3, -12, -49, -50, -51, -47, -9, -11, -10, -7, -8, -54]), 't_delete': ([0, 2, 4, 5, 6, 13, 17, 198, 202, 207, 210, 313, 391, 396, 453, 487, 490, 593], [10, 10, -4, -5, -6, -48, -3, -12, -49, -50, -51, -47, -9, -11, -10, -7, -8, -54]), 't_use': ([0, 2, 4, 5, 6, 13, 17, 198, 202, 207, 210, 313, 391, 396, 453, 487, 490, 593], [11, 11, -4, -5, -6, -48, -3, -12, -49, -50, -51, -47, -9, -11, -10, -7, -8, -54]), 't_show': ([0, 2, 4, 5, 6, 13, 17, 198, 202, 207, 210, 313, 391, 396, 453, 487, 490, 593], [12, 12, -4, -5, -6, -48, -3, -12, -49, -50, -51, -47, -9, -11, -10, -7, -8, -54]), 't_drop': ([0, 2, 4, 5, 6, 13, 17, 198, 202, 207, 209, 210, 313, 391, 396, 453, 487, 490, 593], [14, 14, -4, -5, -6, -48, -3, -12, -49, -50, 322, -51, -47, -9, -11, -10, -7, -8, -54]), 't_alter': ([0, 2, 4, 5, 6, 13, 17, 198, 202, 207, 209, 210, 313, 391, 396, 408, 453, 487, 490, 513, 593], [15, 15, -4, -5, -6, -48, -3, -12, -49, -50, 323, -51, -47, -9, -11, 466, -10, -7, -8, 466, -54]), 't_create': ([0, 2, 4, 5, 6, 13, 17, 198, 202, 207, 210, 313, 391, 396, 453, 487, 490, 593], [16, 16, -4, -5, -6, -48, -3, -12, -49, -50, -51, -47, -9, -11, -10, -7, -8, -54]), 'asterisco': ([7, 20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 139, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [19, 117, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, 117, -165, 250, 117, 117, 117, -148, -149, -150, -151, -154, -155, -156, -157, 117, -159, 117, -161, -162, 117, -152, -167, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, -186, 117, 117, 117, 117, 117, 117, 117, 117, -196, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, -221, -222, -223, -224, 117, -226, -227, 117, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 117, 117, 117, 117, 117, 117, -144, -198, -199, -200, -215, -216, -225, 117, 117, 117, 117, -218, 117]), 'par1': ([7, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 195, 196, 213, 216, 308, 311, 367, 368, 369, 384, 385, 390, 394, 410, 440, 444, 445, 446, 450, 461, 462, 482, 483, 488, 500, 504, 507, 527, 531, 532, 533, 538, 545, 550, 565, 574, 600, 618, 637, 640], [23, 23, 23, 23, 134, 23, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 23, 224, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 307, 23, 329, 23, 394, 23, 23, 23, 23, 23, 23, 23, 23, 472, 498, 501, 502, 503, 134, 508, 23, 530, 531, 23, 541, 545, 546, 568, 23, 571, 572, 23, 23, 592, 600, 23, 23, 632, 641, 643]), 'id': ([7, 9, 11, 21, 22, 23, 25, 91, 93, 97, 98, 100, 101, 103, 107, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 192, 196, 203, 205, 212, 216, 225, 307, 311, 316, 326, 328, 329, 334, 335, 367, 368, 369, 384, 385, 390, 394, 398, 399, 401, 403, 406, 407, 408, 409, 413, 419, 423, 426, 459, 462, 477, 481, 488, 508, 510, 513, 514, 530, 531, 538, 545, 546, 561, 567, 568, 571, 572, 574, 600, 631, 635, 641, 643], [24, 92, 94, 24, 24, 24, 24, 195, 197, -145, 206, 208, 209, 211, 213, 24, 225, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 246, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 295, 24, 24, 315, -58, -145, 24, 337, 393, 24, -57, 411, -90, 413, 424, 426, 24, 24, 24, 24, 24, 450, 24, 454, 456, 459, 463, 464, 465, 468, 471, 478, 486, 393, 337, 478, 24, -89, 413, 24, 547, 548, 552, 553, 393, 24, 24, 24, 393, 596, 602, 603, 393, 393, 24, 24, 637, 640, 393, 393]), 'mas': ([7, 20, 21, 22, 23, 24, 25, 26, 76, 77, 87, 88, 89, 90, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 311, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 388, 389, 390, 394, 397, 429, 430, 431, 432, 433, 450, 462, 488, 491, 492, 493, 494, 495, 497, 509, 531, 536, 538, 545, 570, 574, 580, 581, 600, 622], [21, 115, 21, 21, 21, -144, 21, -166, -141, -139, -138, -140, -142, -143, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -163, -164, 115, 21, -165, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 115, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, 115, -159, 115, -161, -162, 115, -152, -167, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, -186, 115, 115, 115, 115, 115, 115, 115, 115, -196, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, -221, -222, -223, -224, 115, -226, -227, 21, 115, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, 21, 21, 21, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, 21, 21, -217, -219, -220, 21, 21, 115, 115, 115, 115, 115, 115, -144, 21, 21, -198, -199, -200, -215, -216, -225, 115, 21, 115, 21, 21, 115, 21, 115, -218, 21, 115]), 'menos': ([7, 20, 21, 22, 23, 24, 25, 26, 76, 77, 87, 88, 89, 90, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 311, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 388, 389, 390, 394, 397, 429, 430, 431, 432, 433, 450, 462, 488, 491, 492, 493, 494, 495, 497, 509, 531, 536, 538, 545, 570, 574, 580, 581, 600, 622], [22, 116, 22, 22, 22, -144, 22, -166, -141, -139, -138, -140, -142, -143, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, -163, -164, 116, 22, -165, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 116, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, 116, -159, 116, -161, -162, 116, -152, -167, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, -186, 116, 116, 116, 116, 116, 116, 116, 116, -196, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, -221, -222, -223, -224, 116, -226, -227, 22, 116, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, 22, 22, 22, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, 22, 22, -217, -219, -220, 22, 22, 116, 116, 116, 116, 116, 116, -144, 22, 22, -198, -199, -200, -215, -216, -225, 116, 22, 116, 22, 22, 116, 22, 116, -218, 22, 116]), 't_not': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 327, 367, 368, 369, 384, 385, 390, 394, 436, 437, 438, 439, 441, 443, 447, 448, 449, 462, 478, 479, 486, 488, 499, 511, 524, 525, 531, 538, 545, 563, 564, 574, 582, 584, 585, 586, 596, 597, 600, 601, 602, 615, 634], [25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 412, 25, 25, 25, 25, 25, 25, 25, -122, -123, -124, -125, -127, -129, -134, -135, -136, 25, -137, -145, -115, 25, -128, 549, 562, -116, 25, 25, 25, -145, -145, 25, -126, -132, -131, -133, -145, -145, 25, -145, -145, -130, -145]), 't_avg': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27]), 't_sum': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28]), 't_count': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29]), 't_max': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30]), 't_min': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]), 't_abs': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32]), 't_cbrt': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33]), 't_ceil': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34]), 't_ceiling': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35]), 't_degrees': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36]), 't_exp': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37]), 't_factorial': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38]), 't_floor': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39]), 't_gcd': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40]), 't_ln': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41]), 't_log': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42]), 't_pi': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43]), 't_radians': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44]), 't_round': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45]), 't_min_scale': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46]), 't_scale': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47]), 't_sign': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48]), 't_sqrt': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49]), 't_trim_scale': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50]), 't_trunc': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51]), 't_width_bucket': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52]), 't_random': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53]), 't_setseed': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54]), 't_div': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55]), 't_mod': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56]), 't_power': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57]), 't_acos': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58]), 't_acosd': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59]), 't_asin': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60]), 't_asind': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61]), 't_atan': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62]), 't_atand': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63]), 't_cos': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64]), 't_cosd': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65]), 't_cot': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66]), 't_cotd': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67]), 't_sin': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68]), 't_sind': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69]), 't_tan': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70]), 't_tand': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71]), 't_atan2': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72]), 't_atan2d': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73]), 't_length': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74]), 't_substring': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75]), 't_trim': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78]), 't_md5': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79]), 't_sha256': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80]), 't_substr': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81]), 't_get_byte': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82]), 't_set_byte': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83]), 't_convert': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84]), 't_encode': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85]), 't_decode': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86]), 'decimal': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87]), 'entero': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 387, 390, 394, 462, 475, 488, 496, 498, 501, 502, 503, 521, 531, 538, 541, 545, 557, 574, 575, 576, 592, 600, 628, 632], [77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 434, 77, 77, 77, 522, 77, 539, 540, 542, 543, 544, 560, 77, 77, 583, 77, 522, 77, 610, 612, 619, 77, 636, 638]), 'string': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88]), 'char': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187, 192, 196, 200, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 472, 474, 488, 518, 531, 538, 545, 555, 574, 600], [76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 296, 297, 298, 76, 76, 314, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 516, 519, 76, 559, 76, 76, 76, 594, 76, 76]), 't_true': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89]), 't_false': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90]), 't_into': ([8], [91]), 't_from': ([10, 18, 19, 20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 264, 274, 299, 300, 301, 302, 304, 305, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 491, 492, 493, 494, 495, 497, 581], [93, 112, 112, -233, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, -165, -232, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, -167, -186, -196, -221, -222, -223, -224, -226, -227, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, -198, -199, -200, -215, -216, -225, -218]), 't_databases': ([12], [95]), 't_database': ([14, 15, 16, 106, 109, 214], [97, 100, -145, 212, -88, -87]), 't_table': ([14, 15, 16], [98, 101, 107]), 't_type': ([16, 468, 548, 552], [103, 512, 590, 512]), 't_or': ([16, 20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [108, 129, -144, -166, -141, -139, -138, -140, -142, -143, 129, 129, 129, -165, 129, 129, 129, 129, 129, 129, 129, -154, -155, -156, -157, 129, -159, 129, -161, -162, 129, -152, -167, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, -186, 129, 129, 129, 129, 129, 129, 129, 129, -196, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, -221, -222, -223, -224, 129, -226, -227, 129, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 129, 129, 129, 129, 129, 129, -144, -198, -199, -200, -215, -216, -225, 129, 129, 129, 129, -218, 129]), 'coma': ([18, 20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 136, 218, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 261, 264, 273, 274, 276, 277, 278, 293, 294, 296, 299, 300, 301, 302, 304, 305, 309, 329, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 392, 393, 414, 415, 416, 418, 424, 425, 434, 436, 437, 438, 439, 441, 443, 447, 448, 449, 452, 469, 470, 478, 479, 481, 489, 491, 492, 493, 494, 495, 497, 499, 515, 516, 523, 525, 529, 534, 535, 536, 551, 563, 564, 569, 577, 578, 579, 581, 582, 584, 585, 586, 587, 588, 594, 596, 597, 598, 599, 601, 602, 604, 605, 606, 607, 608, 613, 615, 620, 621, 623, 624, 626, 629, 630, 633, 634, 639, 642, 644, 645, 647], [111, -233, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, -165, -232, 334, 335, -229, -235, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, 111, -167, 111, -186, 111, -196, 367, 368, 369, 384, 385, 387, -221, -222, -223, -224, -226, -227, 111, -145, -236, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 334, -229, 481, -104, -106, -121, -228, -234, 496, -122, -123, -124, -125, -127, -129, -134, -135, -136, 111, 513, -81, -137, -145, -145, 334, -198, -199, -200, -215, -216, -225, -128, 555, -231, -105, -114, -103, 574, -34, -37, -80, -145, -145, 334, -36, -38, -39, -218, -126, -132, -131, -133, 111, 334, -230, -145, -145, -109, -110, -145, -145, -117, -118, 334, 334, -33, -35, -130, -107, -108, -112, -113, -119, -40, -41, -82, -145, -111, -83, 334, 334, -120]), 't_where': ([18, 19, 20, 24, 26, 76, 77, 87, 88, 89, 90, 110, 113, 114, 131, 132, 136, 197, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 264, 274, 299, 300, 301, 302, 304, 305, 309, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 424, 425, 427, 491, 492, 493, 494, 495, 497, 581], [-145, -145, -233, -144, -166, -141, -139, -138, -140, -142, -143, 216, -14, 216, -163, -164, -165, 311, -232, -13, -15, -16, -17, -18, -229, -235, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, -167, -186, -196, -221, -222, -223, -224, -226, -227, 311, -236, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, -228, -234, -19, -198, -199, -200, -215, -216, -225, -218]), 't_group': ([18, 19, 20, 24, 26, 76, 77, 87, 88, 89, 90, 110, 113, 114, 131, 132, 136, 215, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 264, 274, 299, 300, 301, 302, 304, 305, 333, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 424, 425, 427, 491, 492, 493, 494, 495, 497, 581], [-145, -145, -233, -144, -166, -141, -139, -138, -140, -142, -143, -145, -14, -145, -163, -164, -165, 331, -23, -232, -13, -15, -16, -17, -18, -229, -235, 331, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, -167, -186, -196, -221, -222, -223, -224, -226, -227, -22, -236, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, -228, -234, -19, -198, -199, -200, -215, -216, -225, -218]), 't_order': ([18, 19, 20, 24, 26, 76, 77, 87, 88, 89, 90, 110, 113, 114, 131, 132, 136, 215, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 264, 274, 299, 300, 301, 302, 304, 305, 330, 332, 333, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 393, 424, 425, 427, 489, 491, 492, 493, 494, 495, 497, 537, 580, 581], [-145, -145, -233, -144, -166, -141, -139, -138, -140, -142, -143, -145, -14, -145, -163, -164, -165, -145, -23, -232, -13, -15, -16, -17, -18, -229, -235, -145, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, -167, -186, -196, -221, -222, -223, -224, -226, -227, 421, -28, -22, -236, 421, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, -229, -228, -234, -19, -26, -198, -199, -200, -215, -216, -225, -27, -29, -218]), 'pyc': ([18, 19, 20, 24, 26, 76, 77, 87, 88, 89, 90, 94, 95, 96, 99, 102, 104, 105, 110, 113, 114, 131, 132, 136, 197, 199, 201, 206, 215, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 264, 274, 299, 300, 301, 302, 304, 305, 306, 309, 310, 312, 314, 315, 317, 320, 330, 332, 333, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 393, 395, 397, 400, 405, 411, 420, 422, 424, 425, 427, 428, 436, 437, 438, 439, 441, 443, 447, 448, 449, 454, 455, 456, 457, 458, 464, 465, 467, 469, 470, 473, 476, 478, 480, 489, 491, 492, 493, 494, 495, 497, 499, 505, 506, 509, 517, 519, 520, 522, 526, 528, 534, 535, 536, 537, 551, 553, 554, 556, 558, 559, 560, 573, 577, 578, 579, 580, 581, 582, 584, 585, 586, 589, 591, 595, 608, 609, 610, 611, 612, 613, 615, 616, 625, 629, 630, 633, 636, 642, 646], [-145, -145, -233, -144, -166, -141, -139, -138, -140, -142, -143, 198, -145, 202, 207, 210, -84, -85, -145, -14, -145, -163, -164, -165, -145, 313, -53, -56, -145, -23, -232, -13, -15, -16, -17, -18, -229, -235, -145, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, -167, -186, -196, -221, -222, -223, -224, -226, -227, 391, -145, 396, -25, -52, -55, -59, -60, -145, -28, -22, -236, -145, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, -229, 453, -24, -66, -67, -145, 487, -32, -228, -234, -19, 490, -122, -123, -124, -125, -127, -129, -134, -135, -136, -61, -62, -63, -64, -65, -76, -77, -68, -79, -81, -86, -93, -137, -145, -26, -198, -199, -200, -215, -216, -225, -128, -21, -70, -73, -145, -95, -92, -99, -100, -102, -30, -34, -37, -27, -80, -69, 593, -91, -97, -94, -98, -31, -36, -38, -39, -29, -218, -126, -132, -131, -133, -72, -78, -96, -33, -43, -45, -46, -44, -35, -130, -20, -101, -40, -41, -82, -42, -83, -71]), 'par2': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 153, 163, 188, 189, 190, 191, 193, 194, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 295, 297, 298, 299, 300, 301, 302, 304, 305, 329, 336, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 392, 393, 414, 415, 416, 418, 424, 429, 430, 431, 432, 433, 435, 436, 437, 438, 439, 441, 443, 447, 448, 449, 450, 452, 478, 479, 481, 491, 492, 493, 494, 495, 497, 499, 515, 516, 523, 525, 529, 539, 540, 542, 543, 544, 547, 563, 564, 569, 570, 581, 582, 583, 584, 585, 586, 587, 588, 594, 596, 597, 598, 599, 601, 602, 603, 604, 605, 606, 607, 615, 619, 620, 621, 622, 623, 624, 626, 634, 638, 639, 644, 645, 647], [-233, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, 244, -165, 264, 274, 299, 300, 301, 302, 304, 305, -232, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, 339, -167, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, -186, 357, 358, 359, 360, 361, 362, 363, 364, 365, -196, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, -221, -222, -223, -224, -226, -227, -145, 427, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 451, -229, 480, -104, -106, -121, -228, 491, 492, 493, 494, 495, 497, -122, -123, -124, -125, -127, -129, -134, -135, -136, -137, 505, -137, -145, -145, -198, -199, -200, -215, -216, -225, -128, 554, -231, -105, -114, -103, 581, 582, 584, 585, 586, 589, -145, -145, 604, 605, -218, -126, 615, -132, -131, -133, 616, 617, -230, -145, -145, -109, -110, -145, -145, 625, -117, -118, 626, 627, -130, 633, -107, -108, 634, -112, -113, -119, -145, 642, -111, 646, 647, -120]), 'div': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [118, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, 118, -165, 118, 118, 118, -148, -149, -150, -151, -154, -155, -156, -157, 118, -159, 118, -161, -162, 118, -152, -167, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, -186, 118, 118, 118, 118, 118, 118, 118, 118, -196, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, -221, -222, -223, -224, 118, -226, -227, 118, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 118, 118, 118, 118, 118, 118, -144, -198, -199, -200, -215, -216, -225, 118, 118, 118, 118, -218, 118]), 'pot': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [119, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, 119, -165, 119, 119, 119, 119, 119, -150, 119, -154, -155, -156, -157, 119, -159, 119, -161, -162, 119, -152, -167, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, -186, 119, 119, 119, 119, 119, 119, 119, 119, -196, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, -221, -222, -223, -224, 119, -226, -227, 119, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 119, 119, 119, 119, 119, 119, -144, -198, -199, -200, -215, -216, -225, 119, 119, 119, 119, -218, 119]), 'porcentaje': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [120, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, 120, -165, 120, 120, 120, -148, -149, -150, -151, -154, -155, -156, -157, 120, -159, 120, -161, -162, 120, -152, -167, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, -186, 120, 120, 120, 120, 120, 120, 120, 120, -196, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, -221, -222, -223, -224, 120, -226, -227, 120, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 120, 120, 120, 120, 120, 120, -144, -198, -199, -200, -215, -216, -225, 120, 120, 120, 120, -218, 120]), 'mayor': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [121, -144, -166, -141, -139, -138, -140, -142, -143, 121, 121, 121, -165, 121, 121, 121, 121, 121, 121, 121, -154, -155, -156, -157, 121, 121, 121, 121, 121, 121, -152, -167, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, -186, 121, 121, 121, 121, 121, 121, 121, 121, -196, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, -221, -222, -223, -224, 121, -226, -227, 121, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 121, 121, 121, 121, 121, 121, -144, -198, -199, -200, -215, -216, -225, 121, 121, 121, 121, -218, 121]), 'mayori': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [122, -144, -166, -141, -139, -138, -140, -142, -143, 122, 122, 122, -165, 122, 122, 122, 122, 122, 122, 122, -154, -155, -156, -157, 122, 122, 122, 122, 122, 122, -152, -167, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, -186, 122, 122, 122, 122, 122, 122, 122, 122, -196, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, -221, -222, -223, -224, 122, -226, -227, 122, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 122, 122, 122, 122, 122, 122, -144, -198, -199, -200, -215, -216, -225, 122, 122, 122, 122, -218, 122]), 'menor': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [123, -144, -166, -141, -139, -138, -140, -142, -143, 123, 123, 123, -165, 123, 123, 123, 123, 123, 123, 123, -154, -155, -156, -157, 123, 123, 123, 123, 123, 123, -152, -167, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, -186, 123, 123, 123, 123, 123, 123, 123, 123, -196, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, -221, -222, -223, -224, 123, -226, -227, 123, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 123, 123, 123, 123, 123, 123, -144, -198, -199, -200, -215, -216, -225, 123, 123, 123, 123, -218, 123]), 'menori': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [124, -144, -166, -141, -139, -138, -140, -142, -143, 124, 124, 124, -165, 124, 124, 124, 124, 124, 124, 124, -154, -155, -156, -157, 124, 124, 124, 124, 124, 124, -152, -167, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, -186, 124, 124, 124, 124, 124, 124, 124, 124, -196, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, -221, -222, -223, -224, 124, -226, -227, 124, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 124, 124, 124, 124, 124, 124, -144, -198, -199, -200, -215, -216, -225, 124, 124, 124, 124, -218, 124]), 'igual': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 474, 475, 491, 492, 493, 494, 495, 497, 509, 536, 557, 570, 580, 581, 622], [125, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, 125, -165, 125, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, 125, -159, 125, -161, -162, 125, -152, -167, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, -186, 125, 125, 125, 125, 125, 125, 125, 125, -196, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, -221, -222, -223, -224, 125, -226, -227, 125, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 125, 125, 125, 125, 125, 125, -144, 518, 521, -198, -199, -200, -215, -216, -225, 125, 125, 521, 125, 125, -218, 125]), 'diferente': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [126, -144, -166, -141, -139, -138, -140, -142, -143, 126, 126, 126, -165, 126, 126, 126, 126, 126, 126, 126, -154, -155, -156, -157, 126, -159, 126, 126, 126, 126, -152, -167, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, -186, 126, 126, 126, 126, 126, 126, 126, 126, -196, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, -221, -222, -223, -224, 126, -226, -227, 126, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 126, 126, 126, 126, 126, 126, -144, -198, -199, -200, -215, -216, -225, 126, 126, 126, 126, -218, 126]), 'diferentede': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [127, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, 127, -165, 127, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, 127, -161, -162, 127, -152, -167, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, -186, 127, 127, 127, 127, 127, 127, 127, 127, -196, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, -221, -222, -223, -224, 127, -226, -227, 127, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 127, 127, 127, 127, 127, 127, -144, -198, -199, -200, -215, -216, -225, 127, 127, 127, 127, -218, 127]), 't_and': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [128, -144, -166, -141, -139, -138, -140, -142, -143, 128, 128, 128, -165, 128, 128, 128, 128, 128, 128, 128, -154, -155, -156, -157, 128, -159, 128, -161, 128, 128, -152, -167, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, -186, 128, 128, 128, 128, 128, 128, 128, 128, -196, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, -221, -222, -223, -224, 128, -226, -227, 128, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 128, 128, 128, 128, 128, 128, -144, -198, -199, -200, -215, -216, -225, 128, 128, 128, 128, -218, 128]), 't_as': ([20, 24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 133, 136, 211, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 333, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 397, 429, 430, 431, 432, 433, 450, 491, 492, 493, 494, 495, 497, 509, 536, 570, 580, 581, 622], [130, -144, -166, -141, -139, -138, -140, -142, -143, -163, -164, 130, -165, 325, 130, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, 130, -161, -162, 130, -152, -167, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, -186, 130, 130, 130, 130, 130, 130, 130, 130, -196, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, 130, -221, -222, -223, -224, 390, -226, -227, 130, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, 130, 130, 130, 130, 130, 130, -144, -198, -199, -200, -215, -216, -225, 130, 130, 130, 130, -218, 130]), 'punto': ([24, 450], [135, 135]), 't_asc': ([24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 136, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 264, 274, 299, 300, 301, 302, 304, 305, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 491, 492, 493, 494, 495, 497, 536, 581], [-144, -166, -141, -139, -138, -140, -142, -143, -163, -164, -165, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, -167, -186, -196, -221, -222, -223, -224, -226, -227, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, -198, -199, -200, -215, -216, -225, 578, -218]), 't_desc': ([24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 136, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 264, 274, 299, 300, 301, 302, 304, 305, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 491, 492, 493, 494, 495, 497, 536, 581], [-144, -166, -141, -139, -138, -140, -142, -143, -163, -164, -165, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, -167, -186, -196, -221, -222, -223, -224, -226, -227, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, -198, -199, -200, -215, -216, -225, 579, -218]), 't_limit': ([24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 136, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 264, 274, 299, 300, 301, 302, 304, 305, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 491, 492, 493, 494, 495, 497, 534, 535, 536, 577, 578, 579, 581, 608, 613, 629, 630], [-144, -166, -141, -139, -138, -140, -142, -143, -163, -164, -165, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, -167, -186, -196, -221, -222, -223, -224, -226, -227, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, -198, -199, -200, -215, -216, -225, 575, -34, -37, -36, -38, -39, -218, -33, -35, -40, -41]), 't_offset': ([24, 26, 76, 77, 87, 88, 89, 90, 131, 132, 136, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 264, 274, 299, 300, 301, 302, 304, 305, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 388, 389, 491, 492, 493, 494, 495, 497, 534, 535, 536, 577, 578, 579, 581, 608, 609, 610, 611, 613, 629, 630], [-144, -166, -141, -139, -138, -140, -142, -143, -163, -164, -165, -146, -147, -148, -149, -150, -151, -154, -155, -156, -157, -158, -159, -160, -161, -162, -168, -152, -167, -186, -196, -221, -222, -223, -224, -226, -227, -153, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -187, -188, -189, -190, -191, -192, -193, -194, -195, -197, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -217, -219, -220, -198, -199, -200, -215, -216, -225, 576, -34, -37, -36, -38, -39, -218, -33, 628, -45, -46, -35, -40, -41]), 't_set': ([92, 468], [196, 511]), 't_like': ([95], [200]), 't_if': ([97, 212], [204, 327]), 't_replace': ([108], [214]), 't_values': ([195, 451], [308, 504]), 't_exists': ([204, 412], [316, 477]), 't_rename': ([208, 209], [318, 324]), 't_owner': ([208, 411], [319, 474]), 't_add': ([209], [321]), 't_to': ([318, 319, 471], [398, 399, 514]), 't_column': ([321, 322, 323, 324, 466], [401, 406, 408, 409, 510]), 't_constraint': ([321, 322, 329, 436, 437, 438, 439, 441, 443, 447, 448, 449, 478, 479, 481, 499, 563, 564, 582, 584, 585, 586, 596, 597, 601, 602, 615, 634], [403, 407, 419, -122, -123, -124, -125, -127, -129, -134, -135, -136, -137, 419, 419, -128, 419, 419, -126, -132, -131, -133, 419, 419, 419, 419, -130, 419]), 't_foreign': ([321, 329, 402, 404, 417, 418, 463, 481, 486], [-145, -145, 460, -75, 485, -116, -74, -145, -115]), 't_unique': ([321, 329, 402, 404, 417, 418, 436, 437, 438, 439, 441, 443, 447, 448, 449, 463, 478, 479, 481, 486, 499, 524, 525, 563, 564, 582, 584, 585, 586, 596, 597, 601, 602, 615, 634], [-145, -145, 461, -75, 482, -116, -122, -123, -124, -125, -127, -129, -134, -135, -136, -74, -137, -145, -145, -115, -128, 564, -116, -145, -145, -126, -132, -131, -133, -145, -145, -145, -145, -130, -145]), 't_check': ([321, 329, 402, 404, 417, 418, 436, 437, 438, 439, 441, 443, 447, 448, 449, 463, 478, 479, 481, 486, 499, 524, 525, 563, 564, 582, 584, 585, 586, 596, 597, 601, 602, 615, 634], [-145, -145, 462, -75, 483, -116, -122, -123, -124, -125, -127, -129, -134, -135, -136, -74, -137, -145, -145, -115, -128, 565, -116, -145, -145, -126, -132, -131, -133, -145, -145, -145, -145, -130, -145]), 't_enum': ([325], [410]), 't_primary': ([329, 417, 418, 436, 437, 438, 439, 441, 443, 447, 448, 449, 478, 479, 481, 486, 499, 524, 525, 563, 564, 582, 584, 585, 586, 596, 597, 601, 602, 615, 634], [-145, 484, -116, -122, -123, -124, -125, -127, -129, -134, -135, -136, -137, -145, -145, -115, -128, 566, -116, -145, -145, -126, -132, -131, -133, -145, -145, -145, -145, -130, -145]), 't_by': ([331, 421], [423, 488]), 't_smallint': ([390, 413, 459], [436, 436, 436]), 't_integer': ([390, 413, 459], [437, 437, 437]), 't_bigint': ([390, 413, 459], [438, 438, 438]), 't_decimal': ([390, 413, 459], [439, 439, 439]), 't_numeric': ([390, 413, 459], [440, 440, 440]), 't_real': ([390, 413, 459], [441, 441, 441]), 't_double': ([390, 413, 459], [442, 442, 442]), 't_money': ([390, 413, 459], [443, 443, 443]), 't_character': ([390, 413, 459], [444, 444, 444]), 't_varchar': ([390, 413, 459, 512, 590], [445, 445, 445, 550, 618]), 't_charn': ([390, 413, 459], [446, 446, 446]), 't_text': ([390, 413, 459], [447, 447, 447]), 't_boolean': ([390, 413, 459], [448, 448, 448]), 't_date': ([390, 413, 459], [449, 449, 449]), 't_having': ([393, 424, 489], [-229, -228, 538]), 't_current_user': ([399], [457]), 't_session_user': ([399], [458]), 't_mode': ([411, 517, 519, 559], [475, 557, -95, -94]), 't_default': ([436, 437, 438, 439, 441, 443, 447, 448, 449, 478, 479, 486, 499, 524, 525, 563, 564, 582, 584, 585, 586, 596, 597, 601, 602, 615, 634], [-122, -123, -124, -125, -127, -129, -134, -135, -136, -137, -145, -115, -128, 561, -116, -145, -145, -126, -132, -131, -133, -145, -145, -145, -145, -130, -145]), 't_null': ([436, 437, 438, 439, 441, 443, 447, 448, 449, 478, 479, 486, 499, 524, 525, 549, 562, 563, 564, 582, 584, 585, 586, 596, 597, 601, 602, 615, 634], [-122, -123, -124, -125, -127, -129, -134, -135, -136, -137, -145, -115, -128, 563, -116, 591, 597, -145, -145, -126, -132, -131, -133, -145, -145, -145, -145, -130, -145]), 't_references': ([436, 437, 438, 439, 441, 443, 447, 448, 449, 478, 479, 486, 499, 524, 525, 563, 564, 582, 584, 585, 586, 596, 597, 601, 602, 615, 617, 627, 634], [-122, -123, -124, -125, -127, -129, -134, -135, -136, -137, -145, -115, -128, 567, -116, -145, -145, -126, -132, -131, -133, -145, -145, -145, -145, -130, 631, 635, -145]), 't_precision': ([442], [499]), 't_varying': ([444], [500]), 't_key': ([460, 484, 485, 566], [507, 532, 533, 601]), 't_inherits': ([480], [527]), 't_all': ([575], [611]), 't_nulls': ([577, 578, 579], [614, -38, -39]), 't_first': ([614], [629]), 't_last': ([614], [630])} _lr_action = {} for (_k, _v) in _lr_action_items.items(): for (_x, _y) in zip(_v[0], _v[1]): if not _x in _lr_action: _lr_action[_x] = {} _lr_action[_x][_k] = _y del _lr_action_items _lr_goto_items = {'SQL': ([0], [1]), 'Sentencias_SQL': ([0], [2]), 'empty': ([0, 16, 18, 19, 95, 97, 110, 114, 197, 212, 215, 227, 309, 321, 329, 330, 338, 411, 479, 480, 481, 517, 563, 564, 596, 597, 601, 602, 634], [3, 109, 113, 113, 201, 205, 217, 217, 312, 328, 332, 332, 312, 404, 418, 422, 422, 476, 525, 528, 418, 558, 525, 525, 525, 525, 525, 525, 525]), 'Sentencia_SQL': ([0, 2], [4, 17]), 'Sentencias_DML': ([0, 2], [5, 5]), 'Sentencias_DDL': ([0, 2], [6, 6]), 'Enum_Type': ([0, 2], [13, 13]), 'Lista_EXP': ([7, 134, 150, 162, 196, 394, 545], [18, 245, 261, 273, 309, 452, 587]), 'EXP': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [20, 131, 132, 133, 136, 218, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 20, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 20, 262, 263, 265, 266, 267, 268, 269, 270, 271, 272, 20, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 303, 20, 333, 397, 429, 430, 431, 432, 433, 243, 20, 509, 536, 570, 580, 20, 536, 622]), 'Valor': ([7, 21, 22, 23, 25, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 192, 196, 216, 311, 367, 368, 369, 384, 385, 390, 394, 462, 488, 531, 538, 545, 574, 600], [26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26]), 'Drop': ([14], [96]), 'Alter': ([15], [99]), 'Create': ([16], [102]), 'CreateDB': ([16], [104]), 'CreateTB': ([16], [105]), 'OrReplace_CreateDB': ([16], [106]), 'Select_SQL': ([18, 19], [110, 114]), 'Show_DB_Like_Char': ([95], [199]), 'DropDB': ([97], [203]), 'Condiciones': ([110, 114], [215, 227]), 'Table_Expression': ([112], [219]), 'Alias_Tabla': ([112], [220]), 'Subqueries': ([112], [221]), 'Lista_ID': ([112, 307, 423, 530, 546, 571, 572, 641, 643], [222, 392, 489, 569, 588, 606, 607, 644, 645]), 'Lista_Alias': ([112], [223]), 'Nombre_Alias': ([112, 335], [226, 425]), 'Insert_SQL': ([195], [306]), 'Condiciones1': ([197, 309], [310, 395]), 'AlterDB': ([208], [317]), 'AlterTB': ([209], [320]), 'IfNotExist_CreateDB': ([212], [326]), 'GRP': ([215, 227], [330, 338]), 'Add_Opc': ([321], [400]), 'Constraint_AlterTB': ([321], [402]), 'Drop_Opc': ([322], [405]), 'Columnas': ([329], [414]), 'Columna': ([329, 481], [415, 529]), 'Constraint': ([329, 481], [416, 416]), 'Constraint_CreateTB': ([329, 479, 481, 563, 564, 596, 597, 601, 602, 634], [417, 524, 417, 524, 524, 524, 524, 524, 524, 524]), 'ORD': ([330, 338], [420, 428]), 'Tipo': ([390, 413, 459], [435, 479, 506]), 'SesionDB': ([399], [455]), 'Alter_Column': ([408], [467]), 'Alter_Columns': ([408], [469]), 'Alter_Column1': ([408, 513], [470, 551]), 'Sesion': ([411], [473]), 'Lista_Enum': ([472], [515]), 'Op_Sesion': ([474], [517]), 'Op_Mode': ([475, 557], [520, 595]), 'Cond_CreateTB': ([479, 563, 564, 596, 597, 601, 602, 634], [523, 598, 599, 620, 621, 623, 624, 639]), 'Inherits': ([480], [526]), 'LSORT': ([488], [534]), 'SORT': ([488, 574], [535, 608]), 'HV': ([489], [537]), 'Sesion_mode': ([517], [556]), 'LMT': ([534], [573]), 'AD': ([536], [577]), 'NAL': ([575], [609]), 'NFL': ([577], [613])} _lr_goto = {} for (_k, _v) in _lr_goto_items.items(): for (_x, _y) in zip(_v[0], _v[1]): if not _x in _lr_goto: _lr_goto[_x] = {} _lr_goto[_x][_k] = _y del _lr_goto_items _lr_productions = [("S' -> SQL", "S'", 1, None, None, None), ('SQL -> Sentencias_SQL', 'SQL', 1, 'p_sql', 'Gramatica.py', 318), ('SQL -> empty', 'SQL', 1, 'p_sql2', 'Gramatica.py', 322), ('Sentencias_SQL -> Sentencias_SQL Sentencia_SQL', 'Sentencias_SQL', 2, 'p_Sentencias_SQL_Sentencia_SQL', 'Gramatica.py', 326), ('Sentencias_SQL -> Sentencia_SQL', 'Sentencias_SQL', 1, 'p_Sentencias_SQL', 'Gramatica.py', 332), ('Sentencia_SQL -> Sentencias_DML', 'Sentencia_SQL', 1, 'p_Sentencia_SQL_DML', 'Gramatica.py', 337), ('Sentencia_SQL -> Sentencias_DDL', 'Sentencia_SQL', 1, 'p_Sentencia_SQL_DDL', 'Gramatica.py', 346), ('Sentencias_DML -> t_select Lista_EXP Select_SQL Condiciones GRP ORD pyc', 'Sentencias_DML', 7, 'p_Sentencias_DML', 'Gramatica.py', 352), ('Sentencias_DML -> t_select asterisco Select_SQL Condiciones GRP ORD pyc', 'Sentencias_DML', 7, 'p_Sentencias_DML', 'Gramatica.py', 353), ('Sentencias_DML -> t_insert t_into id Insert_SQL pyc', 'Sentencias_DML', 5, 'p_Sentencias_DML', 'Gramatica.py', 354), ('Sentencias_DML -> t_update id t_set Lista_EXP Condiciones1 pyc', 'Sentencias_DML', 6, 'p_Sentencias_DML', 'Gramatica.py', 355), ('Sentencias_DML -> t_delete t_from id Condiciones1 pyc', 'Sentencias_DML', 5, 'p_Sentencias_DML', 'Gramatica.py', 356), ('Sentencias_DML -> t_use id pyc', 'Sentencias_DML', 3, 'p_Sentencias_DML', 'Gramatica.py', 357), ('Select_SQL -> t_from Table_Expression', 'Select_SQL', 2, 'p_Select_SQL', 'Gramatica.py', 376), ('Select_SQL -> empty', 'Select_SQL', 1, 'p_Select2_SQL', 'Gramatica.py', 382), ('Table_Expression -> Alias_Tabla', 'Table_Expression', 1, 'p_Table_Expression', 'Gramatica.py', 388), ('Table_Expression -> Subqueries', 'Table_Expression', 1, 'p_Table_Expression', 'Gramatica.py', 389), ('Alias_Tabla -> Lista_ID', 'Alias_Tabla', 1, 'p_Alias_Tabla', 'Gramatica.py', 395), ('Alias_Tabla -> Lista_Alias', 'Alias_Tabla', 1, 'p_Alias_Tabla', 'Gramatica.py', 396), ('Subqueries -> par1 t_select par2', 'Subqueries', 3, 'p_Subqueries', 'Gramatica.py', 401), ('Insert_SQL -> par1 Lista_ID par2 t_values par1 Lista_EXP par2', 'Insert_SQL', 7, 'p_Insert_SQL', 'Gramatica.py', 406), ('Insert_SQL -> t_values par1 Lista_EXP par2', 'Insert_SQL', 4, 'p_Insert_SQL2', 'Gramatica.py', 411), ('Condiciones -> t_where EXP', 'Condiciones', 2, 'p_Condiciones', 'Gramatica.py', 416), ('Condiciones -> empty', 'Condiciones', 1, 'p_Condiciones', 'Gramatica.py', 417), ('Condiciones1 -> t_where EXP', 'Condiciones1', 2, 'p_Condiciones1', 'Gramatica.py', 426), ('Condiciones1 -> empty', 'Condiciones1', 1, 'p_Condiciones1', 'Gramatica.py', 427), ('GRP -> t_group t_by Lista_ID', 'GRP', 3, 'p_GRP', 'Gramatica.py', 438), ('GRP -> t_group t_by Lista_ID HV', 'GRP', 4, 'p_GRP', 'Gramatica.py', 439), ('GRP -> empty', 'GRP', 1, 'p_GRP', 'Gramatica.py', 440), ('HV -> t_having EXP', 'HV', 2, 'p_HV', 'Gramatica.py', 447), ('ORD -> t_order t_by LSORT', 'ORD', 3, 'p_ORD', 'Gramatica.py', 451), ('ORD -> t_order t_by LSORT LMT', 'ORD', 4, 'p_ORD', 'Gramatica.py', 452), ('ORD -> empty', 'ORD', 1, 'p_ORD', 'Gramatica.py', 453), ('LSORT -> LSORT coma SORT', 'LSORT', 3, 'p_L_SORT', 'Gramatica.py', 461), ('LSORT -> SORT', 'LSORT', 1, 'p_L_SORT', 'Gramatica.py', 462), ('SORT -> EXP AD NFL', 'SORT', 3, 'p_SORT', 'Gramatica.py', 469), ('SORT -> EXP AD', 'SORT', 2, 'p_SORT', 'Gramatica.py', 470), ('SORT -> EXP', 'SORT', 1, 'p_SORT', 'Gramatica.py', 471), ('AD -> t_asc', 'AD', 1, 'p_AD', 'Gramatica.py', 480), ('AD -> t_desc', 'AD', 1, 'p_AD', 'Gramatica.py', 481), ('NFL -> t_nulls t_first', 'NFL', 2, 'p_NFL', 'Gramatica.py', 486), ('NFL -> t_nulls t_last', 'NFL', 2, 'p_NFL', 'Gramatica.py', 487), ('LMT -> t_limit NAL t_offset entero', 'LMT', 4, 'p_LMT', 'Gramatica.py', 491), ('LMT -> t_limit NAL', 'LMT', 2, 'p_LMT', 'Gramatica.py', 492), ('LMT -> t_offset entero', 'LMT', 2, 'p_LMT', 'Gramatica.py', 493), ('NAL -> entero', 'NAL', 1, 'p_NAL', 'Gramatica.py', 500), ('NAL -> t_all', 'NAL', 1, 'p_NAL', 'Gramatica.py', 501), ('Sentencias_DDL -> t_show t_databases Show_DB_Like_Char pyc', 'Sentencias_DDL', 4, 'p_Sentencias_DDL', 'Gramatica.py', 506), ('Sentencias_DDL -> Enum_Type', 'Sentencias_DDL', 1, 'p_Sentencias_DDL', 'Gramatica.py', 507), ('Sentencias_DDL -> t_drop Drop pyc', 'Sentencias_DDL', 3, 'p_Sentencias_DDL', 'Gramatica.py', 508), ('Sentencias_DDL -> t_alter Alter pyc', 'Sentencias_DDL', 3, 'p_Sentencias_DDL', 'Gramatica.py', 509), ('Sentencias_DDL -> t_create Create pyc', 'Sentencias_DDL', 3, 'p_Sentencias_DDL', 'Gramatica.py', 510), ('Show_DB_Like_Char -> t_like char', 'Show_DB_Like_Char', 2, 'p_show_db_like_regex', 'Gramatica.py', 530), ('Show_DB_Like_Char -> empty', 'Show_DB_Like_Char', 1, 'p_show_db_like_regex', 'Gramatica.py', 531), ('Enum_Type -> t_create t_type id t_as t_enum par1 Lista_Enum par2 pyc', 'Enum_Type', 9, 'p_Enum_Type', 'Gramatica.py', 540), ('Drop -> t_database DropDB id', 'Drop', 3, 'p_Drop', 'Gramatica.py', 545), ('Drop -> t_table id', 'Drop', 2, 'p_Drop', 'Gramatica.py', 546), ('DropDB -> t_if t_exists', 'DropDB', 2, 'p_DropDB', 'Gramatica.py', 555), ('DropDB -> empty', 'DropDB', 1, 'p_DropDB', 'Gramatica.py', 556), ('Alter -> t_database id AlterDB', 'Alter', 3, 'p_Alter', 'Gramatica.py', 565), ('Alter -> t_table id AlterTB', 'Alter', 3, 'p_Alter', 'Gramatica.py', 566), ('AlterDB -> t_rename t_to id', 'AlterDB', 3, 'p_AlterDB', 'Gramatica.py', 575), ('AlterDB -> t_owner t_to SesionDB', 'AlterDB', 3, 'p_AlterDB', 'Gramatica.py', 576), ('SesionDB -> id', 'SesionDB', 1, 'p_SesionDB', 'Gramatica.py', 585), ('SesionDB -> t_current_user', 'SesionDB', 1, 'p_SesionDB', 'Gramatica.py', 586), ('SesionDB -> t_session_user', 'SesionDB', 1, 'p_SesionDB', 'Gramatica.py', 587), ('AlterTB -> t_add Add_Opc', 'AlterTB', 2, 'p_AlterTB', 'Gramatica.py', 597), ('AlterTB -> t_drop Drop_Opc', 'AlterTB', 2, 'p_AlterTB', 'Gramatica.py', 598), ('AlterTB -> t_alter t_column Alter_Column', 'AlterTB', 3, 'p_AlterTB', 'Gramatica.py', 599), ('AlterTB -> t_rename t_column id t_to id', 'AlterTB', 5, 'p_AlterTB', 'Gramatica.py', 600), ('Add_Opc -> t_column id Tipo', 'Add_Opc', 3, 'p_Add_Opc', 'Gramatica.py', 615), ('Add_Opc -> Constraint_AlterTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2', 'Add_Opc', 11, 'p_Add_Opc', 'Gramatica.py', 616), ('Add_Opc -> Constraint_AlterTB t_unique par1 id par2', 'Add_Opc', 5, 'p_Add_Opc', 'Gramatica.py', 617), ('Add_Opc -> Constraint_AlterTB t_check EXP', 'Add_Opc', 3, 'p_Add_Opc', 'Gramatica.py', 618), ('Constraint_AlterTB -> t_constraint id', 'Constraint_AlterTB', 2, 'p_Constraint_AlterTB', 'Gramatica.py', 633), ('Constraint_AlterTB -> empty', 'Constraint_AlterTB', 1, 'p_Constraint_AlterTB', 'Gramatica.py', 634), ('Drop_Opc -> t_column id', 'Drop_Opc', 2, 'p_Drop_Opc', 'Gramatica.py', 643), ('Drop_Opc -> t_constraint id', 'Drop_Opc', 2, 'p_Drop_Opc', 'Gramatica.py', 644), ('Alter_Column -> id t_set t_not t_null', 'Alter_Column', 4, 'p_Alter_Column', 'Gramatica.py', 653), ('Alter_Column -> Alter_Columns', 'Alter_Column', 1, 'p_Alter_Column', 'Gramatica.py', 654), ('Alter_Columns -> Alter_Columns coma Alter_Column1', 'Alter_Columns', 3, 'p_Alter_Columns', 'Gramatica.py', 663), ('Alter_Columns -> Alter_Column1', 'Alter_Columns', 1, 'p_Alter_Columns', 'Gramatica.py', 664), ('Alter_Column1 -> id t_type t_varchar par1 entero par2', 'Alter_Column1', 6, 'p_Alter_Colum1', 'Gramatica.py', 674), ('Alter_Column1 -> t_alter t_column id t_type t_varchar par1 entero par2', 'Alter_Column1', 8, 'p_Alter_Colum1', 'Gramatica.py', 675), ('Create -> CreateDB', 'Create', 1, 'p_Create', 'Gramatica.py', 690), ('Create -> CreateTB', 'Create', 1, 'p_Create1', 'Gramatica.py', 695), ('CreateDB -> OrReplace_CreateDB t_database IfNotExist_CreateDB id Sesion', 'CreateDB', 5, 'p_CreateDB', 'Gramatica.py', 700), ('OrReplace_CreateDB -> t_or t_replace', 'OrReplace_CreateDB', 2, 'p_CreateDB_or_replace', 'Gramatica.py', 705), ('OrReplace_CreateDB -> empty', 'OrReplace_CreateDB', 1, 'p_CreateDB_or_replace', 'Gramatica.py', 706), ('IfNotExist_CreateDB -> t_if t_not t_exists', 'IfNotExist_CreateDB', 3, 'p_IfNotExist_CreateDB', 'Gramatica.py', 715), ('IfNotExist_CreateDB -> empty', 'IfNotExist_CreateDB', 1, 'p_IfNotExist_CreateDB', 'Gramatica.py', 716), ('Sesion -> t_owner Op_Sesion Sesion_mode', 'Sesion', 3, 'p_Sesion', 'Gramatica.py', 725), ('Sesion -> t_mode Op_Mode', 'Sesion', 2, 'p_Sesion', 'Gramatica.py', 726), ('Sesion -> empty', 'Sesion', 1, 'p_Sesion', 'Gramatica.py', 727), ('Op_Sesion -> igual char', 'Op_Sesion', 2, 'p_Op_Sesion', 'Gramatica.py', 739), ('Op_Sesion -> char', 'Op_Sesion', 1, 'p_Op_Sesion', 'Gramatica.py', 740), ('Sesion_mode -> t_mode Op_Mode', 'Sesion_mode', 2, 'p_Sesion_mode', 'Gramatica.py', 749), ('Sesion_mode -> empty', 'Sesion_mode', 1, 'p_Sesion_mode', 'Gramatica.py', 750), ('Op_Mode -> igual entero', 'Op_Mode', 2, 'p_Op_Mode', 'Gramatica.py', 759), ('Op_Mode -> entero', 'Op_Mode', 1, 'p_Op_Mode', 'Gramatica.py', 760), ('CreateTB -> t_table id par1 Columnas par2 Inherits', 'CreateTB', 6, 'p_CreateTB', 'Gramatica.py', 769), ('Inherits -> t_inherits par1 id par2', 'Inherits', 4, 'p_Inherits', 'Gramatica.py', 774), ('Inherits -> empty', 'Inherits', 1, 'p_Inherits', 'Gramatica.py', 775), ('Columnas -> Columnas coma Columna', 'Columnas', 3, 'p_Columnas', 'Gramatica.py', 784), ('Columnas -> Columna', 'Columnas', 1, 'p_Columnas', 'Gramatica.py', 785), ('Columna -> id Tipo Cond_CreateTB', 'Columna', 3, 'p_Columna', 'Gramatica.py', 795), ('Columna -> Constraint', 'Columna', 1, 'p_Columna', 'Gramatica.py', 796), ('Cond_CreateTB -> Constraint_CreateTB t_default id Cond_CreateTB', 'Cond_CreateTB', 4, 'p_Cond_CreateTB', 'Gramatica.py', 805), ('Cond_CreateTB -> Constraint_CreateTB t_not t_null Cond_CreateTB', 'Cond_CreateTB', 4, 'p_Cond_CreateTB', 'Gramatica.py', 806), ('Cond_CreateTB -> Constraint_CreateTB t_null Cond_CreateTB', 'Cond_CreateTB', 3, 'p_Cond_CreateTB', 'Gramatica.py', 807), ('Cond_CreateTB -> Constraint_CreateTB t_unique Cond_CreateTB', 'Cond_CreateTB', 3, 'p_Cond_CreateTB', 'Gramatica.py', 808), ('Cond_CreateTB -> Constraint_CreateTB t_check par1 EXP par2 Cond_CreateTB', 'Cond_CreateTB', 6, 'p_Cond_CreateTB', 'Gramatica.py', 809), ('Cond_CreateTB -> Constraint_CreateTB t_primary t_key Cond_CreateTB', 'Cond_CreateTB', 4, 'p_Cond_CreateTB', 'Gramatica.py', 810), ('Cond_CreateTB -> Constraint_CreateTB t_references id Cond_CreateTB', 'Cond_CreateTB', 4, 'p_Cond_CreateTB', 'Gramatica.py', 811), ('Cond_CreateTB -> empty', 'Cond_CreateTB', 1, 'p_Cond_CreateTB', 'Gramatica.py', 812), ('Constraint_CreateTB -> t_constraint id', 'Constraint_CreateTB', 2, 'p_Constraint_CreateTB', 'Gramatica.py', 846), ('Constraint_CreateTB -> empty', 'Constraint_CreateTB', 1, 'p_Constraint_CreateTB', 'Gramatica.py', 847), ('Constraint -> Constraint_CreateTB t_unique par1 Lista_ID par2', 'Constraint', 5, 'p_Constraint', 'Gramatica.py', 856), ('Constraint -> Constraint_CreateTB t_check par1 EXP par2', 'Constraint', 5, 'p_Constraint', 'Gramatica.py', 857), ('Constraint -> Constraint_CreateTB t_primary t_key par1 Lista_ID par2', 'Constraint', 6, 'p_Constraint', 'Gramatica.py', 858), ('Constraint -> Constraint_CreateTB t_foreign t_key par1 Lista_ID par2 t_references id par1 Lista_ID par2', 'Constraint', 11, 'p_Constraint', 'Gramatica.py', 859), ('Constraint -> empty', 'Constraint', 1, 'p_Constraint', 'Gramatica.py', 860), ('Tipo -> t_smallint', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 878), ('Tipo -> t_integer', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 879), ('Tipo -> t_bigint', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 880), ('Tipo -> t_decimal', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 881), ('Tipo -> t_numeric par1 entero par2', 'Tipo', 4, 'p_Tipo', 'Gramatica.py', 882), ('Tipo -> t_real', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 883), ('Tipo -> t_double t_precision', 'Tipo', 2, 'p_Tipo', 'Gramatica.py', 884), ('Tipo -> t_money', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 885), ('Tipo -> t_character t_varying par1 entero par2', 'Tipo', 5, 'p_Tipo', 'Gramatica.py', 886), ('Tipo -> t_varchar par1 entero par2', 'Tipo', 4, 'p_Tipo', 'Gramatica.py', 887), ('Tipo -> t_character par1 entero par2', 'Tipo', 4, 'p_Tipo', 'Gramatica.py', 888), ('Tipo -> t_charn par1 entero par2', 'Tipo', 4, 'p_Tipo', 'Gramatica.py', 889), ('Tipo -> t_text', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 890), ('Tipo -> t_boolean', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 891), ('Tipo -> t_date', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 892), ('Tipo -> id', 'Tipo', 1, 'p_Tipo', 'Gramatica.py', 893), ('Valor -> decimal', 'Valor', 1, 'p_Valor', 'Gramatica.py', 978), ('Valor -> entero', 'Valor', 1, 'p_Valor', 'Gramatica.py', 979), ('Valor -> string', 'Valor', 1, 'p_Valor', 'Gramatica.py', 980), ('Valor -> char', 'Valor', 1, 'p_Valor', 'Gramatica.py', 981), ('Valor -> t_true', 'Valor', 1, 'p_Valor', 'Gramatica.py', 982), ('Valor -> t_false', 'Valor', 1, 'p_Valor', 'Gramatica.py', 983), ('Valor -> id', 'Valor', 1, 'p_Valor2', 'Gramatica.py', 989), ('empty -> <empty>', 'empty', 0, 'p_empty', 'Gramatica.py', 994), ('EXP -> EXP mas EXP', 'EXP', 3, 'p_aritmeticas', 'Gramatica.py', 1001), ('EXP -> EXP menos EXP', 'EXP', 3, 'p_aritmeticas', 'Gramatica.py', 1002), ('EXP -> EXP asterisco EXP', 'EXP', 3, 'p_aritmeticas', 'Gramatica.py', 1003), ('EXP -> EXP div EXP', 'EXP', 3, 'p_aritmeticas', 'Gramatica.py', 1004), ('EXP -> EXP pot EXP', 'EXP', 3, 'p_aritmeticas', 'Gramatica.py', 1005), ('EXP -> EXP porcentaje EXP', 'EXP', 3, 'p_aritmeticas', 'Gramatica.py', 1006), ('EXP -> par1 EXP par2', 'EXP', 3, 'p_parentesis', 'Gramatica.py', 1011), ('EXP -> id par1 Lista_EXP par2', 'EXP', 4, 'p_funciones', 'Gramatica.py', 1017), ('EXP -> EXP mayor EXP', 'EXP', 3, 'p_relacionales', 'Gramatica.py', 1024), ('EXP -> EXP mayori EXP', 'EXP', 3, 'p_relacionales', 'Gramatica.py', 1025), ('EXP -> EXP menor EXP', 'EXP', 3, 'p_relacionales', 'Gramatica.py', 1026), ('EXP -> EXP menori EXP', 'EXP', 3, 'p_relacionales', 'Gramatica.py', 1027), ('EXP -> EXP igual EXP', 'EXP', 3, 'p_relacionales', 'Gramatica.py', 1028), ('EXP -> EXP diferente EXP', 'EXP', 3, 'p_relacionales', 'Gramatica.py', 1029), ('EXP -> EXP diferentede EXP', 'EXP', 3, 'p_relacionales', 'Gramatica.py', 1030), ('EXP -> EXP t_and EXP', 'EXP', 3, 'p_logicos', 'Gramatica.py', 1035), ('EXP -> EXP t_or EXP', 'EXP', 3, 'p_logicos', 'Gramatica.py', 1036), ('EXP -> mas EXP', 'EXP', 2, 'p_unario', 'Gramatica.py', 1042), ('EXP -> menos EXP', 'EXP', 2, 'p_unario', 'Gramatica.py', 1043), ('EXP -> t_not EXP', 'EXP', 2, 'p_unario', 'Gramatica.py', 1044), ('EXP -> Valor', 'EXP', 1, 'p_EXP_Valor', 'Gramatica.py', 1053), ('EXP -> id punto id', 'EXP', 3, 'p_EXP_Indices', 'Gramatica.py', 1058), ('EXP -> EXP t_as EXP', 'EXP', 3, 'p_EXP_IndicesAS', 'Gramatica.py', 1064), ('EXP -> t_avg par1 EXP par2', 'EXP', 4, 'p_exp_agregacion', 'Gramatica.py', 1071), ('EXP -> t_sum par1 EXP par2', 'EXP', 4, 'p_exp_agregacion', 'Gramatica.py', 1072), ('EXP -> t_count par1 EXP par2', 'EXP', 4, 'p_exp_agregacion', 'Gramatica.py', 1073), ('EXP -> t_count par1 asterisco par2', 'EXP', 4, 'p_exp_agregacion', 'Gramatica.py', 1074), ('EXP -> t_max par1 EXP par2', 'EXP', 4, 'p_exp_agregacion', 'Gramatica.py', 1075), ('EXP -> t_min par1 EXP par2', 'EXP', 4, 'p_exp_agregacion', 'Gramatica.py', 1076), ('EXP -> t_abs par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1081), ('EXP -> t_cbrt par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1082), ('EXP -> t_ceil par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1083), ('EXP -> t_ceiling par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1084), ('EXP -> t_degrees par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1085), ('EXP -> t_exp par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1086), ('EXP -> t_factorial par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1087), ('EXP -> t_floor par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1088), ('EXP -> t_gcd par1 Lista_EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1089), ('EXP -> t_ln par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1090), ('EXP -> t_log par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1091), ('EXP -> t_pi par1 par2', 'EXP', 3, 'p_funciones_matematicas', 'Gramatica.py', 1092), ('EXP -> t_radians par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1093), ('EXP -> t_round par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1094), ('EXP -> t_min_scale par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1095), ('EXP -> t_scale par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1096), ('EXP -> t_sign par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1097), ('EXP -> t_sqrt par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1098), ('EXP -> t_trim_scale par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1099), ('EXP -> t_trunc par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1100), ('EXP -> t_width_bucket par1 Lista_EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1101), ('EXP -> t_random par1 par2', 'EXP', 3, 'p_funciones_matematicas', 'Gramatica.py', 1102), ('EXP -> t_setseed par1 EXP par2', 'EXP', 4, 'p_funciones_matematicas', 'Gramatica.py', 1103), ('EXP -> t_div par1 EXP coma EXP par2', 'EXP', 6, 'p_funciones_matematicas2', 'Gramatica.py', 1108), ('EXP -> t_mod par1 EXP coma EXP par2', 'EXP', 6, 'p_funciones_matematicas2', 'Gramatica.py', 1109), ('EXP -> t_power par1 EXP coma EXP par2', 'EXP', 6, 'p_funciones_matematicas2', 'Gramatica.py', 1110), ('EXP -> t_acos par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1115), ('EXP -> t_acosd par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1116), ('EXP -> t_asin par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1117), ('EXP -> t_asind par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1118), ('EXP -> t_atan par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1119), ('EXP -> t_atand par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1120), ('EXP -> t_cos par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1121), ('EXP -> t_cosd par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1122), ('EXP -> t_cot par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1123), ('EXP -> t_cotd par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1124), ('EXP -> t_sin par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1125), ('EXP -> t_sind par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1126), ('EXP -> t_tan par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1127), ('EXP -> t_tand par1 EXP par2', 'EXP', 4, 'p_funciones_Trigonometricas', 'Gramatica.py', 1128), ('EXP -> t_atan2 par1 EXP coma EXP par2', 'EXP', 6, 'p_funciones_Trigonometricas1', 'Gramatica.py', 1133), ('EXP -> t_atan2d par1 EXP coma EXP par2', 'EXP', 6, 'p_funciones_Trigonometricas1', 'Gramatica.py', 1134), ('EXP -> t_length par1 id par2', 'EXP', 4, 'p_funciones_String_Binarias', 'Gramatica.py', 1138), ('EXP -> t_substring par1 char coma entero coma entero par2', 'EXP', 8, 'p_funciones_String_Binarias', 'Gramatica.py', 1139), ('EXP -> t_trim par1 char par2', 'EXP', 4, 'p_funciones_String_Binarias', 'Gramatica.py', 1140), ('EXP -> t_md5 par1 char par2', 'EXP', 4, 'p_funciones_String_Binarias', 'Gramatica.py', 1141), ('EXP -> t_sha256 par1 par2', 'EXP', 3, 'p_funciones_String_Binarias', 'Gramatica.py', 1142), ('EXP -> t_substr par1 par2', 'EXP', 3, 'p_funciones_String_Binarias', 'Gramatica.py', 1143), ('EXP -> t_get_byte par1 par2', 'EXP', 3, 'p_funciones_String_Binarias', 'Gramatica.py', 1144), ('EXP -> t_set_byte par1 par2', 'EXP', 3, 'p_funciones_String_Binarias', 'Gramatica.py', 1145), ('EXP -> t_convert par1 EXP t_as Tipo par2', 'EXP', 6, 'p_funciones_String_Binarias', 'Gramatica.py', 1146), ('EXP -> t_encode par1 par2', 'EXP', 3, 'p_funciones_String_Binarias', 'Gramatica.py', 1147), ('EXP -> t_decode par1 par2', 'EXP', 3, 'p_funciones_String_Binarias', 'Gramatica.py', 1148), ('Lista_ID -> Lista_ID coma id', 'Lista_ID', 3, 'p_Lista_ID', 'Gramatica.py', 1158), ('Lista_ID -> id', 'Lista_ID', 1, 'p_Lista_ID', 'Gramatica.py', 1159), ('Lista_Enum -> Lista_Enum coma char', 'Lista_Enum', 3, 'p_Lista_Enum', 'Gramatica.py', 1168), ('Lista_Enum -> char', 'Lista_Enum', 1, 'p_Lista_Enum', 'Gramatica.py', 1169), ('Lista_EXP -> Lista_EXP coma EXP', 'Lista_EXP', 3, 'p_Lista_EXP', 'Gramatica.py', 1178), ('Lista_EXP -> EXP', 'Lista_EXP', 1, 'p_Lista_EXP', 'Gramatica.py', 1179), ('Lista_Alias -> Lista_Alias coma Nombre_Alias', 'Lista_Alias', 3, 'p_Lista_Alias', 'Gramatica.py', 1194), ('Lista_Alias -> Nombre_Alias', 'Lista_Alias', 1, 'p_Lista_Alias', 'Gramatica.py', 1195), ('Nombre_Alias -> id id', 'Nombre_Alias', 2, 'p_Nombre_Alias', 'Gramatica.py', 1204)]
items = "ABCDE" pairs = [] for a in range(len(items)): for b in range(len(items)): pairs.append((items[a], items[b])) print(pairs) ret = [(items[a], items[b]) for a in range(len(items)) for b in range( len(items))] print(ret) ret2 = [(x, y) for x in range(2) for y in range(2)] ret3 = [(x, y) for x in range(2) for y in range(x, 2)] print(ret2) print(ret3)
items = 'ABCDE' pairs = [] for a in range(len(items)): for b in range(len(items)): pairs.append((items[a], items[b])) print(pairs) ret = [(items[a], items[b]) for a in range(len(items)) for b in range(len(items))] print(ret) ret2 = [(x, y) for x in range(2) for y in range(2)] ret3 = [(x, y) for x in range(2) for y in range(x, 2)] print(ret2) print(ret3)
# -*- coding: utf-8 -*- def skip(model, layer, inputs): inputs[layer.name] = inputs[layer.input.name] return model, layer, inputs
def skip(model, layer, inputs): inputs[layer.name] = inputs[layer.input.name] return (model, layer, inputs)
def fixing_float(size, n_float): fmt = ".{n}f" fix = [None] for i in range(size): fix.append(fmt.format(n=n_float)) return fix
def fixing_float(size, n_float): fmt = '.{n}f' fix = [None] for i in range(size): fix.append(fmt.format(n=n_float)) return fix
# # PySNMP MIB module UPS-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/UPS-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:50:47 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") MibScalar, MibTable, MibTableRow, MibTableColumn, iso, Unsigned32, Integer32, MibIdentifier, Counter32, mib_2, ModuleIdentity, ObjectIdentity, Gauge32, TimeTicks, Counter64, Bits, IpAddress, NotificationType = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "iso", "Unsigned32", "Integer32", "MibIdentifier", "Counter32", "mib-2", "ModuleIdentity", "ObjectIdentity", "Gauge32", "TimeTicks", "Counter64", "Bits", "IpAddress", "NotificationType") TimeStamp, AutonomousType, TimeInterval, TestAndIncr, TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TimeStamp", "AutonomousType", "TimeInterval", "TestAndIncr", "TextualConvention", "DisplayString") upsMIB = ModuleIdentity((1, 3, 6, 1, 2, 1, 33)) if mibBuilder.loadTexts: upsMIB.setLastUpdated('9402230000Z') if mibBuilder.loadTexts: upsMIB.setOrganization('IETF UPS MIB Working Group') class PositiveInteger(TextualConvention, Integer32): status = 'current' displayHint = 'd' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(1, 2147483647) class NonNegativeInteger(TextualConvention, Integer32): status = 'current' displayHint = 'd' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 2147483647) upsObjects = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1)) upsIdent = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 1)) upsIdentManufacturer = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 31))).setMaxAccess("readonly") if mibBuilder.loadTexts: upsIdentManufacturer.setStatus('current') upsIdentModel = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readonly") if mibBuilder.loadTexts: upsIdentModel.setStatus('current') upsIdentUPSSoftwareVersion = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readonly") if mibBuilder.loadTexts: upsIdentUPSSoftwareVersion.setStatus('current') upsIdentAgentSoftwareVersion = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readonly") if mibBuilder.loadTexts: upsIdentAgentSoftwareVersion.setStatus('current') upsIdentName = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readwrite") if mibBuilder.loadTexts: upsIdentName.setStatus('current') upsIdentAttachedDevices = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 63))).setMaxAccess("readwrite") if mibBuilder.loadTexts: upsIdentAttachedDevices.setStatus('current') upsBattery = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 2)) upsBatteryStatus = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("unknown", 1), ("batteryNormal", 2), ("batteryLow", 3), ("batteryDepleted", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: upsBatteryStatus.setStatus('current') upsSecondsOnBattery = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 2), NonNegativeInteger()).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: upsSecondsOnBattery.setStatus('current') upsEstimatedMinutesRemaining = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 3), PositiveInteger()).setUnits('minutes').setMaxAccess("readonly") if mibBuilder.loadTexts: upsEstimatedMinutesRemaining.setStatus('current') upsEstimatedChargeRemaining = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 100))).setUnits('percent').setMaxAccess("readonly") if mibBuilder.loadTexts: upsEstimatedChargeRemaining.setStatus('current') upsBatteryVoltage = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 5), NonNegativeInteger()).setUnits('0.1 Volt DC').setMaxAccess("readonly") if mibBuilder.loadTexts: upsBatteryVoltage.setStatus('current') upsBatteryCurrent = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 6), Integer32()).setUnits('0.1 Amp DC').setMaxAccess("readonly") if mibBuilder.loadTexts: upsBatteryCurrent.setStatus('current') upsBatteryTemperature = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 7), Integer32()).setUnits('degrees Centigrade').setMaxAccess("readonly") if mibBuilder.loadTexts: upsBatteryTemperature.setStatus('current') upsInput = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 3)) upsInputLineBads = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 3, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: upsInputLineBads.setStatus('current') upsInputNumLines = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 3, 2), NonNegativeInteger()).setMaxAccess("readonly") if mibBuilder.loadTexts: upsInputNumLines.setStatus('current') upsInputTable = MibTable((1, 3, 6, 1, 2, 1, 33, 1, 3, 3), ) if mibBuilder.loadTexts: upsInputTable.setStatus('current') upsInputEntry = MibTableRow((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1), ).setIndexNames((0, "UPS-MIB", "upsInputLineIndex")) if mibBuilder.loadTexts: upsInputEntry.setStatus('current') upsInputLineIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 1), PositiveInteger()) if mibBuilder.loadTexts: upsInputLineIndex.setStatus('current') upsInputFrequency = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 2), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readonly") if mibBuilder.loadTexts: upsInputFrequency.setStatus('current') upsInputVoltage = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 3), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readonly") if mibBuilder.loadTexts: upsInputVoltage.setStatus('current') upsInputCurrent = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 4), NonNegativeInteger()).setUnits('0.1 RMS Amp').setMaxAccess("readonly") if mibBuilder.loadTexts: upsInputCurrent.setStatus('current') upsInputTruePower = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 5), NonNegativeInteger()).setUnits('Watts').setMaxAccess("readonly") if mibBuilder.loadTexts: upsInputTruePower.setStatus('current') upsOutput = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 4)) upsOutputSource = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 4, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7))).clone(namedValues=NamedValues(("other", 1), ("none", 2), ("normal", 3), ("bypass", 4), ("battery", 5), ("booster", 6), ("reducer", 7)))).setMaxAccess("readonly") if mibBuilder.loadTexts: upsOutputSource.setStatus('current') upsOutputFrequency = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 4, 2), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readonly") if mibBuilder.loadTexts: upsOutputFrequency.setStatus('current') upsOutputNumLines = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 4, 3), NonNegativeInteger()).setMaxAccess("readonly") if mibBuilder.loadTexts: upsOutputNumLines.setStatus('current') upsOutputTable = MibTable((1, 3, 6, 1, 2, 1, 33, 1, 4, 4), ) if mibBuilder.loadTexts: upsOutputTable.setStatus('current') upsOutputEntry = MibTableRow((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1), ).setIndexNames((0, "UPS-MIB", "upsOutputLineIndex")) if mibBuilder.loadTexts: upsOutputEntry.setStatus('current') upsOutputLineIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 1), PositiveInteger()) if mibBuilder.loadTexts: upsOutputLineIndex.setStatus('current') upsOutputVoltage = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 2), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readonly") if mibBuilder.loadTexts: upsOutputVoltage.setStatus('current') upsOutputCurrent = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 3), NonNegativeInteger()).setUnits('0.1 RMS Amp').setMaxAccess("readonly") if mibBuilder.loadTexts: upsOutputCurrent.setStatus('current') upsOutputPower = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 4), NonNegativeInteger()).setUnits('Watts').setMaxAccess("readonly") if mibBuilder.loadTexts: upsOutputPower.setStatus('current') upsOutputPercentLoad = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 200))).setUnits('percent').setMaxAccess("readonly") if mibBuilder.loadTexts: upsOutputPercentLoad.setStatus('current') upsBypass = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 5)) upsBypassFrequency = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 5, 1), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readonly") if mibBuilder.loadTexts: upsBypassFrequency.setStatus('current') upsBypassNumLines = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 5, 2), NonNegativeInteger()).setMaxAccess("readonly") if mibBuilder.loadTexts: upsBypassNumLines.setStatus('current') upsBypassTable = MibTable((1, 3, 6, 1, 2, 1, 33, 1, 5, 3), ) if mibBuilder.loadTexts: upsBypassTable.setStatus('current') upsBypassEntry = MibTableRow((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1), ).setIndexNames((0, "UPS-MIB", "upsBypassLineIndex")) if mibBuilder.loadTexts: upsBypassEntry.setStatus('current') upsBypassLineIndex = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 1), PositiveInteger()) if mibBuilder.loadTexts: upsBypassLineIndex.setStatus('current') upsBypassVoltage = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 2), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readonly") if mibBuilder.loadTexts: upsBypassVoltage.setStatus('current') upsBypassCurrent = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 3), NonNegativeInteger()).setUnits('0.1 RMS Amp').setMaxAccess("readonly") if mibBuilder.loadTexts: upsBypassCurrent.setStatus('current') upsBypassPower = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 4), NonNegativeInteger()).setUnits('Watts').setMaxAccess("readonly") if mibBuilder.loadTexts: upsBypassPower.setStatus('current') upsAlarm = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 6)) upsAlarmsPresent = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 6, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: upsAlarmsPresent.setStatus('current') upsAlarmTable = MibTable((1, 3, 6, 1, 2, 1, 33, 1, 6, 2), ) if mibBuilder.loadTexts: upsAlarmTable.setStatus('current') upsAlarmEntry = MibTableRow((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1), ).setIndexNames((0, "UPS-MIB", "upsAlarmId")) if mibBuilder.loadTexts: upsAlarmEntry.setStatus('current') upsAlarmId = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1, 1), PositiveInteger()) if mibBuilder.loadTexts: upsAlarmId.setStatus('current') upsAlarmDescr = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1, 2), AutonomousType()).setMaxAccess("readonly") if mibBuilder.loadTexts: upsAlarmDescr.setStatus('current') upsAlarmTime = MibTableColumn((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1, 3), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: upsAlarmTime.setStatus('current') upsWellKnownAlarms = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 6, 3)) upsAlarmBatteryBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 1)) if mibBuilder.loadTexts: upsAlarmBatteryBad.setStatus('current') upsAlarmOnBattery = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 2)) if mibBuilder.loadTexts: upsAlarmOnBattery.setStatus('current') upsAlarmLowBattery = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 3)) if mibBuilder.loadTexts: upsAlarmLowBattery.setStatus('current') upsAlarmDepletedBattery = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 4)) if mibBuilder.loadTexts: upsAlarmDepletedBattery.setStatus('current') upsAlarmTempBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 5)) if mibBuilder.loadTexts: upsAlarmTempBad.setStatus('current') upsAlarmInputBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 6)) if mibBuilder.loadTexts: upsAlarmInputBad.setStatus('current') upsAlarmOutputBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 7)) if mibBuilder.loadTexts: upsAlarmOutputBad.setStatus('current') upsAlarmOutputOverload = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 8)) if mibBuilder.loadTexts: upsAlarmOutputOverload.setStatus('current') upsAlarmOnBypass = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 9)) if mibBuilder.loadTexts: upsAlarmOnBypass.setStatus('current') upsAlarmBypassBad = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 10)) if mibBuilder.loadTexts: upsAlarmBypassBad.setStatus('current') upsAlarmOutputOffAsRequested = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 11)) if mibBuilder.loadTexts: upsAlarmOutputOffAsRequested.setStatus('current') upsAlarmUpsOffAsRequested = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 12)) if mibBuilder.loadTexts: upsAlarmUpsOffAsRequested.setStatus('current') upsAlarmChargerFailed = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 13)) if mibBuilder.loadTexts: upsAlarmChargerFailed.setStatus('current') upsAlarmUpsOutputOff = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 14)) if mibBuilder.loadTexts: upsAlarmUpsOutputOff.setStatus('current') upsAlarmUpsSystemOff = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 15)) if mibBuilder.loadTexts: upsAlarmUpsSystemOff.setStatus('current') upsAlarmFanFailure = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 16)) if mibBuilder.loadTexts: upsAlarmFanFailure.setStatus('current') upsAlarmFuseFailure = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 17)) if mibBuilder.loadTexts: upsAlarmFuseFailure.setStatus('current') upsAlarmGeneralFault = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 18)) if mibBuilder.loadTexts: upsAlarmGeneralFault.setStatus('current') upsAlarmDiagnosticTestFailed = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 19)) if mibBuilder.loadTexts: upsAlarmDiagnosticTestFailed.setStatus('current') upsAlarmCommunicationsLost = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 20)) if mibBuilder.loadTexts: upsAlarmCommunicationsLost.setStatus('current') upsAlarmAwaitingPower = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 21)) if mibBuilder.loadTexts: upsAlarmAwaitingPower.setStatus('current') upsAlarmShutdownPending = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 22)) if mibBuilder.loadTexts: upsAlarmShutdownPending.setStatus('current') upsAlarmShutdownImminent = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 23)) if mibBuilder.loadTexts: upsAlarmShutdownImminent.setStatus('current') upsAlarmTestInProgress = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 24)) if mibBuilder.loadTexts: upsAlarmTestInProgress.setStatus('current') upsTest = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 7)) upsTestId = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 1), ObjectIdentifier()).setMaxAccess("readwrite") if mibBuilder.loadTexts: upsTestId.setStatus('current') upsTestSpinLock = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 2), TestAndIncr()).setMaxAccess("readwrite") if mibBuilder.loadTexts: upsTestSpinLock.setStatus('current') upsTestResultsSummary = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("donePass", 1), ("doneWarning", 2), ("doneError", 3), ("aborted", 4), ("inProgress", 5), ("noTestsInitiated", 6)))).setMaxAccess("readonly") if mibBuilder.loadTexts: upsTestResultsSummary.setStatus('current') upsTestResultsDetail = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: upsTestResultsDetail.setStatus('current') upsTestStartTime = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 5), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: upsTestStartTime.setStatus('current') upsTestElapsedTime = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 6), TimeInterval()).setMaxAccess("readonly") if mibBuilder.loadTexts: upsTestElapsedTime.setStatus('current') upsWellKnownTests = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 7, 7)) upsTestNoTestsInitiated = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 1)) if mibBuilder.loadTexts: upsTestNoTestsInitiated.setStatus('current') upsTestAbortTestInProgress = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 2)) if mibBuilder.loadTexts: upsTestAbortTestInProgress.setStatus('current') upsTestGeneralSystemsTest = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 3)) if mibBuilder.loadTexts: upsTestGeneralSystemsTest.setStatus('current') upsTestQuickBatteryTest = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 4)) if mibBuilder.loadTexts: upsTestQuickBatteryTest.setStatus('current') upsTestDeepBatteryCalibration = ObjectIdentity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 5)) if mibBuilder.loadTexts: upsTestDeepBatteryCalibration.setStatus('current') upsControl = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 8)) upsShutdownType = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("output", 1), ("system", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: upsShutdownType.setStatus('current') upsShutdownAfterDelay = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483648))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsShutdownAfterDelay.setStatus('current') upsStartupAfterDelay = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483648))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsStartupAfterDelay.setStatus('current') upsRebootWithDuration = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 300))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsRebootWithDuration.setStatus('current') upsAutoRestart = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("on", 1), ("off", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: upsAutoRestart.setStatus('current') upsConfig = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 1, 9)) upsConfigInputVoltage = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 1), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsConfigInputVoltage.setStatus('current') upsConfigInputFreq = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 2), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsConfigInputFreq.setStatus('current') upsConfigOutputVoltage = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 3), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsConfigOutputVoltage.setStatus('current') upsConfigOutputFreq = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 4), NonNegativeInteger()).setUnits('0.1 Hertz').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsConfigOutputFreq.setStatus('current') upsConfigOutputVA = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 5), NonNegativeInteger()).setUnits('Volt-Amps').setMaxAccess("readonly") if mibBuilder.loadTexts: upsConfigOutputVA.setStatus('current') upsConfigOutputPower = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 6), NonNegativeInteger()).setUnits('Watts').setMaxAccess("readonly") if mibBuilder.loadTexts: upsConfigOutputPower.setStatus('current') upsConfigLowBattTime = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 7), NonNegativeInteger()).setUnits('minutes').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsConfigLowBattTime.setStatus('current') upsConfigAudibleStatus = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("disabled", 1), ("enabled", 2), ("muted", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: upsConfigAudibleStatus.setStatus('current') upsConfigLowVoltageTransferPoint = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 9), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsConfigLowVoltageTransferPoint.setStatus('current') upsConfigHighVoltageTransferPoint = MibScalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 10), NonNegativeInteger()).setUnits('RMS Volts').setMaxAccess("readwrite") if mibBuilder.loadTexts: upsConfigHighVoltageTransferPoint.setStatus('current') upsTraps = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 2)) upsTrapOnBattery = NotificationType((1, 3, 6, 1, 2, 1, 33, 2, 1)).setObjects(("UPS-MIB", "upsEstimatedMinutesRemaining"), ("UPS-MIB", "upsSecondsOnBattery"), ("UPS-MIB", "upsConfigLowBattTime")) if mibBuilder.loadTexts: upsTrapOnBattery.setStatus('current') upsTrapTestCompleted = NotificationType((1, 3, 6, 1, 2, 1, 33, 2, 2)).setObjects(("UPS-MIB", "upsTestId"), ("UPS-MIB", "upsTestSpinLock"), ("UPS-MIB", "upsTestResultsSummary"), ("UPS-MIB", "upsTestResultsDetail"), ("UPS-MIB", "upsTestStartTime"), ("UPS-MIB", "upsTestElapsedTime")) if mibBuilder.loadTexts: upsTrapTestCompleted.setStatus('current') upsTrapAlarmEntryAdded = NotificationType((1, 3, 6, 1, 2, 1, 33, 2, 3)).setObjects(("UPS-MIB", "upsAlarmId"), ("UPS-MIB", "upsAlarmDescr")) if mibBuilder.loadTexts: upsTrapAlarmEntryAdded.setStatus('current') upsTrapAlarmEntryRemoved = NotificationType((1, 3, 6, 1, 2, 1, 33, 2, 4)).setObjects(("UPS-MIB", "upsAlarmId"), ("UPS-MIB", "upsAlarmDescr")) if mibBuilder.loadTexts: upsTrapAlarmEntryRemoved.setStatus('current') upsConformance = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3)) upsCompliances = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 1)) upsSubsetCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 33, 3, 1, 1)).setObjects(("UPS-MIB", "upsSubsetIdentGroup"), ("UPS-MIB", "upsSubsetBatteryGroup"), ("UPS-MIB", "upsSubsetInputGroup"), ("UPS-MIB", "upsSubsetOutputGroup"), ("UPS-MIB", "upsSubsetAlarmGroup"), ("UPS-MIB", "upsSubsetControlGroup"), ("UPS-MIB", "upsSubsetConfigGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsSubsetCompliance = upsSubsetCompliance.setStatus('current') upsBasicCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 33, 3, 1, 2)).setObjects(("UPS-MIB", "upsBasicIdentGroup"), ("UPS-MIB", "upsBasicBatteryGroup"), ("UPS-MIB", "upsBasicInputGroup"), ("UPS-MIB", "upsBasicOutputGroup"), ("UPS-MIB", "upsBasicAlarmGroup"), ("UPS-MIB", "upsBasicTestGroup"), ("UPS-MIB", "upsBasicControlGroup"), ("UPS-MIB", "upsBasicConfigGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicCompliance = upsBasicCompliance.setStatus('current') upsFullCompliance = ModuleCompliance((1, 3, 6, 1, 2, 1, 33, 3, 1, 3)).setObjects(("UPS-MIB", "upsFullIdentGroup"), ("UPS-MIB", "upsFullBatteryGroup"), ("UPS-MIB", "upsFullInputGroup"), ("UPS-MIB", "upsFullOutputGroup"), ("UPS-MIB", "upsFullAlarmGroup"), ("UPS-MIB", "upsFullTestGroup"), ("UPS-MIB", "upsFullControlGroup"), ("UPS-MIB", "upsFullConfigGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullCompliance = upsFullCompliance.setStatus('current') upsGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 2)) upsSubsetGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 2, 1)) upsSubsetIdentGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 1)).setObjects(("UPS-MIB", "upsIdentManufacturer"), ("UPS-MIB", "upsIdentModel"), ("UPS-MIB", "upsIdentAgentSoftwareVersion"), ("UPS-MIB", "upsIdentName"), ("UPS-MIB", "upsIdentAttachedDevices")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsSubsetIdentGroup = upsSubsetIdentGroup.setStatus('current') upsSubsetBatteryGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 2)).setObjects(("UPS-MIB", "upsBatteryStatus"), ("UPS-MIB", "upsSecondsOnBattery")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsSubsetBatteryGroup = upsSubsetBatteryGroup.setStatus('current') upsSubsetInputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 3)).setObjects(("UPS-MIB", "upsInputLineBads")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsSubsetInputGroup = upsSubsetInputGroup.setStatus('current') upsSubsetOutputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 4)).setObjects(("UPS-MIB", "upsOutputSource")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsSubsetOutputGroup = upsSubsetOutputGroup.setStatus('current') upsSubsetAlarmGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 6)).setObjects(("UPS-MIB", "upsAlarmsPresent"), ("UPS-MIB", "upsAlarmDescr"), ("UPS-MIB", "upsAlarmTime")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsSubsetAlarmGroup = upsSubsetAlarmGroup.setStatus('current') upsSubsetControlGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 8)).setObjects(("UPS-MIB", "upsShutdownType"), ("UPS-MIB", "upsShutdownAfterDelay"), ("UPS-MIB", "upsAutoRestart")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsSubsetControlGroup = upsSubsetControlGroup.setStatus('current') upsSubsetConfigGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 9)).setObjects(("UPS-MIB", "upsConfigInputVoltage"), ("UPS-MIB", "upsConfigInputFreq"), ("UPS-MIB", "upsConfigOutputVoltage"), ("UPS-MIB", "upsConfigOutputFreq"), ("UPS-MIB", "upsConfigOutputVA"), ("UPS-MIB", "upsConfigOutputPower")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsSubsetConfigGroup = upsSubsetConfigGroup.setStatus('current') upsBasicGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 2, 2)) upsBasicIdentGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 1)).setObjects(("UPS-MIB", "upsIdentManufacturer"), ("UPS-MIB", "upsIdentModel"), ("UPS-MIB", "upsIdentUPSSoftwareVersion"), ("UPS-MIB", "upsIdentAgentSoftwareVersion"), ("UPS-MIB", "upsIdentName")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicIdentGroup = upsBasicIdentGroup.setStatus('current') upsBasicBatteryGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 2)).setObjects(("UPS-MIB", "upsBatteryStatus"), ("UPS-MIB", "upsSecondsOnBattery")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicBatteryGroup = upsBasicBatteryGroup.setStatus('current') upsBasicInputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 3)).setObjects(("UPS-MIB", "upsInputLineBads"), ("UPS-MIB", "upsInputNumLines"), ("UPS-MIB", "upsInputFrequency"), ("UPS-MIB", "upsInputVoltage")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicInputGroup = upsBasicInputGroup.setStatus('current') upsBasicOutputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 4)).setObjects(("UPS-MIB", "upsOutputSource"), ("UPS-MIB", "upsOutputFrequency"), ("UPS-MIB", "upsOutputNumLines"), ("UPS-MIB", "upsOutputVoltage")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicOutputGroup = upsBasicOutputGroup.setStatus('current') upsBasicBypassGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 5)).setObjects(("UPS-MIB", "upsBypassFrequency"), ("UPS-MIB", "upsBypassNumLines"), ("UPS-MIB", "upsBypassVoltage")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicBypassGroup = upsBasicBypassGroup.setStatus('current') upsBasicAlarmGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 6)).setObjects(("UPS-MIB", "upsAlarmsPresent"), ("UPS-MIB", "upsAlarmDescr"), ("UPS-MIB", "upsAlarmTime")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicAlarmGroup = upsBasicAlarmGroup.setStatus('current') upsBasicTestGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 7)).setObjects(("UPS-MIB", "upsTestId"), ("UPS-MIB", "upsTestSpinLock"), ("UPS-MIB", "upsTestResultsSummary"), ("UPS-MIB", "upsTestResultsDetail"), ("UPS-MIB", "upsTestStartTime"), ("UPS-MIB", "upsTestElapsedTime")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicTestGroup = upsBasicTestGroup.setStatus('current') upsBasicControlGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 8)).setObjects(("UPS-MIB", "upsShutdownType"), ("UPS-MIB", "upsShutdownAfterDelay"), ("UPS-MIB", "upsStartupAfterDelay"), ("UPS-MIB", "upsRebootWithDuration"), ("UPS-MIB", "upsAutoRestart")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicControlGroup = upsBasicControlGroup.setStatus('current') upsBasicConfigGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 9)).setObjects(("UPS-MIB", "upsConfigInputVoltage"), ("UPS-MIB", "upsConfigInputFreq"), ("UPS-MIB", "upsConfigOutputVoltage"), ("UPS-MIB", "upsConfigOutputFreq"), ("UPS-MIB", "upsConfigOutputVA"), ("UPS-MIB", "upsConfigOutputPower"), ("UPS-MIB", "upsConfigLowBattTime"), ("UPS-MIB", "upsConfigAudibleStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsBasicConfigGroup = upsBasicConfigGroup.setStatus('current') upsFullGroups = MibIdentifier((1, 3, 6, 1, 2, 1, 33, 3, 2, 3)) upsFullIdentGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 1)).setObjects(("UPS-MIB", "upsIdentManufacturer"), ("UPS-MIB", "upsIdentModel"), ("UPS-MIB", "upsIdentUPSSoftwareVersion"), ("UPS-MIB", "upsIdentAgentSoftwareVersion"), ("UPS-MIB", "upsIdentName"), ("UPS-MIB", "upsIdentAttachedDevices")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullIdentGroup = upsFullIdentGroup.setStatus('current') upsFullBatteryGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 2)).setObjects(("UPS-MIB", "upsBatteryStatus"), ("UPS-MIB", "upsSecondsOnBattery"), ("UPS-MIB", "upsEstimatedMinutesRemaining"), ("UPS-MIB", "upsEstimatedChargeRemaining")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullBatteryGroup = upsFullBatteryGroup.setStatus('current') upsFullInputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 3)).setObjects(("UPS-MIB", "upsInputLineBads"), ("UPS-MIB", "upsInputNumLines"), ("UPS-MIB", "upsInputFrequency"), ("UPS-MIB", "upsInputVoltage")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullInputGroup = upsFullInputGroup.setStatus('current') upsFullOutputGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 4)).setObjects(("UPS-MIB", "upsOutputSource"), ("UPS-MIB", "upsOutputFrequency"), ("UPS-MIB", "upsOutputNumLines"), ("UPS-MIB", "upsOutputVoltage"), ("UPS-MIB", "upsOutputCurrent"), ("UPS-MIB", "upsOutputPower"), ("UPS-MIB", "upsOutputPercentLoad")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullOutputGroup = upsFullOutputGroup.setStatus('current') upsFullBypassGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 5)).setObjects(("UPS-MIB", "upsBypassFrequency"), ("UPS-MIB", "upsBypassNumLines"), ("UPS-MIB", "upsBypassVoltage")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullBypassGroup = upsFullBypassGroup.setStatus('current') upsFullAlarmGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 6)).setObjects(("UPS-MIB", "upsAlarmsPresent"), ("UPS-MIB", "upsAlarmDescr"), ("UPS-MIB", "upsAlarmTime")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullAlarmGroup = upsFullAlarmGroup.setStatus('current') upsFullTestGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 7)).setObjects(("UPS-MIB", "upsTestId"), ("UPS-MIB", "upsTestSpinLock"), ("UPS-MIB", "upsTestResultsSummary"), ("UPS-MIB", "upsTestResultsDetail"), ("UPS-MIB", "upsTestStartTime"), ("UPS-MIB", "upsTestElapsedTime")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullTestGroup = upsFullTestGroup.setStatus('current') upsFullControlGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 8)).setObjects(("UPS-MIB", "upsShutdownType"), ("UPS-MIB", "upsShutdownAfterDelay"), ("UPS-MIB", "upsStartupAfterDelay"), ("UPS-MIB", "upsRebootWithDuration"), ("UPS-MIB", "upsAutoRestart")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullControlGroup = upsFullControlGroup.setStatus('current') upsFullConfigGroup = ObjectGroup((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 9)).setObjects(("UPS-MIB", "upsConfigInputVoltage"), ("UPS-MIB", "upsConfigInputFreq"), ("UPS-MIB", "upsConfigOutputVoltage"), ("UPS-MIB", "upsConfigOutputFreq"), ("UPS-MIB", "upsConfigOutputVA"), ("UPS-MIB", "upsConfigOutputPower"), ("UPS-MIB", "upsConfigLowBattTime"), ("UPS-MIB", "upsConfigAudibleStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): upsFullConfigGroup = upsFullConfigGroup.setStatus('current') mibBuilder.exportSymbols("UPS-MIB", upsEstimatedChargeRemaining=upsEstimatedChargeRemaining, upsInputTable=upsInputTable, upsInputCurrent=upsInputCurrent, upsAlarmOutputBad=upsAlarmOutputBad, upsIdentUPSSoftwareVersion=upsIdentUPSSoftwareVersion, upsInputVoltage=upsInputVoltage, upsOutputEntry=upsOutputEntry, upsAlarmShutdownPending=upsAlarmShutdownPending, upsOutputFrequency=upsOutputFrequency, upsAlarmOutputOverload=upsAlarmOutputOverload, upsSubsetControlGroup=upsSubsetControlGroup, upsAlarmShutdownImminent=upsAlarmShutdownImminent, upsAlarmLowBattery=upsAlarmLowBattery, upsBatteryCurrent=upsBatteryCurrent, upsConfigOutputFreq=upsConfigOutputFreq, upsWellKnownTests=upsWellKnownTests, upsIdentManufacturer=upsIdentManufacturer, upsTestAbortTestInProgress=upsTestAbortTestInProgress, upsConfig=upsConfig, upsFullInputGroup=upsFullInputGroup, upsAlarmsPresent=upsAlarmsPresent, upsAlarmTempBad=upsAlarmTempBad, upsBypassFrequency=upsBypassFrequency, upsShutdownType=upsShutdownType, upsBatteryStatus=upsBatteryStatus, upsTrapTestCompleted=upsTrapTestCompleted, upsBasicIdentGroup=upsBasicIdentGroup, upsFullBatteryGroup=upsFullBatteryGroup, upsAlarmFuseFailure=upsAlarmFuseFailure, upsOutputCurrent=upsOutputCurrent, upsWellKnownAlarms=upsWellKnownAlarms, upsAlarmOnBattery=upsAlarmOnBattery, upsFullTestGroup=upsFullTestGroup, upsOutputNumLines=upsOutputNumLines, upsAlarmGeneralFault=upsAlarmGeneralFault, upsInputLineIndex=upsInputLineIndex, upsOutputPower=upsOutputPower, upsSubsetOutputGroup=upsSubsetOutputGroup, upsAlarmChargerFailed=upsAlarmChargerFailed, upsBasicBatteryGroup=upsBasicBatteryGroup, upsAlarmOnBypass=upsAlarmOnBypass, upsBasicOutputGroup=upsBasicOutputGroup, upsAlarmDiagnosticTestFailed=upsAlarmDiagnosticTestFailed, upsTestGeneralSystemsTest=upsTestGeneralSystemsTest, upsTestId=upsTestId, upsTrapAlarmEntryRemoved=upsTrapAlarmEntryRemoved, upsEstimatedMinutesRemaining=upsEstimatedMinutesRemaining, upsIdentAttachedDevices=upsIdentAttachedDevices, upsAlarmCommunicationsLost=upsAlarmCommunicationsLost, upsTestStartTime=upsTestStartTime, upsBasicInputGroup=upsBasicInputGroup, upsAlarmId=upsAlarmId, upsAlarmTime=upsAlarmTime, upsSubsetAlarmGroup=upsSubsetAlarmGroup, upsAlarmUpsOutputOff=upsAlarmUpsOutputOff, upsIdentName=upsIdentName, upsGroups=upsGroups, upsConfigOutputPower=upsConfigOutputPower, upsAlarmTestInProgress=upsAlarmTestInProgress, upsTestNoTestsInitiated=upsTestNoTestsInitiated, upsBasicConfigGroup=upsBasicConfigGroup, upsBatteryTemperature=upsBatteryTemperature, upsInputLineBads=upsInputLineBads, upsInputTruePower=upsInputTruePower, upsTest=upsTest, upsIdent=upsIdent, upsBypassVoltage=upsBypassVoltage, upsFullControlGroup=upsFullControlGroup, upsTraps=upsTraps, upsOutputTable=upsOutputTable, upsIdentModel=upsIdentModel, upsSubsetCompliance=upsSubsetCompliance, upsInputFrequency=upsInputFrequency, upsOutputVoltage=upsOutputVoltage, upsTrapOnBattery=upsTrapOnBattery, upsOutput=upsOutput, upsFullConfigGroup=upsFullConfigGroup, upsSubsetConfigGroup=upsSubsetConfigGroup, upsTestQuickBatteryTest=upsTestQuickBatteryTest, upsConfigOutputVoltage=upsConfigOutputVoltage, upsAlarmBypassBad=upsAlarmBypassBad, upsSecondsOnBattery=upsSecondsOnBattery, upsFullAlarmGroup=upsFullAlarmGroup, upsBypass=upsBypass, upsBypassLineIndex=upsBypassLineIndex, upsBypassNumLines=upsBypassNumLines, upsBypassCurrent=upsBypassCurrent, upsInput=upsInput, upsOutputSource=upsOutputSource, upsConfigAudibleStatus=upsConfigAudibleStatus, upsAlarmTable=upsAlarmTable, upsAlarmFanFailure=upsAlarmFanFailure, upsSubsetGroups=upsSubsetGroups, upsBasicControlGroup=upsBasicControlGroup, upsConfigHighVoltageTransferPoint=upsConfigHighVoltageTransferPoint, upsAlarmDepletedBattery=upsAlarmDepletedBattery, upsAutoRestart=upsAutoRestart, upsBasicGroups=upsBasicGroups, upsConfigOutputVA=upsConfigOutputVA, upsAlarmUpsSystemOff=upsAlarmUpsSystemOff, upsAlarmUpsOffAsRequested=upsAlarmUpsOffAsRequested, upsConformance=upsConformance, PYSNMP_MODULE_ID=upsMIB, upsIdentAgentSoftwareVersion=upsIdentAgentSoftwareVersion, upsRebootWithDuration=upsRebootWithDuration, upsObjects=upsObjects, upsTestResultsDetail=upsTestResultsDetail, upsOutputPercentLoad=upsOutputPercentLoad, upsBypassTable=upsBypassTable, upsFullBypassGroup=upsFullBypassGroup, upsSubsetBatteryGroup=upsSubsetBatteryGroup, upsAlarmEntry=upsAlarmEntry, upsControl=upsControl, upsTestDeepBatteryCalibration=upsTestDeepBatteryCalibration, upsStartupAfterDelay=upsStartupAfterDelay, upsCompliances=upsCompliances, upsFullOutputGroup=upsFullOutputGroup, NonNegativeInteger=NonNegativeInteger, upsFullIdentGroup=upsFullIdentGroup, upsInputNumLines=upsInputNumLines, upsBatteryVoltage=upsBatteryVoltage, upsBasicCompliance=upsBasicCompliance, upsSubsetInputGroup=upsSubsetInputGroup, upsOutputLineIndex=upsOutputLineIndex, upsAlarmBatteryBad=upsAlarmBatteryBad, upsBypassEntry=upsBypassEntry, upsConfigLowVoltageTransferPoint=upsConfigLowVoltageTransferPoint, upsMIB=upsMIB, upsBypassPower=upsBypassPower, upsConfigLowBattTime=upsConfigLowBattTime, upsBasicTestGroup=upsBasicTestGroup, upsConfigInputVoltage=upsConfigInputVoltage, upsTrapAlarmEntryAdded=upsTrapAlarmEntryAdded, upsTestSpinLock=upsTestSpinLock, upsBasicBypassGroup=upsBasicBypassGroup, upsTestElapsedTime=upsTestElapsedTime, upsInputEntry=upsInputEntry, PositiveInteger=PositiveInteger, upsFullCompliance=upsFullCompliance, upsAlarmAwaitingPower=upsAlarmAwaitingPower, upsShutdownAfterDelay=upsShutdownAfterDelay, upsConfigInputFreq=upsConfigInputFreq, upsAlarmDescr=upsAlarmDescr, upsAlarmOutputOffAsRequested=upsAlarmOutputOffAsRequested, upsBasicAlarmGroup=upsBasicAlarmGroup, upsBattery=upsBattery, upsSubsetIdentGroup=upsSubsetIdentGroup, upsAlarmInputBad=upsAlarmInputBad, upsFullGroups=upsFullGroups, upsTestResultsSummary=upsTestResultsSummary, upsAlarm=upsAlarm)
(octet_string, object_identifier, integer) = mibBuilder.importSymbols('ASN1', 'OctetString', 'ObjectIdentifier', 'Integer') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (value_range_constraint, constraints_union, value_size_constraint, constraints_intersection, single_value_constraint) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'ValueRangeConstraint', 'ConstraintsUnion', 'ValueSizeConstraint', 'ConstraintsIntersection', 'SingleValueConstraint') (object_group, notification_group, module_compliance) = mibBuilder.importSymbols('SNMPv2-CONF', 'ObjectGroup', 'NotificationGroup', 'ModuleCompliance') (mib_scalar, mib_table, mib_table_row, mib_table_column, iso, unsigned32, integer32, mib_identifier, counter32, mib_2, module_identity, object_identity, gauge32, time_ticks, counter64, bits, ip_address, notification_type) = mibBuilder.importSymbols('SNMPv2-SMI', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'iso', 'Unsigned32', 'Integer32', 'MibIdentifier', 'Counter32', 'mib-2', 'ModuleIdentity', 'ObjectIdentity', 'Gauge32', 'TimeTicks', 'Counter64', 'Bits', 'IpAddress', 'NotificationType') (time_stamp, autonomous_type, time_interval, test_and_incr, textual_convention, display_string) = mibBuilder.importSymbols('SNMPv2-TC', 'TimeStamp', 'AutonomousType', 'TimeInterval', 'TestAndIncr', 'TextualConvention', 'DisplayString') ups_mib = module_identity((1, 3, 6, 1, 2, 1, 33)) if mibBuilder.loadTexts: upsMIB.setLastUpdated('9402230000Z') if mibBuilder.loadTexts: upsMIB.setOrganization('IETF UPS MIB Working Group') class Positiveinteger(TextualConvention, Integer32): status = 'current' display_hint = 'd' subtype_spec = Integer32.subtypeSpec + value_range_constraint(1, 2147483647) class Nonnegativeinteger(TextualConvention, Integer32): status = 'current' display_hint = 'd' subtype_spec = Integer32.subtypeSpec + value_range_constraint(0, 2147483647) ups_objects = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1)) ups_ident = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 1)) ups_ident_manufacturer = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 1), display_string().subtype(subtypeSpec=value_size_constraint(0, 31))).setMaxAccess('readonly') if mibBuilder.loadTexts: upsIdentManufacturer.setStatus('current') ups_ident_model = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 2), display_string().subtype(subtypeSpec=value_size_constraint(0, 63))).setMaxAccess('readonly') if mibBuilder.loadTexts: upsIdentModel.setStatus('current') ups_ident_ups_software_version = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 3), display_string().subtype(subtypeSpec=value_size_constraint(0, 63))).setMaxAccess('readonly') if mibBuilder.loadTexts: upsIdentUPSSoftwareVersion.setStatus('current') ups_ident_agent_software_version = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 4), display_string().subtype(subtypeSpec=value_size_constraint(0, 63))).setMaxAccess('readonly') if mibBuilder.loadTexts: upsIdentAgentSoftwareVersion.setStatus('current') ups_ident_name = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 5), display_string().subtype(subtypeSpec=value_size_constraint(0, 63))).setMaxAccess('readwrite') if mibBuilder.loadTexts: upsIdentName.setStatus('current') ups_ident_attached_devices = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 1, 6), display_string().subtype(subtypeSpec=value_size_constraint(0, 63))).setMaxAccess('readwrite') if mibBuilder.loadTexts: upsIdentAttachedDevices.setStatus('current') ups_battery = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 2)) ups_battery_status = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 1), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3, 4))).clone(namedValues=named_values(('unknown', 1), ('batteryNormal', 2), ('batteryLow', 3), ('batteryDepleted', 4)))).setMaxAccess('readonly') if mibBuilder.loadTexts: upsBatteryStatus.setStatus('current') ups_seconds_on_battery = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 2), non_negative_integer()).setUnits('seconds').setMaxAccess('readonly') if mibBuilder.loadTexts: upsSecondsOnBattery.setStatus('current') ups_estimated_minutes_remaining = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 3), positive_integer()).setUnits('minutes').setMaxAccess('readonly') if mibBuilder.loadTexts: upsEstimatedMinutesRemaining.setStatus('current') ups_estimated_charge_remaining = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 4), integer32().subtype(subtypeSpec=value_range_constraint(0, 100))).setUnits('percent').setMaxAccess('readonly') if mibBuilder.loadTexts: upsEstimatedChargeRemaining.setStatus('current') ups_battery_voltage = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 5), non_negative_integer()).setUnits('0.1 Volt DC').setMaxAccess('readonly') if mibBuilder.loadTexts: upsBatteryVoltage.setStatus('current') ups_battery_current = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 6), integer32()).setUnits('0.1 Amp DC').setMaxAccess('readonly') if mibBuilder.loadTexts: upsBatteryCurrent.setStatus('current') ups_battery_temperature = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 2, 7), integer32()).setUnits('degrees Centigrade').setMaxAccess('readonly') if mibBuilder.loadTexts: upsBatteryTemperature.setStatus('current') ups_input = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 3)) ups_input_line_bads = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 3, 1), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: upsInputLineBads.setStatus('current') ups_input_num_lines = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 3, 2), non_negative_integer()).setMaxAccess('readonly') if mibBuilder.loadTexts: upsInputNumLines.setStatus('current') ups_input_table = mib_table((1, 3, 6, 1, 2, 1, 33, 1, 3, 3)) if mibBuilder.loadTexts: upsInputTable.setStatus('current') ups_input_entry = mib_table_row((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1)).setIndexNames((0, 'UPS-MIB', 'upsInputLineIndex')) if mibBuilder.loadTexts: upsInputEntry.setStatus('current') ups_input_line_index = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 1), positive_integer()) if mibBuilder.loadTexts: upsInputLineIndex.setStatus('current') ups_input_frequency = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 2), non_negative_integer()).setUnits('0.1 Hertz').setMaxAccess('readonly') if mibBuilder.loadTexts: upsInputFrequency.setStatus('current') ups_input_voltage = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 3), non_negative_integer()).setUnits('RMS Volts').setMaxAccess('readonly') if mibBuilder.loadTexts: upsInputVoltage.setStatus('current') ups_input_current = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 4), non_negative_integer()).setUnits('0.1 RMS Amp').setMaxAccess('readonly') if mibBuilder.loadTexts: upsInputCurrent.setStatus('current') ups_input_true_power = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 3, 3, 1, 5), non_negative_integer()).setUnits('Watts').setMaxAccess('readonly') if mibBuilder.loadTexts: upsInputTruePower.setStatus('current') ups_output = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 4)) ups_output_source = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 4, 1), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3, 4, 5, 6, 7))).clone(namedValues=named_values(('other', 1), ('none', 2), ('normal', 3), ('bypass', 4), ('battery', 5), ('booster', 6), ('reducer', 7)))).setMaxAccess('readonly') if mibBuilder.loadTexts: upsOutputSource.setStatus('current') ups_output_frequency = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 4, 2), non_negative_integer()).setUnits('0.1 Hertz').setMaxAccess('readonly') if mibBuilder.loadTexts: upsOutputFrequency.setStatus('current') ups_output_num_lines = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 4, 3), non_negative_integer()).setMaxAccess('readonly') if mibBuilder.loadTexts: upsOutputNumLines.setStatus('current') ups_output_table = mib_table((1, 3, 6, 1, 2, 1, 33, 1, 4, 4)) if mibBuilder.loadTexts: upsOutputTable.setStatus('current') ups_output_entry = mib_table_row((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1)).setIndexNames((0, 'UPS-MIB', 'upsOutputLineIndex')) if mibBuilder.loadTexts: upsOutputEntry.setStatus('current') ups_output_line_index = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 1), positive_integer()) if mibBuilder.loadTexts: upsOutputLineIndex.setStatus('current') ups_output_voltage = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 2), non_negative_integer()).setUnits('RMS Volts').setMaxAccess('readonly') if mibBuilder.loadTexts: upsOutputVoltage.setStatus('current') ups_output_current = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 3), non_negative_integer()).setUnits('0.1 RMS Amp').setMaxAccess('readonly') if mibBuilder.loadTexts: upsOutputCurrent.setStatus('current') ups_output_power = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 4), non_negative_integer()).setUnits('Watts').setMaxAccess('readonly') if mibBuilder.loadTexts: upsOutputPower.setStatus('current') ups_output_percent_load = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 4, 4, 1, 5), integer32().subtype(subtypeSpec=value_range_constraint(0, 200))).setUnits('percent').setMaxAccess('readonly') if mibBuilder.loadTexts: upsOutputPercentLoad.setStatus('current') ups_bypass = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 5)) ups_bypass_frequency = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 5, 1), non_negative_integer()).setUnits('0.1 Hertz').setMaxAccess('readonly') if mibBuilder.loadTexts: upsBypassFrequency.setStatus('current') ups_bypass_num_lines = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 5, 2), non_negative_integer()).setMaxAccess('readonly') if mibBuilder.loadTexts: upsBypassNumLines.setStatus('current') ups_bypass_table = mib_table((1, 3, 6, 1, 2, 1, 33, 1, 5, 3)) if mibBuilder.loadTexts: upsBypassTable.setStatus('current') ups_bypass_entry = mib_table_row((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1)).setIndexNames((0, 'UPS-MIB', 'upsBypassLineIndex')) if mibBuilder.loadTexts: upsBypassEntry.setStatus('current') ups_bypass_line_index = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 1), positive_integer()) if mibBuilder.loadTexts: upsBypassLineIndex.setStatus('current') ups_bypass_voltage = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 2), non_negative_integer()).setUnits('RMS Volts').setMaxAccess('readonly') if mibBuilder.loadTexts: upsBypassVoltage.setStatus('current') ups_bypass_current = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 3), non_negative_integer()).setUnits('0.1 RMS Amp').setMaxAccess('readonly') if mibBuilder.loadTexts: upsBypassCurrent.setStatus('current') ups_bypass_power = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 5, 3, 1, 4), non_negative_integer()).setUnits('Watts').setMaxAccess('readonly') if mibBuilder.loadTexts: upsBypassPower.setStatus('current') ups_alarm = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 6)) ups_alarms_present = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 6, 1), gauge32()).setMaxAccess('readonly') if mibBuilder.loadTexts: upsAlarmsPresent.setStatus('current') ups_alarm_table = mib_table((1, 3, 6, 1, 2, 1, 33, 1, 6, 2)) if mibBuilder.loadTexts: upsAlarmTable.setStatus('current') ups_alarm_entry = mib_table_row((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1)).setIndexNames((0, 'UPS-MIB', 'upsAlarmId')) if mibBuilder.loadTexts: upsAlarmEntry.setStatus('current') ups_alarm_id = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1, 1), positive_integer()) if mibBuilder.loadTexts: upsAlarmId.setStatus('current') ups_alarm_descr = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1, 2), autonomous_type()).setMaxAccess('readonly') if mibBuilder.loadTexts: upsAlarmDescr.setStatus('current') ups_alarm_time = mib_table_column((1, 3, 6, 1, 2, 1, 33, 1, 6, 2, 1, 3), time_stamp()).setMaxAccess('readonly') if mibBuilder.loadTexts: upsAlarmTime.setStatus('current') ups_well_known_alarms = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 6, 3)) ups_alarm_battery_bad = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 1)) if mibBuilder.loadTexts: upsAlarmBatteryBad.setStatus('current') ups_alarm_on_battery = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 2)) if mibBuilder.loadTexts: upsAlarmOnBattery.setStatus('current') ups_alarm_low_battery = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 3)) if mibBuilder.loadTexts: upsAlarmLowBattery.setStatus('current') ups_alarm_depleted_battery = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 4)) if mibBuilder.loadTexts: upsAlarmDepletedBattery.setStatus('current') ups_alarm_temp_bad = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 5)) if mibBuilder.loadTexts: upsAlarmTempBad.setStatus('current') ups_alarm_input_bad = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 6)) if mibBuilder.loadTexts: upsAlarmInputBad.setStatus('current') ups_alarm_output_bad = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 7)) if mibBuilder.loadTexts: upsAlarmOutputBad.setStatus('current') ups_alarm_output_overload = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 8)) if mibBuilder.loadTexts: upsAlarmOutputOverload.setStatus('current') ups_alarm_on_bypass = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 9)) if mibBuilder.loadTexts: upsAlarmOnBypass.setStatus('current') ups_alarm_bypass_bad = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 10)) if mibBuilder.loadTexts: upsAlarmBypassBad.setStatus('current') ups_alarm_output_off_as_requested = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 11)) if mibBuilder.loadTexts: upsAlarmOutputOffAsRequested.setStatus('current') ups_alarm_ups_off_as_requested = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 12)) if mibBuilder.loadTexts: upsAlarmUpsOffAsRequested.setStatus('current') ups_alarm_charger_failed = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 13)) if mibBuilder.loadTexts: upsAlarmChargerFailed.setStatus('current') ups_alarm_ups_output_off = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 14)) if mibBuilder.loadTexts: upsAlarmUpsOutputOff.setStatus('current') ups_alarm_ups_system_off = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 15)) if mibBuilder.loadTexts: upsAlarmUpsSystemOff.setStatus('current') ups_alarm_fan_failure = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 16)) if mibBuilder.loadTexts: upsAlarmFanFailure.setStatus('current') ups_alarm_fuse_failure = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 17)) if mibBuilder.loadTexts: upsAlarmFuseFailure.setStatus('current') ups_alarm_general_fault = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 18)) if mibBuilder.loadTexts: upsAlarmGeneralFault.setStatus('current') ups_alarm_diagnostic_test_failed = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 19)) if mibBuilder.loadTexts: upsAlarmDiagnosticTestFailed.setStatus('current') ups_alarm_communications_lost = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 20)) if mibBuilder.loadTexts: upsAlarmCommunicationsLost.setStatus('current') ups_alarm_awaiting_power = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 21)) if mibBuilder.loadTexts: upsAlarmAwaitingPower.setStatus('current') ups_alarm_shutdown_pending = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 22)) if mibBuilder.loadTexts: upsAlarmShutdownPending.setStatus('current') ups_alarm_shutdown_imminent = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 23)) if mibBuilder.loadTexts: upsAlarmShutdownImminent.setStatus('current') ups_alarm_test_in_progress = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 6, 3, 24)) if mibBuilder.loadTexts: upsAlarmTestInProgress.setStatus('current') ups_test = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 7)) ups_test_id = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 1), object_identifier()).setMaxAccess('readwrite') if mibBuilder.loadTexts: upsTestId.setStatus('current') ups_test_spin_lock = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 2), test_and_incr()).setMaxAccess('readwrite') if mibBuilder.loadTexts: upsTestSpinLock.setStatus('current') ups_test_results_summary = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 3), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3, 4, 5, 6))).clone(namedValues=named_values(('donePass', 1), ('doneWarning', 2), ('doneError', 3), ('aborted', 4), ('inProgress', 5), ('noTestsInitiated', 6)))).setMaxAccess('readonly') if mibBuilder.loadTexts: upsTestResultsSummary.setStatus('current') ups_test_results_detail = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 4), display_string().subtype(subtypeSpec=value_size_constraint(0, 255))).setMaxAccess('readonly') if mibBuilder.loadTexts: upsTestResultsDetail.setStatus('current') ups_test_start_time = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 5), time_stamp()).setMaxAccess('readonly') if mibBuilder.loadTexts: upsTestStartTime.setStatus('current') ups_test_elapsed_time = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 7, 6), time_interval()).setMaxAccess('readonly') if mibBuilder.loadTexts: upsTestElapsedTime.setStatus('current') ups_well_known_tests = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 7, 7)) ups_test_no_tests_initiated = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 1)) if mibBuilder.loadTexts: upsTestNoTestsInitiated.setStatus('current') ups_test_abort_test_in_progress = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 2)) if mibBuilder.loadTexts: upsTestAbortTestInProgress.setStatus('current') ups_test_general_systems_test = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 3)) if mibBuilder.loadTexts: upsTestGeneralSystemsTest.setStatus('current') ups_test_quick_battery_test = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 4)) if mibBuilder.loadTexts: upsTestQuickBatteryTest.setStatus('current') ups_test_deep_battery_calibration = object_identity((1, 3, 6, 1, 2, 1, 33, 1, 7, 7, 5)) if mibBuilder.loadTexts: upsTestDeepBatteryCalibration.setStatus('current') ups_control = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 8)) ups_shutdown_type = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 1), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('output', 1), ('system', 2)))).setMaxAccess('readwrite') if mibBuilder.loadTexts: upsShutdownType.setStatus('current') ups_shutdown_after_delay = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 2), integer32().subtype(subtypeSpec=value_range_constraint(-1, 2147483648))).setUnits('seconds').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsShutdownAfterDelay.setStatus('current') ups_startup_after_delay = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 3), integer32().subtype(subtypeSpec=value_range_constraint(-1, 2147483648))).setUnits('seconds').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsStartupAfterDelay.setStatus('current') ups_reboot_with_duration = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 4), integer32().subtype(subtypeSpec=value_range_constraint(-1, 300))).setUnits('seconds').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsRebootWithDuration.setStatus('current') ups_auto_restart = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 8, 5), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('on', 1), ('off', 2)))).setMaxAccess('readwrite') if mibBuilder.loadTexts: upsAutoRestart.setStatus('current') ups_config = mib_identifier((1, 3, 6, 1, 2, 1, 33, 1, 9)) ups_config_input_voltage = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 1), non_negative_integer()).setUnits('RMS Volts').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsConfigInputVoltage.setStatus('current') ups_config_input_freq = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 2), non_negative_integer()).setUnits('0.1 Hertz').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsConfigInputFreq.setStatus('current') ups_config_output_voltage = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 3), non_negative_integer()).setUnits('RMS Volts').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsConfigOutputVoltage.setStatus('current') ups_config_output_freq = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 4), non_negative_integer()).setUnits('0.1 Hertz').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsConfigOutputFreq.setStatus('current') ups_config_output_va = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 5), non_negative_integer()).setUnits('Volt-Amps').setMaxAccess('readonly') if mibBuilder.loadTexts: upsConfigOutputVA.setStatus('current') ups_config_output_power = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 6), non_negative_integer()).setUnits('Watts').setMaxAccess('readonly') if mibBuilder.loadTexts: upsConfigOutputPower.setStatus('current') ups_config_low_batt_time = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 7), non_negative_integer()).setUnits('minutes').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsConfigLowBattTime.setStatus('current') ups_config_audible_status = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 8), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3))).clone(namedValues=named_values(('disabled', 1), ('enabled', 2), ('muted', 3)))).setMaxAccess('readwrite') if mibBuilder.loadTexts: upsConfigAudibleStatus.setStatus('current') ups_config_low_voltage_transfer_point = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 9), non_negative_integer()).setUnits('RMS Volts').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsConfigLowVoltageTransferPoint.setStatus('current') ups_config_high_voltage_transfer_point = mib_scalar((1, 3, 6, 1, 2, 1, 33, 1, 9, 10), non_negative_integer()).setUnits('RMS Volts').setMaxAccess('readwrite') if mibBuilder.loadTexts: upsConfigHighVoltageTransferPoint.setStatus('current') ups_traps = mib_identifier((1, 3, 6, 1, 2, 1, 33, 2)) ups_trap_on_battery = notification_type((1, 3, 6, 1, 2, 1, 33, 2, 1)).setObjects(('UPS-MIB', 'upsEstimatedMinutesRemaining'), ('UPS-MIB', 'upsSecondsOnBattery'), ('UPS-MIB', 'upsConfigLowBattTime')) if mibBuilder.loadTexts: upsTrapOnBattery.setStatus('current') ups_trap_test_completed = notification_type((1, 3, 6, 1, 2, 1, 33, 2, 2)).setObjects(('UPS-MIB', 'upsTestId'), ('UPS-MIB', 'upsTestSpinLock'), ('UPS-MIB', 'upsTestResultsSummary'), ('UPS-MIB', 'upsTestResultsDetail'), ('UPS-MIB', 'upsTestStartTime'), ('UPS-MIB', 'upsTestElapsedTime')) if mibBuilder.loadTexts: upsTrapTestCompleted.setStatus('current') ups_trap_alarm_entry_added = notification_type((1, 3, 6, 1, 2, 1, 33, 2, 3)).setObjects(('UPS-MIB', 'upsAlarmId'), ('UPS-MIB', 'upsAlarmDescr')) if mibBuilder.loadTexts: upsTrapAlarmEntryAdded.setStatus('current') ups_trap_alarm_entry_removed = notification_type((1, 3, 6, 1, 2, 1, 33, 2, 4)).setObjects(('UPS-MIB', 'upsAlarmId'), ('UPS-MIB', 'upsAlarmDescr')) if mibBuilder.loadTexts: upsTrapAlarmEntryRemoved.setStatus('current') ups_conformance = mib_identifier((1, 3, 6, 1, 2, 1, 33, 3)) ups_compliances = mib_identifier((1, 3, 6, 1, 2, 1, 33, 3, 1)) ups_subset_compliance = module_compliance((1, 3, 6, 1, 2, 1, 33, 3, 1, 1)).setObjects(('UPS-MIB', 'upsSubsetIdentGroup'), ('UPS-MIB', 'upsSubsetBatteryGroup'), ('UPS-MIB', 'upsSubsetInputGroup'), ('UPS-MIB', 'upsSubsetOutputGroup'), ('UPS-MIB', 'upsSubsetAlarmGroup'), ('UPS-MIB', 'upsSubsetControlGroup'), ('UPS-MIB', 'upsSubsetConfigGroup')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_subset_compliance = upsSubsetCompliance.setStatus('current') ups_basic_compliance = module_compliance((1, 3, 6, 1, 2, 1, 33, 3, 1, 2)).setObjects(('UPS-MIB', 'upsBasicIdentGroup'), ('UPS-MIB', 'upsBasicBatteryGroup'), ('UPS-MIB', 'upsBasicInputGroup'), ('UPS-MIB', 'upsBasicOutputGroup'), ('UPS-MIB', 'upsBasicAlarmGroup'), ('UPS-MIB', 'upsBasicTestGroup'), ('UPS-MIB', 'upsBasicControlGroup'), ('UPS-MIB', 'upsBasicConfigGroup')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_compliance = upsBasicCompliance.setStatus('current') ups_full_compliance = module_compliance((1, 3, 6, 1, 2, 1, 33, 3, 1, 3)).setObjects(('UPS-MIB', 'upsFullIdentGroup'), ('UPS-MIB', 'upsFullBatteryGroup'), ('UPS-MIB', 'upsFullInputGroup'), ('UPS-MIB', 'upsFullOutputGroup'), ('UPS-MIB', 'upsFullAlarmGroup'), ('UPS-MIB', 'upsFullTestGroup'), ('UPS-MIB', 'upsFullControlGroup'), ('UPS-MIB', 'upsFullConfigGroup')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_compliance = upsFullCompliance.setStatus('current') ups_groups = mib_identifier((1, 3, 6, 1, 2, 1, 33, 3, 2)) ups_subset_groups = mib_identifier((1, 3, 6, 1, 2, 1, 33, 3, 2, 1)) ups_subset_ident_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 1)).setObjects(('UPS-MIB', 'upsIdentManufacturer'), ('UPS-MIB', 'upsIdentModel'), ('UPS-MIB', 'upsIdentAgentSoftwareVersion'), ('UPS-MIB', 'upsIdentName'), ('UPS-MIB', 'upsIdentAttachedDevices')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_subset_ident_group = upsSubsetIdentGroup.setStatus('current') ups_subset_battery_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 2)).setObjects(('UPS-MIB', 'upsBatteryStatus'), ('UPS-MIB', 'upsSecondsOnBattery')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_subset_battery_group = upsSubsetBatteryGroup.setStatus('current') ups_subset_input_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 3)).setObjects(('UPS-MIB', 'upsInputLineBads')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_subset_input_group = upsSubsetInputGroup.setStatus('current') ups_subset_output_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 4)).setObjects(('UPS-MIB', 'upsOutputSource')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_subset_output_group = upsSubsetOutputGroup.setStatus('current') ups_subset_alarm_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 6)).setObjects(('UPS-MIB', 'upsAlarmsPresent'), ('UPS-MIB', 'upsAlarmDescr'), ('UPS-MIB', 'upsAlarmTime')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_subset_alarm_group = upsSubsetAlarmGroup.setStatus('current') ups_subset_control_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 8)).setObjects(('UPS-MIB', 'upsShutdownType'), ('UPS-MIB', 'upsShutdownAfterDelay'), ('UPS-MIB', 'upsAutoRestart')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_subset_control_group = upsSubsetControlGroup.setStatus('current') ups_subset_config_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 1, 9)).setObjects(('UPS-MIB', 'upsConfigInputVoltage'), ('UPS-MIB', 'upsConfigInputFreq'), ('UPS-MIB', 'upsConfigOutputVoltage'), ('UPS-MIB', 'upsConfigOutputFreq'), ('UPS-MIB', 'upsConfigOutputVA'), ('UPS-MIB', 'upsConfigOutputPower')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_subset_config_group = upsSubsetConfigGroup.setStatus('current') ups_basic_groups = mib_identifier((1, 3, 6, 1, 2, 1, 33, 3, 2, 2)) ups_basic_ident_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 1)).setObjects(('UPS-MIB', 'upsIdentManufacturer'), ('UPS-MIB', 'upsIdentModel'), ('UPS-MIB', 'upsIdentUPSSoftwareVersion'), ('UPS-MIB', 'upsIdentAgentSoftwareVersion'), ('UPS-MIB', 'upsIdentName')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_ident_group = upsBasicIdentGroup.setStatus('current') ups_basic_battery_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 2)).setObjects(('UPS-MIB', 'upsBatteryStatus'), ('UPS-MIB', 'upsSecondsOnBattery')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_battery_group = upsBasicBatteryGroup.setStatus('current') ups_basic_input_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 3)).setObjects(('UPS-MIB', 'upsInputLineBads'), ('UPS-MIB', 'upsInputNumLines'), ('UPS-MIB', 'upsInputFrequency'), ('UPS-MIB', 'upsInputVoltage')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_input_group = upsBasicInputGroup.setStatus('current') ups_basic_output_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 4)).setObjects(('UPS-MIB', 'upsOutputSource'), ('UPS-MIB', 'upsOutputFrequency'), ('UPS-MIB', 'upsOutputNumLines'), ('UPS-MIB', 'upsOutputVoltage')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_output_group = upsBasicOutputGroup.setStatus('current') ups_basic_bypass_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 5)).setObjects(('UPS-MIB', 'upsBypassFrequency'), ('UPS-MIB', 'upsBypassNumLines'), ('UPS-MIB', 'upsBypassVoltage')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_bypass_group = upsBasicBypassGroup.setStatus('current') ups_basic_alarm_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 6)).setObjects(('UPS-MIB', 'upsAlarmsPresent'), ('UPS-MIB', 'upsAlarmDescr'), ('UPS-MIB', 'upsAlarmTime')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_alarm_group = upsBasicAlarmGroup.setStatus('current') ups_basic_test_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 7)).setObjects(('UPS-MIB', 'upsTestId'), ('UPS-MIB', 'upsTestSpinLock'), ('UPS-MIB', 'upsTestResultsSummary'), ('UPS-MIB', 'upsTestResultsDetail'), ('UPS-MIB', 'upsTestStartTime'), ('UPS-MIB', 'upsTestElapsedTime')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_test_group = upsBasicTestGroup.setStatus('current') ups_basic_control_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 8)).setObjects(('UPS-MIB', 'upsShutdownType'), ('UPS-MIB', 'upsShutdownAfterDelay'), ('UPS-MIB', 'upsStartupAfterDelay'), ('UPS-MIB', 'upsRebootWithDuration'), ('UPS-MIB', 'upsAutoRestart')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_control_group = upsBasicControlGroup.setStatus('current') ups_basic_config_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 2, 9)).setObjects(('UPS-MIB', 'upsConfigInputVoltage'), ('UPS-MIB', 'upsConfigInputFreq'), ('UPS-MIB', 'upsConfigOutputVoltage'), ('UPS-MIB', 'upsConfigOutputFreq'), ('UPS-MIB', 'upsConfigOutputVA'), ('UPS-MIB', 'upsConfigOutputPower'), ('UPS-MIB', 'upsConfigLowBattTime'), ('UPS-MIB', 'upsConfigAudibleStatus')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_basic_config_group = upsBasicConfigGroup.setStatus('current') ups_full_groups = mib_identifier((1, 3, 6, 1, 2, 1, 33, 3, 2, 3)) ups_full_ident_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 1)).setObjects(('UPS-MIB', 'upsIdentManufacturer'), ('UPS-MIB', 'upsIdentModel'), ('UPS-MIB', 'upsIdentUPSSoftwareVersion'), ('UPS-MIB', 'upsIdentAgentSoftwareVersion'), ('UPS-MIB', 'upsIdentName'), ('UPS-MIB', 'upsIdentAttachedDevices')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_ident_group = upsFullIdentGroup.setStatus('current') ups_full_battery_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 2)).setObjects(('UPS-MIB', 'upsBatteryStatus'), ('UPS-MIB', 'upsSecondsOnBattery'), ('UPS-MIB', 'upsEstimatedMinutesRemaining'), ('UPS-MIB', 'upsEstimatedChargeRemaining')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_battery_group = upsFullBatteryGroup.setStatus('current') ups_full_input_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 3)).setObjects(('UPS-MIB', 'upsInputLineBads'), ('UPS-MIB', 'upsInputNumLines'), ('UPS-MIB', 'upsInputFrequency'), ('UPS-MIB', 'upsInputVoltage')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_input_group = upsFullInputGroup.setStatus('current') ups_full_output_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 4)).setObjects(('UPS-MIB', 'upsOutputSource'), ('UPS-MIB', 'upsOutputFrequency'), ('UPS-MIB', 'upsOutputNumLines'), ('UPS-MIB', 'upsOutputVoltage'), ('UPS-MIB', 'upsOutputCurrent'), ('UPS-MIB', 'upsOutputPower'), ('UPS-MIB', 'upsOutputPercentLoad')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_output_group = upsFullOutputGroup.setStatus('current') ups_full_bypass_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 5)).setObjects(('UPS-MIB', 'upsBypassFrequency'), ('UPS-MIB', 'upsBypassNumLines'), ('UPS-MIB', 'upsBypassVoltage')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_bypass_group = upsFullBypassGroup.setStatus('current') ups_full_alarm_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 6)).setObjects(('UPS-MIB', 'upsAlarmsPresent'), ('UPS-MIB', 'upsAlarmDescr'), ('UPS-MIB', 'upsAlarmTime')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_alarm_group = upsFullAlarmGroup.setStatus('current') ups_full_test_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 7)).setObjects(('UPS-MIB', 'upsTestId'), ('UPS-MIB', 'upsTestSpinLock'), ('UPS-MIB', 'upsTestResultsSummary'), ('UPS-MIB', 'upsTestResultsDetail'), ('UPS-MIB', 'upsTestStartTime'), ('UPS-MIB', 'upsTestElapsedTime')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_test_group = upsFullTestGroup.setStatus('current') ups_full_control_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 8)).setObjects(('UPS-MIB', 'upsShutdownType'), ('UPS-MIB', 'upsShutdownAfterDelay'), ('UPS-MIB', 'upsStartupAfterDelay'), ('UPS-MIB', 'upsRebootWithDuration'), ('UPS-MIB', 'upsAutoRestart')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_control_group = upsFullControlGroup.setStatus('current') ups_full_config_group = object_group((1, 3, 6, 1, 2, 1, 33, 3, 2, 3, 9)).setObjects(('UPS-MIB', 'upsConfigInputVoltage'), ('UPS-MIB', 'upsConfigInputFreq'), ('UPS-MIB', 'upsConfigOutputVoltage'), ('UPS-MIB', 'upsConfigOutputFreq'), ('UPS-MIB', 'upsConfigOutputVA'), ('UPS-MIB', 'upsConfigOutputPower'), ('UPS-MIB', 'upsConfigLowBattTime'), ('UPS-MIB', 'upsConfigAudibleStatus')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ups_full_config_group = upsFullConfigGroup.setStatus('current') mibBuilder.exportSymbols('UPS-MIB', upsEstimatedChargeRemaining=upsEstimatedChargeRemaining, upsInputTable=upsInputTable, upsInputCurrent=upsInputCurrent, upsAlarmOutputBad=upsAlarmOutputBad, upsIdentUPSSoftwareVersion=upsIdentUPSSoftwareVersion, upsInputVoltage=upsInputVoltage, upsOutputEntry=upsOutputEntry, upsAlarmShutdownPending=upsAlarmShutdownPending, upsOutputFrequency=upsOutputFrequency, upsAlarmOutputOverload=upsAlarmOutputOverload, upsSubsetControlGroup=upsSubsetControlGroup, upsAlarmShutdownImminent=upsAlarmShutdownImminent, upsAlarmLowBattery=upsAlarmLowBattery, upsBatteryCurrent=upsBatteryCurrent, upsConfigOutputFreq=upsConfigOutputFreq, upsWellKnownTests=upsWellKnownTests, upsIdentManufacturer=upsIdentManufacturer, upsTestAbortTestInProgress=upsTestAbortTestInProgress, upsConfig=upsConfig, upsFullInputGroup=upsFullInputGroup, upsAlarmsPresent=upsAlarmsPresent, upsAlarmTempBad=upsAlarmTempBad, upsBypassFrequency=upsBypassFrequency, upsShutdownType=upsShutdownType, upsBatteryStatus=upsBatteryStatus, upsTrapTestCompleted=upsTrapTestCompleted, upsBasicIdentGroup=upsBasicIdentGroup, upsFullBatteryGroup=upsFullBatteryGroup, upsAlarmFuseFailure=upsAlarmFuseFailure, upsOutputCurrent=upsOutputCurrent, upsWellKnownAlarms=upsWellKnownAlarms, upsAlarmOnBattery=upsAlarmOnBattery, upsFullTestGroup=upsFullTestGroup, upsOutputNumLines=upsOutputNumLines, upsAlarmGeneralFault=upsAlarmGeneralFault, upsInputLineIndex=upsInputLineIndex, upsOutputPower=upsOutputPower, upsSubsetOutputGroup=upsSubsetOutputGroup, upsAlarmChargerFailed=upsAlarmChargerFailed, upsBasicBatteryGroup=upsBasicBatteryGroup, upsAlarmOnBypass=upsAlarmOnBypass, upsBasicOutputGroup=upsBasicOutputGroup, upsAlarmDiagnosticTestFailed=upsAlarmDiagnosticTestFailed, upsTestGeneralSystemsTest=upsTestGeneralSystemsTest, upsTestId=upsTestId, upsTrapAlarmEntryRemoved=upsTrapAlarmEntryRemoved, upsEstimatedMinutesRemaining=upsEstimatedMinutesRemaining, upsIdentAttachedDevices=upsIdentAttachedDevices, upsAlarmCommunicationsLost=upsAlarmCommunicationsLost, upsTestStartTime=upsTestStartTime, upsBasicInputGroup=upsBasicInputGroup, upsAlarmId=upsAlarmId, upsAlarmTime=upsAlarmTime, upsSubsetAlarmGroup=upsSubsetAlarmGroup, upsAlarmUpsOutputOff=upsAlarmUpsOutputOff, upsIdentName=upsIdentName, upsGroups=upsGroups, upsConfigOutputPower=upsConfigOutputPower, upsAlarmTestInProgress=upsAlarmTestInProgress, upsTestNoTestsInitiated=upsTestNoTestsInitiated, upsBasicConfigGroup=upsBasicConfigGroup, upsBatteryTemperature=upsBatteryTemperature, upsInputLineBads=upsInputLineBads, upsInputTruePower=upsInputTruePower, upsTest=upsTest, upsIdent=upsIdent, upsBypassVoltage=upsBypassVoltage, upsFullControlGroup=upsFullControlGroup, upsTraps=upsTraps, upsOutputTable=upsOutputTable, upsIdentModel=upsIdentModel, upsSubsetCompliance=upsSubsetCompliance, upsInputFrequency=upsInputFrequency, upsOutputVoltage=upsOutputVoltage, upsTrapOnBattery=upsTrapOnBattery, upsOutput=upsOutput, upsFullConfigGroup=upsFullConfigGroup, upsSubsetConfigGroup=upsSubsetConfigGroup, upsTestQuickBatteryTest=upsTestQuickBatteryTest, upsConfigOutputVoltage=upsConfigOutputVoltage, upsAlarmBypassBad=upsAlarmBypassBad, upsSecondsOnBattery=upsSecondsOnBattery, upsFullAlarmGroup=upsFullAlarmGroup, upsBypass=upsBypass, upsBypassLineIndex=upsBypassLineIndex, upsBypassNumLines=upsBypassNumLines, upsBypassCurrent=upsBypassCurrent, upsInput=upsInput, upsOutputSource=upsOutputSource, upsConfigAudibleStatus=upsConfigAudibleStatus, upsAlarmTable=upsAlarmTable, upsAlarmFanFailure=upsAlarmFanFailure, upsSubsetGroups=upsSubsetGroups, upsBasicControlGroup=upsBasicControlGroup, upsConfigHighVoltageTransferPoint=upsConfigHighVoltageTransferPoint, upsAlarmDepletedBattery=upsAlarmDepletedBattery, upsAutoRestart=upsAutoRestart, upsBasicGroups=upsBasicGroups, upsConfigOutputVA=upsConfigOutputVA, upsAlarmUpsSystemOff=upsAlarmUpsSystemOff, upsAlarmUpsOffAsRequested=upsAlarmUpsOffAsRequested, upsConformance=upsConformance, PYSNMP_MODULE_ID=upsMIB, upsIdentAgentSoftwareVersion=upsIdentAgentSoftwareVersion, upsRebootWithDuration=upsRebootWithDuration, upsObjects=upsObjects, upsTestResultsDetail=upsTestResultsDetail, upsOutputPercentLoad=upsOutputPercentLoad, upsBypassTable=upsBypassTable, upsFullBypassGroup=upsFullBypassGroup, upsSubsetBatteryGroup=upsSubsetBatteryGroup, upsAlarmEntry=upsAlarmEntry, upsControl=upsControl, upsTestDeepBatteryCalibration=upsTestDeepBatteryCalibration, upsStartupAfterDelay=upsStartupAfterDelay, upsCompliances=upsCompliances, upsFullOutputGroup=upsFullOutputGroup, NonNegativeInteger=NonNegativeInteger, upsFullIdentGroup=upsFullIdentGroup, upsInputNumLines=upsInputNumLines, upsBatteryVoltage=upsBatteryVoltage, upsBasicCompliance=upsBasicCompliance, upsSubsetInputGroup=upsSubsetInputGroup, upsOutputLineIndex=upsOutputLineIndex, upsAlarmBatteryBad=upsAlarmBatteryBad, upsBypassEntry=upsBypassEntry, upsConfigLowVoltageTransferPoint=upsConfigLowVoltageTransferPoint, upsMIB=upsMIB, upsBypassPower=upsBypassPower, upsConfigLowBattTime=upsConfigLowBattTime, upsBasicTestGroup=upsBasicTestGroup, upsConfigInputVoltage=upsConfigInputVoltage, upsTrapAlarmEntryAdded=upsTrapAlarmEntryAdded, upsTestSpinLock=upsTestSpinLock, upsBasicBypassGroup=upsBasicBypassGroup, upsTestElapsedTime=upsTestElapsedTime, upsInputEntry=upsInputEntry, PositiveInteger=PositiveInteger, upsFullCompliance=upsFullCompliance, upsAlarmAwaitingPower=upsAlarmAwaitingPower, upsShutdownAfterDelay=upsShutdownAfterDelay, upsConfigInputFreq=upsConfigInputFreq, upsAlarmDescr=upsAlarmDescr, upsAlarmOutputOffAsRequested=upsAlarmOutputOffAsRequested, upsBasicAlarmGroup=upsBasicAlarmGroup, upsBattery=upsBattery, upsSubsetIdentGroup=upsSubsetIdentGroup, upsAlarmInputBad=upsAlarmInputBad, upsFullGroups=upsFullGroups, upsTestResultsSummary=upsTestResultsSummary, upsAlarm=upsAlarm)
# # PySNMP MIB module ELTEX-MES-SNMP-COMMUNITY-EXT-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ELTEX-MES-SNMP-COMMUNITY-EXT-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:01:57 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ConstraintsIntersection, ValueRangeConstraint, SingleValueConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ConstraintsIntersection", "ValueRangeConstraint", "SingleValueConstraint", "ValueSizeConstraint") eltMesSnmpCommExtMIB, = mibBuilder.importSymbols("ELTEX-MES-MNG-MIB", "eltMesSnmpCommExtMIB") snmpCommunityEntry, = mibBuilder.importSymbols("SNMP-COMMUNITY-MIB", "snmpCommunityEntry") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") TimeTicks, ObjectIdentity, Counter64, Bits, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, MibIdentifier, Unsigned32, iso, Gauge32, IpAddress, Integer32, ModuleIdentity, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "TimeTicks", "ObjectIdentity", "Counter64", "Bits", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "MibIdentifier", "Unsigned32", "iso", "Gauge32", "IpAddress", "Integer32", "ModuleIdentity", "Counter32") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") eltSnmpCommunityTable = MibTable((1, 3, 6, 1, 4, 1, 35265, 1, 23, 1, 4, 1), ) if mibBuilder.loadTexts: eltSnmpCommunityTable.setStatus('current') if mibBuilder.loadTexts: eltSnmpCommunityTable.setDescription("The table of community strings configured in the SNMP engine's Local Configuration Datastore (LCD).") eltSnmpCommunityEntry = MibTableRow((1, 3, 6, 1, 4, 1, 35265, 1, 23, 1, 4, 1, 1), ) snmpCommunityEntry.registerAugmentions(("ELTEX-MES-SNMP-COMMUNITY-EXT-MIB", "eltSnmpCommunityEntry")) eltSnmpCommunityEntry.setIndexNames(*snmpCommunityEntry.getIndexNames()) if mibBuilder.loadTexts: eltSnmpCommunityEntry.setStatus('current') if mibBuilder.loadTexts: eltSnmpCommunityEntry.setDescription('Information about a particular community string.') eltSnmpCommunityAccessList = MibTableColumn((1, 3, 6, 1, 4, 1, 35265, 1, 23, 1, 4, 1, 1, 1), Integer32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: eltSnmpCommunityAccessList.setStatus('current') if mibBuilder.loadTexts: eltSnmpCommunityAccessList.setDescription('Index assigned to the ACL for SNMP community to filter SNMP requests.') mibBuilder.exportSymbols("ELTEX-MES-SNMP-COMMUNITY-EXT-MIB", eltSnmpCommunityTable=eltSnmpCommunityTable, eltSnmpCommunityEntry=eltSnmpCommunityEntry, eltSnmpCommunityAccessList=eltSnmpCommunityAccessList)
(integer, octet_string, object_identifier) = mibBuilder.importSymbols('ASN1', 'Integer', 'OctetString', 'ObjectIdentifier') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (constraints_union, constraints_intersection, value_range_constraint, single_value_constraint, value_size_constraint) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'ConstraintsUnion', 'ConstraintsIntersection', 'ValueRangeConstraint', 'SingleValueConstraint', 'ValueSizeConstraint') (elt_mes_snmp_comm_ext_mib,) = mibBuilder.importSymbols('ELTEX-MES-MNG-MIB', 'eltMesSnmpCommExtMIB') (snmp_community_entry,) = mibBuilder.importSymbols('SNMP-COMMUNITY-MIB', 'snmpCommunityEntry') (module_compliance, notification_group) = mibBuilder.importSymbols('SNMPv2-CONF', 'ModuleCompliance', 'NotificationGroup') (time_ticks, object_identity, counter64, bits, mib_scalar, mib_table, mib_table_row, mib_table_column, notification_type, mib_identifier, unsigned32, iso, gauge32, ip_address, integer32, module_identity, counter32) = mibBuilder.importSymbols('SNMPv2-SMI', 'TimeTicks', 'ObjectIdentity', 'Counter64', 'Bits', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'NotificationType', 'MibIdentifier', 'Unsigned32', 'iso', 'Gauge32', 'IpAddress', 'Integer32', 'ModuleIdentity', 'Counter32') (textual_convention, display_string) = mibBuilder.importSymbols('SNMPv2-TC', 'TextualConvention', 'DisplayString') elt_snmp_community_table = mib_table((1, 3, 6, 1, 4, 1, 35265, 1, 23, 1, 4, 1)) if mibBuilder.loadTexts: eltSnmpCommunityTable.setStatus('current') if mibBuilder.loadTexts: eltSnmpCommunityTable.setDescription("The table of community strings configured in the SNMP engine's Local Configuration Datastore (LCD).") elt_snmp_community_entry = mib_table_row((1, 3, 6, 1, 4, 1, 35265, 1, 23, 1, 4, 1, 1)) snmpCommunityEntry.registerAugmentions(('ELTEX-MES-SNMP-COMMUNITY-EXT-MIB', 'eltSnmpCommunityEntry')) eltSnmpCommunityEntry.setIndexNames(*snmpCommunityEntry.getIndexNames()) if mibBuilder.loadTexts: eltSnmpCommunityEntry.setStatus('current') if mibBuilder.loadTexts: eltSnmpCommunityEntry.setDescription('Information about a particular community string.') elt_snmp_community_access_list = mib_table_column((1, 3, 6, 1, 4, 1, 35265, 1, 23, 1, 4, 1, 1, 1), integer32()).setMaxAccess('readcreate') if mibBuilder.loadTexts: eltSnmpCommunityAccessList.setStatus('current') if mibBuilder.loadTexts: eltSnmpCommunityAccessList.setDescription('Index assigned to the ACL for SNMP community to filter SNMP requests.') mibBuilder.exportSymbols('ELTEX-MES-SNMP-COMMUNITY-EXT-MIB', eltSnmpCommunityTable=eltSnmpCommunityTable, eltSnmpCommunityEntry=eltSnmpCommunityEntry, eltSnmpCommunityAccessList=eltSnmpCommunityAccessList)
def fun(x): return 2*x fun(4)
def fun(x): return 2 * x fun(4)
# Define a class for the maze board class Maze: # Initialize number of rows, cols and start position def __init__(self, rows, cols, start): self.rows = rows self.cols = cols self.i = start[0] self.j = start[1] self.start = start def set(self, rewards, actions): self.rewards = rewards self.actions = actions def set_state(self, state): self.i = state[0] self.j = state[1] def current_state(self): return (self.i, self.j) def is_terminal(self, state): return state not in self.actions def move(self, action): if action in self.actions[(self.i, self.j)]: if action == 'U': self.i -= 1 elif action == 'D': self.i += 1 elif action == 'L': self.j -= 1 elif action == 'R': self.j += 1 return self.rewards.get((self.i, self.j), 0) def undo_move(self, action): if action == 'U': self.i += 1 elif action == 'D': self.i -= 1 elif action == 'L': self.j += 1 elif action == 'R': self.j -= 1 def game_over(self): return (self.i, self.j) not in self.actions def all_states(self): return set(self.actions.keys()) | set(self.rewards.keys()) def standard_maze(rows=8, cols=10, start=(7, 0)): g = Maze(rows, cols, start) stoppers = [] stoppers = [[(7, 7)], [(7, 3)], [ (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (4, 1), (6, 1), (7, 1), (1, 2), (6, 2), (1, 3), (3, 3), (4, 3), (5, 3), (6, 3), (0, 5), (1, 5), (7, 5), (7, 6), (5, 6), (5, 7), (0, 8), (2, 8), (4, 8), (5, 8), (7, 8), (0, 9), (7, 9), (7, 2) ]] ''' temp = [] ar, b = input("Enter a win: ").split(',') stoppers.append(([[int(ar), int(b)]])) ar, b = input("Enter a loss: ").split(',') stoppers.append(([[int(ar), int(b)]])) for t in range(int(input("Enter number of rocks"))): ar, b = input("Enter a rock: ").split(',') temp.append(([int(ar), int(b)])) stoppers.append(temp) actions = {}''' actions = {} for i in range(rows): for j in range(cols): list1 = [] if [(i, j)] not in stoppers and (i, j) not in stoppers[-1]: if (i + 1, j) not in stoppers[-1] and i + 1 < rows: list1.append('D') if (i - 1, j) not in stoppers[-1] and i - 1 >= 0: list1.append('U') if (i, j + 1) not in stoppers[-1] and j + 1 < cols: list1.append('R') if (i, j - 1) not in stoppers[-1] and j - 1 >= 0: list1.append('L') actions[i, j] = tuple(list1) ''' for i in range(rows): for j in range(cols): list1 = [] if [[i, j]] not in stoppers and [i, j] not in stoppers[-1]: if [i + 1, j] not in stoppers[-1] and i + 1 < rows: list1.append('D') if [i - 1, j] not in stoppers[-1] and i - 1 >= 0: list1.append('U') if [i, j + 1] not in stoppers[-1] and j + 1 < cols: list1.append('R') if [i, j - 1] not in stoppers[-1] and j - 1 >= 0: list1.append('L') actions[i, j] = tuple(list1) ''' rewards = {} for win in stoppers[0]: rewards[tuple(win)] = 1 for loss in stoppers[1]: rewards[tuple(loss)] = -5 actions = {k: v for k, v in actions.items() if v is not ()} g.set(rewards, actions) return g def negative_maze(step_cost=-0.1, rows=8, cols=10, start=(7, 0)): g = standard_maze(rows, cols, start) for i in list(g.actions.keys()): g.rewards[i] = step_cost return g def print_values(Val, g): for i in range(g.rows): print("----------------------------------------------------------------------") for j in range(g.cols): v = Val.get((i, j), 0) if v > 0: print(" %.2f|" % v, end="") elif v == 0: print(" ### |", end="") else: print("%.2f|" % v, end="") print("") def print_policy(P, g): for i in range(g.rows): print("----------------------------------------------------------------------") for j in range(g.cols): p = P.get((i, j), " ") if p != '': print("%s |" % p, end="") else: print(" ### |", end="") print("")
class Maze: def __init__(self, rows, cols, start): self.rows = rows self.cols = cols self.i = start[0] self.j = start[1] self.start = start def set(self, rewards, actions): self.rewards = rewards self.actions = actions def set_state(self, state): self.i = state[0] self.j = state[1] def current_state(self): return (self.i, self.j) def is_terminal(self, state): return state not in self.actions def move(self, action): if action in self.actions[self.i, self.j]: if action == 'U': self.i -= 1 elif action == 'D': self.i += 1 elif action == 'L': self.j -= 1 elif action == 'R': self.j += 1 return self.rewards.get((self.i, self.j), 0) def undo_move(self, action): if action == 'U': self.i += 1 elif action == 'D': self.i -= 1 elif action == 'L': self.j += 1 elif action == 'R': self.j -= 1 def game_over(self): return (self.i, self.j) not in self.actions def all_states(self): return set(self.actions.keys()) | set(self.rewards.keys()) def standard_maze(rows=8, cols=10, start=(7, 0)): g = maze(rows, cols, start) stoppers = [] stoppers = [[(7, 7)], [(7, 3)], [(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (4, 1), (6, 1), (7, 1), (1, 2), (6, 2), (1, 3), (3, 3), (4, 3), (5, 3), (6, 3), (0, 5), (1, 5), (7, 5), (7, 6), (5, 6), (5, 7), (0, 8), (2, 8), (4, 8), (5, 8), (7, 8), (0, 9), (7, 9), (7, 2)]] '\n temp = []\n ar, b = input("Enter a win: ").split(\',\')\n stoppers.append(([[int(ar), int(b)]]))\n\n ar, b = input("Enter a loss: ").split(\',\')\n stoppers.append(([[int(ar), int(b)]]))\n\n for t in range(int(input("Enter number of rocks"))):\n ar, b = input("Enter a rock: ").split(\',\')\n temp.append(([int(ar), int(b)]))\n stoppers.append(temp)\n actions = {}' actions = {} for i in range(rows): for j in range(cols): list1 = [] if [(i, j)] not in stoppers and (i, j) not in stoppers[-1]: if (i + 1, j) not in stoppers[-1] and i + 1 < rows: list1.append('D') if (i - 1, j) not in stoppers[-1] and i - 1 >= 0: list1.append('U') if (i, j + 1) not in stoppers[-1] and j + 1 < cols: list1.append('R') if (i, j - 1) not in stoppers[-1] and j - 1 >= 0: list1.append('L') actions[i, j] = tuple(list1) "\n for i in range(rows):\n for j in range(cols):\n list1 = []\n if [[i, j]] not in stoppers and [i, j] not in stoppers[-1]:\n\n if [i + 1, j] not in stoppers[-1] and i + 1 < rows:\n list1.append('D')\n if [i - 1, j] not in stoppers[-1] and i - 1 >= 0:\n list1.append('U')\n if [i, j + 1] not in stoppers[-1] and j + 1 < cols:\n list1.append('R')\n if [i, j - 1] not in stoppers[-1] and j - 1 >= 0:\n list1.append('L')\n\n actions[i, j] = tuple(list1)\n " rewards = {} for win in stoppers[0]: rewards[tuple(win)] = 1 for loss in stoppers[1]: rewards[tuple(loss)] = -5 actions = {k: v for (k, v) in actions.items() if v is not ()} g.set(rewards, actions) return g def negative_maze(step_cost=-0.1, rows=8, cols=10, start=(7, 0)): g = standard_maze(rows, cols, start) for i in list(g.actions.keys()): g.rewards[i] = step_cost return g def print_values(Val, g): for i in range(g.rows): print('----------------------------------------------------------------------') for j in range(g.cols): v = Val.get((i, j), 0) if v > 0: print(' %.2f|' % v, end='') elif v == 0: print(' ### |', end='') else: print('%.2f|' % v, end='') print('') def print_policy(P, g): for i in range(g.rows): print('----------------------------------------------------------------------') for j in range(g.cols): p = P.get((i, j), ' ') if p != '': print('%s |' % p, end='') else: print(' ### |', end='') print('')
SUPPORTED_TRANS = { "height": "h", "width": "w", "aspect_ratio": "ar", "quality": "q", "crop": "c", "crop_mode": "cm", "x": "x", "y": "y", "focus": "fo", "format": "f", "radius": "r", "background": "bg", "border": "bo", "rotation": "rt", "blur": "bl", "named": "n", "overlay_image": "oi", "overlay_x": "ox", "overlay_y": "oy", "overlay_focus": "ofo", "overlay_height": "oh", "overlay_width": "ow", "overlay_text": "ot", "overlay_text_font_size": "ots", "overlay_text_font_family": "otf", "overlay_text_color": "otc", "overlay_alpha": "oa", "overlay_text_typography": "ott", "overlay_background": "obg", "overlay_image_trim": "oit", "progressive": "pr", "lossless": "lo", "trim": "t", "metadata": "md", "color_profile": "cp", "default_image": "di", "dpr": "dpr", "effect_sharpen": "e-sharpen", "effect_usm": "e-usm", "effect_contrast": "e-contrast", "effect_gray": "e-grayscale", "original": "orig", }
supported_trans = {'height': 'h', 'width': 'w', 'aspect_ratio': 'ar', 'quality': 'q', 'crop': 'c', 'crop_mode': 'cm', 'x': 'x', 'y': 'y', 'focus': 'fo', 'format': 'f', 'radius': 'r', 'background': 'bg', 'border': 'bo', 'rotation': 'rt', 'blur': 'bl', 'named': 'n', 'overlay_image': 'oi', 'overlay_x': 'ox', 'overlay_y': 'oy', 'overlay_focus': 'ofo', 'overlay_height': 'oh', 'overlay_width': 'ow', 'overlay_text': 'ot', 'overlay_text_font_size': 'ots', 'overlay_text_font_family': 'otf', 'overlay_text_color': 'otc', 'overlay_alpha': 'oa', 'overlay_text_typography': 'ott', 'overlay_background': 'obg', 'overlay_image_trim': 'oit', 'progressive': 'pr', 'lossless': 'lo', 'trim': 't', 'metadata': 'md', 'color_profile': 'cp', 'default_image': 'di', 'dpr': 'dpr', 'effect_sharpen': 'e-sharpen', 'effect_usm': 'e-usm', 'effect_contrast': 'e-contrast', 'effect_gray': 'e-grayscale', 'original': 'orig'}
class Agent: ''' Base class for all agents ''' def __init__(self, player): self.player = player pass def get_next_action(self, game_env): ''' Evaluates the game environment and returns the next best action according to the agent Arguments: game_env -> game environment Returns: next_move -> best move according to the agent ''' pass def update_agent_state(self, action): ''' Observes the environment and updates the agent Arguments: action -> Action taken to change the state ''' pass def reset_agent(self): ''' Reset the state of the agent ''' pass def get_action_value(self, game_env, action): ''' Get the value of the next state achieved by the input action Arguments: action -> Action whose value has to be estimated ''' pass
class Agent: """ Base class for all agents """ def __init__(self, player): self.player = player pass def get_next_action(self, game_env): """ Evaluates the game environment and returns the next best action according to the agent Arguments: game_env -> game environment Returns: next_move -> best move according to the agent """ pass def update_agent_state(self, action): """ Observes the environment and updates the agent Arguments: action -> Action taken to change the state """ pass def reset_agent(self): """ Reset the state of the agent """ pass def get_action_value(self, game_env, action): """ Get the value of the next state achieved by the input action Arguments: action -> Action whose value has to be estimated """ pass
class InvalidTag(Exception): pass class IgnoreObject(Exception): def __init__(self, original_exception=None, trback=None, *args, **kwargs): super(Exception, self).__init__(*args, **kwargs) self.original_exception = original_exception self.trback = trback class UnknownProtocol(Exception): pass class MissingTransform(Exception): pass class ExtraTransform(Exception): pass
class Invalidtag(Exception): pass class Ignoreobject(Exception): def __init__(self, original_exception=None, trback=None, *args, **kwargs): super(Exception, self).__init__(*args, **kwargs) self.original_exception = original_exception self.trback = trback class Unknownprotocol(Exception): pass class Missingtransform(Exception): pass class Extratransform(Exception): pass
commands = { 'app': { 'label': 'Application', 'actions': { 'neweditor': { 'label': 'New SQL editor', 'description': 'Open new SQL editor', 'icon': 'document-new-symbolic', 'shortcut': '<Control>N', 'callback': 'win.docview.add_worksheet' }, 'switch_editor1': { 'label': 'Switch to editor 1', 'shortcut': '<Alt>1', 'callback': 'win.docview.switch_to_editor', 'args': [1] }, 'switch_editor2': { 'label': 'Switch to editor 2', 'shortcut': '<Alt>2', 'callback': 'win.docview.switch_to_editor', 'args': [2] }, 'switch_editor3': { 'label': 'Switch to editor 3', 'shortcut': '<Alt>3', 'callback': 'win.docview.switch_to_editor', 'args': [3] }, 'switch_editor4': { 'label': 'Switch to editor 4', 'shortcut': '<Alt>4', 'callback': 'win.docview.switch_to_editor', 'args': [4] }, 'switch_editor5': { 'label': 'Switch to editor 5', 'shortcut': '<Alt>5', 'callback': 'win.docview.switch_to_editor', 'args': [5] }, 'switch_editor6': { 'label': 'Switch to editor 6', 'shortcut': '<Alt>6', 'callback': 'win.docview.switch_to_editor', 'args': [6] }, 'switch_editor7': { 'label': 'Switch to editor 7', 'shortcut': '<Alt>7', 'callback': 'win.docview.switch_to_editor', 'args': [7] }, 'switch_editor8': { 'label': 'Switch to editor 8', 'shortcut': '<Alt>8', 'callback': 'win.docview.switch_to_editor', 'args': [8] }, 'switch_editor9': { 'label': 'Switch to editor 9', 'shortcut': '<Alt>9', 'callback': 'win.docview.switch_to_editor', 'args': [9] } } }, 'editor': { 'label': 'SQL Editor', 'actions': { 'run': { 'label': 'Run SQL statement', 'description': 'Run SQL statement at cursor', 'icon': 'media-playback-start-symbolic', 'shortcut': '<Control>Return', 'callback': 'run_query' }, 'dbconnect': { 'label': 'Connect', 'description': 'Open or change database connection', 'icon': 'gtk-connect', 'shortcut': 'F9', 'callback': 'assume_connection', 'args': [True] }, 'openconnection': { 'label': 'Open assigned connection', 'description': 'Opens the currently assigned connection', 'shortcut': 'F10', 'callback': 'open_connection', }, 'dbdisconnect': { 'label': 'Disconnect', 'description': 'Close database connection', 'icon': 'gtk-disconnect', 'shortcut': 'F11', 'callback': 'set_connection', 'args': [None] }, 'format': { 'label': 'Format SQL', 'description': 'Format SQL statement at cursor', 'icon': 'format-indent-more-symbolic', 'shortcut': '<Alt>f', 'callback': 'editor.format_statement' }, 'jump_next': { 'label': 'Next statement', 'description': 'Jump to next statement', 'shortcut': '<Alt><Shift>Down', 'callback': 'editor.jump_next' }, 'jump_prev': { 'label': 'Previous statement', 'description': 'Jump to previous statement', 'shortcut': '<Alt><Shift>Up', 'callback': 'editor.jump_prev' }, 'close': { 'label': 'Close editor', 'description': 'Closes the current editor', 'shortcut': '<Ctrl>W', 'callback': 'editor.close', }, 'insert_uuid': { 'label': 'Insert UUID', 'description': 'Inserts a new UUID at cursor', 'callback': 'editor.insert_uuid', 'shortcut': '<Alt><Shift>u' } } } }
commands = {'app': {'label': 'Application', 'actions': {'neweditor': {'label': 'New SQL editor', 'description': 'Open new SQL editor', 'icon': 'document-new-symbolic', 'shortcut': '<Control>N', 'callback': 'win.docview.add_worksheet'}, 'switch_editor1': {'label': 'Switch to editor 1', 'shortcut': '<Alt>1', 'callback': 'win.docview.switch_to_editor', 'args': [1]}, 'switch_editor2': {'label': 'Switch to editor 2', 'shortcut': '<Alt>2', 'callback': 'win.docview.switch_to_editor', 'args': [2]}, 'switch_editor3': {'label': 'Switch to editor 3', 'shortcut': '<Alt>3', 'callback': 'win.docview.switch_to_editor', 'args': [3]}, 'switch_editor4': {'label': 'Switch to editor 4', 'shortcut': '<Alt>4', 'callback': 'win.docview.switch_to_editor', 'args': [4]}, 'switch_editor5': {'label': 'Switch to editor 5', 'shortcut': '<Alt>5', 'callback': 'win.docview.switch_to_editor', 'args': [5]}, 'switch_editor6': {'label': 'Switch to editor 6', 'shortcut': '<Alt>6', 'callback': 'win.docview.switch_to_editor', 'args': [6]}, 'switch_editor7': {'label': 'Switch to editor 7', 'shortcut': '<Alt>7', 'callback': 'win.docview.switch_to_editor', 'args': [7]}, 'switch_editor8': {'label': 'Switch to editor 8', 'shortcut': '<Alt>8', 'callback': 'win.docview.switch_to_editor', 'args': [8]}, 'switch_editor9': {'label': 'Switch to editor 9', 'shortcut': '<Alt>9', 'callback': 'win.docview.switch_to_editor', 'args': [9]}}}, 'editor': {'label': 'SQL Editor', 'actions': {'run': {'label': 'Run SQL statement', 'description': 'Run SQL statement at cursor', 'icon': 'media-playback-start-symbolic', 'shortcut': '<Control>Return', 'callback': 'run_query'}, 'dbconnect': {'label': 'Connect', 'description': 'Open or change database connection', 'icon': 'gtk-connect', 'shortcut': 'F9', 'callback': 'assume_connection', 'args': [True]}, 'openconnection': {'label': 'Open assigned connection', 'description': 'Opens the currently assigned connection', 'shortcut': 'F10', 'callback': 'open_connection'}, 'dbdisconnect': {'label': 'Disconnect', 'description': 'Close database connection', 'icon': 'gtk-disconnect', 'shortcut': 'F11', 'callback': 'set_connection', 'args': [None]}, 'format': {'label': 'Format SQL', 'description': 'Format SQL statement at cursor', 'icon': 'format-indent-more-symbolic', 'shortcut': '<Alt>f', 'callback': 'editor.format_statement'}, 'jump_next': {'label': 'Next statement', 'description': 'Jump to next statement', 'shortcut': '<Alt><Shift>Down', 'callback': 'editor.jump_next'}, 'jump_prev': {'label': 'Previous statement', 'description': 'Jump to previous statement', 'shortcut': '<Alt><Shift>Up', 'callback': 'editor.jump_prev'}, 'close': {'label': 'Close editor', 'description': 'Closes the current editor', 'shortcut': '<Ctrl>W', 'callback': 'editor.close'}, 'insert_uuid': {'label': 'Insert UUID', 'description': 'Inserts a new UUID at cursor', 'callback': 'editor.insert_uuid', 'shortcut': '<Alt><Shift>u'}}}}
# squares = [] # for value in range(1,11): # squares.append(value ** 2); # print(squares); squares = [value ** 2 for value in range(1,11)] print(squares)
squares = [value ** 2 for value in range(1, 11)] print(squares)
# Copyright (C) 2016-2017 Perceval Wajsburt <[email protected]> # # This module is part of SublimeTerm and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php class SpecialChar: NEW_LINE = '\n' TAB = '\t' BEL = '\x07' BACKSPACE = '\x08' DEL = '\x7f' UP = '\x1BOA' DOWN = '\x1BOB' LEFT = '\x1BOD' RIGHT = '\x1BOC' # '\x1B[C' ESCAPE = '\x1B'
class Specialchar: new_line = '\n' tab = '\t' bel = '\x07' backspace = '\x08' del = '\x7f' up = '\x1bOA' down = '\x1bOB' left = '\x1bOD' right = '\x1bOC' escape = '\x1b'
class Passenger: def __init__(self, passenger_id, source, destination, spawn_time, controller): self.passenger_id = passenger_id self.destination = destination self.source = source self.spawn_time = spawn_time self.current_stop = source self.controller = controller def get_waiting_time(self): return self.controller.ticks-self.spawn_time def get_attractivity(self, next_stop): urgency = self.controller.average_minumum_delivery_time + self.get_waiting_time() attractivity = self.controller.attractivity[self.current_stop.stop_id, self.destination.stop_id, next_stop] return urgency * attractivity def __eq__(self, other): if isinstance(other, self.__class__): return self.passenger_id == other.passenger_id else: return False
class Passenger: def __init__(self, passenger_id, source, destination, spawn_time, controller): self.passenger_id = passenger_id self.destination = destination self.source = source self.spawn_time = spawn_time self.current_stop = source self.controller = controller def get_waiting_time(self): return self.controller.ticks - self.spawn_time def get_attractivity(self, next_stop): urgency = self.controller.average_minumum_delivery_time + self.get_waiting_time() attractivity = self.controller.attractivity[self.current_stop.stop_id, self.destination.stop_id, next_stop] return urgency * attractivity def __eq__(self, other): if isinstance(other, self.__class__): return self.passenger_id == other.passenger_id else: return False
n = int(input()) x = int(input()) li = list(map(int, input().split())) l = [0]*n print(*l,sep=" ") if (x): print("YES") else: print("NO")
n = int(input()) x = int(input()) li = list(map(int, input().split())) l = [0] * n print(*l, sep=' ') if x: print('YES') else: print('NO')
print("holis") #TODO agregar la linea intermedia print("holis") #print("holis") print("holis") print("holis") #TODO agregar la linea numero 6
print('holis') print('holis') print('holis') print('holis')
class TrainingStatus: NEW = "NEW" NEW_LOAD_MODEL = "NEW_LOAD_MODEL" STARTED = "STARTED" FINISHED = "FINISHED"
class Trainingstatus: new = 'NEW' new_load_model = 'NEW_LOAD_MODEL' started = 'STARTED' finished = 'FINISHED'
# # PySNMP MIB module ALTIGA-HARDWARE-STATS-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ALTIGA-HARDWARE-STATS-MIB # Produced by pysmi-0.3.4 at Wed May 1 11:21:29 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # alHardwareMibModule, = mibBuilder.importSymbols("ALTIGA-GLOBAL-REG", "alHardwareMibModule") alStatsHardware, alHardwareGroup = mibBuilder.importSymbols("ALTIGA-MIB", "alStatsHardware", "alHardwareGroup") ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsIntersection") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") IpAddress, ObjectIdentity, MibIdentifier, Bits, Integer32, Gauge32, TimeTicks, Unsigned32, Counter64, iso, ModuleIdentity, NotificationType, Counter32, MibScalar, MibTable, MibTableRow, MibTableColumn = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "ObjectIdentity", "MibIdentifier", "Bits", "Integer32", "Gauge32", "TimeTicks", "Unsigned32", "Counter64", "iso", "ModuleIdentity", "NotificationType", "Counter32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn") DisplayString, TruthValue, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TruthValue", "TextualConvention") altigaHardwareStatsMibModule = ModuleIdentity((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2)) altigaHardwareStatsMibModule.setRevisions(('2003-03-27 13:00', '2002-09-05 13:00', '2002-07-10 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setRevisionsDescriptions(('Added new emun to ConcentratorCard.', 'Added module compliance.', 'Updated with new header',)) if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setLastUpdated('200303271300Z') if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setContactInfo('Cisco Systems 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]') if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setDescription('The Altiga Hardware Statistics MIB models counters and objects that are of management interest for the hardware. Acronyms The following acronyms are used in this document: CPU: Central Processing Unit MB: Megabyte MIB: Management Information Base PS: Power Supply RPM: Revolutions Per Minute SEP: Scalable Encryption Processor WAN: Wide Area Network ') class ConcentratorCard(TextualConvention, Integer32): description = 'Concentrator Card Type.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4)) namedValues = NamedValues(("none", 1), ("sep", 2), ("dualT1Wan", 3), ("sepE", 4)) class ConcentratorType(TextualConvention, Integer32): description = 'Concentrator Type indicates the chassis type.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3)) namedValues = NamedValues(("cxx", 1), ("c5", 2), ("c1", 3)) alStatsHardwareGlobal = MibIdentifier((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1)) alHardwareCpuVoltage = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 1), Gauge32()).setUnits('centivolts').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCpuVoltage.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltage.setDescription('The current CPU voltage in centivolts.') alHardwareCpuVoltageAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 2), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCpuVoltageAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltageAlarm.setDescription('The alarm status for CPU voltage. This alarm will fired when the CPU voltage is detected out of configured range.') alHardwareCpuVoltageCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCpuVoltageCount.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltageCount.setDescription('The number of alarm events for CPU voltage.') alHardwareCpuVoltageTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 4), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCpuVoltageTime.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltageTime.setDescription('The sysUptime at the time of the last change of alarm status for CPU voltage.') alHardwarePs1Voltage3v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 5), Gauge32()).setUnits('centivolts').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs1Voltage3v.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage3v.setDescription('The current 3V voltage of Power Supply 1 in centivolts.') alHardwarePs1Voltage3vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 6), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs1Voltage3vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage3vAlarm.setDescription('The alarm status for PS1 3v voltage. This alarm will fired when the 3v power supply 1 voltage is detected out of configured range.') alHardwarePs1Voltage3vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs1Voltage3vCount.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage3vCount.setDescription('The number of alarm events for PS1 3v voltage.') alHardwarePs1Voltage3vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 8), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs1Voltage3vTime.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage3vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS1 3v voltage.') alHardwarePs1Voltage5v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 9), Gauge32()).setUnits('centivolts').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs1Voltage5v.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage5v.setDescription('The current 5V voltage of Power Supply 1 in centivolts.') alHardwarePs1Voltage5vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 10), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs1Voltage5vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage5vAlarm.setDescription('The alarm status for PS1 5v voltage. This alarm will fired when the 5v power supply 1 voltage is detected out of configured range.') alHardwarePs1Voltage5vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs1Voltage5vCount.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage5vCount.setDescription('The number of alarm events for PS1 5v voltage.') alHardwarePs1Voltage5vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 12), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs1Voltage5vTime.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage5vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS1 5v voltage.') alHardwarePs2Voltage3v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 13), Gauge32()).setUnits('centivolts').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs2Voltage3v.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage3v.setDescription('The current 3V voltage of Power Supply 2 in centivolts.') alHardwarePs2Voltage3vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 14), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs2Voltage3vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage3vAlarm.setDescription('The alarm status for PS2 3v voltage. This alarm will fired when the 3v power supply 2 voltage is detected out of configured range.') alHardwarePs2Voltage3vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 15), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs2Voltage3vCount.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage3vCount.setDescription('The number of alarm events for PS2 3v voltage.') alHardwarePs2Voltage3vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 16), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs2Voltage3vTime.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage3vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS2 3v voltage.') alHardwarePs2Voltage5v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 17), Gauge32()).setUnits('centivolts').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs2Voltage5v.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage5v.setDescription('The current 5V voltage of Power Supply 2 in centivolts.') alHardwarePs2Voltage5vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 18), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs2Voltage5vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage5vAlarm.setDescription('The alarm status for PS2 5v voltage. This alarm will fired when the 5v power supply 2 voltage is detected out of configured range.') alHardwarePs2Voltage5vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 19), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs2Voltage5vCount.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage5vCount.setDescription('The number of alarm events for PS2 5v voltage.') alHardwarePs2Voltage5vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 20), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs2Voltage5vTime.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage5vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS2 5v voltage.') alHardwareBoardVoltage3v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 21), Gauge32()).setUnits('centivolts').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareBoardVoltage3v.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage3v.setDescription('The current 3V voltage of the mainboard in centivolts.') alHardwareBoardVoltage3vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 22), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareBoardVoltage3vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage3vAlarm.setDescription('The alarm status for the mainboard 3v voltage. This alarm will fired when the 3v mainboard voltage is detected out of configured range.') alHardwareBoardVoltage3vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 23), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareBoardVoltage3vCount.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage3vCount.setDescription('The number of alarm events for the mainboard 3v voltage.') alHardwareBoardVoltage3vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 24), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareBoardVoltage3vTime.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage3vTime.setDescription('The sysUptime at the time of the last change of alarm status for the mainboard 3v voltage.') alHardwareBoardVoltage5v = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 25), Gauge32()).setUnits('centivolts').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareBoardVoltage5v.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage5v.setDescription('The current 5V voltage of the mainboard in centivolts.') alHardwareBoardVoltage5vAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 26), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareBoardVoltage5vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage5vAlarm.setDescription('The alarm status for the mainboard 5v voltage. This alarm will fired when the 5v mainboard voltage is detected out of configured range.') alHardwareBoardVoltage5vCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 27), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareBoardVoltage5vCount.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage5vCount.setDescription('The number of alarm events for the mainboard 5v voltage.') alHardwareBoardVoltage5vTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 28), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareBoardVoltage5vTime.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage5vTime.setDescription('The sysUptime at the time of the last change of alarm status for the mainboard 5v voltage.') alHardwareCpuTemp = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 29), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-40, 120))).setUnits('degrees Celsius').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCpuTemp.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuTemp.setDescription('The current CPU temperature in degrees C.') alHardwareCpuTempAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 30), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCpuTempAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuTempAlarm.setDescription('The alarm status for the CPU temperature. This alarm will fired when the CPU temperature is detected out of configured range.') alHardwareCpuTempCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 31), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCpuTempCount.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuTempCount.setDescription('The number of alarm events for the CPU temperature.') alHardwareCpuTempTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 32), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCpuTempTime.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuTempTime.setDescription('The sysUptime at the time of the last change of alarm status for the CPU temperature.') alHardwareCageTemp = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 33), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-40, 120))).setUnits('degrees Celsius').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCageTemp.setStatus('current') if mibBuilder.loadTexts: alHardwareCageTemp.setDescription('The current cage temperature in degrees C.') alHardwareCageTempAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 34), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCageTempAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareCageTempAlarm.setDescription('The alarm status for the cage temperature. This alarm will fired when the cage temperature is detected out of configured range.') alHardwareCageTempCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 35), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCageTempCount.setStatus('current') if mibBuilder.loadTexts: alHardwareCageTempCount.setDescription('The number of alarm events for the cage temperature.') alHardwareCageTempTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 36), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCageTempTime.setStatus('current') if mibBuilder.loadTexts: alHardwareCageTempTime.setDescription('The sysUptime at the time of the last change of alarm status for the cage temperature.') alHardwareFan1Rpm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 37), Gauge32()).setUnits('RPM').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan1Rpm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan1Rpm.setDescription('The current speed of fan 1 in RPM.') alHardwareFan1RpmAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 38), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan1RpmAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan1RpmAlarm.setDescription('The alarm status for fan 1 RPM. This alarm will fired when fan 1 RPM is detected out of configured range.') alHardwareFan1RpmCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 39), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan1RpmCount.setStatus('current') if mibBuilder.loadTexts: alHardwareFan1RpmCount.setDescription('The number of alarm events for fan 1 RPM.') alHardwareFan1RpmTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 40), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan1RpmTime.setStatus('current') if mibBuilder.loadTexts: alHardwareFan1RpmTime.setDescription('The sysUptime at the time of the last change of alarm status for fan 1 RPM.') alHardwareFan2Rpm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 41), Gauge32()).setUnits('RPM').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan2Rpm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan2Rpm.setDescription('The current speed of fan 2 in RPM.') alHardwareFan2RpmAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 42), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan2RpmAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan2RpmAlarm.setDescription('The alarm status for fan 2 RPM. This alarm will fired when fan 2 RPM is detected out of configured range.') alHardwareFan2RpmCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 43), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan2RpmCount.setStatus('current') if mibBuilder.loadTexts: alHardwareFan2RpmCount.setDescription('The number of alarm events for fan 2 RPM.') alHardwareFan2RpmTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 44), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan2RpmTime.setStatus('current') if mibBuilder.loadTexts: alHardwareFan2RpmTime.setDescription('The sysUptime at the time of the last change of alarm status for fan 2 RPM.') alHardwareFan3Rpm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 45), Gauge32()).setUnits('RPM').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan3Rpm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan3Rpm.setDescription('The current speed of fan 3 in RPM.') alHardwareFan3RpmAlarm = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 46), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan3RpmAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan3RpmAlarm.setDescription('The alarm status for fan 3 RPM. This alarm will fired when fan 3 RPM is detected out of configured range.') alHardwareFan3RpmCount = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 47), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan3RpmCount.setStatus('current') if mibBuilder.loadTexts: alHardwareFan3RpmCount.setDescription('The number of alarm events for fan 3 RPM.') alHardwareFan3RpmTime = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 48), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareFan3RpmTime.setStatus('current') if mibBuilder.loadTexts: alHardwareFan3RpmTime.setDescription('The sysUptime at the time of the last change of alarm status for fan 3 RPM.') alHardwarePs1Type = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 49), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("ac", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs1Type.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Type.setDescription('The type of power supply for Power Supply slot 1.') alHardwarePs2Type = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 50), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("none", 1), ("ac", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwarePs2Type.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Type.setDescription('The type of power supply for Power Supply slot 2.') alHardwareSlot1Card = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 51), ConcentratorCard()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareSlot1Card.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot1Card.setDescription('The type of card in slot 1.') alHardwareSlot2Card = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 52), ConcentratorCard()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareSlot2Card.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot2Card.setDescription('The type of card in slot 2.') alHardwareSlot3Card = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 53), ConcentratorCard()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareSlot3Card.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot3Card.setDescription('The type of card in slot 3.') alHardwareSlot4Card = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 54), ConcentratorCard()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareSlot4Card.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot4Card.setDescription('The type of card in slot 4.') alHardwareSlot1Operational = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 55), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareSlot1Operational.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot1Operational.setDescription('The operational status of card in slot 1.') alHardwareSlot2Operational = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 56), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareSlot2Operational.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot2Operational.setDescription('The operational status of card in slot 2.') alHardwareSlot3Operational = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 57), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareSlot3Operational.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot3Operational.setDescription('The operational status of card in slot 3.') alHardwareSlot4Operational = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 58), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareSlot4Operational.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot4Operational.setDescription('The operational status of card in slot 4.') alHardwareRamSize = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 59), Unsigned32()).setUnits('MB').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareRamSize.setStatus('current') if mibBuilder.loadTexts: alHardwareRamSize.setDescription('The amount of memory, in MB on the concentrator.') alHardwareChassis = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 60), ConcentratorType()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareChassis.setStatus('current') if mibBuilder.loadTexts: alHardwareChassis.setDescription('The type of VPN Concentrator this is.') alHardwareCpuVoltageNominal = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 61), Gauge32()).setUnits('centivolts').setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareCpuVoltageNominal.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltageNominal.setDescription('The nominal CPU voltage in centivolts for the concentrator.') alHardwareClientEthPrivSwitch = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 62), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareClientEthPrivSwitch.setStatus('current') if mibBuilder.loadTexts: alHardwareClientEthPrivSwitch.setDescription('Whether or not the 3002 Hardware Client has an Ethernet Switch for the private interface.') alHardwareSerialNumber = MibScalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 63), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: alHardwareSerialNumber.setStatus('current') if mibBuilder.loadTexts: alHardwareSerialNumber.setDescription('Unit serial number.') altigaHardwareStatsMibConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2, 1)) altigaHardwareStatsMibCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2, 1, 1)) altigaHardwareStatsMibCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2, 1, 1, 1)).setObjects(("ALTIGA-HARDWARE-STATS-MIB", "altigaHardwareStatsGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): altigaHardwareStatsMibCompliance = altigaHardwareStatsMibCompliance.setStatus('current') if mibBuilder.loadTexts: altigaHardwareStatsMibCompliance.setDescription('The compliance statement for agents which implement the Altiga Hardware Statistics MIB.') altigaHardwareStatsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 3076, 2, 1, 1, 1, 22, 2)).setObjects(("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltage"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltageAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltageCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltageTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage3v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage3vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage3vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage3vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage5v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage5vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage5vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Voltage5vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage3v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage3vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage3vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage3vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage5v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage5vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage5vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Voltage5vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage3v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage3vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage3vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage3vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage5v"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage5vAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage5vCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareBoardVoltage5vTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuTemp"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuTempAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuTempCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuTempTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCageTemp"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCageTempAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCageTempCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCageTempTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan1Rpm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan1RpmAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan1RpmCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan1RpmTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan2Rpm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan2RpmAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan2RpmCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan2RpmTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan3Rpm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan3RpmAlarm"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan3RpmCount"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareFan3RpmTime"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs1Type"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwarePs2Type"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot1Card"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot2Card"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot3Card"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot4Card"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot1Operational"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot2Operational"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot3Operational"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSlot4Operational"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareRamSize"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareChassis"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareCpuVoltageNominal"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareClientEthPrivSwitch"), ("ALTIGA-HARDWARE-STATS-MIB", "alHardwareSerialNumber")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): altigaHardwareStatsGroup = altigaHardwareStatsGroup.setStatus('current') if mibBuilder.loadTexts: altigaHardwareStatsGroup.setDescription('The objects for Hardware statistics.') mibBuilder.exportSymbols("ALTIGA-HARDWARE-STATS-MIB", alHardwareBoardVoltage3vCount=alHardwareBoardVoltage3vCount, alHardwareFan2RpmTime=alHardwareFan2RpmTime, altigaHardwareStatsMibModule=altigaHardwareStatsMibModule, alHardwarePs2Voltage5vCount=alHardwarePs2Voltage5vCount, alHardwareSlot2Card=alHardwareSlot2Card, alHardwareFan3Rpm=alHardwareFan3Rpm, alHardwarePs1Voltage3vCount=alHardwarePs1Voltage3vCount, alHardwareFan2RpmAlarm=alHardwareFan2RpmAlarm, altigaHardwareStatsMibCompliance=altigaHardwareStatsMibCompliance, alHardwareCpuVoltageCount=alHardwareCpuVoltageCount, alHardwareSlot2Operational=alHardwareSlot2Operational, alHardwareFan3RpmAlarm=alHardwareFan3RpmAlarm, alHardwareBoardVoltage3v=alHardwareBoardVoltage3v, alHardwareCageTemp=alHardwareCageTemp, altigaHardwareStatsMibConformance=altigaHardwareStatsMibConformance, alHardwarePs2Voltage5v=alHardwarePs2Voltage5v, alHardwarePs1Voltage3vAlarm=alHardwarePs1Voltage3vAlarm, alHardwareBoardVoltage5v=alHardwareBoardVoltage5v, alHardwareBoardVoltage5vAlarm=alHardwareBoardVoltage5vAlarm, alStatsHardwareGlobal=alStatsHardwareGlobal, alHardwarePs1Voltage5vTime=alHardwarePs1Voltage5vTime, alHardwareCageTempCount=alHardwareCageTempCount, alHardwarePs2Voltage3vTime=alHardwarePs2Voltage3vTime, alHardwareCageTempAlarm=alHardwareCageTempAlarm, alHardwareFan1Rpm=alHardwareFan1Rpm, alHardwareFan1RpmTime=alHardwareFan1RpmTime, alHardwarePs2Type=alHardwarePs2Type, alHardwareSlot4Card=alHardwareSlot4Card, alHardwareCpuVoltageNominal=alHardwareCpuVoltageNominal, alHardwarePs1Voltage5vAlarm=alHardwarePs1Voltage5vAlarm, alHardwareFan3RpmCount=alHardwareFan3RpmCount, alHardwareSlot4Operational=alHardwareSlot4Operational, alHardwareCpuTemp=alHardwareCpuTemp, alHardwareCpuVoltage=alHardwareCpuVoltage, alHardwareSlot1Operational=alHardwareSlot1Operational, altigaHardwareStatsMibCompliances=altigaHardwareStatsMibCompliances, alHardwarePs1Type=alHardwarePs1Type, ConcentratorType=ConcentratorType, alHardwareFan1RpmCount=alHardwareFan1RpmCount, altigaHardwareStatsGroup=altigaHardwareStatsGroup, alHardwareCpuVoltageTime=alHardwareCpuVoltageTime, ConcentratorCard=ConcentratorCard, alHardwarePs2Voltage3vCount=alHardwarePs2Voltage3vCount, alHardwareCpuTempAlarm=alHardwareCpuTempAlarm, alHardwarePs1Voltage3v=alHardwarePs1Voltage3v, alHardwarePs2Voltage3v=alHardwarePs2Voltage3v, alHardwareBoardVoltage5vCount=alHardwareBoardVoltage5vCount, alHardwareFan1RpmAlarm=alHardwareFan1RpmAlarm, alHardwarePs1Voltage5vCount=alHardwarePs1Voltage5vCount, alHardwareBoardVoltage3vTime=alHardwareBoardVoltage3vTime, alHardwarePs1Voltage3vTime=alHardwarePs1Voltage3vTime, alHardwareFan3RpmTime=alHardwareFan3RpmTime, alHardwareBoardVoltage5vTime=alHardwareBoardVoltage5vTime, alHardwareSlot3Operational=alHardwareSlot3Operational, alHardwareCpuTempTime=alHardwareCpuTempTime, alHardwareRamSize=alHardwareRamSize, alHardwarePs2Voltage5vTime=alHardwarePs2Voltage5vTime, alHardwareBoardVoltage3vAlarm=alHardwareBoardVoltage3vAlarm, alHardwareCageTempTime=alHardwareCageTempTime, alHardwareSerialNumber=alHardwareSerialNumber, alHardwarePs2Voltage3vAlarm=alHardwarePs2Voltage3vAlarm, alHardwareCpuVoltageAlarm=alHardwareCpuVoltageAlarm, alHardwareClientEthPrivSwitch=alHardwareClientEthPrivSwitch, PYSNMP_MODULE_ID=altigaHardwareStatsMibModule, alHardwareSlot1Card=alHardwareSlot1Card, alHardwarePs1Voltage5v=alHardwarePs1Voltage5v, alHardwarePs2Voltage5vAlarm=alHardwarePs2Voltage5vAlarm, alHardwareFan2Rpm=alHardwareFan2Rpm, alHardwareChassis=alHardwareChassis, alHardwareSlot3Card=alHardwareSlot3Card, alHardwareCpuTempCount=alHardwareCpuTempCount, alHardwareFan2RpmCount=alHardwareFan2RpmCount)
(al_hardware_mib_module,) = mibBuilder.importSymbols('ALTIGA-GLOBAL-REG', 'alHardwareMibModule') (al_stats_hardware, al_hardware_group) = mibBuilder.importSymbols('ALTIGA-MIB', 'alStatsHardware', 'alHardwareGroup') (object_identifier, octet_string, integer) = mibBuilder.importSymbols('ASN1', 'ObjectIdentifier', 'OctetString', 'Integer') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (value_size_constraint, constraints_union, value_range_constraint, single_value_constraint, constraints_intersection) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'ValueSizeConstraint', 'ConstraintsUnion', 'ValueRangeConstraint', 'SingleValueConstraint', 'ConstraintsIntersection') (object_group, notification_group, module_compliance) = mibBuilder.importSymbols('SNMPv2-CONF', 'ObjectGroup', 'NotificationGroup', 'ModuleCompliance') (ip_address, object_identity, mib_identifier, bits, integer32, gauge32, time_ticks, unsigned32, counter64, iso, module_identity, notification_type, counter32, mib_scalar, mib_table, mib_table_row, mib_table_column) = mibBuilder.importSymbols('SNMPv2-SMI', 'IpAddress', 'ObjectIdentity', 'MibIdentifier', 'Bits', 'Integer32', 'Gauge32', 'TimeTicks', 'Unsigned32', 'Counter64', 'iso', 'ModuleIdentity', 'NotificationType', 'Counter32', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn') (display_string, truth_value, textual_convention) = mibBuilder.importSymbols('SNMPv2-TC', 'DisplayString', 'TruthValue', 'TextualConvention') altiga_hardware_stats_mib_module = module_identity((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2)) altigaHardwareStatsMibModule.setRevisions(('2003-03-27 13:00', '2002-09-05 13:00', '2002-07-10 00:00')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setRevisionsDescriptions(('Added new emun to ConcentratorCard.', 'Added module compliance.', 'Updated with new header')) if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setLastUpdated('200303271300Z') if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setContactInfo('Cisco Systems 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: [email protected]') if mibBuilder.loadTexts: altigaHardwareStatsMibModule.setDescription('The Altiga Hardware Statistics MIB models counters and objects that are of management interest for the hardware. Acronyms The following acronyms are used in this document: CPU: Central Processing Unit MB: Megabyte MIB: Management Information Base PS: Power Supply RPM: Revolutions Per Minute SEP: Scalable Encryption Processor WAN: Wide Area Network ') class Concentratorcard(TextualConvention, Integer32): description = 'Concentrator Card Type.' status = 'current' subtype_spec = Integer32.subtypeSpec + constraints_union(single_value_constraint(1, 2, 3, 4)) named_values = named_values(('none', 1), ('sep', 2), ('dualT1Wan', 3), ('sepE', 4)) class Concentratortype(TextualConvention, Integer32): description = 'Concentrator Type indicates the chassis type.' status = 'current' subtype_spec = Integer32.subtypeSpec + constraints_union(single_value_constraint(1, 2, 3)) named_values = named_values(('cxx', 1), ('c5', 2), ('c1', 3)) al_stats_hardware_global = mib_identifier((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1)) al_hardware_cpu_voltage = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 1), gauge32()).setUnits('centivolts').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCpuVoltage.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltage.setDescription('The current CPU voltage in centivolts.') al_hardware_cpu_voltage_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 2), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCpuVoltageAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltageAlarm.setDescription('The alarm status for CPU voltage. This alarm will fired when the CPU voltage is detected out of configured range.') al_hardware_cpu_voltage_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 3), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCpuVoltageCount.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltageCount.setDescription('The number of alarm events for CPU voltage.') al_hardware_cpu_voltage_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 4), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCpuVoltageTime.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltageTime.setDescription('The sysUptime at the time of the last change of alarm status for CPU voltage.') al_hardware_ps1_voltage3v = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 5), gauge32()).setUnits('centivolts').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs1Voltage3v.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage3v.setDescription('The current 3V voltage of Power Supply 1 in centivolts.') al_hardware_ps1_voltage3v_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 6), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs1Voltage3vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage3vAlarm.setDescription('The alarm status for PS1 3v voltage. This alarm will fired when the 3v power supply 1 voltage is detected out of configured range.') al_hardware_ps1_voltage3v_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 7), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs1Voltage3vCount.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage3vCount.setDescription('The number of alarm events for PS1 3v voltage.') al_hardware_ps1_voltage3v_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 8), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs1Voltage3vTime.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage3vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS1 3v voltage.') al_hardware_ps1_voltage5v = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 9), gauge32()).setUnits('centivolts').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs1Voltage5v.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage5v.setDescription('The current 5V voltage of Power Supply 1 in centivolts.') al_hardware_ps1_voltage5v_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 10), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs1Voltage5vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage5vAlarm.setDescription('The alarm status for PS1 5v voltage. This alarm will fired when the 5v power supply 1 voltage is detected out of configured range.') al_hardware_ps1_voltage5v_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 11), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs1Voltage5vCount.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage5vCount.setDescription('The number of alarm events for PS1 5v voltage.') al_hardware_ps1_voltage5v_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 12), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs1Voltage5vTime.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Voltage5vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS1 5v voltage.') al_hardware_ps2_voltage3v = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 13), gauge32()).setUnits('centivolts').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs2Voltage3v.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage3v.setDescription('The current 3V voltage of Power Supply 2 in centivolts.') al_hardware_ps2_voltage3v_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 14), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs2Voltage3vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage3vAlarm.setDescription('The alarm status for PS2 3v voltage. This alarm will fired when the 3v power supply 2 voltage is detected out of configured range.') al_hardware_ps2_voltage3v_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 15), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs2Voltage3vCount.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage3vCount.setDescription('The number of alarm events for PS2 3v voltage.') al_hardware_ps2_voltage3v_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 16), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs2Voltage3vTime.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage3vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS2 3v voltage.') al_hardware_ps2_voltage5v = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 17), gauge32()).setUnits('centivolts').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs2Voltage5v.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage5v.setDescription('The current 5V voltage of Power Supply 2 in centivolts.') al_hardware_ps2_voltage5v_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 18), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs2Voltage5vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage5vAlarm.setDescription('The alarm status for PS2 5v voltage. This alarm will fired when the 5v power supply 2 voltage is detected out of configured range.') al_hardware_ps2_voltage5v_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 19), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs2Voltage5vCount.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage5vCount.setDescription('The number of alarm events for PS2 5v voltage.') al_hardware_ps2_voltage5v_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 20), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs2Voltage5vTime.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Voltage5vTime.setDescription('The sysUptime at the time of the last change of alarm status for PS2 5v voltage.') al_hardware_board_voltage3v = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 21), gauge32()).setUnits('centivolts').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareBoardVoltage3v.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage3v.setDescription('The current 3V voltage of the mainboard in centivolts.') al_hardware_board_voltage3v_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 22), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareBoardVoltage3vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage3vAlarm.setDescription('The alarm status for the mainboard 3v voltage. This alarm will fired when the 3v mainboard voltage is detected out of configured range.') al_hardware_board_voltage3v_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 23), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareBoardVoltage3vCount.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage3vCount.setDescription('The number of alarm events for the mainboard 3v voltage.') al_hardware_board_voltage3v_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 24), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareBoardVoltage3vTime.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage3vTime.setDescription('The sysUptime at the time of the last change of alarm status for the mainboard 3v voltage.') al_hardware_board_voltage5v = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 25), gauge32()).setUnits('centivolts').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareBoardVoltage5v.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage5v.setDescription('The current 5V voltage of the mainboard in centivolts.') al_hardware_board_voltage5v_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 26), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareBoardVoltage5vAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage5vAlarm.setDescription('The alarm status for the mainboard 5v voltage. This alarm will fired when the 5v mainboard voltage is detected out of configured range.') al_hardware_board_voltage5v_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 27), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareBoardVoltage5vCount.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage5vCount.setDescription('The number of alarm events for the mainboard 5v voltage.') al_hardware_board_voltage5v_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 28), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareBoardVoltage5vTime.setStatus('current') if mibBuilder.loadTexts: alHardwareBoardVoltage5vTime.setDescription('The sysUptime at the time of the last change of alarm status for the mainboard 5v voltage.') al_hardware_cpu_temp = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 29), integer32().subtype(subtypeSpec=value_range_constraint(-40, 120))).setUnits('degrees Celsius').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCpuTemp.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuTemp.setDescription('The current CPU temperature in degrees C.') al_hardware_cpu_temp_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 30), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCpuTempAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuTempAlarm.setDescription('The alarm status for the CPU temperature. This alarm will fired when the CPU temperature is detected out of configured range.') al_hardware_cpu_temp_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 31), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCpuTempCount.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuTempCount.setDescription('The number of alarm events for the CPU temperature.') al_hardware_cpu_temp_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 32), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCpuTempTime.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuTempTime.setDescription('The sysUptime at the time of the last change of alarm status for the CPU temperature.') al_hardware_cage_temp = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 33), integer32().subtype(subtypeSpec=value_range_constraint(-40, 120))).setUnits('degrees Celsius').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCageTemp.setStatus('current') if mibBuilder.loadTexts: alHardwareCageTemp.setDescription('The current cage temperature in degrees C.') al_hardware_cage_temp_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 34), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCageTempAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareCageTempAlarm.setDescription('The alarm status for the cage temperature. This alarm will fired when the cage temperature is detected out of configured range.') al_hardware_cage_temp_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 35), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCageTempCount.setStatus('current') if mibBuilder.loadTexts: alHardwareCageTempCount.setDescription('The number of alarm events for the cage temperature.') al_hardware_cage_temp_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 36), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCageTempTime.setStatus('current') if mibBuilder.loadTexts: alHardwareCageTempTime.setDescription('The sysUptime at the time of the last change of alarm status for the cage temperature.') al_hardware_fan1_rpm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 37), gauge32()).setUnits('RPM').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan1Rpm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan1Rpm.setDescription('The current speed of fan 1 in RPM.') al_hardware_fan1_rpm_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 38), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan1RpmAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan1RpmAlarm.setDescription('The alarm status for fan 1 RPM. This alarm will fired when fan 1 RPM is detected out of configured range.') al_hardware_fan1_rpm_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 39), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan1RpmCount.setStatus('current') if mibBuilder.loadTexts: alHardwareFan1RpmCount.setDescription('The number of alarm events for fan 1 RPM.') al_hardware_fan1_rpm_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 40), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan1RpmTime.setStatus('current') if mibBuilder.loadTexts: alHardwareFan1RpmTime.setDescription('The sysUptime at the time of the last change of alarm status for fan 1 RPM.') al_hardware_fan2_rpm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 41), gauge32()).setUnits('RPM').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan2Rpm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan2Rpm.setDescription('The current speed of fan 2 in RPM.') al_hardware_fan2_rpm_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 42), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan2RpmAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan2RpmAlarm.setDescription('The alarm status for fan 2 RPM. This alarm will fired when fan 2 RPM is detected out of configured range.') al_hardware_fan2_rpm_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 43), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan2RpmCount.setStatus('current') if mibBuilder.loadTexts: alHardwareFan2RpmCount.setDescription('The number of alarm events for fan 2 RPM.') al_hardware_fan2_rpm_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 44), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan2RpmTime.setStatus('current') if mibBuilder.loadTexts: alHardwareFan2RpmTime.setDescription('The sysUptime at the time of the last change of alarm status for fan 2 RPM.') al_hardware_fan3_rpm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 45), gauge32()).setUnits('RPM').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan3Rpm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan3Rpm.setDescription('The current speed of fan 3 in RPM.') al_hardware_fan3_rpm_alarm = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 46), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan3RpmAlarm.setStatus('current') if mibBuilder.loadTexts: alHardwareFan3RpmAlarm.setDescription('The alarm status for fan 3 RPM. This alarm will fired when fan 3 RPM is detected out of configured range.') al_hardware_fan3_rpm_count = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 47), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan3RpmCount.setStatus('current') if mibBuilder.loadTexts: alHardwareFan3RpmCount.setDescription('The number of alarm events for fan 3 RPM.') al_hardware_fan3_rpm_time = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 48), time_ticks()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareFan3RpmTime.setStatus('current') if mibBuilder.loadTexts: alHardwareFan3RpmTime.setDescription('The sysUptime at the time of the last change of alarm status for fan 3 RPM.') al_hardware_ps1_type = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 49), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('none', 1), ('ac', 2)))).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs1Type.setStatus('current') if mibBuilder.loadTexts: alHardwarePs1Type.setDescription('The type of power supply for Power Supply slot 1.') al_hardware_ps2_type = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 50), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('none', 1), ('ac', 2)))).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwarePs2Type.setStatus('current') if mibBuilder.loadTexts: alHardwarePs2Type.setDescription('The type of power supply for Power Supply slot 2.') al_hardware_slot1_card = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 51), concentrator_card()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareSlot1Card.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot1Card.setDescription('The type of card in slot 1.') al_hardware_slot2_card = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 52), concentrator_card()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareSlot2Card.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot2Card.setDescription('The type of card in slot 2.') al_hardware_slot3_card = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 53), concentrator_card()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareSlot3Card.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot3Card.setDescription('The type of card in slot 3.') al_hardware_slot4_card = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 54), concentrator_card()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareSlot4Card.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot4Card.setDescription('The type of card in slot 4.') al_hardware_slot1_operational = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 55), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareSlot1Operational.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot1Operational.setDescription('The operational status of card in slot 1.') al_hardware_slot2_operational = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 56), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareSlot2Operational.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot2Operational.setDescription('The operational status of card in slot 2.') al_hardware_slot3_operational = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 57), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareSlot3Operational.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot3Operational.setDescription('The operational status of card in slot 3.') al_hardware_slot4_operational = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 58), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareSlot4Operational.setStatus('current') if mibBuilder.loadTexts: alHardwareSlot4Operational.setDescription('The operational status of card in slot 4.') al_hardware_ram_size = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 59), unsigned32()).setUnits('MB').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareRamSize.setStatus('current') if mibBuilder.loadTexts: alHardwareRamSize.setDescription('The amount of memory, in MB on the concentrator.') al_hardware_chassis = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 60), concentrator_type()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareChassis.setStatus('current') if mibBuilder.loadTexts: alHardwareChassis.setDescription('The type of VPN Concentrator this is.') al_hardware_cpu_voltage_nominal = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 61), gauge32()).setUnits('centivolts').setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareCpuVoltageNominal.setStatus('current') if mibBuilder.loadTexts: alHardwareCpuVoltageNominal.setDescription('The nominal CPU voltage in centivolts for the concentrator.') al_hardware_client_eth_priv_switch = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 62), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareClientEthPrivSwitch.setStatus('current') if mibBuilder.loadTexts: alHardwareClientEthPrivSwitch.setDescription('Whether or not the 3002 Hardware Client has an Ethernet Switch for the private interface.') al_hardware_serial_number = mib_scalar((1, 3, 6, 1, 4, 1, 3076, 2, 1, 2, 22, 1, 63), display_string()).setMaxAccess('readonly') if mibBuilder.loadTexts: alHardwareSerialNumber.setStatus('current') if mibBuilder.loadTexts: alHardwareSerialNumber.setDescription('Unit serial number.') altiga_hardware_stats_mib_conformance = mib_identifier((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2, 1)) altiga_hardware_stats_mib_compliances = mib_identifier((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2, 1, 1)) altiga_hardware_stats_mib_compliance = module_compliance((1, 3, 6, 1, 4, 1, 3076, 1, 1, 27, 2, 1, 1, 1)).setObjects(('ALTIGA-HARDWARE-STATS-MIB', 'altigaHardwareStatsGroup')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): altiga_hardware_stats_mib_compliance = altigaHardwareStatsMibCompliance.setStatus('current') if mibBuilder.loadTexts: altigaHardwareStatsMibCompliance.setDescription('The compliance statement for agents which implement the Altiga Hardware Statistics MIB.') altiga_hardware_stats_group = object_group((1, 3, 6, 1, 4, 1, 3076, 2, 1, 1, 1, 22, 2)).setObjects(('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCpuVoltage'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCpuVoltageAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCpuVoltageCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCpuVoltageTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs1Voltage3v'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs1Voltage3vAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs1Voltage3vCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs1Voltage3vTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs1Voltage5v'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs1Voltage5vAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs1Voltage5vCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs1Voltage5vTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs2Voltage3v'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs2Voltage3vAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs2Voltage3vCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs2Voltage3vTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs2Voltage5v'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs2Voltage5vAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs2Voltage5vCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs2Voltage5vTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareBoardVoltage3v'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareBoardVoltage3vAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareBoardVoltage3vCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareBoardVoltage3vTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareBoardVoltage5v'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareBoardVoltage5vAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareBoardVoltage5vCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareBoardVoltage5vTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCpuTemp'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCpuTempAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCpuTempCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCpuTempTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCageTemp'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCageTempAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCageTempCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCageTempTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan1Rpm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan1RpmAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan1RpmCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan1RpmTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan2Rpm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan2RpmAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan2RpmCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan2RpmTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan3Rpm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan3RpmAlarm'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan3RpmCount'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareFan3RpmTime'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs1Type'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwarePs2Type'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareSlot1Card'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareSlot2Card'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareSlot3Card'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareSlot4Card'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareSlot1Operational'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareSlot2Operational'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareSlot3Operational'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareSlot4Operational'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareRamSize'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareChassis'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareCpuVoltageNominal'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareClientEthPrivSwitch'), ('ALTIGA-HARDWARE-STATS-MIB', 'alHardwareSerialNumber')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): altiga_hardware_stats_group = altigaHardwareStatsGroup.setStatus('current') if mibBuilder.loadTexts: altigaHardwareStatsGroup.setDescription('The objects for Hardware statistics.') mibBuilder.exportSymbols('ALTIGA-HARDWARE-STATS-MIB', alHardwareBoardVoltage3vCount=alHardwareBoardVoltage3vCount, alHardwareFan2RpmTime=alHardwareFan2RpmTime, altigaHardwareStatsMibModule=altigaHardwareStatsMibModule, alHardwarePs2Voltage5vCount=alHardwarePs2Voltage5vCount, alHardwareSlot2Card=alHardwareSlot2Card, alHardwareFan3Rpm=alHardwareFan3Rpm, alHardwarePs1Voltage3vCount=alHardwarePs1Voltage3vCount, alHardwareFan2RpmAlarm=alHardwareFan2RpmAlarm, altigaHardwareStatsMibCompliance=altigaHardwareStatsMibCompliance, alHardwareCpuVoltageCount=alHardwareCpuVoltageCount, alHardwareSlot2Operational=alHardwareSlot2Operational, alHardwareFan3RpmAlarm=alHardwareFan3RpmAlarm, alHardwareBoardVoltage3v=alHardwareBoardVoltage3v, alHardwareCageTemp=alHardwareCageTemp, altigaHardwareStatsMibConformance=altigaHardwareStatsMibConformance, alHardwarePs2Voltage5v=alHardwarePs2Voltage5v, alHardwarePs1Voltage3vAlarm=alHardwarePs1Voltage3vAlarm, alHardwareBoardVoltage5v=alHardwareBoardVoltage5v, alHardwareBoardVoltage5vAlarm=alHardwareBoardVoltage5vAlarm, alStatsHardwareGlobal=alStatsHardwareGlobal, alHardwarePs1Voltage5vTime=alHardwarePs1Voltage5vTime, alHardwareCageTempCount=alHardwareCageTempCount, alHardwarePs2Voltage3vTime=alHardwarePs2Voltage3vTime, alHardwareCageTempAlarm=alHardwareCageTempAlarm, alHardwareFan1Rpm=alHardwareFan1Rpm, alHardwareFan1RpmTime=alHardwareFan1RpmTime, alHardwarePs2Type=alHardwarePs2Type, alHardwareSlot4Card=alHardwareSlot4Card, alHardwareCpuVoltageNominal=alHardwareCpuVoltageNominal, alHardwarePs1Voltage5vAlarm=alHardwarePs1Voltage5vAlarm, alHardwareFan3RpmCount=alHardwareFan3RpmCount, alHardwareSlot4Operational=alHardwareSlot4Operational, alHardwareCpuTemp=alHardwareCpuTemp, alHardwareCpuVoltage=alHardwareCpuVoltage, alHardwareSlot1Operational=alHardwareSlot1Operational, altigaHardwareStatsMibCompliances=altigaHardwareStatsMibCompliances, alHardwarePs1Type=alHardwarePs1Type, ConcentratorType=ConcentratorType, alHardwareFan1RpmCount=alHardwareFan1RpmCount, altigaHardwareStatsGroup=altigaHardwareStatsGroup, alHardwareCpuVoltageTime=alHardwareCpuVoltageTime, ConcentratorCard=ConcentratorCard, alHardwarePs2Voltage3vCount=alHardwarePs2Voltage3vCount, alHardwareCpuTempAlarm=alHardwareCpuTempAlarm, alHardwarePs1Voltage3v=alHardwarePs1Voltage3v, alHardwarePs2Voltage3v=alHardwarePs2Voltage3v, alHardwareBoardVoltage5vCount=alHardwareBoardVoltage5vCount, alHardwareFan1RpmAlarm=alHardwareFan1RpmAlarm, alHardwarePs1Voltage5vCount=alHardwarePs1Voltage5vCount, alHardwareBoardVoltage3vTime=alHardwareBoardVoltage3vTime, alHardwarePs1Voltage3vTime=alHardwarePs1Voltage3vTime, alHardwareFan3RpmTime=alHardwareFan3RpmTime, alHardwareBoardVoltage5vTime=alHardwareBoardVoltage5vTime, alHardwareSlot3Operational=alHardwareSlot3Operational, alHardwareCpuTempTime=alHardwareCpuTempTime, alHardwareRamSize=alHardwareRamSize, alHardwarePs2Voltage5vTime=alHardwarePs2Voltage5vTime, alHardwareBoardVoltage3vAlarm=alHardwareBoardVoltage3vAlarm, alHardwareCageTempTime=alHardwareCageTempTime, alHardwareSerialNumber=alHardwareSerialNumber, alHardwarePs2Voltage3vAlarm=alHardwarePs2Voltage3vAlarm, alHardwareCpuVoltageAlarm=alHardwareCpuVoltageAlarm, alHardwareClientEthPrivSwitch=alHardwareClientEthPrivSwitch, PYSNMP_MODULE_ID=altigaHardwareStatsMibModule, alHardwareSlot1Card=alHardwareSlot1Card, alHardwarePs1Voltage5v=alHardwarePs1Voltage5v, alHardwarePs2Voltage5vAlarm=alHardwarePs2Voltage5vAlarm, alHardwareFan2Rpm=alHardwareFan2Rpm, alHardwareChassis=alHardwareChassis, alHardwareSlot3Card=alHardwareSlot3Card, alHardwareCpuTempCount=alHardwareCpuTempCount, alHardwareFan2RpmCount=alHardwareFan2RpmCount)
def Adj2GraphID(adj): n = adj.shape[0] GraphID = str(n)+"_" binID = '' for i in range(n): for j in range(i+1,n): binID += str(int(adj[i][j])) GraphID += hex(int(binID,2)).split('x')[1] return GraphID.upper() def GraphID2Adj(GraphID): n_str, hexID = GraphID.split("_") n = int(n_str) binID = "{:b}".format(int(hexID, 16)) binID = '0'*((n-1)*n//2 - len(binID)) + binID adj = np.zeros([n,n]) pos = 0 for i in range(n): for j in range(i+1,n): adj[i][j] = adj[j][i] = int(binID[pos]) pos +=1 return adj
def adj2_graph_id(adj): n = adj.shape[0] graph_id = str(n) + '_' bin_id = '' for i in range(n): for j in range(i + 1, n): bin_id += str(int(adj[i][j])) graph_id += hex(int(binID, 2)).split('x')[1] return GraphID.upper() def graph_id2_adj(GraphID): (n_str, hex_id) = GraphID.split('_') n = int(n_str) bin_id = '{:b}'.format(int(hexID, 16)) bin_id = '0' * ((n - 1) * n // 2 - len(binID)) + binID adj = np.zeros([n, n]) pos = 0 for i in range(n): for j in range(i + 1, n): adj[i][j] = adj[j][i] = int(binID[pos]) pos += 1 return adj
#-*- coding: utf-8 -*- class INSERT(object): def __init__(self, schema, target): self._sql = u"INSERT INTO {}.{}".format( schema, target) def VALUES(self, fields): values = ", ".join(["%(" + field + ")s" for field in fields]) self._sql += "({}) values({})".format(", ".join(fields), values) self._sql += " returning id" def __str__(self): return self._sql @property def sql(self): return self.__str__()
class Insert(object): def __init__(self, schema, target): self._sql = u'INSERT INTO {}.{}'.format(schema, target) def values(self, fields): values = ', '.join(['%(' + field + ')s' for field in fields]) self._sql += '({}) values({})'.format(', '.join(fields), values) self._sql += ' returning id' def __str__(self): return self._sql @property def sql(self): return self.__str__()
def calculateEMA(period, data): returnData = {} emaList = [] key = 'ema' + str(period) if data: historicalEma = data[0] e = 2/(period + 1) for i in range(len(data)): ema = (data[i] - historicalEma) * e + historicalEma historicalEma = ema emaList.append(ema) returnData.update({key : emaList}) else: returnData.update({key:[]}) return returnData def calculateNBFilter(period=4, fields=[], data ={}): pass
def calculate_ema(period, data): return_data = {} ema_list = [] key = 'ema' + str(period) if data: historical_ema = data[0] e = 2 / (period + 1) for i in range(len(data)): ema = (data[i] - historicalEma) * e + historicalEma historical_ema = ema emaList.append(ema) returnData.update({key: emaList}) else: returnData.update({key: []}) return returnData def calculate_nb_filter(period=4, fields=[], data={}): pass
def test(): # Here we can either check objects created in the solution code, or the # string value of the solution, available as __solution__. A helper for # printing formatted messages is available as __msg__. See the testTemplate # in the meta.json for details. # If an assertion fails, the message will be displayed assert "pivot_table" in __solution__, "Make sure you are using the pivot_table function." msg = "The tidied_lego dataframe contains the incorrect columns. Are you using the correct index column when pivoting? \ \nExpected ['set_num', 'name', 'year', 'num_parts', 'theme_id'], but got {0}".format( list(tidied_lego.columns)) assert sorted(list(tidied_lego.columns)) == sorted(['set_num', 'name', 'year', 'num_parts', 'theme_id']), msg assert "reset_index" in __solution__, "Are you resetting the index using .reset_index()?" assert "groupby" in __solution__, "Are you using the groupby function?" assert "year" in __solution__, "Are you grouping by year?" assert year_parts_mean.num_parts.sum() == 8093.0, "The mean values are incorrect. Are you taking the mean after grouping by year?" __msg__.good("Nice work, well done!")
def test(): assert 'pivot_table' in __solution__, 'Make sure you are using the pivot_table function.' msg = "The tidied_lego dataframe contains the incorrect columns. Are you using the correct index column when pivoting? \nExpected ['set_num', 'name', 'year', 'num_parts', 'theme_id'], but got {0}".format(list(tidied_lego.columns)) assert sorted(list(tidied_lego.columns)) == sorted(['set_num', 'name', 'year', 'num_parts', 'theme_id']), msg assert 'reset_index' in __solution__, 'Are you resetting the index using .reset_index()?' assert 'groupby' in __solution__, 'Are you using the groupby function?' assert 'year' in __solution__, 'Are you grouping by year?' assert year_parts_mean.num_parts.sum() == 8093.0, 'The mean values are incorrect. Are you taking the mean after grouping by year?' __msg__.good('Nice work, well done!')
############################################################ # # uploadhaddocks # Copyright (C) 2017, Richard Cook # Released under MIT License # https://github.com/rcook/upload-haddocks # ############################################################ __project_name__ = "upload-haddocks" __version__ = "0.5" __description__ = "Fix up Haskell documentation and upload it to Hackage"
__project_name__ = 'upload-haddocks' __version__ = '0.5' __description__ = 'Fix up Haskell documentation and upload it to Hackage'
# standard libraries pass # third party libraries pass # first party libraries pass alphanumeric = 'abcdefghijklmnopqrstuvwxyz' \ 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' \ '123456789' # alphanumerics unlikely to be mistaken for each other legible = 'abcdefghijkmnopqrstuvwxyz' \ 'ABCDEFGHJKLMNPQRSTUVWXYZ' \ '23456789'
pass pass pass alphanumeric = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ123456789' legible = 'abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789'
self.description = "Upgrade packages with various reasons" lp1 = pmpkg("pkg1") lp1.reason = 0 lp2 = pmpkg("pkg2") lp2.reason = 1 for p in lp1, lp2: self.addpkg2db("local", p) p1 = pmpkg("pkg1", "1.0-2") p2 = pmpkg("pkg2", "1.0-2") for p in p1, p2: self.addpkg(p) self.args = "-U %s" % " ".join([p.filename() for p in (p1, p2)]) self.addrule("PACMAN_RETCODE=0") self.addrule("PKG_REASON=pkg1|0") self.addrule("PKG_REASON=pkg2|1")
self.description = 'Upgrade packages with various reasons' lp1 = pmpkg('pkg1') lp1.reason = 0 lp2 = pmpkg('pkg2') lp2.reason = 1 for p in (lp1, lp2): self.addpkg2db('local', p) p1 = pmpkg('pkg1', '1.0-2') p2 = pmpkg('pkg2', '1.0-2') for p in (p1, p2): self.addpkg(p) self.args = '-U %s' % ' '.join([p.filename() for p in (p1, p2)]) self.addrule('PACMAN_RETCODE=0') self.addrule('PKG_REASON=pkg1|0') self.addrule('PKG_REASON=pkg2|1')
class Interval: def __init__(self, start=0, end=0): self.start = start self.end = end
class Interval: def __init__(self, start=0, end=0): self.start = start self.end = end
PATH_TRAIN = "../../data/train.csv" PATH_VALID = "../../data/valid.csv" PICKLES_PATH = "./pickles" TRAIN = "../../data/train.tsv" TEST = "../../data/test.tsv" DEV = "../../data/dev.tsv"
path_train = '../../data/train.csv' path_valid = '../../data/valid.csv' pickles_path = './pickles' train = '../../data/train.tsv' test = '../../data/test.tsv' dev = '../../data/dev.tsv'
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") def deps(repo_mapping = {}): if "com_github_nodejs_http_parser" not in native.existing_rules(): http_archive( name = "com_github_nodejs_http_parser", # This commit includes fix for # https://github.com/nodejs/http-parser/issues/517 which # allows (opt-in) to serve requests with both # Content-Legth and Transfer-Encoding: chunked headers # set. urls = ["https://github.com/nodejs/http-parser/archive/4f15b7d510dc7c6361a26a7c6d2f7c3a17f8d878.tar.gz"], sha256 = "6a12896313ce1ca630cf516a0ee43a79b5f13f5a5d8143f56560ac0b21c98fac", strip_prefix = "http-parser-4f15b7d510dc7c6361a26a7c6d2f7c3a17f8d878", repo_mapping = repo_mapping, build_file = "@com_github_3rdparty_bazel_rules_http_parser//:BUILD.bazel", )
load('@bazel_tools//tools/build_defs/repo:http.bzl', 'http_archive') def deps(repo_mapping={}): if 'com_github_nodejs_http_parser' not in native.existing_rules(): http_archive(name='com_github_nodejs_http_parser', urls=['https://github.com/nodejs/http-parser/archive/4f15b7d510dc7c6361a26a7c6d2f7c3a17f8d878.tar.gz'], sha256='6a12896313ce1ca630cf516a0ee43a79b5f13f5a5d8143f56560ac0b21c98fac', strip_prefix='http-parser-4f15b7d510dc7c6361a26a7c6d2f7c3a17f8d878', repo_mapping=repo_mapping, build_file='@com_github_3rdparty_bazel_rules_http_parser//:BUILD.bazel')
def BaseHTTPRequestHandler(*args, **kwargs): pass def Camera(*args, **kwargs): pass def GSprint(*args, **kwargs): pass def GSversion(*args, **kwargs): pass def GW(*args, **kwargs): pass def GlowWidget(*args, **kwargs): pass def HTTPServer(*args, **kwargs): pass def INTERACT_PERIOD(*args, **kwargs): pass def MAX_RENDERS(*args, **kwargs): pass def MIN_RENDERS(*args, **kwargs): pass def MISC(*args, **kwargs): pass def Mouse(*args, **kwargs): pass def RackOutline(*args, **kwargs): pass def RateKeeper(*args, **kwargs): pass def ToothOutline(*args, **kwargs): pass def USER_FRACTION(*args, **kwargs): pass def WSserver(*args, **kwargs): pass def WebSocketServerFactory(*args, **kwargs): pass def WebSocketServerProtocol(*args, **kwargs): pass def absolute_import(*args, **kwargs): pass def acos(*args, **kwargs): pass def acosh(*args, **kwargs): pass def addpos(*args, **kwargs): pass def adjust_axis(*args, **kwargs): pass def adjust_up(*args, **kwargs): pass def arange(*args, **kwargs): pass def arrow(*args, **kwargs): pass def asin(*args, **kwargs): pass def asinh(*args, **kwargs): pass def asyncio(*args, **kwargs): pass def atan(*args, **kwargs): pass def atan2(*args, **kwargs): pass def atanh(*args, **kwargs): pass def attach_arrow(*args, **kwargs): pass def attach_trail(*args, **kwargs): pass def baseObj(*args, **kwargs): pass def box(*args, **kwargs): pass def bumpmaps(*args, **kwargs): pass def button(*args, **kwargs): pass def canvas(*args, **kwargs): pass def ceil(*args, **kwargs): pass def checkbox(*args, **kwargs): pass def clock(*args, **kwargs): pass def color(*args, **kwargs): pass def colorsys(*args, **kwargs): pass def combin(*args, **kwargs): pass def comp(*args, **kwargs): pass def compound(*args, **kwargs): pass def cone(*args, **kwargs): pass def controls(*args, **kwargs): pass def convert(*args, **kwargs): pass def copy(*args, **kwargs): pass def copysign(*args, **kwargs): pass def cos(*args, **kwargs): pass def cosh(*args, **kwargs): pass def cross(*args, **kwargs): pass def curve(*args, **kwargs): pass def curveMethods(*args, **kwargs): pass def cylinder(*args, **kwargs): pass def cyvector(*args, **kwargs): pass def degrees(*args, **kwargs): pass def diff_angle(*args, **kwargs): pass def distant_light(*args, **kwargs): pass def division(*args, **kwargs): pass def dot(*args, **kwargs): pass def e(*args, **kwargs): pass def ellipsoid(*args, **kwargs): pass def erf(*args, **kwargs): pass def erfc(*args, **kwargs): pass def event_return(*args, **kwargs): pass def exp(*args, **kwargs): pass def expm1(*args, **kwargs): pass def extrusion(*args, **kwargs): pass def fabs(*args, **kwargs): pass def faces(*args, **kwargs): pass def factorial(*args, **kwargs): pass def fd(*args, **kwargs): pass def find_free_port(*args, **kwargs): pass def floor(*args, **kwargs): pass def fmod(*args, **kwargs): pass def frame(*args, **kwargs): pass def frexp(*args, **kwargs): pass def fsum(*args, **kwargs): pass def gamma(*args, **kwargs): pass def gcd(*args, **kwargs): pass def gcurve(*args, **kwargs): pass def gdots(*args, **kwargs): pass def ghbars(*args, **kwargs): pass def glowcomm(*args, **kwargs): pass def gobj(*args, **kwargs): pass def graph(*args, **kwargs): pass def gs_version(*args, **kwargs): pass def gvbars(*args, **kwargs): pass def hat(*args, **kwargs): pass def helix(*args, **kwargs): pass def httpserving(*args, **kwargs): pass def hypot(*args, **kwargs): pass def inf(*args, **kwargs): pass def inspect(*args, **kwargs): pass def isclose(*args, **kwargs): pass def isfinite(*args, **kwargs): pass def isinf(*args, **kwargs): pass def isnan(*args, **kwargs): pass def js(*args, **kwargs): pass def json(*args, **kwargs): pass def label(*args, **kwargs): pass def ldexp(*args, **kwargs): pass def lgamma(*args, **kwargs): pass def list_to_vec(*args, **kwargs): pass def local_light(*args, **kwargs): pass def log(*args, **kwargs): pass def log10(*args, **kwargs): pass def log1p(*args, **kwargs): pass def log2(*args, **kwargs): pass def long(*args, **kwargs): pass def mag(*args, **kwargs): pass def mag2(*args, **kwargs): pass def menu(*args, **kwargs): pass def meta_canvas(*args, **kwargs): pass def modf(*args, **kwargs): pass def nan(*args, **kwargs): pass def no_notebook(*args, **kwargs): pass def norm(*args, **kwargs): pass def npdefault(*args, **kwargs): pass def object_rotate(*args, **kwargs): pass def os(*args, **kwargs): pass def path_object(*args, **kwargs): pass def paths(*args, **kwargs): pass def pi(*args, **kwargs): pass def platform(*args, **kwargs): pass def points(*args, **kwargs): pass def pow(*args, **kwargs): pass def print_anchor(*args, **kwargs): pass def print_function(*args, **kwargs): pass def print_to_string(*args, **kwargs): pass def proj(*args, **kwargs): pass def pyramid(*args, **kwargs): pass def quad(*args, **kwargs): pass def radians(*args, **kwargs): pass def radio(*args, **kwargs): pass def random(*args, **kwargs): pass def rate(*args, **kwargs): pass def rate_control(*args, **kwargs): pass def ring(*args, **kwargs): pass def rotate(*args, **kwargs): pass def rotatecp(*args, **kwargs): pass def roundc(*args, **kwargs): pass def scalecp(*args, **kwargs): pass def scene(*args, **kwargs): pass def serveHTTP(*args, **kwargs): pass def shape_object(*args, **kwargs): pass def shapes(*args, **kwargs): pass def shapespaths(*args, **kwargs): pass def signature(*args, **kwargs): pass def simulateDelay(*args, **kwargs): pass def sin(*args, **kwargs): pass def sinh(*args, **kwargs): pass def sleep(*args, **kwargs): pass def slider(*args, **kwargs): pass def socket(*args, **kwargs): pass def sphere(*args, **kwargs): pass def sqrt(*args, **kwargs): pass def standardAttributes(*args, **kwargs): pass def sys(*args, **kwargs): pass def tan(*args, **kwargs): pass def tanh(*args, **kwargs): pass def tau(*args, **kwargs): pass def text(*args, **kwargs): pass def textures(*args, **kwargs): pass def threading(*args, **kwargs): pass def time(*args, **kwargs): pass def triangle(*args, **kwargs): pass def trunc(*args, **kwargs): pass def v(*args, **kwargs): pass def vec(*args, **kwargs): pass def vector(*args, **kwargs): pass def version(*args, **kwargs): pass def vertex(*args, **kwargs): pass def vpython(*args, **kwargs): pass def websocketserving(*args, **kwargs): pass def wtext(*args, **kwargs): pass color.black = color.blue = color.cyan = color.gray = color.green = color.magenta = color.orange = color.red = color.white = color.yellow = 0
def base_http_request_handler(*args, **kwargs): pass def camera(*args, **kwargs): pass def g_sprint(*args, **kwargs): pass def g_sversion(*args, **kwargs): pass def gw(*args, **kwargs): pass def glow_widget(*args, **kwargs): pass def http_server(*args, **kwargs): pass def interact_period(*args, **kwargs): pass def max_renders(*args, **kwargs): pass def min_renders(*args, **kwargs): pass def misc(*args, **kwargs): pass def mouse(*args, **kwargs): pass def rack_outline(*args, **kwargs): pass def rate_keeper(*args, **kwargs): pass def tooth_outline(*args, **kwargs): pass def user_fraction(*args, **kwargs): pass def w_sserver(*args, **kwargs): pass def web_socket_server_factory(*args, **kwargs): pass def web_socket_server_protocol(*args, **kwargs): pass def absolute_import(*args, **kwargs): pass def acos(*args, **kwargs): pass def acosh(*args, **kwargs): pass def addpos(*args, **kwargs): pass def adjust_axis(*args, **kwargs): pass def adjust_up(*args, **kwargs): pass def arange(*args, **kwargs): pass def arrow(*args, **kwargs): pass def asin(*args, **kwargs): pass def asinh(*args, **kwargs): pass def asyncio(*args, **kwargs): pass def atan(*args, **kwargs): pass def atan2(*args, **kwargs): pass def atanh(*args, **kwargs): pass def attach_arrow(*args, **kwargs): pass def attach_trail(*args, **kwargs): pass def base_obj(*args, **kwargs): pass def box(*args, **kwargs): pass def bumpmaps(*args, **kwargs): pass def button(*args, **kwargs): pass def canvas(*args, **kwargs): pass def ceil(*args, **kwargs): pass def checkbox(*args, **kwargs): pass def clock(*args, **kwargs): pass def color(*args, **kwargs): pass def colorsys(*args, **kwargs): pass def combin(*args, **kwargs): pass def comp(*args, **kwargs): pass def compound(*args, **kwargs): pass def cone(*args, **kwargs): pass def controls(*args, **kwargs): pass def convert(*args, **kwargs): pass def copy(*args, **kwargs): pass def copysign(*args, **kwargs): pass def cos(*args, **kwargs): pass def cosh(*args, **kwargs): pass def cross(*args, **kwargs): pass def curve(*args, **kwargs): pass def curve_methods(*args, **kwargs): pass def cylinder(*args, **kwargs): pass def cyvector(*args, **kwargs): pass def degrees(*args, **kwargs): pass def diff_angle(*args, **kwargs): pass def distant_light(*args, **kwargs): pass def division(*args, **kwargs): pass def dot(*args, **kwargs): pass def e(*args, **kwargs): pass def ellipsoid(*args, **kwargs): pass def erf(*args, **kwargs): pass def erfc(*args, **kwargs): pass def event_return(*args, **kwargs): pass def exp(*args, **kwargs): pass def expm1(*args, **kwargs): pass def extrusion(*args, **kwargs): pass def fabs(*args, **kwargs): pass def faces(*args, **kwargs): pass def factorial(*args, **kwargs): pass def fd(*args, **kwargs): pass def find_free_port(*args, **kwargs): pass def floor(*args, **kwargs): pass def fmod(*args, **kwargs): pass def frame(*args, **kwargs): pass def frexp(*args, **kwargs): pass def fsum(*args, **kwargs): pass def gamma(*args, **kwargs): pass def gcd(*args, **kwargs): pass def gcurve(*args, **kwargs): pass def gdots(*args, **kwargs): pass def ghbars(*args, **kwargs): pass def glowcomm(*args, **kwargs): pass def gobj(*args, **kwargs): pass def graph(*args, **kwargs): pass def gs_version(*args, **kwargs): pass def gvbars(*args, **kwargs): pass def hat(*args, **kwargs): pass def helix(*args, **kwargs): pass def httpserving(*args, **kwargs): pass def hypot(*args, **kwargs): pass def inf(*args, **kwargs): pass def inspect(*args, **kwargs): pass def isclose(*args, **kwargs): pass def isfinite(*args, **kwargs): pass def isinf(*args, **kwargs): pass def isnan(*args, **kwargs): pass def js(*args, **kwargs): pass def json(*args, **kwargs): pass def label(*args, **kwargs): pass def ldexp(*args, **kwargs): pass def lgamma(*args, **kwargs): pass def list_to_vec(*args, **kwargs): pass def local_light(*args, **kwargs): pass def log(*args, **kwargs): pass def log10(*args, **kwargs): pass def log1p(*args, **kwargs): pass def log2(*args, **kwargs): pass def long(*args, **kwargs): pass def mag(*args, **kwargs): pass def mag2(*args, **kwargs): pass def menu(*args, **kwargs): pass def meta_canvas(*args, **kwargs): pass def modf(*args, **kwargs): pass def nan(*args, **kwargs): pass def no_notebook(*args, **kwargs): pass def norm(*args, **kwargs): pass def npdefault(*args, **kwargs): pass def object_rotate(*args, **kwargs): pass def os(*args, **kwargs): pass def path_object(*args, **kwargs): pass def paths(*args, **kwargs): pass def pi(*args, **kwargs): pass def platform(*args, **kwargs): pass def points(*args, **kwargs): pass def pow(*args, **kwargs): pass def print_anchor(*args, **kwargs): pass def print_function(*args, **kwargs): pass def print_to_string(*args, **kwargs): pass def proj(*args, **kwargs): pass def pyramid(*args, **kwargs): pass def quad(*args, **kwargs): pass def radians(*args, **kwargs): pass def radio(*args, **kwargs): pass def random(*args, **kwargs): pass def rate(*args, **kwargs): pass def rate_control(*args, **kwargs): pass def ring(*args, **kwargs): pass def rotate(*args, **kwargs): pass def rotatecp(*args, **kwargs): pass def roundc(*args, **kwargs): pass def scalecp(*args, **kwargs): pass def scene(*args, **kwargs): pass def serve_http(*args, **kwargs): pass def shape_object(*args, **kwargs): pass def shapes(*args, **kwargs): pass def shapespaths(*args, **kwargs): pass def signature(*args, **kwargs): pass def simulate_delay(*args, **kwargs): pass def sin(*args, **kwargs): pass def sinh(*args, **kwargs): pass def sleep(*args, **kwargs): pass def slider(*args, **kwargs): pass def socket(*args, **kwargs): pass def sphere(*args, **kwargs): pass def sqrt(*args, **kwargs): pass def standard_attributes(*args, **kwargs): pass def sys(*args, **kwargs): pass def tan(*args, **kwargs): pass def tanh(*args, **kwargs): pass def tau(*args, **kwargs): pass def text(*args, **kwargs): pass def textures(*args, **kwargs): pass def threading(*args, **kwargs): pass def time(*args, **kwargs): pass def triangle(*args, **kwargs): pass def trunc(*args, **kwargs): pass def v(*args, **kwargs): pass def vec(*args, **kwargs): pass def vector(*args, **kwargs): pass def version(*args, **kwargs): pass def vertex(*args, **kwargs): pass def vpython(*args, **kwargs): pass def websocketserving(*args, **kwargs): pass def wtext(*args, **kwargs): pass color.black = color.blue = color.cyan = color.gray = color.green = color.magenta = color.orange = color.red = color.white = color.yellow = 0
spreadsheet = [[5806,6444,1281,38,267,1835,223,4912,5995,230,4395,2986,6048,4719,216,1201], [74,127,226,84,174,280,94,159,198,305,124,106,205,99,177,294], [1332,52,54,655,56,170,843,707,1273,1163,89,23,43,1300,1383,1229], [5653,236,1944,3807,5356,246,222,1999,4872,206,5265,5397,5220,5538,286,917], [3512,3132,2826,3664,2814,549,3408,3384,142,120,160,114,1395,2074,1816,2357], [100,2000,112,103,2122,113,92,522,1650,929,1281,2286,2259,1068,1089,651], [646,490,297,60,424,234,48,491,245,523,229,189,174,627,441,598], [2321,555,2413,2378,157,27,194,2512,117,140,2287,277,2635,1374,1496,1698], [101,1177,104,89,542,2033,1724,1197,474,1041,1803,770,87,1869,1183,553], [1393,92,105,1395,1000,85,391,1360,1529,1367,1063,688,642,102,999,638], [4627,223,188,5529,2406,4980,2384,2024,4610,279,249,2331,4660,4350,3264,242], [769,779,502,75,1105,53,55,931,1056,1195,65,292,1234,1164,678,1032], [2554,75,4406,484,2285,226,5666,245,4972,3739,5185,1543,230,236,3621,5387], [826,4028,4274,163,5303,4610,145,5779,157,4994,5053,186,5060,3082,2186,4882], [588,345,67,286,743,54,802,776,29,44,107,63,303,372,41,810], [128,2088,3422,111,3312,740,3024,1946,920,131,112,477,3386,2392,1108,2741]] acc=0 # for i in range(len(spreadsheet)): # min_value = min(spreadsheet[i]) # max_value = max(spreadsheet[i]) # acc+=max_value - min_value # print(acc) def sum_of_divisors(numbers): length = len(numbers) for i in range(length): for j in range(length): if i != j: if numbers[i] > numbers[j] and numbers[i] % numbers[j] ==0: return int(numbers[i]/numbers[j]) acc=0 for val in spreadsheet: acc+=sum_of_divisors(val) print(acc)
spreadsheet = [[5806, 6444, 1281, 38, 267, 1835, 223, 4912, 5995, 230, 4395, 2986, 6048, 4719, 216, 1201], [74, 127, 226, 84, 174, 280, 94, 159, 198, 305, 124, 106, 205, 99, 177, 294], [1332, 52, 54, 655, 56, 170, 843, 707, 1273, 1163, 89, 23, 43, 1300, 1383, 1229], [5653, 236, 1944, 3807, 5356, 246, 222, 1999, 4872, 206, 5265, 5397, 5220, 5538, 286, 917], [3512, 3132, 2826, 3664, 2814, 549, 3408, 3384, 142, 120, 160, 114, 1395, 2074, 1816, 2357], [100, 2000, 112, 103, 2122, 113, 92, 522, 1650, 929, 1281, 2286, 2259, 1068, 1089, 651], [646, 490, 297, 60, 424, 234, 48, 491, 245, 523, 229, 189, 174, 627, 441, 598], [2321, 555, 2413, 2378, 157, 27, 194, 2512, 117, 140, 2287, 277, 2635, 1374, 1496, 1698], [101, 1177, 104, 89, 542, 2033, 1724, 1197, 474, 1041, 1803, 770, 87, 1869, 1183, 553], [1393, 92, 105, 1395, 1000, 85, 391, 1360, 1529, 1367, 1063, 688, 642, 102, 999, 638], [4627, 223, 188, 5529, 2406, 4980, 2384, 2024, 4610, 279, 249, 2331, 4660, 4350, 3264, 242], [769, 779, 502, 75, 1105, 53, 55, 931, 1056, 1195, 65, 292, 1234, 1164, 678, 1032], [2554, 75, 4406, 484, 2285, 226, 5666, 245, 4972, 3739, 5185, 1543, 230, 236, 3621, 5387], [826, 4028, 4274, 163, 5303, 4610, 145, 5779, 157, 4994, 5053, 186, 5060, 3082, 2186, 4882], [588, 345, 67, 286, 743, 54, 802, 776, 29, 44, 107, 63, 303, 372, 41, 810], [128, 2088, 3422, 111, 3312, 740, 3024, 1946, 920, 131, 112, 477, 3386, 2392, 1108, 2741]] acc = 0 def sum_of_divisors(numbers): length = len(numbers) for i in range(length): for j in range(length): if i != j: if numbers[i] > numbers[j] and numbers[i] % numbers[j] == 0: return int(numbers[i] / numbers[j]) acc = 0 for val in spreadsheet: acc += sum_of_divisors(val) print(acc)
a = [0] for i in range(1000000): a[0] = i
a = [0] for i in range(1000000): a[0] = i
pkgname = "nasm" pkgver = "2.15.05" pkgrel = 0 build_style = "gnu_configure" make_cmd = "gmake" make_dir = "." make_check_target = "test" hostmakedepends = ["gmake"] checkdepends = ["perl"] pkgdesc = "80x86 assembler designed for portability and modularity" maintainer = "q66 <[email protected]>" license = "BSD-2-Clause" url = "https://www.nasm.us" source = f"{url}/pub/{pkgname}/releasebuilds/{pkgver}/{pkgname}-{pkgver}.tar.xz" sha256 = "3caf6729c1073bf96629b57cee31eeb54f4f8129b01902c73428836550b30a3f" def post_install(self): self.install_license("LICENSE")
pkgname = 'nasm' pkgver = '2.15.05' pkgrel = 0 build_style = 'gnu_configure' make_cmd = 'gmake' make_dir = '.' make_check_target = 'test' hostmakedepends = ['gmake'] checkdepends = ['perl'] pkgdesc = '80x86 assembler designed for portability and modularity' maintainer = 'q66 <[email protected]>' license = 'BSD-2-Clause' url = 'https://www.nasm.us' source = f'{url}/pub/{pkgname}/releasebuilds/{pkgver}/{pkgname}-{pkgver}.tar.xz' sha256 = '3caf6729c1073bf96629b57cee31eeb54f4f8129b01902c73428836550b30a3f' def post_install(self): self.install_license('LICENSE')
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def mergeTwoLists(self, list1: Optional[ListNode], list2: Optional[ListNode]) -> Optional[ListNode]: l=[] l1=list1 l2=list2 while l1: l.append(l1.val) l1=l1.next while l2: l.append(l2.val) l2=l2.next l.sort() oplist=ListNode() lfin=oplist for i in l: lfin.next=ListNode(i) lfin=lfin.next return oplist.next
class Solution: def merge_two_lists(self, list1: Optional[ListNode], list2: Optional[ListNode]) -> Optional[ListNode]: l = [] l1 = list1 l2 = list2 while l1: l.append(l1.val) l1 = l1.next while l2: l.append(l2.val) l2 = l2.next l.sort() oplist = list_node() lfin = oplist for i in l: lfin.next = list_node(i) lfin = lfin.next return oplist.next
# coding: utf-8 n = int(input()) sta = [i for i in ''.join(input().split()).split('0') if i != ''] ans = 0 for i in sta: ans += 2+len(i)-1 if ans != 0: print(ans-1) else: print(0)
n = int(input()) sta = [i for i in ''.join(input().split()).split('0') if i != ''] ans = 0 for i in sta: ans += 2 + len(i) - 1 if ans != 0: print(ans - 1) else: print(0)
#Question Link #https://practice.geeksforgeeks.org/problems/find-pair-given-difference/0 for _ in range(t): L,N = map(int,input().split()) arr = list(map(int,input().split())) arr.sort() flag = -1 i =0 j = L-1 for i in range(len(arr)): for j in range(i+1,len(arr)): if arr[j] - arr[i] == N: flag = 1 break print(flag)
for _ in range(t): (l, n) = map(int, input().split()) arr = list(map(int, input().split())) arr.sort() flag = -1 i = 0 j = L - 1 for i in range(len(arr)): for j in range(i + 1, len(arr)): if arr[j] - arr[i] == N: flag = 1 break print(flag)
''' https://practice.geeksforgeeks.org/problems/sort-an-array-of-0s-1s-and-2s/0 ''' def sort_z_o_t(A): count = [0 for i in range(3)] for i in A: count[i] += 1 aIdx = 0 for i, n in enumerate(count): while n > 0: A[aIdx] = i n -= 1 aIdx += 1 if __name__ == '__main__': A = [0, 2, 1, 2, 0] sort_z_o_t(A) print(A)
""" https://practice.geeksforgeeks.org/problems/sort-an-array-of-0s-1s-and-2s/0 """ def sort_z_o_t(A): count = [0 for i in range(3)] for i in A: count[i] += 1 a_idx = 0 for (i, n) in enumerate(count): while n > 0: A[aIdx] = i n -= 1 a_idx += 1 if __name__ == '__main__': a = [0, 2, 1, 2, 0] sort_z_o_t(A) print(A)
class Algorithm: def __init__(self, np, ic, h, force, params): self.np = np self.h = h self.sq2h = np.sqrt(2 * h) self.sqh2 = np.sqrt(h / 2) self.h2 = h / 2 self.force = force self.acc = 0 fres = self.force(ic) self.v, self.f, self.ff = ( fres.get("llh"), fres.get("grad"), fres.get("grad_data"), ) self.p = np.random.randn(*ic.shape) self.xi = np.random.randn(1) def clear(self, q): self.acc = 0 fres = self.force(q) self.v, self.f, self.ff = ( fres.get("llh"), fres.get("grad"), fres.get("grad_data"), ) pass def step(self, q): pass
class Algorithm: def __init__(self, np, ic, h, force, params): self.np = np self.h = h self.sq2h = np.sqrt(2 * h) self.sqh2 = np.sqrt(h / 2) self.h2 = h / 2 self.force = force self.acc = 0 fres = self.force(ic) (self.v, self.f, self.ff) = (fres.get('llh'), fres.get('grad'), fres.get('grad_data')) self.p = np.random.randn(*ic.shape) self.xi = np.random.randn(1) def clear(self, q): self.acc = 0 fres = self.force(q) (self.v, self.f, self.ff) = (fres.get('llh'), fres.get('grad'), fres.get('grad_data')) pass def step(self, q): pass
expected_output = { 'type': { 'BYTE': { 'allocated': 7045122, 'allocations': 737743, 'frees': 734750, 'requested': 6877514, }, 'BYTE*': { 'allocated': 29128, 'allocations': 345, 'frees': 309, 'requested': 27112, }, 'PArray': { 'allocated': 0, 'allocations': 180, 'frees': 180, 'requested': 0, }, 'Summary': { 'allocated': 7969955, 'allocations': 762405, 'frees': 759097, 'requested': 7784707, }, '_btrace_ctx_global_': { 'allocated': 7864, 'allocations': 26, 'frees': 7, 'requested': 6800, }, '_btrace_module_*': { 'allocated': 4389, 'allocations': 66, 'frees': 0, 'requested': 693, }, '_dns_resolver_ctxt': { 'allocated': 128, 'allocations': 1, 'frees': 0, 'requested': 72, }, 'bipc_channel_': { 'allocated': 136128, 'allocations': 412, 'frees': 404, 'requested': 135680, }, 'bipc_rx_stream_': { 'allocated': 459328, 'allocations': 412, 'frees': 404, 'requested': 458880, }, 'brand_context_s': { 'allocated': 0, 'allocations': 9, 'frees': 9, 'requested': 0, }, 'chasfs_ctx_int_': { 'allocated': 12576, 'allocations': 6, 'frees': 3, 'requested': 12408, }, 'confd_cs_node**': { 'allocated': 0, 'allocations': 84, 'frees': 84, 'requested': 0, }, 'confd_event_node': { 'allocated': 0, 'allocations': 246, 'frees': 246, 'requested': 0, }, 'confd_hkeypath': { 'allocated': 0, 'allocations': 129, 'frees': 129, 'requested': 0, }, 'evContext_p': { 'allocated': 12640, 'allocations': 1, 'frees': 0, 'requested': 12584, }, 'file_alloc_handle_s': { 'allocated': 1120, 'allocations': 14, 'frees': 0, 'requested': 336, }, 'file_info': { 'allocated': 71536, 'allocations': 34, 'frees': 0, 'requested': 69632, }, 'filter_key_s': { 'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0, }, 'green_args_s': { 'allocated': 0, 'allocations': 284, 'frees': 284, 'requested': 0, }, 'green_assist_be_defer_': { 'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0, }, 'green_subscribe_tblcur': { 'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0, }, 'green_subscribe_toc_tb': { 'allocated': 104, 'allocations': 1, 'frees': 0, 'requested': 48, }, 'hash_table_s': { 'allocated': 1664, 'allocations': 16, 'frees': 0, 'requested': 768, }, 'hashtable': { 'allocated': 96, 'allocations': 1, 'frees': 0, 'requested': 40, }, 'int32': { 'allocated': 0, 'allocations': 1, 'frees': 1, 'requested': 0, }, 'lru_id_mgr_handle_': { 'allocated': 372, 'allocations': 1, 'frees': 0, 'requested': 316, }, 'mdt_obj_mgr_t': { 'allocated': 88, 'allocations': 1, 'frees': 0, 'requested': 32, }, 'mdtpub_sensor_periodic': { 'allocated': 0, 'allocations': 26, 'frees': 26, 'requested': 0, }, 'mqipc_ctl_': { 'allocated': 2480, 'allocations': 79, 'frees': 69, 'requested': 1920, }, 'netconf_write_buffer_s': { 'allocated': 0, 'allocations': 10402, 'frees': 10402, 'requested': 0, }, 's_mdt_dc_filters_list': { 'allocated': 0, 'allocations': 29, 'frees': 29, 'requested': 0, }, 's_mdt_filter_dc_choice': { 'allocated': 0, 'allocations': 29, 'frees': 29, 'requested': 0, }, 's_yp_sensor_oc': { 'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0, }, 'section_data_s': { 'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0, }, 'sensor_data_collection': { 'allocated': 0, 'allocations': 10399, 'frees': 10399, 'requested': 0, }, 'service_dir_connect_ac': { 'allocated': 0, 'allocations': 28, 'frees': 28, 'requested': 0, }, 'tc_work_queue_s': { 'allocated': 0, 'allocations': 5, 'frees': 5, 'requested': 0, }, 'tdl_epoch_s': { 'allocated': 152, 'allocations': 1, 'frees': 0, 'requested': 96, }, 'tdldb_info_': { 'allocated': 3136, 'allocations': 14, 'frees': 0, 'requested': 2352, }, 'tdldb_plat_data_s*': { 'allocated': 2432, 'allocations': 16, 'frees': 0, 'requested': 1536, }, 'tdlhandle_s': { 'allocated': 53584, 'allocations': 1290, 'frees': 1256, 'requested': 51680, }, 'tdlhandle_s*': { 'allocated': 0, 'allocations': 29, 'frees': 29, 'requested': 0, }, 'vista_context_': { 'allocated': 125888, 'allocations': 30, 'frees': 0, 'requested': 124208, }, }, }
expected_output = {'type': {'BYTE': {'allocated': 7045122, 'allocations': 737743, 'frees': 734750, 'requested': 6877514}, 'BYTE*': {'allocated': 29128, 'allocations': 345, 'frees': 309, 'requested': 27112}, 'PArray': {'allocated': 0, 'allocations': 180, 'frees': 180, 'requested': 0}, 'Summary': {'allocated': 7969955, 'allocations': 762405, 'frees': 759097, 'requested': 7784707}, '_btrace_ctx_global_': {'allocated': 7864, 'allocations': 26, 'frees': 7, 'requested': 6800}, '_btrace_module_*': {'allocated': 4389, 'allocations': 66, 'frees': 0, 'requested': 693}, '_dns_resolver_ctxt': {'allocated': 128, 'allocations': 1, 'frees': 0, 'requested': 72}, 'bipc_channel_': {'allocated': 136128, 'allocations': 412, 'frees': 404, 'requested': 135680}, 'bipc_rx_stream_': {'allocated': 459328, 'allocations': 412, 'frees': 404, 'requested': 458880}, 'brand_context_s': {'allocated': 0, 'allocations': 9, 'frees': 9, 'requested': 0}, 'chasfs_ctx_int_': {'allocated': 12576, 'allocations': 6, 'frees': 3, 'requested': 12408}, 'confd_cs_node**': {'allocated': 0, 'allocations': 84, 'frees': 84, 'requested': 0}, 'confd_event_node': {'allocated': 0, 'allocations': 246, 'frees': 246, 'requested': 0}, 'confd_hkeypath': {'allocated': 0, 'allocations': 129, 'frees': 129, 'requested': 0}, 'evContext_p': {'allocated': 12640, 'allocations': 1, 'frees': 0, 'requested': 12584}, 'file_alloc_handle_s': {'allocated': 1120, 'allocations': 14, 'frees': 0, 'requested': 336}, 'file_info': {'allocated': 71536, 'allocations': 34, 'frees': 0, 'requested': 69632}, 'filter_key_s': {'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0}, 'green_args_s': {'allocated': 0, 'allocations': 284, 'frees': 284, 'requested': 0}, 'green_assist_be_defer_': {'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0}, 'green_subscribe_tblcur': {'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0}, 'green_subscribe_toc_tb': {'allocated': 104, 'allocations': 1, 'frees': 0, 'requested': 48}, 'hash_table_s': {'allocated': 1664, 'allocations': 16, 'frees': 0, 'requested': 768}, 'hashtable': {'allocated': 96, 'allocations': 1, 'frees': 0, 'requested': 40}, 'int32': {'allocated': 0, 'allocations': 1, 'frees': 1, 'requested': 0}, 'lru_id_mgr_handle_': {'allocated': 372, 'allocations': 1, 'frees': 0, 'requested': 316}, 'mdt_obj_mgr_t': {'allocated': 88, 'allocations': 1, 'frees': 0, 'requested': 32}, 'mdtpub_sensor_periodic': {'allocated': 0, 'allocations': 26, 'frees': 26, 'requested': 0}, 'mqipc_ctl_': {'allocated': 2480, 'allocations': 79, 'frees': 69, 'requested': 1920}, 'netconf_write_buffer_s': {'allocated': 0, 'allocations': 10402, 'frees': 10402, 'requested': 0}, 's_mdt_dc_filters_list': {'allocated': 0, 'allocations': 29, 'frees': 29, 'requested': 0}, 's_mdt_filter_dc_choice': {'allocated': 0, 'allocations': 29, 'frees': 29, 'requested': 0}, 's_yp_sensor_oc': {'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0}, 'section_data_s': {'allocated': 0, 'allocations': 3, 'frees': 3, 'requested': 0}, 'sensor_data_collection': {'allocated': 0, 'allocations': 10399, 'frees': 10399, 'requested': 0}, 'service_dir_connect_ac': {'allocated': 0, 'allocations': 28, 'frees': 28, 'requested': 0}, 'tc_work_queue_s': {'allocated': 0, 'allocations': 5, 'frees': 5, 'requested': 0}, 'tdl_epoch_s': {'allocated': 152, 'allocations': 1, 'frees': 0, 'requested': 96}, 'tdldb_info_': {'allocated': 3136, 'allocations': 14, 'frees': 0, 'requested': 2352}, 'tdldb_plat_data_s*': {'allocated': 2432, 'allocations': 16, 'frees': 0, 'requested': 1536}, 'tdlhandle_s': {'allocated': 53584, 'allocations': 1290, 'frees': 1256, 'requested': 51680}, 'tdlhandle_s*': {'allocated': 0, 'allocations': 29, 'frees': 29, 'requested': 0}, 'vista_context_': {'allocated': 125888, 'allocations': 30, 'frees': 0, 'requested': 124208}}}
class Solution: def validPalindrome(self, s: str) -> bool: def isValid (s,i,j): while i < j: if s[i] != s[j]: return False i += 1 j -= 1 return True i ,j = 0,len(s) while i < j: if s[i] != s[j]: return isValid(s, i + 1, j) or isValid(s, i , j - 1) i += 1 j -= 1 return True
class Solution: def valid_palindrome(self, s: str) -> bool: def is_valid(s, i, j): while i < j: if s[i] != s[j]: return False i += 1 j -= 1 return True (i, j) = (0, len(s)) while i < j: if s[i] != s[j]: return is_valid(s, i + 1, j) or is_valid(s, i, j - 1) i += 1 j -= 1 return True
class QueryDeviceGroupsInDTO(object): def __init__(self): self.accessAppId = None self.pageNo = None self.pageSize = None self.name = None def getAccessAppId(self): return self.accessAppId def setAccessAppId(self, accessAppId): self.accessAppId = accessAppId def getPageNo(self): return self.pageNo def setPageNo(self, pageNo): self.pageNo = pageNo def getPageSize(self): return self.pageSize def setPageSize(self, pageSize): self.pageSize = pageSize def getName(self): return self.name def setName(self, name): self.name = name
class Querydevicegroupsindto(object): def __init__(self): self.accessAppId = None self.pageNo = None self.pageSize = None self.name = None def get_access_app_id(self): return self.accessAppId def set_access_app_id(self, accessAppId): self.accessAppId = accessAppId def get_page_no(self): return self.pageNo def set_page_no(self, pageNo): self.pageNo = pageNo def get_page_size(self): return self.pageSize def set_page_size(self, pageSize): self.pageSize = pageSize def get_name(self): return self.name def set_name(self, name): self.name = name
# parsetab.py # This file is automatically generated. Do not edit. _lr_method = 'LALR' _lr_signature = 'XP\xd6":$v\xd1\xacQ\xe2\x1d\xc8\x10T\xa2' _lr_action_items = {'VOID':([118,261,15,238,171,3,50,37,359,33,170,24,68,197,284,328,361,12,2,141,39,29,73,173,232,288,222,60,166,8,21,281,82,135,65,168,239,0,13,388,27,278,4,16,333,187,231,9,53,280,279,354,164,169,74,18,1,360,138,243,117,131,36,48,61,236,270,52,35,23,57,31,134,206,287,88,5,6,357,10,32,38,19,66,59,26,340,40,228,67,124,28,55,],[-169,-219,-2,6,-142,6,-166,-130,-135,-243,6,-117,-138,-249,-145,6,-253,-118,6,6,-165,6,6,6,6,-251,6,6,-245,-124,-168,-137,6,-224,6,6,-170,-1,-134,-254,-167,-244,-164,-123,-156,6,-172,-125,-157,-143,6,-136,-218,6,-248,-131,6,-252,6,-220,-255,-171,-129,6,6,-173,-222,-104,-126,-3,-247,-242,-246,-250,6,6,-132,-122,-144,-119,-128,-133,-127,-139,-223,-120,-221,-121,-155,6,-174,6,6,]),'DIV_ASSIGN':([315,105,367,91,156,182,183,365,389,221,180,411,293,143,106,75,85,317,92,181,100,103,218,369,314,76,212,214,78,310,79,421,311,101,185,319,186,318,424,110,364,111,],[-7,-10,-25,-11,-4,-14,-44,-48,-32,-46,-15,-33,-21,252,-13,-20,-12,-26,-19,-16,-16,-4,-17,-23,-5,-18,-29,-28,-9,-8,-56,-34,-6,-22,-45,-24,-47,-27,-35,-43,-57,-49,]),'PP_DEFINE':([74,388,23,278,134,31,57,117,360,261,243,164,197,15,270,0,33,288,206,361,340,166,52,1,],[-248,-254,-3,-244,-246,-242,-247,-255,-252,-219,-220,-218,-249,-2,-222,-1,-243,-251,-250,-253,-221,-245,-104,11,]),'LE_OP':([78,302,310,100,214,293,301,79,311,212,297,103,307,298,364,75,182,369,218,76,91,186,110,101,92,299,86,185,97,105,156,300,183,143,106,221,309,296,411,181,84,367,111,318,180,389,312,87,319,421,98,365,315,85,317,306,313,308,314,424,],[-9,-67,-8,-16,-28,-21,-66,-56,-6,-29,-64,-4,-69,-59,-57,-20,-14,-23,-17,-18,-11,-47,-43,-22,-19,-61,-62,-45,202,-10,-4,-60,-44,-56,-13,-46,-70,-63,-33,-16,-65,-25,-49,-27,-15,-32,202,-68,-24,-34,-58,-48,-7,-12,-26,-71,202,-72,-5,-35,]),'(':([9,345,3,145,50,85,108,288,218,254,75,333,155,199,40,243,409,415,314,131,151,248,36,48,128,172,94,339,109,263,360,189,66,74,106,182,211,268,398,377,14,165,367,257,162,403,235,177,250,380,187,52,117,138,166,231,311,397,19,196,208,17,78,148,160,118,13,57,6,141,372,181,193,115,136,201,395,260,379,214,46,44,277,154,247,88,190,255,270,135,232,265,134,341,96,278,343,400,220,29,228,175,152,82,217,319,331,5,361,2,91,10,38,225,146,407,349,206,15,27,369,35,350,354,281,76,317,23,239,105,394,244,0,358,167,8,144,347,355,252,61,414,26,140,205,184,249,198,37,373,101,137,30,95,293,261,273,92,204,381,47,416,103,24,269,382,203,68,262,371,159,32,259,156,164,241,53,410,73,153,267,197,209,58,383,114,194,340,393,83,62,59,285,142,219,7,104,124,378,195,56,100,258,180,192,1,294,359,236,191,271,325,188,253,110,77,246,332,18,80,229,256,264,329,222,31,226,43,388,45,370,251,202,21,39,310,375,216,318,4,69,16,81,385,290,212,224,33,406,12,368,42,70,315,200,],[-125,-217,-111,-227,55,-12,-55,-251,-17,-90,-20,-156,-214,73,-121,-220,138,-234,-5,-171,265,-99,-129,73,232,17,-41,-237,-53,138,-252,73,-139,-248,-13,-14,73,138,-232,-197,17,17,-25,138,273,410,232,73,-98,-216,138,-104,-255,138,-245,-172,-6,-233,-127,-148,73,17,-9,138,-212,-169,-134,-247,-122,138,-195,-16,73,222,-211,305,138,-226,138,-28,-177,-176,138,-225,-93,-149,73,-94,-222,-224,232,138,-246,-241,-51,-244,138,-230,138,-109,-155,73,73,-147,138,-24,-196,-132,-253,-107,-11,-119,-133,73,258,138,-215,-250,-2,55,-23,-126,382,-136,-137,-18,-26,-3,-170,-10,-199,-240,-1,17,138,-124,-210,138,73,-92,138,-236,-120,-209,73,138,-100,73,-130,-202,-22,-213,17,-50,-21,-219,138,-19,73,138,71,-231,-4,-117,-239,138,73,-138,-228,-201,138,-128,-238,-4,-218,138,-157,138,138,267,138,-249,73,17,138,73,73,-221,-203,-52,-110,-223,73,138,73,-175,-54,-174,138,73,73,-16,138,-15,73,17,73,-135,-173,73,-229,-200,-146,-96,216,184,-95,328,-131,184,73,-97,138,73,222,-242,222,-112,-254,-179,73,-91,73,-168,-165,-8,-198,138,-27,-164,-180,-123,187,138,73,-29,328,-243,-235,-118,138,-108,-178,-7,-42,]),',':([182,218,183,274,300,29,90,405,39,100,372,70,313,185,318,107,387,325,386,186,212,346,311,120,176,38,24,65,371,75,234,4,45,106,323,293,66,92,356,352,315,161,304,110,402,321,111,228,13,245,301,235,40,384,93,143,314,118,236,413,367,423,239,2,85,421,331,8,296,127,180,5,338,224,322,348,87,373,50,76,422,16,316,86,128,123,101,364,102,103,7,68,281,307,424,163,9,35,396,133,342,214,306,332,122,178,308,394,375,221,26,231,78,6,401,275,392,377,282,299,43,389,403,297,418,276,317,46,97,283,344,129,36,336,365,53,42,419,98,124,156,64,312,353,292,21,333,359,10,335,391,181,62,72,113,417,19,32,12,27,116,174,18,44,303,411,334,390,369,298,37,63,351,393,404,69,363,3,399,105,130,84,125,302,91,420,149,309,319,131,233,324,286,354,320,79,310,],[-14,-17,-44,-114,-60,-109,-80,412,-165,-16,-195,-178,-74,-45,-27,-78,-151,-200,-154,-47,-29,263,-6,-160,291,-133,-117,-115,-201,-20,-185,-164,-179,-13,-85,-21,-139,-19,-153,-207,-7,-101,-83,-43,-206,368,-49,-155,-134,263,-66,-192,-121,-205,-84,-56,-5,-169,-173,-36,-25,412,-170,-107,-12,-34,-196,-124,-63,-183,-15,-132,-184,-193,263,263,-68,-202,-166,-18,-36,-123,-77,-62,-187,230,-22,-57,-76,-4,-175,-138,-137,-69,-35,-88,-125,-126,263,-115,-89,-28,-71,-194,-162,263,-72,-199,-198,-46,-120,-172,-9,-122,-208,-116,-87,-197,-150,-61,-112,-32,-39,-64,-38,-204,-26,-177,-73,-152,-102,237,-129,-189,-48,-157,-108,412,-58,-174,-4,165,-75,385,-81,-168,-156,-135,-119,-161,-31,-16,-110,-82,-86,263,-127,-128,-118,-167,-103,-256,-131,-176,-79,-33,-163,-36,-23,-59,-130,-113,263,-203,-37,-180,-257,-111,263,-10,238,-65,-188,-67,-11,-40,263,-70,-24,-171,-186,263,358,-136,-30,-56,-8,]),'LONG':([53,52,222,16,31,340,36,281,134,21,333,9,18,287,68,236,164,67,357,57,37,166,280,27,35,354,243,171,328,138,10,8,231,55,284,278,88,3,124,38,23,135,360,232,131,238,197,32,74,12,359,39,24,4,117,48,29,168,40,288,60,5,187,0,66,28,65,361,239,19,33,73,118,141,13,82,388,279,26,173,6,228,50,61,270,206,59,170,261,15,169,2,1,],[-157,-104,19,-123,-242,-221,-129,-137,-246,-168,-156,-125,-131,19,-138,-173,-218,19,-144,-247,-130,-245,-143,-167,-126,-136,-220,-142,19,19,-119,-124,-172,19,-145,-244,19,19,-174,-133,-3,-224,-252,19,-171,19,-249,-128,-248,-118,-135,-165,-117,-164,-255,19,19,19,-121,-251,19,-132,19,-1,-139,19,19,-253,-170,-127,-243,19,-169,19,-134,19,-254,19,-120,19,-122,-155,-166,19,-222,-250,-223,19,-219,-2,19,19,19,]),'ELLIPSIS':([238,],[337,]),'^':([315,156,298,296,91,97,314,100,79,212,312,76,369,424,293,110,301,299,182,90,317,311,75,303,107,389,85,316,306,367,214,308,365,313,180,307,310,102,78,111,87,92,292,185,221,183,302,106,300,181,98,143,364,319,297,309,218,101,318,86,421,411,84,105,103,186,],[-7,-4,-59,-63,-11,-73,-5,-16,-56,-29,-75,-18,-23,-35,-21,-43,-66,-61,-14,198,-26,-6,-20,-79,-78,-32,-12,-77,-71,-25,-28,-72,-48,-74,-15,-69,-8,-76,-9,-49,-68,-19,198,-45,-46,-44,-67,-13,-60,-16,-58,-56,-57,-24,-64,-70,-17,-22,-27,-62,-34,-33,-65,-10,-4,-47,]),'<':([301,212,421,105,313,186,101,365,221,315,106,364,389,314,312,181,367,297,299,91,309,78,103,156,75,293,87,310,182,296,218,183,306,97,185,79,319,369,86,298,85,98,411,311,424,300,317,100,308,307,318,84,214,302,92,180,110,111,143,76,],[-66,-29,-34,-10,203,-47,-22,-48,-46,-7,-13,-57,-32,-5,203,-16,-25,-64,-61,-11,-70,-9,-4,-4,-20,-21,-68,-8,-14,-63,-17,-44,-71,203,-45,-56,-24,-23,-62,-59,-12,-58,-33,-6,-35,-60,-26,-16,-72,-69,-27,-65,-28,-67,-19,-15,-43,-49,-56,-18,]),'GOTO':([347,136,137,164,407,409,414,244,148,262,268,269,160,260,261,395,241,243,400,135,398,159,270,61,271,416,341,140,406,349,259,141,397,415,154,264,345,155,59,340,383,144,380,145,381,379,339,52,],[139,-211,-213,-218,139,139,-236,-240,139,-228,139,-239,-212,-226,-219,139,139,-220,-230,-224,-232,139,-222,139,-229,-231,-241,-209,-235,-215,-238,139,-233,-234,-225,139,-217,-214,-223,-221,139,-210,-216,-227,139,139,-237,-104,]),'ENUM':([170,59,3,16,8,197,88,10,61,328,13,29,231,9,279,361,228,21,37,388,50,24,40,238,33,166,117,12,164,281,2,360,280,171,53,239,66,82,168,65,27,187,23,39,57,73,28,135,357,131,5,333,138,18,169,19,32,48,15,31,206,222,278,1,141,74,52,67,340,236,35,243,287,55,60,270,118,36,38,0,288,124,26,354,359,261,232,68,284,4,134,6,173,],[25,-223,25,-123,-124,-249,25,-119,25,25,-134,25,-172,-125,25,-253,-155,-168,-130,-254,-166,-117,-121,25,-243,-245,-255,-118,-218,-137,25,-252,-143,-142,-157,-170,-139,25,25,25,-167,25,-3,-165,-247,25,25,-224,-144,-171,-132,-156,25,-131,25,-127,-128,25,-2,-242,-250,25,-244,25,25,-248,-104,25,-221,-173,-126,-220,25,25,25,-222,-169,-129,-133,-1,-251,-174,-120,-136,-135,-219,25,-138,-145,-164,-246,-122,25,]),'PERIOD':([319,105,91,212,78,156,76,318,311,100,293,110,315,101,182,369,367,310,218,92,180,85,317,314,106,75,181,214,103,],[-24,-10,-11,-29,-9,-4,-18,-27,-6,-16,-21,213,-7,-22,-14,-23,-25,-8,-17,-19,-15,-12,-26,-5,-13,-20,-16,-28,-4,]),'PP_END_DEFINE':([310,311,323,306,362,281,100,36,101,116,19,91,103,319,98,115,107,292,88,46,371,307,84,332,289,331,32,5,308,369,316,6,364,110,359,97,111,44,312,373,303,315,86,180,302,183,223,377,221,196,16,7,318,99,226,182,389,290,296,314,4,69,106,375,18,372,181,411,35,309,70,37,313,424,8,75,82,367,393,228,48,49,301,218,39,298,325,79,421,102,38,185,45,175,13,93,105,68,392,113,365,394,76,66,9,90,212,297,299,186,293,317,300,304,224,89,188,85,333,72,92,87,214,78,354,53,],[-8,-6,-85,-71,388,-137,-16,-129,-22,-103,-127,-11,-4,-24,-58,-190,-78,-81,-149,-177,-201,-69,-65,-194,360,-196,-128,-132,-72,-23,-77,-122,-57,-43,-135,-73,-49,-176,-75,-202,-79,-7,-62,-15,-67,-44,-191,-197,-46,-148,-123,-175,-27,206,-192,-14,-32,361,-63,-5,-164,-180,-13,-198,-131,-195,-16,-33,-126,-70,-178,-130,-74,-35,-124,-20,-147,-25,-203,-155,74,117,-66,-17,-165,-59,-200,-56,-34,-76,-133,-45,-179,288,-134,-84,-10,-138,-87,-86,-48,-199,-18,-139,-125,-80,-29,-64,-61,-47,-21,-26,-60,-83,-193,197,-146,-12,-156,-82,-19,-68,-28,-9,-136,-157,]),'LEFT_OP':([110,299,302,309,308,103,92,76,389,75,306,111,87,86,365,91,364,424,180,106,311,105,143,181,98,212,218,317,156,101,367,369,100,310,421,182,85,186,298,318,314,79,411,185,296,300,183,214,221,315,293,307,319,84,297,301,78,],[-43,-61,-67,194,194,-4,-19,-18,-32,-20,194,-49,194,-62,-48,-11,-57,-35,-15,-13,-6,-10,-56,-16,-58,-29,-17,-26,-4,-22,-25,-23,-16,-8,-34,-14,-12,-47,-59,-27,-5,-56,-33,-45,-63,-60,-44,-28,-46,-7,-21,194,-24,-65,-64,-66,-9,]),'DOUBLE':([340,6,278,164,236,88,2,270,27,18,124,279,29,228,281,0,1,359,361,10,16,35,82,354,37,65,8,9,239,288,55,141,131,73,28,280,197,360,66,170,36,166,231,21,168,169,19,74,118,222,57,187,39,238,12,13,284,31,50,4,5,134,33,135,232,243,206,48,67,3,173,23,38,40,60,388,15,357,171,328,52,138,59,68,61,287,26,32,261,117,53,333,24,],[-221,-122,-244,-218,-173,36,36,-222,-167,-131,-174,36,36,-155,-137,-1,36,-135,-253,-119,-123,-126,36,-136,-130,36,-124,-125,-170,-251,36,36,-171,36,36,-143,-249,-252,-139,36,-129,-245,-172,-168,36,36,-127,-248,-169,36,-247,36,-165,36,-118,-134,-145,-242,-166,-164,-132,-246,-243,-224,36,-220,-250,36,36,36,36,-3,-133,-121,36,-254,-2,-144,-142,36,-104,36,-223,-138,36,36,-120,-128,-219,-255,-157,-156,-117,]),'INC_OP':([189,255,264,349,159,378,96,85,114,270,252,383,225,195,410,52,267,397,214,191,380,109,140,415,257,247,256,370,249,319,77,106,262,385,244,135,217,212,181,56,216,205,355,259,138,277,341,343,91,414,345,155,251,184,294,180,137,81,241,80,145,311,59,395,190,219,248,152,367,76,141,209,254,48,369,208,273,187,318,198,347,105,317,108,175,204,409,269,83,177,243,268,101,382,156,407,100,315,194,73,258,192,182,211,253,144,229,160,199,293,246,271,310,339,103,218,368,416,167,261,75,104,260,329,92,340,110,400,164,203,148,61,136,250,381,290,406,154,220,285,379,398,314,78,202,193,263,142,265,95,],[77,-94,77,-215,77,77,-51,-12,77,-222,-92,77,77,77,77,-104,77,-233,-28,77,-216,-53,-209,-234,77,-93,-97,77,-100,-24,77,-13,-228,77,-240,-224,77,-29,-16,77,77,77,77,-238,77,77,-241,77,-11,-236,-217,-214,-91,77,77,-15,-213,77,77,77,-227,-6,-223,77,77,77,-99,77,-25,-18,77,77,-90,77,-23,77,77,77,-27,77,77,-10,-26,-55,77,77,77,-239,-52,77,-220,77,-22,77,-4,77,-16,-7,77,77,77,77,-14,77,-96,-210,77,-212,77,-21,-95,-229,-8,-237,-4,-17,77,-231,77,-219,-20,-54,-226,77,-19,-221,214,-230,-218,77,77,77,-211,-98,77,77,-235,-225,77,77,77,-232,-5,-9,77,77,77,77,77,-50,]),'|':([316,421,105,301,297,212,186,293,317,107,365,310,296,182,85,308,309,78,369,411,300,100,101,313,97,185,319,92,315,180,86,292,311,307,84,389,111,143,76,72,181,314,364,303,75,299,87,218,306,91,79,103,102,298,156,98,183,318,90,221,110,106,424,312,214,367,302,304,],[-77,-34,-10,-66,-64,-29,-47,-21,-26,-78,-48,-8,-63,-14,-12,-72,-70,-9,-23,-33,-60,-16,-22,-74,-73,-45,-24,-19,-7,-15,-62,-81,-6,-69,-65,-32,-49,-56,-18,177,-16,-5,-57,-79,-20,-61,-68,-17,-71,-11,-56,-4,-76,-59,-4,-58,-44,-27,-80,-46,-43,-13,-35,-75,-28,-25,-67,177,]),'NE_OP':([421,105,221,186,182,297,293,78,317,365,313,212,85,309,369,296,302,86,316,101,97,185,306,300,100,411,180,319,389,92,315,84,311,367,181,307,301,76,310,218,111,143,102,364,298,98,318,314,424,308,75,299,110,87,106,156,91,79,214,103,183,312,],[-34,-10,-46,-47,-14,-64,-21,-9,-26,-48,-74,-29,-12,-70,-23,-63,-67,-62,208,-22,-73,-45,-71,-60,-16,-33,-15,-24,-32,-19,-7,-65,-6,-25,-16,-69,-66,-18,-8,-17,-49,-56,208,-57,-59,-58,-27,-5,-35,-72,-20,-61,-43,-68,-13,-4,-11,-56,-28,-4,-44,-75,]),'SHORT':([10,50,82,357,36,138,13,141,26,27,57,340,8,40,284,261,228,333,12,231,278,19,3,288,280,166,88,354,67,1,170,73,68,48,328,18,15,0,21,187,6,37,232,29,279,16,164,236,238,197,24,31,388,59,61,9,38,281,222,239,169,23,55,168,118,131,134,53,35,4,32,66,39,270,173,52,2,287,361,124,28,5,171,74,243,117,359,135,206,33,65,60,360,],[-119,-166,9,-144,-129,9,-134,9,-120,-167,-247,-221,-124,-121,-145,-219,-155,-156,-118,-172,-244,-127,9,-251,-143,-245,9,-136,9,9,9,9,-138,9,9,-131,-2,-1,-168,9,-122,-130,9,9,9,-123,-218,-173,9,-249,-117,-242,-254,-223,9,-125,-133,-137,9,-170,9,-3,9,9,-169,-171,-246,-157,-126,-164,-128,-139,-165,-222,9,-104,9,9,-253,-174,9,-132,-142,-248,-220,-255,-135,-224,-250,-243,9,9,-252,]),'CONSTANT':([152,257,345,61,368,407,144,155,263,190,140,184,343,349,225,251,398,211,341,217,160,203,294,409,381,138,416,199,137,269,271,205,290,378,192,59,73,370,220,395,52,270,154,267,253,260,259,273,250,83,191,258,195,208,248,202,142,104,194,410,347,193,136,159,329,80,339,177,216,262,261,198,385,209,175,96,406,355,187,141,167,340,249,277,383,380,382,48,219,241,414,254,400,204,247,81,256,246,415,77,135,148,56,252,285,189,109,244,229,255,268,264,145,108,397,243,164,265,379,95,114,],[78,78,-217,78,78,78,-210,-214,78,78,-209,78,78,-215,78,-91,-232,78,-241,78,-212,78,78,78,78,78,-231,78,-213,-239,-229,78,78,78,78,-223,78,78,78,78,-104,-222,-225,78,-96,-226,-238,78,-98,-52,78,78,78,78,-99,78,78,-54,78,78,78,78,-211,78,78,78,-237,78,78,-228,-219,78,78,78,78,-51,-235,78,78,78,78,-221,-100,78,78,-216,78,78,78,78,-236,-90,-230,78,-93,78,-97,-95,-234,78,-224,78,78,-92,78,78,-53,-240,78,-94,78,78,-227,-55,-233,-220,-218,78,78,-50,78,]),'DEC_OP':([52,397,192,190,252,258,285,395,268,81,219,246,92,250,416,95,400,409,249,270,78,256,310,343,269,254,407,259,263,76,85,314,140,379,109,208,257,108,145,144,277,155,311,271,199,294,198,175,182,193,253,135,243,340,204,367,220,247,187,203,398,152,211,378,177,156,75,385,225,241,218,217,355,194,96,105,184,154,244,382,137,255,414,260,61,48,181,103,164,59,191,262,114,202,229,212,267,205,369,91,73,100,261,56,83,410,167,273,159,248,349,110,142,341,264,104,293,315,180,370,141,101,381,195,380,345,347,329,290,317,251,339,216,80,265,318,383,138,406,160,415,189,368,136,77,319,214,106,148,209,],[-104,-233,80,80,-92,80,80,80,80,80,80,-95,-19,-98,-231,-50,-230,80,-100,-222,-9,-97,-8,80,-239,-90,80,-238,80,-18,-12,-5,-209,80,-53,80,80,-55,-227,-210,80,-214,-6,-229,80,80,80,80,-14,80,-96,-224,-220,-221,80,-25,80,-93,80,80,-232,80,80,80,80,-4,-20,80,80,80,-17,80,80,80,-51,-10,80,-225,-240,80,-213,-94,-236,-226,80,80,-16,-4,-218,-223,80,-228,80,80,80,-29,80,80,-23,-11,80,-16,-219,80,-52,80,80,80,80,-99,-215,212,80,-241,80,-54,-21,-7,-15,80,80,-22,80,80,-216,-217,80,80,80,-26,-91,-237,80,80,80,-27,80,80,-235,-212,-234,80,80,-211,80,-24,-28,-13,80,80,]),'STATIC':([340,281,141,4,360,206,118,74,37,131,28,53,288,3,57,359,135,0,6,124,228,29,9,27,333,239,31,12,66,8,40,164,197,361,39,61,35,1,134,388,24,18,222,354,168,238,32,13,38,36,68,59,16,328,10,60,5,166,270,232,19,2,21,278,52,15,117,261,26,23,55,33,65,236,50,243,231,],[-221,-137,10,-164,-252,-250,-169,-248,-130,-171,10,-157,-251,10,-247,-135,-224,-1,-122,-174,-155,10,-125,-167,-156,-170,-242,-118,-139,-124,-121,-218,-249,-253,-165,10,-126,10,-246,-254,-117,-131,10,-136,10,10,-128,-134,-133,-129,-138,-223,-123,10,-119,10,-132,-245,-222,10,-127,10,-168,-244,-104,-2,-255,-219,-120,-3,10,-243,10,-173,-166,-220,-172,]),'EQ_OP':([100,308,103,311,84,314,101,301,185,307,212,421,297,369,317,367,319,186,78,110,79,310,97,298,312,299,318,315,424,98,182,364,111,156,309,300,86,87,316,106,306,85,296,313,105,143,183,91,218,181,214,221,302,411,365,293,102,92,76,389,180,75,],[-16,-72,-4,-6,-65,-5,-22,-66,-45,-69,-29,-34,-64,-23,-26,-25,-24,-47,-9,-43,-56,-8,-73,-59,-75,-61,-27,-7,-35,-58,-14,-57,-49,-4,-70,-60,-62,-68,209,-13,-71,-12,-63,-74,-10,-56,-44,-11,-17,-16,-28,-46,-67,-33,-48,-21,209,-19,-18,-32,-15,-20,]),'SIZEOF':([80,343,203,254,192,73,268,247,345,368,191,96,187,219,253,81,249,339,95,415,406,381,209,407,269,199,190,264,290,380,263,410,152,259,77,217,167,56,265,195,141,148,137,341,204,270,193,398,378,244,383,400,379,114,241,255,246,285,145,142,229,164,294,347,144,250,414,409,251,395,220,48,397,216,225,160,267,194,262,205,189,140,184,260,349,177,59,109,370,329,211,108,83,136,138,52,261,256,61,252,135,248,154,277,104,159,273,155,416,257,208,340,271,355,385,198,175,258,382,243,202,],[81,81,81,-90,81,81,81,-93,-217,81,81,-51,81,81,-96,81,-100,-237,-50,-234,-235,81,81,81,-239,81,81,81,81,-216,81,81,81,-238,81,81,81,81,81,81,81,81,-213,-241,81,-222,81,-232,81,-240,81,-230,81,81,81,-94,-95,81,-227,81,81,-218,81,81,-210,-98,-236,81,-91,81,81,81,-233,81,81,-212,81,81,-228,81,81,-209,81,-226,-215,81,-223,-53,81,81,81,-55,-52,-211,81,-104,-219,-97,81,-92,-224,-99,-225,81,-54,81,81,-214,-231,81,81,-221,-229,81,81,81,81,81,81,-220,81,]),'+':([208,109,164,191,110,144,293,252,183,395,269,212,409,268,217,273,381,100,105,192,246,314,56,83,243,329,290,317,310,219,92,248,152,365,265,264,138,343,298,424,277,400,301,79,257,256,106,84,140,145,244,190,319,253,260,339,186,263,383,182,193,349,378,368,142,225,136,385,296,249,148,175,299,421,155,311,340,345,204,218,271,254,199,187,61,194,159,211,85,75,154,135,86,220,247,398,114,181,180,96,318,195,156,369,262,407,389,411,258,285,294,101,76,103,216,81,80,143,59,415,341,205,410,267,370,141,270,379,78,52,241,111,167,261,300,108,91,177,382,406,137,315,189,297,95,203,77,214,380,416,104,397,414,355,202,229,251,98,259,185,184,367,198,209,364,73,160,255,302,347,221,250,48,],[83,-53,-218,83,-43,-210,-21,-92,-44,83,-239,-29,83,83,83,83,83,-16,-10,83,-95,-5,83,-52,-220,83,83,-26,-8,83,-19,-99,83,-48,83,83,83,83,-59,-35,83,-230,189,-56,83,-97,-13,189,-209,-227,-240,83,-24,-96,-226,-237,-47,83,83,-14,83,-215,83,83,83,83,-211,83,-63,-100,83,83,-61,-34,-214,-6,-221,-217,83,-17,-229,-90,83,83,83,83,83,83,-12,-20,-225,-224,-62,83,-93,-232,83,-16,-15,-51,-27,83,-4,-23,-228,83,-32,-33,83,83,83,-22,-18,-4,83,83,83,-56,-223,-234,-241,83,83,83,83,83,-222,83,-9,-104,83,-49,83,-219,-60,-55,-11,83,83,-235,-213,-7,83,-64,-50,83,83,-28,-216,-231,-54,-233,-236,83,83,83,-91,-58,-238,-45,83,-25,83,83,-57,83,-212,-94,189,83,-46,-98,83,]),'UNSIGNED':([36,52,231,135,18,66,50,206,287,35,170,141,61,53,2,10,357,333,88,73,131,281,164,222,67,59,60,55,39,134,16,354,124,171,232,359,328,5,243,38,118,360,24,4,278,65,37,32,236,28,12,40,23,187,166,340,74,19,48,228,13,173,239,27,138,168,284,31,388,0,169,197,117,82,361,279,1,33,29,238,280,8,57,288,26,6,3,261,270,68,21,9,15,],[-129,-104,-172,-224,-131,-139,-166,-250,18,-126,18,18,18,-157,18,-119,-144,-156,18,18,-171,-137,-218,18,18,-223,18,18,-165,-246,-123,-136,-174,-142,18,-135,18,-132,-220,-133,-169,-252,-117,-164,-244,18,-130,-128,-173,18,-118,-121,-3,18,-245,-221,-248,-127,18,-155,-134,18,-170,-167,18,18,-145,-242,-254,-1,18,-249,-255,18,-253,18,18,-243,18,18,-143,-124,-247,-251,-120,-122,18,-219,-222,-138,-168,-125,-2,]),'/':([180,369,300,86,76,315,367,75,411,111,364,91,100,98,317,78,101,314,92,221,186,365,297,293,106,183,212,105,110,421,218,318,298,185,79,181,319,424,214,389,310,103,143,156,296,299,182,311,85,],[-15,-23,-60,193,-18,-7,-25,-20,-33,-49,-57,-11,-16,-58,-26,-9,-22,-5,-19,-46,-47,-48,193,-21,-13,-44,-29,-10,-43,-34,-17,-27,-59,-45,-56,-16,-24,-35,-28,-32,-8,-4,-56,-4,193,-61,-14,-6,-12,]),';':([113,42,245,333,90,50,359,264,38,116,63,98,312,145,342,367,301,124,212,409,131,5,182,75,4,270,88,52,309,66,397,13,12,240,356,303,317,148,21,424,298,2,311,158,185,118,218,271,231,10,319,76,282,214,314,36,302,299,243,172,261,84,144,260,35,398,380,181,64,395,269,339,268,26,316,242,105,306,160,276,341,82,135,296,241,79,384,414,30,196,136,143,87,3,244,107,421,19,292,186,262,155,29,354,389,402,349,392,163,37,106,8,408,140,85,154,111,416,65,343,369,91,286,386,364,161,68,156,61,275,323,407,164,411,180,27,18,293,387,379,308,53,137,97,58,43,159,141,281,347,221,142,258,236,102,62,59,101,110,365,147,20,283,157,40,297,315,310,304,340,400,345,274,300,183,344,78,9,381,103,6,313,239,86,415,259,133,16,93,92,307,39,383,318,24,406,100,72,188,228,149,32,],[-86,-108,341,-156,-80,-166,-135,145,-133,-103,-113,-58,-75,-227,-89,-25,-66,-174,-29,145,-171,-132,-14,-20,-164,-222,-149,-104,-70,-139,-233,-134,-118,339,-153,-79,-26,145,-168,-35,-59,-107,-6,271,-45,-169,-17,-229,-172,-119,-24,-18,-150,-28,-5,-129,-67,-61,-220,284,-219,-65,-210,-226,-126,-232,-216,-16,-106,145,-239,-237,145,-120,-77,271,-10,-71,-212,-204,-241,-147,-224,-63,145,-56,-205,-236,-105,-148,-211,-56,-68,-111,-240,-78,-34,-127,-81,-47,-228,-214,-109,-136,-32,-206,-215,-87,-88,-130,-13,-124,415,-209,-12,-225,-49,-231,-115,145,-23,-11,357,-154,-57,-101,-138,-4,145,-116,-85,145,-218,-33,-15,-167,-131,-21,-151,145,-72,-157,-213,-73,-105,-112,145,145,-137,145,-46,244,145,-173,-76,-110,-223,-22,-43,-48,259,52,-152,269,-121,-64,-7,-8,-83,-221,-230,-217,-114,-60,-44,-102,-9,-125,145,-4,-122,-74,-170,-62,-234,-238,-115,-123,-84,-19,-69,-165,145,-27,-117,-235,-16,-82,-146,-155,262,-128,]),'?':([85,111,302,369,91,103,107,100,365,323,92,221,101,364,97,367,93,183,303,317,110,313,411,218,180,309,102,98,185,301,86,181,90,78,318,314,212,310,143,306,319,315,84,298,389,312,300,182,311,307,421,76,72,299,424,113,75,87,304,316,292,105,214,79,106,296,308,297,186,293,156,],[-12,-49,-67,-23,-11,-4,-78,-16,-48,-85,-19,-46,-22,-57,-73,-25,-84,-44,-79,-26,-43,-74,-33,-17,-15,-70,-76,-58,-45,-66,-62,-16,-80,-9,-27,-5,-29,-8,-56,-71,-24,-7,-65,-59,-32,-75,-60,-14,-6,-69,-34,-18,-82,-61,-35,220,-20,-68,-83,-77,-81,-10,-28,-56,-13,-63,-72,-64,-47,-21,-4,]),'$end':([23,361,340,15,31,388,0,74,57,52,134,117,261,33,166,1,360,278,288,270,243,206,164,197,],[-3,-253,-221,-2,-242,-254,-1,-248,-247,-104,-246,-255,-219,-243,-245,0,-252,-244,-251,-222,-220,-250,-218,-249,]),'FOR':([347,141,340,135,400,155,144,268,52,164,243,397,136,260,345,61,137,406,262,244,339,407,241,160,159,271,154,395,145,381,264,59,259,383,379,415,341,148,398,380,349,409,416,140,414,261,269,270,],[146,146,-221,-224,-230,-214,-210,146,-104,-218,-220,-233,-211,-226,-217,146,-213,-235,-228,-240,-237,146,146,-212,146,-229,-225,146,-227,146,146,-223,-238,146,146,-234,-241,146,-232,-216,-215,146,-231,-209,-236,-219,-239,-222,]),'UNION':([228,65,173,238,68,40,37,284,278,287,13,357,3,23,333,236,24,354,164,1,21,232,66,38,170,222,36,12,280,243,39,57,328,33,141,0,8,29,60,135,35,82,169,16,231,48,67,10,206,270,5,15,32,61,73,18,361,28,52,59,281,134,55,124,27,168,197,6,261,239,53,340,9,118,19,288,4,74,50,138,388,171,31,279,360,26,2,166,131,88,187,117,359,],[-155,22,22,22,-138,-121,-130,-145,-244,22,-134,-144,22,-3,-156,-173,-117,-136,-218,22,-168,22,-139,-133,22,22,-129,-118,-143,-220,-165,-247,22,-243,22,-1,-124,22,22,-224,-126,22,22,-123,-172,22,22,-119,-250,-222,-132,-2,-128,22,22,-131,-253,22,-104,-223,-137,-246,22,-174,-167,22,-249,-122,-219,-170,-157,-221,-125,-169,-127,-251,-164,-248,-166,22,-254,-142,-242,22,-252,-120,22,-245,-171,22,22,-255,-135,]),'ELSE':([340,345,269,339,271,416,140,137,136,400,259,406,261,415,243,397,349,155,144,398,145,341,262,270,414,160,244,380,164,],[-221,-217,-239,-237,-229,-231,-209,-213,-211,409,-238,-235,-219,-234,-220,-233,-215,-214,-210,-232,-227,-241,-228,-222,-236,-212,-240,-216,-218,]),'[':([377,32,394,7,44,105,182,4,332,359,82,46,124,212,76,91,37,70,8,13,128,2,29,239,218,62,317,369,18,45,315,16,231,319,43,3,331,38,293,236,27,393,318,88,100,115,232,78,21,281,110,66,69,53,24,36,226,118,373,12,39,371,188,10,180,314,131,5,333,325,35,19,224,196,214,228,50,75,375,40,311,106,6,222,310,181,9,103,92,26,354,68,85,156,367,372,235,42,101,],[-197,-128,-199,-175,-176,-10,-14,-164,329,-135,-147,-177,-174,-29,-18,-11,-130,-178,-124,-134,225,-107,-109,-170,-17,-110,-26,-23,-131,-179,-7,-123,-172,-24,-112,-111,-196,-133,-21,-173,56,-203,-27,-149,-16,225,225,-9,-168,-137,217,-139,-180,-157,-117,-129,225,-169,-202,-118,-165,-201,-146,-119,-15,-5,-171,-132,-156,-200,-126,-127,329,-148,-28,-155,56,-20,-198,-121,-6,-13,-122,225,-8,-16,-125,-4,-19,-120,-136,-138,-12,-4,-25,-195,225,-108,-22,]),'OR_OP':([221,156,86,312,97,367,302,316,365,300,110,314,218,84,309,113,318,98,307,185,103,306,319,78,87,91,100,424,303,143,323,421,310,186,72,411,297,101,180,106,311,369,304,92,85,105,90,293,93,183,298,212,102,79,308,76,301,313,75,292,107,296,111,364,299,389,181,214,317,315,182,],[-46,-4,-62,-75,-73,-25,-67,-77,-48,-60,-43,-5,-17,-65,-70,219,-27,-58,-69,-45,-4,-71,-24,-9,-68,-11,-16,-35,-79,-56,-85,-34,-8,-47,-82,-33,-64,-22,-15,-13,-6,-23,-83,-19,-12,-10,-80,-21,-84,-44,-59,-29,-76,-56,-72,-18,-66,-74,-20,-81,-78,-63,-49,-57,-61,-32,-16,-28,-26,-7,-14,]),'SUB_ASSIGN':([293,105,79,186,367,421,318,221,218,424,111,78,411,317,92,311,389,185,91,314,310,103,180,315,365,76,183,214,182,85,156,101,212,143,110,369,364,181,106,100,75,319,],[-21,-10,-56,-47,-25,-34,-27,-46,-17,-35,-49,-9,-33,-26,-19,-6,-32,-45,-11,-5,-8,-4,-15,-7,-48,-18,-44,-28,-14,-12,-4,-22,-29,246,-43,-23,-57,-16,-13,-16,-20,-24,]),'XOR_ASSIGN':([182,156,91,311,78,183,85,100,369,365,389,315,185,424,76,214,143,310,92,221,110,106,421,79,319,218,101,411,75,186,180,367,111,103,317,364,105,181,314,318,212,293,],[-14,-4,-11,-6,-9,-44,-12,-16,-23,-48,-32,-7,-45,-35,-18,-28,248,-8,-19,-46,-43,-13,-34,-56,-24,-17,-22,-33,-20,-47,-15,-25,-49,-4,-26,-57,-10,-16,-5,-27,-29,-21,]),'INT':([2,29,32,61,27,59,88,82,117,65,16,124,3,239,236,9,288,131,360,359,24,1,28,141,279,232,281,55,66,8,135,170,197,354,53,164,118,280,231,238,48,284,18,37,361,13,388,31,357,0,73,52,169,21,173,38,40,206,287,270,5,33,36,15,12,19,74,26,278,39,50,57,68,138,134,166,60,168,67,6,261,35,340,222,187,228,4,243,10,328,171,23,333,],[35,35,-128,35,-167,-223,35,35,-255,35,-123,-174,35,-170,-173,-125,-251,-171,-252,-135,-117,35,35,35,35,35,-137,35,-139,-124,-224,35,-249,-136,-157,-218,-169,-143,-172,35,35,-145,-131,-130,-253,-134,-254,-242,-144,-1,35,-104,35,-168,35,-133,-121,-250,35,-222,-132,-243,-129,-2,-118,-127,-248,-120,-244,-165,-166,-247,-138,35,-246,-245,35,35,35,-122,-219,-126,-221,35,35,-155,-164,-220,-119,35,-142,-3,-156,]),'SIGNED':([31,6,53,168,50,28,287,284,0,36,2,170,35,27,124,38,360,10,57,32,281,134,131,359,333,171,59,118,67,13,173,388,3,88,166,23,328,288,138,354,222,5,66,73,236,74,48,278,24,141,239,279,37,197,65,12,9,243,39,68,187,15,206,357,280,55,261,82,169,29,4,1,228,19,16,40,26,270,231,60,8,340,238,21,117,18,361,61,33,135,164,52,232,],[-242,-122,-157,37,-166,37,37,-145,-1,-129,37,37,-126,-167,-174,-133,-252,-119,-247,-128,-137,-246,-171,-135,-156,-142,-223,-169,37,-134,37,-254,37,37,-245,-3,37,-251,37,-136,37,-132,-139,37,-173,-248,37,-244,-117,37,-170,37,-130,-249,37,-118,-125,-220,-165,-138,37,-2,-250,-144,-143,37,-219,37,37,37,-164,37,-155,-127,-123,-121,-120,-222,-172,37,-124,-221,37,-168,-255,-131,-253,37,-243,-224,-218,-104,37,]),'CONTINUE':([155,340,243,345,271,347,383,154,264,269,260,380,144,241,407,136,160,159,400,137,339,416,259,349,268,406,148,415,398,135,164,381,414,145,61,141,395,140,52,59,261,270,379,397,244,341,262,409,],[-214,-221,-220,-217,-229,147,147,-225,147,-239,-226,-216,-210,147,147,-211,-212,147,-230,-213,-237,-231,-238,-215,147,-235,147,-234,-232,-224,-218,147,-236,-227,147,147,147,-209,-104,-223,-219,-222,147,-233,-240,-241,-228,147,]),'MUL_ASSIGN':([311,105,76,318,100,317,389,365,183,314,78,91,181,315,182,85,369,424,185,319,364,106,310,75,411,79,214,143,180,221,111,421,92,103,212,186,101,110,156,293,367,218,],[-6,-10,-18,-27,-16,-26,-32,-48,-44,-5,-9,-11,-16,-7,-14,-12,-23,-35,-45,-24,-57,-13,-8,-20,-33,-56,-28,251,-15,-46,-49,-34,-19,-4,-29,-47,-22,-43,-4,-21,-25,-17,]),'{':([341,52,416,379,397,124,159,409,136,407,164,66,41,243,395,137,398,339,271,381,241,145,380,261,144,415,269,383,262,340,406,34,135,414,140,168,264,53,141,349,270,154,27,60,148,25,68,131,61,167,260,21,385,268,118,28,231,347,236,59,155,400,345,22,277,160,239,259,244,65,50,],[-241,-104,-231,61,-233,-174,61,61,-211,61,-218,169,67,-220,61,-213,-232,-237,-229,61,61,-227,-216,-219,-210,-234,-239,61,-228,-221,-235,-140,-224,-236,-209,61,61,119,61,-215,-222,-225,-167,61,61,54,173,-171,61,277,-226,-168,277,61,-169,61,-172,61,-173,-223,-214,-230,-217,-141,277,-212,-170,-238,-240,61,-166,]),'RIGHT_OP':([315,86,319,369,307,78,311,365,212,317,300,308,309,296,297,301,367,293,105,185,143,424,186,85,103,91,182,183,87,421,75,79,221,314,318,306,218,310,156,364,214,299,106,110,111,98,389,100,180,92,411,84,298,101,302,76,181,],[-7,-62,-24,-23,195,-9,-6,-48,-29,-26,-60,195,195,-63,-64,-66,-25,-21,-10,-45,-56,-35,-47,-12,-4,-11,-14,-44,195,-34,-20,-56,-46,-5,-27,195,-17,-8,-4,-57,-28,-61,-13,-43,-49,-58,-32,-16,-15,-19,-33,-65,-59,-22,-67,-18,-16,]),'REGISTER':([168,2,13,118,39,360,4,68,340,261,52,231,238,74,53,333,206,0,124,361,36,135,359,65,33,131,31,6,9,141,59,24,1,388,40,8,27,5,278,66,38,28,197,354,61,37,239,35,29,270,21,55,23,3,243,166,26,281,10,60,117,328,228,232,134,50,57,32,12,19,164,16,15,18,288,222,236,],[40,40,-134,-169,-165,-252,-164,-138,-221,-219,-104,-172,40,-248,-157,-156,-250,-1,-174,-253,-129,-224,-135,40,-243,-171,-242,-122,-125,40,-223,-117,40,-254,-121,-124,-167,-132,-244,-139,-133,40,-249,-136,40,-130,-170,-126,40,-222,-168,40,-3,40,-220,-245,-120,-137,-119,40,-255,40,-155,40,-246,-166,-247,-128,-118,-127,-218,-123,-2,-131,-251,40,-173,]),'RIGHT_ASSIGN':([221,185,183,218,182,364,369,367,78,186,156,111,389,315,91,421,318,310,105,103,110,75,92,79,181,100,106,76,143,424,365,317,311,293,212,319,101,214,85,180,314,411,],[-46,-45,-44,-17,-14,-57,-23,-25,-9,-47,-4,-49,-32,-7,-11,-34,-27,-8,-10,-4,-43,-20,-19,-56,-16,-16,-13,-18,256,-35,-48,-26,-6,-21,-29,-24,-22,-28,-12,-15,-5,-33,]),'DEFAULT':([159,52,155,407,345,140,381,141,260,416,154,383,397,341,379,380,59,269,339,136,270,137,271,164,160,145,241,414,243,395,262,406,261,259,61,340,400,268,135,349,415,148,244,347,144,264,398,409,],[150,-104,-214,150,-217,-209,150,150,-226,-231,-225,150,-233,-241,150,-216,-223,-239,-237,-211,-222,-213,-229,-218,-212,-227,150,-236,-220,150,-228,-235,-219,-238,150,-221,-230,150,-224,-215,-234,150,-240,150,-210,150,-232,150,]),'CHAR':([206,15,18,164,4,13,280,21,55,29,135,26,60,361,197,37,278,228,68,141,360,48,66,12,1,39,138,288,239,169,5,279,9,187,23,354,82,236,65,24,222,284,31,73,74,166,333,2,67,118,57,3,170,171,88,28,134,32,8,340,59,35,287,173,131,281,52,6,10,243,0,231,359,388,232,27,238,328,124,50,168,38,16,261,36,117,33,53,357,61,270,19,40,],[-250,-2,-131,-218,-164,-134,-143,-168,8,8,-224,-120,8,-253,-249,-130,-244,-155,-138,8,-252,8,-139,-118,8,-165,8,-251,-170,8,-132,8,-125,8,-3,-136,8,-173,8,-117,8,-145,-242,8,-248,-245,-156,8,8,-169,-247,8,8,-142,8,8,-246,-128,-124,-221,-223,-126,8,8,-171,-137,-104,-122,-119,-220,-1,-172,-135,-254,8,-167,8,8,-174,-166,8,-133,-123,-219,-129,-255,-243,-157,-144,8,-222,-127,-121,]),'WHILE':([244,160,347,137,269,259,341,52,136,145,164,415,349,397,339,379,380,59,264,409,345,159,141,148,155,272,243,260,398,140,154,406,381,61,270,407,400,241,268,340,383,414,135,416,262,271,261,144,395,],[-240,-212,151,-213,-239,-238,-241,-104,-211,-227,-218,-234,-215,-233,-237,151,-216,-223,151,151,-217,151,151,151,-214,350,-220,-226,-232,-209,-225,-235,151,151,-222,151,-230,151,151,-221,151,-236,-224,-231,-228,-229,-219,-210,151,]),'EXTERN':([4,1,31,23,117,29,270,361,32,21,281,59,333,65,57,359,206,124,68,236,328,66,261,15,26,50,232,6,243,53,164,197,24,118,36,238,12,33,222,134,40,60,228,61,16,5,38,2,19,231,3,340,0,27,28,360,55,9,39,131,37,288,10,8,239,74,278,35,18,135,141,168,13,354,388,166,52,],[-164,12,-242,-3,-255,12,-222,-253,-128,-168,-137,-223,-156,12,-247,-135,-250,-174,-138,-173,12,-139,-219,-2,-120,-166,12,-122,-220,-157,-218,-249,-117,-169,-129,12,-118,-243,12,-246,-121,12,-155,12,-123,-132,-133,12,-127,-172,12,-221,-1,-167,12,-252,12,-125,-165,-171,-130,-251,-119,-124,-170,-248,-244,-126,-131,-224,12,12,-134,-136,-254,-245,-104,]),'RETURN':([416,347,52,406,136,260,241,164,383,339,264,340,145,148,159,269,135,244,262,414,141,61,271,398,379,415,243,400,381,341,155,59,259,349,397,407,160,140,345,137,144,395,409,154,380,270,268,261,],[-231,142,-104,-235,-211,-226,142,-218,142,-237,142,-221,-227,142,142,-239,-224,-240,-228,-236,142,142,-229,-232,142,-234,-220,-230,142,-241,-214,-223,-238,-215,-233,142,-212,-209,-217,-213,-210,142,142,-225,-216,-222,142,-219,]),'__ASM__':([385,381,167,407,164,135,269,416,258,144,175,398,202,382,260,109,285,368,252,397,160,198,229,345,137,257,104,211,80,48,189,191,380,370,96,148,378,290,249,203,261,246,263,177,108,243,410,340,190,400,355,253,192,219,136,277,81,244,141,138,270,294,339,329,262,264,414,383,379,154,114,217,140,56,254,209,341,267,61,343,152,406,409,83,59,268,250,52,220,216,241,347,271,395,415,187,247,73,155,204,225,255,193,349,142,199,208,184,259,145,194,251,77,248,265,195,95,273,256,205,159,],[94,94,94,94,-218,-224,-239,-231,94,-210,94,-232,94,94,-226,-53,94,94,-92,-233,-212,94,94,-217,-213,94,-54,94,94,94,94,94,-216,94,-51,94,94,94,-100,94,-219,-95,94,94,-55,-220,94,-221,94,-230,94,-96,94,94,-211,94,94,-240,94,94,-222,94,-237,94,-228,94,-236,94,94,-225,94,94,-209,94,-90,94,-241,94,94,94,94,-235,94,-52,-223,94,-98,-104,94,94,94,94,-229,94,-234,94,-93,94,-214,94,94,-94,94,-215,94,94,94,94,-238,-227,94,-91,94,-99,94,94,-50,94,-97,94,94,]),'CASE':([381,395,259,341,345,241,339,409,379,137,380,159,136,269,154,270,145,397,264,164,243,135,148,59,340,260,144,271,407,140,141,244,52,414,155,416,398,400,262,268,160,406,349,347,383,61,415,261,],[152,152,-238,-241,-217,152,-237,152,152,-213,-216,152,-211,-239,-225,-222,-227,-233,152,-218,-220,-224,152,-223,-221,-226,-210,-229,152,-209,152,-240,-104,-236,-214,-231,-232,-230,-228,152,-212,-235,-215,152,152,152,-234,-219,]),'PP_DEFINE_MACRO_NAME':([11,],[47,]),'&':([205,98,106,256,52,329,214,407,136,91,308,202,95,148,156,381,318,211,219,187,306,191,198,260,349,315,184,192,385,290,140,181,257,142,145,84,92,277,285,254,154,340,312,249,216,409,241,319,220,389,382,195,251,300,313,83,261,398,316,185,78,355,271,73,270,416,424,167,104,85,370,255,177,341,317,218,262,379,248,189,383,135,252,209,314,77,48,108,293,301,194,79,364,225,310,298,87,183,190,59,406,414,307,250,61,294,56,253,229,369,411,299,246,267,160,365,111,421,114,311,180,243,264,199,378,144,103,368,203,339,347,102,164,258,143,367,96,193,296,107,75,247,268,137,309,141,101,109,400,395,343,80,244,265,273,212,397,100,186,302,217,410,204,97,105,175,182,76,269,138,86,208,155,81,221,159,415,345,259,152,297,263,380,110,303,],[95,-58,-13,-97,-104,95,-28,95,-211,-11,-72,95,-50,95,-4,95,-27,95,95,95,-71,95,95,-226,-215,-7,95,95,95,95,-209,-16,95,95,-227,-65,-19,95,95,-90,-225,-221,-75,-100,95,95,95,-24,95,-32,95,95,-91,-60,-74,-52,-219,-232,-77,-45,-9,95,-229,95,-222,-231,-35,95,-54,-12,95,-94,95,-241,-26,-17,-228,95,-99,95,95,-224,-92,95,-5,95,95,-55,-21,-66,95,-56,-57,95,-8,-59,-68,-44,95,-223,-235,-236,-69,-98,95,95,95,-96,95,-23,-33,-61,-95,95,-212,-48,-49,-34,95,-6,-15,-220,95,95,95,-210,-4,95,95,-237,95,-76,-218,95,-56,-25,-51,95,-63,211,-20,-93,95,-213,-70,95,-22,-53,-230,95,95,95,-240,95,95,-29,-233,-16,-47,-67,95,95,95,-73,-10,95,-14,-18,-239,95,-62,95,-214,95,-46,95,-234,-217,-238,95,-64,95,-216,-43,211,]),'*':([52,45,208,278,195,300,268,214,385,204,185,290,191,277,2,182,270,260,219,187,104,206,311,145,196,297,256,247,56,81,218,148,192,141,199,134,109,271,39,361,202,10,389,414,319,44,12,249,264,31,255,341,315,232,407,251,343,177,4,314,269,288,23,262,26,250,0,205,243,198,166,137,261,48,15,105,86,35,140,197,383,381,257,354,76,263,193,379,40,8,98,285,59,416,221,241,68,36,378,128,398,294,58,13,265,19,156,380,6,143,367,92,293,299,267,79,85,18,5,24,229,222,136,78,298,1,225,7,259,349,317,164,310,411,29,110,281,100,360,246,160,217,186,77,96,329,115,83,220,188,38,395,175,9,370,152,111,82,318,69,88,37,43,365,400,180,333,30,254,135,359,33,406,409,369,42,228,415,16,358,3,61,364,345,339,211,347,66,252,273,53,410,73,216,165,184,209,32,114,388,382,101,75,244,212,62,340,167,138,144,368,103,355,189,106,74,253,80,296,17,172,424,258,159,108,57,194,95,181,155,421,142,117,91,397,183,248,203,154,190,],[-104,-179,96,-244,96,-60,96,-28,96,96,-45,96,96,96,-107,-14,-222,-226,96,96,-54,-250,-6,-227,-148,191,-97,-93,96,96,-17,96,96,96,96,-246,-53,-229,-165,-253,96,-119,-32,-236,-24,7,-118,-100,96,-242,-94,-241,-7,7,96,-91,96,96,-164,-5,-239,-251,-3,-228,-120,-98,-1,96,-220,96,-245,-213,-219,96,-2,-10,191,-126,-209,-249,96,96,96,-136,-18,96,96,96,-121,-124,-58,96,-223,-231,-46,96,-138,-129,96,7,-232,96,7,-134,96,-127,-4,-216,-122,-56,-25,-19,-21,-61,96,-56,-12,-131,-132,-117,96,7,-211,-9,-59,7,96,7,-238,-215,-26,-218,-8,-33,-109,-43,-137,-16,-252,-95,-212,96,-47,96,-51,96,7,-52,96,-146,-133,96,96,-125,96,96,-49,-147,-27,-180,-149,-130,-112,-48,-230,-15,-156,7,-90,-224,-135,-243,-235,96,-23,-108,-155,-234,-123,7,-111,96,-57,-217,-237,96,96,-139,-92,96,-157,96,96,96,7,96,96,-128,96,-254,96,-22,-20,-240,-29,-110,-221,96,96,-210,96,-4,96,96,-13,-248,-96,96,191,7,7,-35,96,96,-55,-247,96,-50,-16,-214,-34,96,-255,-11,-233,-44,-99,96,-225,96,]),'SWITCH':([414,380,270,155,145,340,379,59,261,262,406,144,241,395,398,409,160,243,61,349,381,407,397,148,154,264,141,268,415,383,259,400,135,269,271,347,137,345,159,341,244,416,339,260,136,140,164,52,],[-236,-216,-222,-214,-227,-221,153,-223,-219,-228,-235,-210,153,153,-232,153,-212,-220,153,-215,153,153,-233,153,-225,153,153,153,-234,153,-238,-230,-224,-239,-229,153,-213,-217,153,-241,-240,-231,-237,-226,-211,-209,-218,-104,]),'AND_ASSIGN':([421,389,111,311,318,181,143,367,110,76,411,293,186,156,319,106,314,221,183,365,185,78,103,182,180,100,310,101,214,369,91,212,364,75,315,85,218,424,105,79,317,92,],[-34,-32,-49,-6,-27,-16,250,-25,-43,-18,-33,-21,-47,-4,-24,-13,-5,-46,-44,-48,-45,-9,-4,-14,-15,-16,-8,-22,-28,-23,-11,-29,-57,-20,-7,-12,-17,-35,-10,-56,-26,-19,]),'IDENTIFIER':([9,246,160,217,82,209,194,257,83,55,23,0,259,243,164,16,141,88,215,281,128,134,58,33,5,144,329,38,175,370,345,59,333,108,24,62,1,138,77,397,216,409,19,42,17,22,172,159,211,360,37,43,400,66,254,268,252,145,207,273,225,349,53,382,188,190,3,155,294,167,142,104,196,406,368,96,248,220,195,74,61,73,152,54,165,191,361,114,10,388,253,199,358,381,264,139,31,203,154,80,340,270,232,244,52,25,398,347,189,414,192,12,184,187,198,137,213,35,45,117,202,177,208,269,247,81,262,95,70,258,36,204,210,251,18,57,343,48,140,197,13,44,249,263,260,277,255,230,288,34,407,15,219,109,39,14,41,26,30,4,235,68,278,56,148,250,379,383,385,237,205,271,2,290,261,267,119,410,339,206,341,229,256,354,380,136,193,395,40,285,8,7,6,265,166,416,46,69,241,355,378,135,359,32,29,228,415,],[-125,-95,-212,103,-147,103,103,103,-52,125,-3,-1,-238,-220,-218,-123,156,-149,318,-137,21,-246,21,-243,-132,-210,103,-133,103,103,-217,-223,-156,-55,-117,-110,21,103,103,-233,103,156,-127,-108,21,-141,21,156,103,-252,-130,-112,-230,-139,-90,156,-92,-227,103,103,103,-215,-157,103,-146,103,-111,-214,103,103,103,-54,-148,-235,103,-51,-99,103,103,-248,156,103,103,122,21,103,-253,103,-119,-254,-96,103,21,156,156,240,-242,103,-225,103,-221,-222,21,-240,-104,53,-232,156,103,-236,103,-118,103,103,103,-213,317,-126,-179,-255,103,103,103,-239,-93,103,-228,-50,-178,103,-129,103,103,-91,-131,-247,103,103,-209,-249,-134,-176,-100,103,-226,103,-94,122,-251,-140,156,-2,103,-53,-165,21,68,-120,21,-164,21,-138,-244,103,156,-98,156,156,103,336,103,-229,-107,103,-219,103,122,103,-237,-250,-241,103,-97,-136,-216,-211,103,156,-121,103,-124,-175,-122,103,-245,-231,-177,-180,156,103,103,-224,-135,-128,-109,-155,-234,]),'ADD_ASSIGN':([424,181,369,78,91,218,156,293,185,79,182,315,85,221,314,100,111,143,214,367,92,180,364,421,105,212,317,103,186,183,75,365,310,101,411,106,311,318,319,389,110,76,],[-35,-16,-23,-9,-11,-17,-4,-21,-45,-56,-14,-7,-12,-46,-5,-16,-49,255,-28,-25,-19,-15,-57,-34,-10,-29,-26,-4,-47,-44,-20,-48,-8,-22,-33,-13,-6,-27,-24,-32,-43,-18,]),'>':([300,298,85,221,296,389,183,98,79,181,424,87,411,421,143,367,105,307,364,309,313,317,111,182,186,106,314,306,318,312,214,369,91,110,308,365,315,310,100,302,156,75,319,311,97,101,180,92,86,76,299,218,297,84,301,293,103,212,185,78,],[-60,-59,-12,-46,-63,-32,-44,-58,-56,-16,-35,-68,-33,-34,-56,-25,-10,-69,-57,-70,205,-26,-49,-14,-47,-13,-5,-71,-27,205,-28,-23,-11,-43,-72,-48,-7,-8,-16,-67,-4,-20,-24,-6,205,-22,-15,-19,-62,-18,-61,-17,-64,-65,-66,-21,-4,-29,-45,-9,]),'PP_MACRO_PARAM':([83,263,207,414,144,385,225,220,48,211,104,382,108,368,370,277,56,254,192,290,216,205,138,61,410,250,202,381,71,91,155,142,219,378,256,141,329,258,189,195,199,137,218,52,261,184,270,114,265,249,269,341,260,229,135,398,241,204,264,257,190,268,380,217,406,73,154,416,285,167,77,187,96,182,349,177,109,253,259,148,210,246,112,345,267,339,262,409,343,395,81,340,415,255,193,145,198,271,355,181,152,175,383,85,400,194,397,106,273,247,209,80,243,160,75,180,191,379,244,251,203,136,347,291,140,252,407,100,208,164,95,59,248,159,294,],[-52,100,310,-236,-210,100,100,100,100,100,-54,100,-55,100,100,100,100,-90,100,100,100,100,100,100,100,-98,100,100,174,-11,-214,100,100,100,-97,100,100,100,100,100,100,-213,-17,-104,-219,100,-222,100,100,-100,-239,-241,-226,100,-224,-232,100,100,100,100,100,100,-216,100,-235,100,-225,-231,100,100,100,100,-51,-14,-215,100,-53,-96,-238,100,315,-95,218,-217,100,-237,-228,100,100,100,100,-221,-234,-94,100,-227,100,-229,100,-16,100,100,100,-12,-230,100,-233,-13,100,-93,100,100,-220,-212,181,-15,100,100,-240,-91,100,-211,100,363,-209,-92,100,-16,100,-218,-50,-223,-99,100,100,]),'GE_OP':([110,84,297,186,214,79,106,317,302,78,306,221,367,312,300,182,156,98,180,87,299,181,411,103,301,389,307,424,97,75,364,111,86,308,293,76,315,212,314,183,101,310,313,296,92,143,311,100,218,91,319,421,185,85,105,298,318,365,369,309,],[-43,-65,-64,-47,-28,-56,-13,-26,-67,-9,-71,-46,-25,204,-60,-14,-4,-58,-15,-68,-61,-16,-33,-4,-66,-32,-69,-35,204,-20,-57,-49,-62,-72,-21,-18,-7,-29,-5,-44,-22,-8,204,-63,-19,-56,-6,-16,-17,-11,-24,-34,-45,-12,-10,-59,-27,-48,-23,-70,]),'STRING_LITERAL':([211,182,340,184,61,187,96,414,241,406,343,252,160,255,193,52,216,257,395,249,409,271,199,398,260,243,400,219,269,380,192,218,413,208,225,385,248,263,148,381,345,136,349,155,246,305,108,145,268,339,251,277,341,250,190,180,195,390,256,259,285,415,189,258,265,81,140,83,397,264,56,290,383,104,142,194,209,106,75,273,48,329,254,77,267,368,138,347,244,159,370,59,410,253,135,379,412,262,100,378,204,141,177,164,80,109,144,261,191,217,355,91,152,247,407,167,181,294,220,85,154,198,73,175,203,229,137,416,202,382,205,95,114,422,270,],[91,-14,-221,91,91,91,-51,-236,91,-235,91,-92,-212,-94,91,-104,91,91,91,-100,91,-229,91,-232,-226,-220,-230,91,-239,-216,91,-17,91,91,91,91,-99,91,91,91,-217,-211,-215,-214,-95,91,-55,-227,91,-237,-91,91,-241,-98,91,-15,91,91,-97,-238,91,-234,91,91,91,91,-209,-52,-233,91,91,91,91,-54,91,91,91,-13,91,91,91,91,-90,91,91,91,91,91,-240,91,91,-223,91,-96,-224,91,91,-228,-16,91,91,91,91,-218,91,-53,-210,-219,91,91,91,-11,91,-93,91,91,-16,91,91,-12,-225,91,91,91,91,91,-213,-231,91,91,91,-50,91,91,-222,]),'MOD_ASSIGN':([76,293,369,365,182,156,221,319,101,424,185,110,100,181,411,318,389,103,367,317,214,314,364,315,212,310,79,78,105,183,92,106,180,218,111,143,311,186,91,85,75,421,],[-18,-21,-23,-48,-14,-4,-46,-24,-22,-35,-45,-43,-16,-16,-33,-27,-32,-4,-25,-26,-28,-5,-57,-7,-29,-8,-56,-9,-10,-44,-19,-13,-15,-17,-49,247,-6,-47,-11,-12,-20,-34,]),':':([231,143,297,5,97,82,318,86,403,317,228,310,299,418,90,110,358,196,32,364,78,292,413,365,309,344,116,113,111,359,301,75,323,296,419,302,172,124,36,88,180,105,308,293,354,103,313,8,424,21,405,163,316,303,333,118,307,100,306,156,38,9,92,304,298,150,37,98,72,319,185,87,283,369,404,107,421,311,79,281,50,102,218,39,84,214,411,101,16,392,186,76,324,420,93,4,27,188,367,66,239,35,390,266,131,212,106,18,342,315,389,300,182,314,68,366,236,53,85,221,13,181,6,183,312,91,161,19,],[-172,-56,-64,-132,-73,-147,-27,-62,-39,-26,-155,-8,-61,-38,-80,-43,285,-148,-128,-57,-9,-81,-36,-48,-70,-102,-103,-86,-49,-135,-66,-20,-85,-63,422,-67,285,-174,-129,-149,-15,-10,-72,-21,-136,-4,-74,-124,-35,-168,413,-88,-77,-79,-156,-169,-69,-16,-71,268,-133,-125,-19,-83,-59,264,-130,-58,-82,-24,-45,-68,355,-23,-37,-78,-34,-6,-56,-137,-166,-76,-17,-165,-65,-28,-33,-22,-123,-87,-47,-18,370,-40,-84,-164,-167,-146,-25,-139,-170,-126,-36,347,-171,-29,-13,-131,-89,-7,-32,-60,-14,-5,-138,390,-173,-157,-12,-46,-134,-16,-122,-44,-75,-11,-101,-127,]),'TYPE_NAME':([57,13,65,67,228,74,53,173,82,68,138,41,35,32,361,278,169,279,60,21,37,28,16,124,197,166,354,5,12,59,24,236,19,61,168,55,357,22,8,243,360,388,4,359,6,10,333,2,48,134,141,36,88,135,66,38,340,3,33,231,27,9,34,50,39,29,15,1,238,288,164,131,40,18,239,222,270,52,328,206,287,284,187,26,73,118,261,280,170,117,0,171,31,232,281,23,],[-247,-134,13,13,-155,-248,-157,13,13,-138,13,66,-126,-128,-253,-244,13,13,13,-168,-130,13,-123,-174,-249,-245,-136,-132,-118,-223,-117,-173,-127,13,13,13,-144,-141,-124,-220,-252,-254,-164,-135,-122,-119,-156,13,13,-246,13,-129,13,-224,-139,-133,-221,13,-243,-172,-167,-125,-140,-166,-165,13,-2,13,13,-251,-218,-171,-121,-131,-170,13,-222,-104,13,-250,13,-145,13,-120,13,-169,-219,-143,13,-255,-1,-142,-242,13,-137,-3,]),'OR_ASSIGN':([110,91,218,76,78,185,212,317,221,318,424,75,365,315,182,111,364,85,106,103,101,314,100,180,92,293,183,79,389,105,369,143,319,310,311,186,367,214,181,411,156,421,],[-43,-11,-17,-18,-9,-45,-29,-26,-46,-27,-35,-20,-48,-7,-14,-49,-57,-12,-13,-4,-22,-5,-16,-15,-19,-21,-44,-56,-32,-10,-23,249,-24,-8,-6,-47,-25,-28,-16,-33,-4,-34,]),'BREAK':([241,407,269,59,155,260,397,270,137,154,345,135,61,141,349,262,383,261,409,259,400,145,416,264,341,243,268,415,380,271,347,244,398,148,340,414,159,164,339,144,395,136,140,160,406,381,52,379,],[157,157,-239,-223,-214,-226,-233,-222,-213,-225,-217,-224,157,157,-215,-228,157,-219,157,-238,-230,-227,-231,157,-241,-220,157,-234,-216,-229,157,-240,-232,157,-221,-236,157,-218,-237,-210,157,-211,-209,-212,-235,157,-104,157,]),'VOLATILE':([340,170,66,74,7,45,261,360,40,8,19,26,59,357,38,4,13,278,94,57,23,187,117,236,138,279,53,280,1,206,0,243,270,61,18,5,131,169,287,35,168,6,52,166,31,48,16,388,222,24,281,354,9,231,12,239,69,60,164,27,65,33,135,359,82,50,124,284,29,173,3,333,21,88,328,68,232,288,141,73,39,171,197,361,15,55,32,238,228,37,67,134,28,44,118,36,2,10,],[-221,39,-139,-248,39,-179,-219,-252,-121,-124,-127,-120,-223,-144,-133,-164,-134,-244,200,-247,-3,39,-255,-173,39,39,-157,-143,39,-250,-1,-220,-222,39,-131,-132,-171,39,39,-126,39,-122,-104,-245,-242,39,-123,-254,39,-117,-137,-136,-125,-172,-118,-170,-180,39,-218,-167,39,-243,-224,-135,39,-166,-174,-145,39,39,39,-156,-168,39,39,-138,39,-251,39,39,-165,-142,-249,-253,-2,39,-128,39,-155,-130,39,-246,39,39,-169,-129,39,-119,]),'error':([136,345,380,383,347,264,341,59,141,261,349,159,164,400,61,137,244,262,241,398,260,414,154,135,271,155,144,340,243,258,379,269,145,259,343,140,270,11,381,407,268,395,409,416,397,148,415,160,406,52,339,],[-211,-217,-216,242,242,242,-241,-223,242,-219,-215,242,-218,-230,158,-213,-240,-228,242,-232,-226,-236,-225,-224,-229,-214,-210,-221,-220,242,242,-239,-227,-238,242,-209,-222,49,242,242,242,242,242,-231,-233,242,-234,-212,-235,-104,-237,]),'~':([416,56,397,410,244,380,189,285,252,246,160,256,217,195,262,263,400,254,194,251,225,249,77,241,48,202,415,382,204,191,355,144,368,80,345,152,209,277,154,340,243,167,141,175,339,329,136,290,193,347,271,199,261,138,381,269,159,104,135,248,81,268,83,273,407,258,219,187,406,96,250,164,73,379,260,253,414,192,385,198,255,229,137,52,216,409,370,109,203,177,148,211,205,398,184,190,114,247,155,341,208,349,343,257,220,140,294,383,265,259,378,145,267,61,264,142,270,108,395,95,59,],[-231,104,-233,104,-240,-216,104,104,-92,-95,-212,-97,104,104,-228,104,-230,-90,104,-91,104,-100,104,104,104,104,-234,104,104,104,104,-210,104,104,-217,104,104,104,-225,-221,-220,104,104,104,-237,104,-211,104,104,104,-229,104,-219,104,104,-239,104,-54,-224,-99,104,104,-52,104,104,104,104,104,-235,-51,-98,-218,104,104,-226,-96,-236,104,104,104,-94,104,-213,-104,104,104,104,-53,104,104,104,104,104,-232,104,104,104,-93,-214,-241,104,-215,104,104,104,-209,104,104,104,-238,104,-227,104,104,104,104,-222,-55,104,-50,-223,]),'DO':([381,271,347,243,339,136,155,383,415,140,380,409,398,137,397,59,159,416,164,407,379,259,270,145,141,264,340,345,144,160,135,414,52,154,260,241,395,148,61,244,269,400,262,349,268,406,261,341,],[159,-229,159,-220,-237,-211,-214,159,-234,-209,-216,159,-232,-213,-233,-223,159,-231,-218,159,159,-238,-222,-227,159,159,-221,-217,-210,-212,-224,-236,-104,-225,-226,159,159,159,159,-240,-239,-230,-228,-215,159,-235,-219,-241,]),'CONST':([359,166,19,24,388,31,9,173,270,32,37,59,118,10,88,45,50,13,18,28,231,15,117,60,21,26,61,68,55,360,222,6,74,261,124,27,3,67,171,206,354,33,197,232,135,2,16,8,4,357,141,73,340,38,281,29,228,12,236,39,44,82,57,48,164,278,5,69,7,361,134,52,168,53,138,288,36,239,23,66,287,35,243,328,169,333,0,40,279,284,238,170,65,131,187,280,1,],[-135,-245,-127,-117,-254,-242,-125,4,-222,-128,-130,-223,-169,-119,4,-179,-166,-134,-131,4,-172,-2,-255,4,-168,-120,4,-138,4,-252,4,-122,-248,-219,-174,-167,4,4,-142,-250,-136,-243,-249,4,-224,4,-123,-124,-164,-144,4,4,-221,-133,-137,4,-155,-118,-173,-165,4,4,-247,4,-218,-244,-132,-180,4,-253,-246,-104,4,-157,4,-251,-129,-170,-3,-139,4,-126,-220,4,4,-156,-1,-121,4,-145,4,4,4,-171,4,-143,4,]),'!':([241,246,341,204,265,269,189,262,73,220,77,229,138,285,96,104,243,254,263,108,61,379,270,152,155,380,398,159,211,80,253,109,59,177,244,193,381,256,249,260,167,95,290,144,250,294,247,397,216,205,148,194,382,257,198,217,370,261,145,209,414,255,416,409,52,191,339,164,202,349,410,343,199,267,406,187,225,56,140,175,355,141,340,208,190,347,219,251,142,114,137,385,378,160,273,48,195,329,135,258,407,400,81,345,252,277,395,83,203,154,264,184,192,268,271,415,383,136,248,368,259,],[108,-95,-241,108,108,-239,108,-228,108,108,108,108,108,108,-51,-54,-220,-90,108,-55,108,108,-222,108,-214,-216,-232,108,108,108,-96,-53,-223,108,-240,108,108,-97,-100,-226,108,-50,108,-210,-98,108,-93,-233,108,108,108,108,108,108,108,108,108,-219,-227,108,-236,-94,-231,108,-104,108,-237,-218,108,-215,108,108,108,108,-235,108,108,108,-209,108,108,108,-221,108,108,108,108,-91,108,108,-213,108,108,-212,108,108,108,108,-224,108,108,-230,108,-217,-92,108,108,-52,108,-225,108,108,108,108,-229,-234,108,-211,-99,108,-238,]),'_BOOL':([238,88,18,138,66,50,53,135,74,236,28,12,16,2,36,3,6,388,59,280,270,288,9,357,206,13,243,82,8,197,231,33,117,171,239,328,57,222,68,32,40,354,278,168,29,134,37,279,131,118,169,261,35,164,124,26,187,0,361,340,4,52,141,60,10,359,67,1,39,38,333,5,228,232,61,287,166,15,19,360,23,173,65,24,73,281,27,48,31,55,21,284,170,],[16,16,-131,16,-139,-166,-157,-224,-248,-173,16,-118,-123,16,-129,16,-122,-254,-223,-143,-222,-251,-125,-144,-250,-134,-220,16,-124,-249,-172,-243,-255,-142,-170,16,-247,16,-138,-128,-121,-136,-244,16,16,-246,-130,16,-171,-169,16,-219,-126,-218,-174,-120,16,-1,-253,-221,-164,-104,16,16,-119,-135,16,16,-165,-133,-156,-132,-155,16,16,16,-245,-2,-127,-252,-3,16,16,-117,16,-137,-167,16,-242,16,-168,-145,16,]),'%':([424,98,311,314,86,92,103,212,293,76,111,389,75,365,110,180,299,300,296,214,91,78,319,315,100,310,183,186,297,182,367,411,79,221,421,218,318,298,364,369,156,101,143,185,317,85,181,106,105,],[-35,-58,-6,-5,192,-19,-4,-29,-21,-18,-49,-32,-20,-48,-43,-15,-61,-60,192,-28,-11,-9,-24,-7,-16,-8,-44,-47,192,-14,-25,-33,-56,-46,-34,-17,-27,-59,-57,-23,-4,-22,-56,-45,-26,-12,-16,-13,-10,]),')':([29,68,106,391,12,310,348,318,131,346,179,16,70,331,309,423,97,42,392,371,6,281,130,223,369,118,161,36,304,46,299,378,231,13,311,332,342,115,127,325,44,373,92,389,75,113,419,413,84,337,316,185,38,32,86,233,296,62,344,5,53,321,375,196,224,307,354,319,239,76,399,124,420,69,292,40,88,212,100,180,27,163,24,336,78,128,303,178,55,9,333,366,174,422,323,365,403,234,102,262,182,300,317,51,312,297,93,101,72,411,295,21,90,393,293,218,71,26,417,85,338,98,313,351,143,7,236,126,418,306,214,37,8,396,110,228,363,424,404,232,181,18,3,50,326,66,176,103,129,183,320,328,405,79,216,10,39,87,394,377,43,314,390,372,91,301,19,221,367,2,105,302,235,315,82,359,298,308,145,35,125,421,45,186,188,226,327,111,271,364,374,222,4,107,],[-109,-138,-13,-31,-118,-8,381,-27,-171,379,294,-123,-178,-196,-70,424,-73,-108,-87,-201,-122,-137,-181,-191,-23,-169,-101,-129,-83,-177,-61,395,-172,-134,-6,-194,-89,-190,-183,-200,-176,-202,-19,-32,-20,-86,421,-36,-65,-182,-77,-45,-133,-128,-62,-186,-63,-110,-102,-132,-157,367,-198,-148,-193,-69,-136,-24,-170,-18,408,-174,-40,-180,-81,-121,-149,-29,-16,-15,-167,-88,-117,-189,-9,-187,-79,293,124,-125,-156,389,-256,-36,-85,-48,-39,-185,-76,-228,-14,-60,-26,118,-75,-64,-84,-22,-82,-33,365,-168,-80,-203,-21,-17,175,-120,420,-12,-184,-58,-74,383,-56,-175,-173,231,-38,-71,-28,-130,-124,407,-43,-155,-257,-35,-37,325,-16,-131,-111,-166,371,-139,290,-4,236,-44,-30,373,411,-56,319,-119,-165,-68,-199,-197,-112,-5,-36,-195,-11,-66,-127,-46,-25,-107,-10,-67,-192,-7,-147,-135,-59,-72,-227,-126,-188,-34,-179,-47,-146,-192,372,-49,-229,-57,393,325,-164,-78,]),'-':([378,300,364,83,409,252,61,98,148,247,261,311,246,248,110,315,156,424,250,310,101,78,407,81,318,183,154,180,202,329,379,296,184,177,181,203,381,190,297,347,104,76,85,48,52,368,290,355,389,415,251,285,263,302,75,79,365,383,160,155,244,249,209,144,73,187,175,182,108,243,135,254,298,340,186,205,395,185,152,159,59,106,367,385,192,370,56,398,345,253,220,256,105,219,77,267,271,95,369,421,216,262,264,414,218,294,229,217,255,273,189,265,103,91,143,225,100,164,136,380,114,397,339,109,299,145,194,212,268,349,410,258,221,193,269,257,211,270,92,84,140,241,208,293,343,260,96,259,317,141,167,138,142,406,137,341,382,301,319,80,214,195,314,416,111,411,204,277,400,199,191,198,86,],[109,-60,-57,-52,109,-92,109,-58,109,-93,-219,-6,-95,-99,-43,-7,-4,-35,-98,-8,-22,-9,109,109,-27,-44,-225,-15,109,109,109,-63,109,109,-16,109,109,109,-64,109,-54,-18,-12,109,-104,109,109,109,-32,-234,-91,109,109,190,-20,-56,-48,109,-212,-214,-240,-100,109,-210,109,109,109,-14,-55,-220,-224,-90,-59,-221,-47,109,109,-45,109,109,-223,-13,-25,109,109,109,109,-232,-217,-96,109,-97,-10,109,109,109,-229,-50,-23,-34,109,-228,109,-236,-17,109,109,109,-94,109,109,109,-4,-11,-56,109,-16,-218,-211,-216,109,-233,-237,-53,-61,-227,109,-29,109,-215,109,109,-46,109,-239,109,109,-222,-19,190,-209,109,109,-21,109,-226,-51,-238,-26,109,109,109,109,-235,-213,-241,109,190,-24,109,-28,109,-5,-231,-49,-33,109,109,-230,109,109,109,-62,]),'CHARACTER_CONSTANT':([380,250,204,199,81,290,148,83,400,252,140,329,247,414,177,381,285,383,382,379,56,249,184,203,209,73,104,191,48,52,368,355,415,251,205,263,349,416,160,385,155,370,378,345,253,187,175,398,244,77,262,108,243,144,154,294,229,217,152,273,189,265,159,59,192,220,256,114,397,219,109,267,271,145,61,216,264,135,255,194,269,257,270,164,225,136,410,339,241,406,407,141,268,138,142,137,341,248,211,347,208,343,260,96,277,190,195,340,259,167,258,198,409,202,80,261,193,95,254,246,395,],[-216,-98,105,105,105,105,105,-52,-230,-92,-209,105,-93,-236,105,105,105,105,105,105,105,-100,105,105,105,105,-54,105,105,-104,105,105,-234,-91,105,105,-215,-231,-212,105,-214,105,105,-217,-96,105,105,-232,-240,105,-228,-55,-220,-210,-225,105,105,105,105,105,105,105,105,-223,105,105,-97,105,-233,105,-53,105,-229,-227,105,105,105,-224,-94,105,-239,105,-222,-218,105,-211,105,-237,105,-235,105,105,105,105,105,-213,-241,-99,105,105,105,105,-226,-51,105,105,105,-221,-238,105,105,105,105,105,105,-219,105,-50,-90,-95,105,]),'PP_STRINGIFY':([195,160,104,268,263,145,259,77,290,347,100,220,204,142,155,345,382,193,177,96,269,255,249,409,381,180,164,190,91,211,199,218,252,294,137,136,85,285,194,217,329,273,257,256,355,205,189,208,379,370,108,167,95,270,247,181,415,410,148,159,75,59,253,135,400,198,243,106,395,340,219,339,261,152,229,260,380,397,144,264,154,184,191,262,216,73,267,114,244,48,254,414,140,383,246,241,83,192,271,182,248,187,265,250,109,407,406,368,225,385,202,141,138,378,81,175,56,258,341,349,398,416,203,52,61,80,251,209,343,277,],[112,-212,-54,112,112,-227,-238,112,112,112,-16,112,112,112,-214,-217,112,112,112,-51,-239,-94,-100,112,112,-15,-218,112,-11,112,112,-17,-92,112,-213,-211,-12,112,112,112,112,112,112,-97,112,112,112,112,112,112,-55,112,-50,-222,-93,-16,-234,112,112,112,112,-223,-96,-224,-230,112,-220,-13,112,-221,112,-237,-219,112,112,-226,-216,-233,-210,112,-225,112,112,-228,112,112,112,112,-240,112,-90,-236,-209,112,-95,112,-52,112,-229,-14,-99,112,112,-98,-53,112,-235,112,112,112,112,112,112,112,112,112,112,112,-241,-215,-232,-231,112,-104,112,112,-91,112,112,112,]),'PTR_OP':([110,319,181,85,369,91,315,92,103,218,100,76,106,78,314,101,105,293,180,214,310,182,311,317,367,318,156,212,75,],[215,-24,-16,-12,-23,-11,-7,-19,-4,-17,-16,-18,-13,-9,-5,-22,-10,-21,-15,-28,-8,-14,-6,-26,-25,-27,-4,-29,-20,]),'=':([65,424,156,133,389,182,118,185,143,315,85,78,21,218,91,122,293,79,27,314,100,221,239,369,421,310,92,180,186,111,367,364,106,124,50,212,101,236,105,231,319,214,311,317,110,103,76,183,131,75,365,181,411,318,],[167,-35,-4,167,-32,-14,-169,-45,254,-7,-12,-9,-168,-17,-11,229,-21,-56,-167,-5,-16,-46,-170,-23,-34,-8,-19,-15,-47,-49,-25,-57,-13,-174,-166,-29,-22,-173,-10,-172,-24,-28,-6,-26,-43,-4,-18,-44,-171,-20,-48,-16,-33,-27,]),'TYPEDEF':([131,52,40,333,328,236,21,270,3,35,28,38,16,231,57,26,61,55,222,232,74,68,15,261,2,37,6,141,50,288,10,359,281,5,33,27,340,388,31,117,18,135,53,134,278,8,66,9,13,1,361,60,197,118,164,19,23,354,168,32,36,24,239,59,238,29,243,166,12,65,0,4,39,124,360,206,228,],[-171,-104,-121,-156,24,-173,-168,-222,24,-126,24,-133,-123,-172,-247,-120,24,24,24,24,-248,-138,-2,-219,24,-130,-122,24,-166,-251,-119,-135,-137,-132,-243,-167,-221,-254,-242,-255,-131,-224,-157,-246,-244,-124,-139,-125,-134,24,-253,24,-249,-169,-218,-127,-3,-136,24,-128,-129,-117,-170,-223,24,24,-220,-245,-118,24,-1,-164,-165,-174,-252,-250,-155,]),'AUTO':([278,60,36,3,57,31,236,28,33,8,59,37,27,65,232,18,66,333,340,40,288,231,13,228,39,206,10,360,361,35,26,74,131,38,32,261,239,243,68,16,15,124,9,359,270,12,118,21,388,1,135,2,197,50,117,24,5,141,53,164,168,23,61,238,29,55,222,4,281,354,328,166,6,52,19,0,134,],[-244,26,-129,26,-247,-242,-173,26,-243,-124,-223,-130,-167,26,26,-131,-139,-156,-221,-121,-251,-172,-134,-155,-165,-250,-119,-252,-253,-126,-120,-248,-171,-133,-128,-219,-170,-220,-138,-123,-2,-174,-125,-135,-222,-118,-169,-168,-254,26,-224,26,-249,-166,-255,-117,-132,26,-157,-218,26,-3,26,26,26,26,26,-164,-137,-136,26,-245,-122,-104,-127,-1,-246,]),'AND_OP':([101,301,97,76,308,107,424,93,293,364,111,319,75,311,411,84,296,90,86,143,183,100,300,106,302,72,92,212,367,185,314,299,105,421,110,310,307,91,313,180,186,292,323,79,312,303,156,298,87,309,218,182,306,318,317,103,365,369,102,98,297,181,221,315,85,214,389,304,316,78,],[-22,-66,-73,-18,-72,-78,-35,199,-21,-57,-49,-24,-20,-6,-33,-65,-63,-80,-62,-56,-44,-16,-60,-13,-67,-82,-19,-29,-25,-45,-5,-61,-10,-34,-43,-8,-69,-11,-74,-15,-47,-81,199,-56,-75,-79,-4,-59,-68,-70,-17,-14,-71,-27,-26,-4,-48,-23,-76,-58,-64,-16,-46,-7,-12,-28,-32,-83,-77,-9,]),']':([106,304,132,342,424,316,221,317,303,182,102,76,322,296,116,113,93,344,369,421,225,364,186,365,180,218,214,302,161,72,298,292,311,107,79,86,300,318,329,309,389,105,185,301,293,183,110,315,92,312,181,75,313,308,307,85,323,163,411,392,212,101,306,314,97,87,297,330,376,310,98,78,299,103,111,367,100,56,84,319,91,90,143,],[-13,-83,239,-89,-35,-77,-46,-26,-79,-14,-76,-18,369,-63,-103,-86,-84,-102,-23,-34,331,-57,-47,-48,-15,-17,-28,-67,-101,-82,-59,-81,-6,-78,-56,-62,-60,-27,375,-70,-32,-10,-45,-66,-21,-44,-43,-7,-19,-75,-16,-20,-74,-72,-69,-12,-85,-88,-33,-87,-29,-22,-71,-5,-73,-68,-64,377,394,-8,-58,-9,-61,-4,-49,-25,-16,131,-65,-24,-11,-80,-56,]),'IF':([241,260,61,262,269,145,144,141,349,159,398,244,379,400,259,415,340,341,339,164,381,140,137,380,154,261,395,148,52,409,416,406,243,160,155,383,347,271,414,264,268,397,59,407,135,136,345,270,],[162,-226,162,-228,-239,-227,-210,162,-215,162,-232,-240,162,-230,-238,-234,-221,-241,-237,-218,162,-209,-213,-216,-225,-219,162,162,-104,162,-231,-235,-220,-212,-214,162,162,-229,-236,162,162,-233,-223,162,-224,-211,-217,-222,]),'STRUCT':([15,354,124,238,29,39,359,48,12,74,26,131,53,171,68,138,360,21,261,170,18,88,278,37,3,27,67,31,357,59,66,32,388,231,206,38,10,270,281,16,57,187,61,284,117,1,5,164,239,173,82,134,166,36,280,222,6,73,141,279,169,328,118,55,197,28,340,50,65,228,236,0,333,287,40,4,35,19,60,9,13,361,23,135,288,24,52,168,33,232,2,8,243,],[-2,-136,-174,34,34,-165,-135,34,-118,-248,-120,-171,-157,-142,-138,34,-252,-168,-219,34,-131,34,-244,-130,34,-167,34,-242,-144,-223,-139,-128,-254,-172,-250,-133,-119,-222,-137,-123,-247,34,34,-145,-255,34,-132,-218,-170,34,34,-246,-245,-129,-143,34,-122,34,34,34,34,34,-169,34,-249,34,-221,-166,34,-155,-173,-1,-156,34,-121,-164,-126,-127,34,-125,-134,-253,-3,-224,-251,-117,-104,34,-243,34,34,-124,-220,]),'PP_IDENTIFIER_PASTE':([310,100,103,156,315,],[207,207,210,210,207,]),'PP_DEFINE_NAME':([11,],[48,]),'FLOAT':([13,357,88,340,29,231,53,1,35,82,39,10,279,55,173,74,239,228,9,222,360,36,141,8,32,238,135,168,281,52,278,287,24,21,134,61,50,138,187,66,23,12,6,73,28,328,124,4,0,354,206,359,388,57,3,18,19,48,166,232,164,236,65,40,170,37,26,31,333,27,261,59,243,16,2,270,197,33,288,67,169,5,60,131,280,117,15,284,171,118,361,68,38,],[-134,-144,32,-221,32,-172,-157,32,-126,32,-165,-119,32,32,32,-248,-170,-155,-125,32,-252,-129,32,-124,-128,32,-224,32,-137,-104,-244,32,-117,-168,-246,32,-166,32,32,-139,-3,-118,-122,32,32,32,-174,-164,-1,-136,-250,-135,-254,-247,32,-131,-127,32,-245,32,-218,-173,32,-121,32,-130,-120,-242,-156,-167,-219,-223,-220,-123,32,-222,-249,-243,-251,32,32,-132,32,-171,-143,-255,-2,-145,-142,-169,-253,-138,-133,]),'LEFT_ASSIGN':([367,101,314,365,85,421,180,186,317,221,364,79,212,369,318,218,100,78,111,319,110,424,143,389,315,293,181,106,92,185,311,411,76,183,182,310,156,105,91,214,75,103,],[-25,-22,-5,-48,-12,-34,-15,-47,-26,-46,-57,-56,-29,-23,-27,-17,-16,-9,-49,-24,-43,-35,253,-32,-7,-21,-16,-13,-19,-45,-6,-33,-18,-44,-14,-8,-4,-10,-11,-28,-20,-4,]),'}':([292,181,212,269,244,221,103,261,389,303,296,98,384,398,300,102,111,367,385,364,123,85,61,341,287,148,120,154,163,260,106,401,353,160,218,137,315,279,352,319,312,87,298,271,313,84,241,214,340,302,311,79,317,380,414,357,76,411,91,136,309,397,406,122,421,323,342,243,171,135,186,392,424,280,230,284,52,299,182,308,270,339,107,141,116,93,59,349,306,90,415,105,144,400,155,145,97,140,185,158,101,227,297,110,164,301,334,310,276,78,307,316,75,365,293,259,304,72,335,121,416,314,402,100,170,143,345,318,113,86,369,183,92,180,262,],[-81,-16,-29,-239,-240,-46,-4,-219,-32,-79,-63,-58,-205,-232,-60,-76,-49,-25,402,-57,-158,-12,164,-241,359,261,-160,-225,-88,-226,-13,-208,384,-212,-17,-213,-7,354,-207,-24,-75,-68,-59,-229,-74,-65,340,-28,-221,-67,-6,-56,-26,-216,-236,-144,-18,-33,-11,-211,-70,-233,-235,-162,-34,-85,-89,-220,-142,-224,-47,-87,-35,-143,-159,-145,-104,-61,-14,-72,-222,-237,-78,243,-103,-84,-223,-215,-71,-80,-234,-10,-210,-230,-214,-227,-73,-209,-45,270,-22,333,-64,-43,-218,-66,-163,-8,-204,-9,-69,-77,-20,-48,-21,-238,-83,-82,-161,228,-231,-5,-206,-16,281,-56,-217,-27,-86,-62,-23,-44,-19,-15,-228,]),} _lr_action = { } for _k, _v in _lr_action_items.items(): for _x,_y in zip(_v[0],_v[1]): _lr_action[(_x,_k)] = _y del _lr_action_items _lr_goto_items = {'expression_statement':([395,264,347,343,409,381,258,141,148,407,379,61,159,241,383,268,],[136,136,136,378,136,136,343,136,136,136,136,136,136,136,136,136,]),'storage_class_specifier':([29,141,28,222,55,60,61,232,65,2,3,328,1,238,168,],[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,]),'str_opt_expr_pair':([422,412,413,390,],[404,418,404,404,]),'constant':([191,152,211,329,61,187,159,407,81,409,205,273,80,277,202,56,241,114,209,379,383,203,194,395,385,378,48,368,355,268,265,190,189,229,177,225,264,204,381,370,347,193,257,198,382,220,343,217,290,216,77,142,141,267,192,258,199,73,148,175,208,195,184,410,294,219,263,138,167,285,],[92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,]),'volatile_opt':([94,],[201,]),'unary_expression':([273,202,208,114,209,138,192,370,229,194,263,175,198,241,265,195,184,177,410,225,187,219,409,381,148,77,407,167,189,193,257,191,382,217,152,211,290,159,142,141,385,294,379,80,258,285,368,73,203,268,56,347,383,329,204,395,48,355,205,343,277,190,264,216,61,267,81,199,220,378,],[143,79,79,79,79,143,79,79,79,79,143,79,79,143,143,79,143,79,143,79,143,79,143,143,143,183,143,143,79,79,143,79,143,143,79,79,79,143,143,143,143,79,143,185,143,79,143,143,79,143,79,143,143,79,79,143,79,79,79,143,143,79,143,143,143,143,186,79,143,143,]),'struct_or_union_specifier':([138,2,168,88,169,222,67,65,328,187,48,55,1,279,238,82,28,73,232,141,61,3,287,60,170,29,173,],[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,]),'exclusive_or_expression':([329,355,148,73,264,184,219,152,216,407,229,48,141,285,61,410,138,370,343,267,187,167,257,217,177,241,347,159,383,199,382,395,379,220,56,381,277,385,378,290,263,268,273,258,368,175,142,225,265,409,],[90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,292,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,]),'identifier_list':([55,],[129,]),'define':([1,],[23,]),'initializer':([385,277,167,],[401,352,275,]),'macro_param':([329,225,167,208,56,81,191,148,193,273,257,294,203,159,381,209,385,395,343,355,194,378,265,383,177,80,205,189,190,410,219,229,75,175,264,216,241,142,192,202,217,220,48,211,114,409,187,267,368,285,277,290,184,73,258,268,77,195,61,141,198,382,407,347,138,199,204,263,152,370,379,],[106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,180,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,106,]),'struct_declaration_list':([173,67,169,],[287,170,279,]),'macro_parameter_list':([71,],[176,]),'enumerator':([54,119,230,],[120,120,335,]),'declaration_list':([61,28,65,],[141,60,168,]),'iteration_statement':([148,264,407,395,383,61,159,241,379,381,347,141,268,409,],[137,137,137,137,137,137,137,137,137,137,137,137,137,137,]),'additive_expression':([265,329,355,217,220,229,395,257,73,264,142,138,208,285,61,268,381,195,56,277,343,290,152,216,407,199,209,48,383,241,148,187,382,410,141,205,370,203,204,347,379,263,184,368,219,409,167,202,378,211,159,194,258,267,175,273,385,225,177,198,],[84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,302,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,301,84,84,84,84,84,84,84,84,]),'assignment_expression':([167,216,258,265,220,148,347,264,184,217,410,241,263,381,383,407,378,267,385,187,409,379,277,73,273,268,159,257,141,61,395,382,343,142,368,138,],[276,320,161,161,161,161,161,161,161,161,161,161,344,161,161,161,161,161,276,161,161,161,276,161,161,161,161,342,161,161,161,161,161,161,391,161,]),'external_declaration':([1,],[15,]),'type_specifier':([67,29,28,328,88,279,48,173,232,238,141,222,3,60,82,287,65,138,61,73,168,169,1,55,187,170,2,],[82,29,29,29,82,82,82,82,29,29,29,29,29,29,82,82,29,82,29,82,29,82,29,29,82,82,29,]),'compound_statement':([60,264,409,383,159,268,241,65,347,141,61,381,407,148,379,168,28,395,],[134,144,144,144,144,144,144,166,144,144,144,144,144,144,144,278,57,144,]),'inclusive_or_expression':([73,407,152,409,329,379,167,385,184,368,61,395,175,48,148,241,347,159,268,277,370,199,220,56,225,216,267,378,343,219,258,265,383,381,229,285,410,217,263,257,355,290,138,142,264,382,141,187,273,],[72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,304,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,]),'pointer':([58,44,165,17,232,358,7,172,30,128,115,1,222,],[14,70,14,14,235,14,46,14,14,235,226,14,226,]),'selection_statement':([407,141,61,347,159,268,148,241,264,409,395,379,381,383,],[160,160,160,160,160,160,160,160,160,160,160,160,160,160,]),'postfix_expression':([73,192,294,56,199,194,263,187,383,378,175,77,217,141,152,189,285,159,219,142,193,257,329,355,81,395,379,268,381,205,202,190,410,204,61,241,290,208,148,229,407,277,265,114,184,409,203,138,267,216,343,198,264,191,347,382,211,48,220,177,368,273,225,385,195,370,167,80,258,209,],[110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110,]),'asm_expression':([290,241,56,142,395,273,385,202,141,205,48,378,204,265,329,268,383,199,80,198,184,192,148,343,194,73,159,370,229,258,187,257,225,189,138,114,407,211,219,177,263,285,355,209,175,203,277,379,264,195,220,409,152,347,216,193,267,382,190,61,167,410,368,381,81,77,208,217,294,191,],[111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,]),'declaration_impl':([28,168,65,61,141,1,60,],[20,20,20,20,20,20,20,]),'and_expression':([370,167,217,152,285,198,73,219,381,385,383,273,257,61,141,199,290,343,263,184,329,264,410,56,379,395,268,159,347,241,225,409,148,277,216,229,265,187,138,378,267,220,355,175,142,258,382,48,177,368,407,],[107,107,107,107,107,303,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,107,]),'type_name':([73,48,138,187,],[179,89,179,295,]),'relational_expression':([378,73,241,217,264,382,263,48,211,225,285,258,381,177,347,268,159,368,175,273,219,329,409,343,138,184,56,209,355,257,142,148,187,370,267,277,198,395,216,152,379,410,220,61,383,141,167,199,208,265,385,407,229,290,],[97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,313,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,97,312,97,97,97,97,97,]),'statement':([264,407,381,347,379,148,409,159,241,395,61,141,268,383,],[345,414,398,380,397,260,416,272,260,406,154,154,349,400,]),'cast_expression':([395,407,217,385,159,347,229,202,177,257,211,343,189,193,273,73,285,258,209,198,216,184,264,114,194,382,203,378,409,205,219,187,267,138,381,329,208,220,195,56,142,268,61,141,175,148,379,370,192,204,152,191,241,48,190,225,294,410,199,167,290,265,383,368,277,263,355,],[98,98,98,98,98,98,98,98,98,98,98,98,98,300,98,98,98,98,98,98,98,98,98,221,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,299,98,98,298,98,98,98,98,364,98,98,98,98,98,98,98,98,98,98,]),'init_declarator':([58,165,30,],[63,274,63,]),'struct_declarator_list':([172,],[286,]),'logical_or_expression':([343,407,265,217,285,395,347,258,273,257,410,138,184,378,264,73,381,216,142,382,268,61,141,187,267,175,220,370,148,48,409,56,167,379,152,263,329,290,241,225,383,385,277,368,159,229,355,],[113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113,]),'unary_operator':([77,141,241,148,277,159,192,407,56,184,194,409,294,203,187,217,205,189,198,219,202,142,382,190,211,220,204,368,273,257,225,258,167,208,379,385,229,265,114,138,378,267,175,290,61,285,191,355,370,343,48,193,177,329,152,195,81,80,209,264,395,216,73,268,381,199,263,410,347,383,],[114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114,]),'translation_unit':([0,],[1,]),'struct_or_union':([55,141,3,88,173,232,170,287,328,48,60,2,61,82,238,138,67,222,169,29,187,279,168,1,28,73,65,],[41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,]),'type_qualifier_list':([7,],[44,]),'struct_declaration':([279,169,67,287,173,170,],[280,171,171,280,171,280,]),'string_literal':([203,148,381,265,220,216,395,202,294,382,80,219,412,347,77,241,211,167,192,410,189,142,56,184,370,217,422,263,198,285,205,383,152,379,175,190,195,390,75,407,264,177,277,290,378,225,208,191,114,267,355,187,409,329,204,258,343,368,193,138,199,159,268,257,141,48,229,61,385,305,81,194,413,209,73,273,],[85,85,85,85,85,85,85,85,85,85,85,85,403,85,85,85,85,85,85,85,85,85,85,85,85,85,403,85,85,85,85,85,85,85,85,85,85,403,182,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85,366,85,85,403,85,85,85,]),'parameter_type_list':([222,232,328,55,],[326,326,374,126,]),'parameter_declaration':([328,232,238,55,222,],[127,127,338,127,127,]),'multiplicative_expression':([381,167,61,195,355,204,138,379,203,409,198,175,177,258,285,277,225,187,219,211,268,48,194,148,142,257,73,378,56,395,202,229,407,159,189,209,343,385,329,273,265,208,368,290,382,205,141,184,199,383,220,190,264,410,216,217,152,241,370,267,347,263,],[86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,296,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86,297,86,86,86,86,86,86,86,86,86,86,]),'declarator':([232,165,1,30,128,58,172,17,358,],[51,133,28,65,234,133,283,51,283,]),'argument_expression_list':([216,],[321,]),'str_opt_expr_pair_list':([390,413,422,],[405,419,423,]),'statement_list':([61,141,],[148,241,]),'constant_expression':([48,290,56,175,225,285,152,329,355,229,],[99,362,132,289,330,356,266,376,386,334,]),'enumerator_list_iso':([54,119,],[123,123,]),'primary_expression':([385,73,187,220,370,267,277,199,191,209,204,241,347,208,257,48,211,205,159,355,194,379,219,61,141,175,290,329,198,343,216,138,184,56,264,265,294,152,410,285,192,258,407,229,202,77,381,378,148,273,268,409,395,80,81,382,195,225,177,142,203,368,114,190,193,217,383,189,167,263,],[101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,101,]),'declaration_specifiers':([29,222,238,232,28,168,328,60,1,61,141,55,65,3,2,],[62,128,128,128,58,58,128,58,30,58,58,128,58,43,42,]),'declaration':([141,60,1,168,65,28,61,],[135,135,31,135,59,59,59,]),'direct_declarator':([172,1,128,235,14,30,358,232,58,17,165,],[27,27,27,50,50,27,27,27,27,27,27,]),'logical_and_expression':([347,56,407,355,138,378,61,141,379,395,290,220,48,175,263,410,258,285,277,225,187,267,73,229,142,381,329,273,265,167,368,343,385,383,184,264,241,409,370,268,216,217,152,219,148,257,159,382,],[93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93,323,93,93,93,93,]),'init_declarator_list':([58,30,],[64,64,]),'shift_expression':([208,229,211,378,241,184,216,410,285,141,409,379,217,395,265,263,202,257,56,167,199,187,219,159,258,370,264,209,175,220,205,385,142,225,329,273,368,383,347,355,177,48,343,152,267,382,407,198,277,148,61,290,204,203,73,381,268,138,],[87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,306,87,87,87,87,87,87,87,87,87,87,87,87,87,309,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,87,308,307,87,87,87,87,]),'equality_expression':([48,268,381,378,343,368,216,267,56,199,385,225,177,198,383,265,355,241,217,148,229,395,257,347,409,61,379,277,184,290,152,167,407,211,159,258,175,273,187,382,329,141,220,73,264,370,142,138,263,285,219,410,],[102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,316,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102,]),'jump_statement':([264,159,381,379,347,407,141,268,241,148,61,395,383,409,],[155,155,155,155,155,155,155,155,155,155,155,155,155,155,]),'struct_declarator':([358,172,],[387,282,]),'function_definition':([1,],[33,]),'parameter_list':([328,222,55,232,],[130,130,130,130,]),'enum_specifier':([82,170,29,168,61,1,3,88,48,222,169,232,65,287,60,238,173,28,328,67,187,141,73,279,138,55,2,],[38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,]),'type_qualifier':([187,55,88,82,44,28,169,328,238,279,65,173,222,60,141,7,287,2,138,73,232,29,168,67,3,61,48,170,1,],[88,3,88,88,69,3,88,3,3,88,3,88,3,3,3,45,88,3,88,88,3,3,3,88,3,3,88,88,3,]),'enumerator_list':([119,54,],[227,121,]),'labeled_statement':([141,148,395,407,61,383,379,159,268,241,347,264,409,381,],[140,140,140,140,140,140,140,140,140,140,140,140,140,140,]),'abstract_declarator':([115,222,232,128,],[223,327,327,233,]),'specifier_qualifier_list':([169,170,173,48,279,73,187,138,287,88,82,67,],[172,172,172,115,172,115,115,115,172,196,188,172,]),'multi_string_literal':([205,267,138,203,184,114,265,229,343,290,81,410,385,61,257,204,193,192,347,190,142,202,381,159,219,268,285,379,152,395,217,294,209,264,263,194,199,407,241,355,258,80,195,189,141,77,175,273,382,220,378,383,187,56,73,198,216,167,370,277,148,409,225,329,368,177,48,211,208,191,],[75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,75,]),'assignment_operator':([143,],[257,]),'initializer_list':([277,],[353,]),'conditional_expression':([257,56,217,285,187,265,141,258,241,148,48,385,216,368,273,184,329,159,378,343,267,407,73,225,263,410,370,277,268,382,264,167,175,152,395,409,138,61,290,355,229,220,381,383,142,379,347,],[163,116,163,116,163,163,163,163,163,163,116,163,163,163,163,163,116,163,163,163,163,163,163,116,163,163,392,163,163,163,163,163,116,116,163,163,163,163,116,116,116,163,163,163,163,163,163,]),'direct_abstract_declarator':([115,235,226,128,232,222,],[224,332,332,224,224,224,]),'identifier':([205,410,368,285,407,294,195,56,264,208,203,277,355,273,175,263,199,258,81,207,148,385,267,61,141,77,329,290,220,210,167,73,193,219,381,204,382,138,347,225,177,265,229,48,184,187,378,189,192,216,383,209,217,343,409,114,190,241,202,198,257,80,142,370,159,211,152,268,191,379,395,194,],[76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,311,76,76,76,76,76,76,76,76,76,314,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,76,]),'expression':([378,73,187,381,343,409,265,61,268,379,347,264,267,142,273,383,138,410,258,141,159,148,382,184,217,395,220,407,241,],[396,178,178,149,149,149,346,149,149,149,149,149,348,245,351,149,178,417,149,149,149,149,399,178,322,149,324,149,149,]),} _lr_goto = { } for _k, _v in _lr_goto_items.items(): for _x,_y in zip(_v[0],_v[1]): _lr_goto[(_x,_k)] = _y del _lr_goto_items _lr_productions = [ ("S'",1,None,None,None), ('translation_unit',0,'p_translation_unit','ctypesgencore/parser/cgrammar.py',57), ('translation_unit',2,'p_translation_unit','ctypesgencore/parser/cgrammar.py',58), ('translation_unit',2,'p_translation_unit','ctypesgencore/parser/cgrammar.py',59), ('identifier',1,'p_identifier','ctypesgencore/parser/cgrammar.py',67), ('identifier',3,'p_identifier','ctypesgencore/parser/cgrammar.py',68), ('identifier',3,'p_identifier','ctypesgencore/parser/cgrammar.py',69), ('identifier',3,'p_identifier','ctypesgencore/parser/cgrammar.py',70), ('identifier',3,'p_identifier','ctypesgencore/parser/cgrammar.py',71), ('constant',1,'p_constant','ctypesgencore/parser/cgrammar.py',87), ('constant',1,'p_constant','ctypesgencore/parser/cgrammar.py',88), ('string_literal',1,'p_string_literal','ctypesgencore/parser/cgrammar.py',111), ('multi_string_literal',1,'p_multi_string_literal','ctypesgencore/parser/cgrammar.py',115), ('multi_string_literal',1,'p_multi_string_literal','ctypesgencore/parser/cgrammar.py',116), ('multi_string_literal',2,'p_multi_string_literal','ctypesgencore/parser/cgrammar.py',117), ('multi_string_literal',2,'p_multi_string_literal','ctypesgencore/parser/cgrammar.py',118), ('macro_param',1,'p_macro_param','ctypesgencore/parser/cgrammar.py',127), ('macro_param',2,'p_macro_param','ctypesgencore/parser/cgrammar.py',128), ('primary_expression',1,'p_primary_expression','ctypesgencore/parser/cgrammar.py',136), ('primary_expression',1,'p_primary_expression','ctypesgencore/parser/cgrammar.py',137), ('primary_expression',1,'p_primary_expression','ctypesgencore/parser/cgrammar.py',138), ('primary_expression',3,'p_primary_expression','ctypesgencore/parser/cgrammar.py',139), ('postfix_expression',1,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',147), ('postfix_expression',4,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',148), ('postfix_expression',3,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',149), ('postfix_expression',4,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',150), ('postfix_expression',3,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',151), ('postfix_expression',3,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',152), ('postfix_expression',2,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',153), ('postfix_expression',2,'p_postfix_expression','ctypesgencore/parser/cgrammar.py',154), ('argument_expression_list',1,'p_argument_expression_list','ctypesgencore/parser/cgrammar.py',187), ('argument_expression_list',3,'p_argument_expression_list','ctypesgencore/parser/cgrammar.py',188), ('asm_expression',5,'p_asm_expression','ctypesgencore/parser/cgrammar.py',197), ('asm_expression',7,'p_asm_expression','ctypesgencore/parser/cgrammar.py',198), ('asm_expression',9,'p_asm_expression','ctypesgencore/parser/cgrammar.py',199), ('asm_expression',11,'p_asm_expression','ctypesgencore/parser/cgrammar.py',200), ('str_opt_expr_pair_list',0,'p_str_opt_expr_pair_list','ctypesgencore/parser/cgrammar.py',212), ('str_opt_expr_pair_list',1,'p_str_opt_expr_pair_list','ctypesgencore/parser/cgrammar.py',213), ('str_opt_expr_pair_list',3,'p_str_opt_expr_pair_list','ctypesgencore/parser/cgrammar.py',214), ('str_opt_expr_pair',1,'p_str_opt_expr_pair','ctypesgencore/parser/cgrammar.py',218), ('str_opt_expr_pair',4,'p_str_opt_expr_pair','ctypesgencore/parser/cgrammar.py',219), ('volatile_opt',0,'p_volatile_opt','ctypesgencore/parser/cgrammar.py',223), ('volatile_opt',1,'p_volatile_opt','ctypesgencore/parser/cgrammar.py',224), ('unary_expression',1,'p_unary_expression','ctypesgencore/parser/cgrammar.py',239), ('unary_expression',2,'p_unary_expression','ctypesgencore/parser/cgrammar.py',240), ('unary_expression',2,'p_unary_expression','ctypesgencore/parser/cgrammar.py',241), ('unary_expression',2,'p_unary_expression','ctypesgencore/parser/cgrammar.py',242), ('unary_expression',2,'p_unary_expression','ctypesgencore/parser/cgrammar.py',243), ('unary_expression',4,'p_unary_expression','ctypesgencore/parser/cgrammar.py',244), ('unary_expression',1,'p_unary_expression','ctypesgencore/parser/cgrammar.py',245), ('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',262), ('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',263), ('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',264), ('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',265), ('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',266), ('unary_operator',1,'p_unary_operator','ctypesgencore/parser/cgrammar.py',267), ('cast_expression',1,'p_cast_expression','ctypesgencore/parser/cgrammar.py',272), ('cast_expression',4,'p_cast_expression','ctypesgencore/parser/cgrammar.py',273), ('multiplicative_expression',1,'p_multiplicative_expression','ctypesgencore/parser/cgrammar.py',287), ('multiplicative_expression',3,'p_multiplicative_expression','ctypesgencore/parser/cgrammar.py',288), ('multiplicative_expression',3,'p_multiplicative_expression','ctypesgencore/parser/cgrammar.py',289), ('multiplicative_expression',3,'p_multiplicative_expression','ctypesgencore/parser/cgrammar.py',290), ('additive_expression',1,'p_additive_expression','ctypesgencore/parser/cgrammar.py',305), ('additive_expression',3,'p_additive_expression','ctypesgencore/parser/cgrammar.py',306), ('additive_expression',3,'p_additive_expression','ctypesgencore/parser/cgrammar.py',307), ('shift_expression',1,'p_shift_expression','ctypesgencore/parser/cgrammar.py',322), ('shift_expression',3,'p_shift_expression','ctypesgencore/parser/cgrammar.py',323), ('shift_expression',3,'p_shift_expression','ctypesgencore/parser/cgrammar.py',324), ('relational_expression',1,'p_relational_expression','ctypesgencore/parser/cgrammar.py',341), ('relational_expression',3,'p_relational_expression','ctypesgencore/parser/cgrammar.py',342), ('relational_expression',3,'p_relational_expression','ctypesgencore/parser/cgrammar.py',343), ('relational_expression',3,'p_relational_expression','ctypesgencore/parser/cgrammar.py',344), ('relational_expression',3,'p_relational_expression','ctypesgencore/parser/cgrammar.py',345), ('equality_expression',1,'p_equality_expression','ctypesgencore/parser/cgrammar.py',360), ('equality_expression',3,'p_equality_expression','ctypesgencore/parser/cgrammar.py',361), ('equality_expression',3,'p_equality_expression','ctypesgencore/parser/cgrammar.py',362), ('and_expression',1,'p_and_expression','ctypesgencore/parser/cgrammar.py',372), ('and_expression',3,'p_and_expression','ctypesgencore/parser/cgrammar.py',373), ('exclusive_or_expression',1,'p_exclusive_or_expression','ctypesgencore/parser/cgrammar.py',382), ('exclusive_or_expression',3,'p_exclusive_or_expression','ctypesgencore/parser/cgrammar.py',383), ('inclusive_or_expression',1,'p_inclusive_or_expression','ctypesgencore/parser/cgrammar.py',392), ('inclusive_or_expression',3,'p_inclusive_or_expression','ctypesgencore/parser/cgrammar.py',393), ('logical_and_expression',1,'p_logical_and_expression','ctypesgencore/parser/cgrammar.py',402), ('logical_and_expression',3,'p_logical_and_expression','ctypesgencore/parser/cgrammar.py',403), ('logical_or_expression',1,'p_logical_or_expression','ctypesgencore/parser/cgrammar.py',412), ('logical_or_expression',3,'p_logical_or_expression','ctypesgencore/parser/cgrammar.py',413), ('conditional_expression',1,'p_conditional_expression','ctypesgencore/parser/cgrammar.py',422), ('conditional_expression',5,'p_conditional_expression','ctypesgencore/parser/cgrammar.py',423), ('assignment_expression',1,'p_assignment_expression','ctypesgencore/parser/cgrammar.py',444), ('assignment_expression',3,'p_assignment_expression','ctypesgencore/parser/cgrammar.py',445), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',460), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',461), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',462), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',463), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',464), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',465), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',466), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',467), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',468), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',469), ('assignment_operator',1,'p_assignment_operator','ctypesgencore/parser/cgrammar.py',470), ('expression',1,'p_expression','ctypesgencore/parser/cgrammar.py',475), ('expression',3,'p_expression','ctypesgencore/parser/cgrammar.py',476), ('constant_expression',1,'p_constant_expression','ctypesgencore/parser/cgrammar.py',482), ('declaration',2,'p_declaration','ctypesgencore/parser/cgrammar.py',487), ('declaration_impl',1,'p_declaration_impl','ctypesgencore/parser/cgrammar.py',494), ('declaration_impl',2,'p_declaration_impl','ctypesgencore/parser/cgrammar.py',495), ('declaration_specifiers',1,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',519), ('declaration_specifiers',2,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',520), ('declaration_specifiers',1,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',521), ('declaration_specifiers',2,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',522), ('declaration_specifiers',1,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',523), ('declaration_specifiers',2,'p_declaration_specifiers','ctypesgencore/parser/cgrammar.py',524), ('init_declarator_list',1,'p_init_declarator_list','ctypesgencore/parser/cgrammar.py',532), ('init_declarator_list',3,'p_init_declarator_list','ctypesgencore/parser/cgrammar.py',533), ('init_declarator',1,'p_init_declarator','ctypesgencore/parser/cgrammar.py',541), ('init_declarator',3,'p_init_declarator','ctypesgencore/parser/cgrammar.py',542), ('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',549), ('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',550), ('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',551), ('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',552), ('storage_class_specifier',1,'p_storage_class_specifier','ctypesgencore/parser/cgrammar.py',553), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',558), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',559), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',560), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',561), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',562), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',563), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',564), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',565), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',566), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',567), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',568), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',569), ('type_specifier',1,'p_type_specifier','ctypesgencore/parser/cgrammar.py',570), ('struct_or_union_specifier',5,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',579), ('struct_or_union_specifier',5,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',580), ('struct_or_union_specifier',4,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',581), ('struct_or_union_specifier',2,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',582), ('struct_or_union_specifier',2,'p_struct_or_union_specifier','ctypesgencore/parser/cgrammar.py',583), ('struct_or_union',1,'p_struct_or_union','ctypesgencore/parser/cgrammar.py',599), ('struct_or_union',1,'p_struct_or_union','ctypesgencore/parser/cgrammar.py',600), ('struct_declaration_list',1,'p_struct_declaration_list','ctypesgencore/parser/cgrammar.py',605), ('struct_declaration_list',2,'p_struct_declaration_list','ctypesgencore/parser/cgrammar.py',606), ('struct_declaration',3,'p_struct_declaration','ctypesgencore/parser/cgrammar.py',614), ('struct_declaration',2,'p_struct_declaration','ctypesgencore/parser/cgrammar.py',615), ('specifier_qualifier_list',2,'p_specifier_qualifier_list','ctypesgencore/parser/cgrammar.py',635), ('specifier_qualifier_list',1,'p_specifier_qualifier_list','ctypesgencore/parser/cgrammar.py',636), ('specifier_qualifier_list',2,'p_specifier_qualifier_list','ctypesgencore/parser/cgrammar.py',637), ('specifier_qualifier_list',1,'p_specifier_qualifier_list','ctypesgencore/parser/cgrammar.py',638), ('struct_declarator_list',1,'p_struct_declarator_list','ctypesgencore/parser/cgrammar.py',647), ('struct_declarator_list',3,'p_struct_declarator_list','ctypesgencore/parser/cgrammar.py',648), ('struct_declarator',1,'p_struct_declarator','ctypesgencore/parser/cgrammar.py',656), ('struct_declarator',2,'p_struct_declarator','ctypesgencore/parser/cgrammar.py',657), ('struct_declarator',3,'p_struct_declarator','ctypesgencore/parser/cgrammar.py',658), ('enum_specifier',4,'p_enum_specifier','ctypesgencore/parser/cgrammar.py',669), ('enum_specifier',5,'p_enum_specifier','ctypesgencore/parser/cgrammar.py',670), ('enum_specifier',2,'p_enum_specifier','ctypesgencore/parser/cgrammar.py',671), ('enumerator_list',1,'p_enumerator_list','ctypesgencore/parser/cgrammar.py',684), ('enumerator_list',2,'p_enumerator_list','ctypesgencore/parser/cgrammar.py',685), ('enumerator_list_iso',1,'p_enumerator_list_iso','ctypesgencore/parser/cgrammar.py',692), ('enumerator_list_iso',3,'p_enumerator_list_iso','ctypesgencore/parser/cgrammar.py',693), ('enumerator',1,'p_enumerator','ctypesgencore/parser/cgrammar.py',701), ('enumerator',3,'p_enumerator','ctypesgencore/parser/cgrammar.py',702), ('type_qualifier',1,'p_type_qualifier','ctypesgencore/parser/cgrammar.py',710), ('type_qualifier',1,'p_type_qualifier','ctypesgencore/parser/cgrammar.py',711), ('declarator',2,'p_declarator','ctypesgencore/parser/cgrammar.py',716), ('declarator',1,'p_declarator','ctypesgencore/parser/cgrammar.py',717), ('direct_declarator',1,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',729), ('direct_declarator',3,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',730), ('direct_declarator',4,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',731), ('direct_declarator',3,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',732), ('direct_declarator',4,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',733), ('direct_declarator',4,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',734), ('direct_declarator',3,'p_direct_declarator','ctypesgencore/parser/cgrammar.py',735), ('pointer',1,'p_pointer','ctypesgencore/parser/cgrammar.py',764), ('pointer',2,'p_pointer','ctypesgencore/parser/cgrammar.py',765), ('pointer',2,'p_pointer','ctypesgencore/parser/cgrammar.py',766), ('pointer',3,'p_pointer','ctypesgencore/parser/cgrammar.py',767), ('type_qualifier_list',1,'p_type_qualifier_list','ctypesgencore/parser/cgrammar.py',784), ('type_qualifier_list',2,'p_type_qualifier_list','ctypesgencore/parser/cgrammar.py',785), ('parameter_type_list',1,'p_parameter_type_list','ctypesgencore/parser/cgrammar.py',793), ('parameter_type_list',3,'p_parameter_type_list','ctypesgencore/parser/cgrammar.py',794), ('parameter_list',1,'p_parameter_list','ctypesgencore/parser/cgrammar.py',803), ('parameter_list',3,'p_parameter_list','ctypesgencore/parser/cgrammar.py',804), ('parameter_declaration',2,'p_parameter_declaration','ctypesgencore/parser/cgrammar.py',812), ('parameter_declaration',2,'p_parameter_declaration','ctypesgencore/parser/cgrammar.py',813), ('parameter_declaration',1,'p_parameter_declaration','ctypesgencore/parser/cgrammar.py',814), ('identifier_list',1,'p_identifier_list','ctypesgencore/parser/cgrammar.py',822), ('identifier_list',3,'p_identifier_list','ctypesgencore/parser/cgrammar.py',823), ('type_name',1,'p_type_name','ctypesgencore/parser/cgrammar.py',835), ('type_name',2,'p_type_name','ctypesgencore/parser/cgrammar.py',836), ('abstract_declarator',1,'p_abstract_declarator','ctypesgencore/parser/cgrammar.py',852), ('abstract_declarator',1,'p_abstract_declarator','ctypesgencore/parser/cgrammar.py',853), ('abstract_declarator',2,'p_abstract_declarator','ctypesgencore/parser/cgrammar.py',854), ('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',873), ('direct_abstract_declarator',2,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',874), ('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',875), ('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',876), ('direct_abstract_declarator',4,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',877), ('direct_abstract_declarator',2,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',878), ('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',879), ('direct_abstract_declarator',3,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',880), ('direct_abstract_declarator',4,'p_direct_abstract_declarator','ctypesgencore/parser/cgrammar.py',881), ('initializer',1,'p_initializer','ctypesgencore/parser/cgrammar.py',918), ('initializer',3,'p_initializer','ctypesgencore/parser/cgrammar.py',919), ('initializer',4,'p_initializer','ctypesgencore/parser/cgrammar.py',920), ('initializer_list',1,'p_initializer_list','ctypesgencore/parser/cgrammar.py',924), ('initializer_list',3,'p_initializer_list','ctypesgencore/parser/cgrammar.py',925), ('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',929), ('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',930), ('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',931), ('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',932), ('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',933), ('statement',1,'p_statement','ctypesgencore/parser/cgrammar.py',934), ('labeled_statement',3,'p_labeled_statement','ctypesgencore/parser/cgrammar.py',938), ('labeled_statement',4,'p_labeled_statement','ctypesgencore/parser/cgrammar.py',939), ('labeled_statement',3,'p_labeled_statement','ctypesgencore/parser/cgrammar.py',940), ('compound_statement',2,'p_compound_statement','ctypesgencore/parser/cgrammar.py',944), ('compound_statement',3,'p_compound_statement','ctypesgencore/parser/cgrammar.py',945), ('compound_statement',3,'p_compound_statement','ctypesgencore/parser/cgrammar.py',946), ('compound_statement',4,'p_compound_statement','ctypesgencore/parser/cgrammar.py',947), ('compound_statement',3,'p_compound_statement_error','ctypesgencore/parser/cgrammar.py',951), ('declaration_list',1,'p_declaration_list','ctypesgencore/parser/cgrammar.py',956), ('declaration_list',2,'p_declaration_list','ctypesgencore/parser/cgrammar.py',957), ('statement_list',1,'p_statement_list','ctypesgencore/parser/cgrammar.py',961), ('statement_list',2,'p_statement_list','ctypesgencore/parser/cgrammar.py',962), ('expression_statement',1,'p_expression_statement','ctypesgencore/parser/cgrammar.py',966), ('expression_statement',2,'p_expression_statement','ctypesgencore/parser/cgrammar.py',967), ('expression_statement',2,'p_expression_statement_error','ctypesgencore/parser/cgrammar.py',970), ('selection_statement',5,'p_selection_statement','ctypesgencore/parser/cgrammar.py',975), ('selection_statement',7,'p_selection_statement','ctypesgencore/parser/cgrammar.py',976), ('selection_statement',5,'p_selection_statement','ctypesgencore/parser/cgrammar.py',977), ('iteration_statement',5,'p_iteration_statement','ctypesgencore/parser/cgrammar.py',981), ('iteration_statement',7,'p_iteration_statement','ctypesgencore/parser/cgrammar.py',982), ('iteration_statement',6,'p_iteration_statement','ctypesgencore/parser/cgrammar.py',983), ('iteration_statement',7,'p_iteration_statement','ctypesgencore/parser/cgrammar.py',984), ('jump_statement',3,'p_jump_statement','ctypesgencore/parser/cgrammar.py',988), ('jump_statement',2,'p_jump_statement','ctypesgencore/parser/cgrammar.py',989), ('jump_statement',2,'p_jump_statement','ctypesgencore/parser/cgrammar.py',990), ('jump_statement',2,'p_jump_statement','ctypesgencore/parser/cgrammar.py',991), ('jump_statement',3,'p_jump_statement','ctypesgencore/parser/cgrammar.py',992), ('external_declaration',1,'p_external_declaration','ctypesgencore/parser/cgrammar.py',996), ('external_declaration',1,'p_external_declaration','ctypesgencore/parser/cgrammar.py',997), ('function_definition',4,'p_function_definition','ctypesgencore/parser/cgrammar.py',1003), ('function_definition',3,'p_function_definition','ctypesgencore/parser/cgrammar.py',1004), ('function_definition',3,'p_function_definition','ctypesgencore/parser/cgrammar.py',1005), ('function_definition',2,'p_function_definition','ctypesgencore/parser/cgrammar.py',1006), ('define',3,'p_define','ctypesgencore/parser/cgrammar.py',1010), ('define',4,'p_define','ctypesgencore/parser/cgrammar.py',1011), ('define',4,'p_define','ctypesgencore/parser/cgrammar.py',1012), ('define',5,'p_define','ctypesgencore/parser/cgrammar.py',1013), ('define',6,'p_define','ctypesgencore/parser/cgrammar.py',1014), ('define',6,'p_define','ctypesgencore/parser/cgrammar.py',1015), ('define',7,'p_define','ctypesgencore/parser/cgrammar.py',1016), ('define',3,'p_define_error','ctypesgencore/parser/cgrammar.py',1049), ('macro_parameter_list',1,'p_macro_parameter_list','ctypesgencore/parser/cgrammar.py',1078), ('macro_parameter_list',3,'p_macro_parameter_list','ctypesgencore/parser/cgrammar.py',1079), ]
_lr_method = 'LALR' _lr_signature = 'XPÖ":$vѬQâ\x1dÈ\x10T¢' _lr_action_items = {'VOID': ([118, 261, 15, 238, 171, 3, 50, 37, 359, 33, 170, 24, 68, 197, 284, 328, 361, 12, 2, 141, 39, 29, 73, 173, 232, 288, 222, 60, 166, 8, 21, 281, 82, 135, 65, 168, 239, 0, 13, 388, 27, 278, 4, 16, 333, 187, 231, 9, 53, 280, 279, 354, 164, 169, 74, 18, 1, 360, 138, 243, 117, 131, 36, 48, 61, 236, 270, 52, 35, 23, 57, 31, 134, 206, 287, 88, 5, 6, 357, 10, 32, 38, 19, 66, 59, 26, 340, 40, 228, 67, 124, 28, 55], [-169, -219, -2, 6, -142, 6, -166, -130, -135, -243, 6, -117, -138, -249, -145, 6, -253, -118, 6, 6, -165, 6, 6, 6, 6, -251, 6, 6, -245, -124, -168, -137, 6, -224, 6, 6, -170, -1, -134, -254, -167, -244, -164, -123, -156, 6, -172, -125, -157, -143, 6, -136, -218, 6, -248, -131, 6, -252, 6, -220, -255, -171, -129, 6, 6, -173, -222, -104, -126, -3, -247, -242, -246, -250, 6, 6, -132, -122, -144, -119, -128, -133, -127, -139, -223, -120, -221, -121, -155, 6, -174, 6, 6]), 'DIV_ASSIGN': ([315, 105, 367, 91, 156, 182, 183, 365, 389, 221, 180, 411, 293, 143, 106, 75, 85, 317, 92, 181, 100, 103, 218, 369, 314, 76, 212, 214, 78, 310, 79, 421, 311, 101, 185, 319, 186, 318, 424, 110, 364, 111], [-7, -10, -25, -11, -4, -14, -44, -48, -32, -46, -15, -33, -21, 252, -13, -20, -12, -26, -19, -16, -16, -4, -17, -23, -5, -18, -29, -28, -9, -8, -56, -34, -6, -22, -45, -24, -47, -27, -35, -43, -57, -49]), 'PP_DEFINE': ([74, 388, 23, 278, 134, 31, 57, 117, 360, 261, 243, 164, 197, 15, 270, 0, 33, 288, 206, 361, 340, 166, 52, 1], [-248, -254, -3, -244, -246, -242, -247, -255, -252, -219, -220, -218, -249, -2, -222, -1, -243, -251, -250, -253, -221, -245, -104, 11]), 'LE_OP': ([78, 302, 310, 100, 214, 293, 301, 79, 311, 212, 297, 103, 307, 298, 364, 75, 182, 369, 218, 76, 91, 186, 110, 101, 92, 299, 86, 185, 97, 105, 156, 300, 183, 143, 106, 221, 309, 296, 411, 181, 84, 367, 111, 318, 180, 389, 312, 87, 319, 421, 98, 365, 315, 85, 317, 306, 313, 308, 314, 424], [-9, -67, -8, -16, -28, -21, -66, -56, -6, -29, -64, -4, -69, -59, -57, -20, -14, -23, -17, -18, -11, -47, -43, -22, -19, -61, -62, -45, 202, -10, -4, -60, -44, -56, -13, -46, -70, -63, -33, -16, -65, -25, -49, -27, -15, -32, 202, -68, -24, -34, -58, -48, -7, -12, -26, -71, 202, -72, -5, -35]), '(': ([9, 345, 3, 145, 50, 85, 108, 288, 218, 254, 75, 333, 155, 199, 40, 243, 409, 415, 314, 131, 151, 248, 36, 48, 128, 172, 94, 339, 109, 263, 360, 189, 66, 74, 106, 182, 211, 268, 398, 377, 14, 165, 367, 257, 162, 403, 235, 177, 250, 380, 187, 52, 117, 138, 166, 231, 311, 397, 19, 196, 208, 17, 78, 148, 160, 118, 13, 57, 6, 141, 372, 181, 193, 115, 136, 201, 395, 260, 379, 214, 46, 44, 277, 154, 247, 88, 190, 255, 270, 135, 232, 265, 134, 341, 96, 278, 343, 400, 220, 29, 228, 175, 152, 82, 217, 319, 331, 5, 361, 2, 91, 10, 38, 225, 146, 407, 349, 206, 15, 27, 369, 35, 350, 354, 281, 76, 317, 23, 239, 105, 394, 244, 0, 358, 167, 8, 144, 347, 355, 252, 61, 414, 26, 140, 205, 184, 249, 198, 37, 373, 101, 137, 30, 95, 293, 261, 273, 92, 204, 381, 47, 416, 103, 24, 269, 382, 203, 68, 262, 371, 159, 32, 259, 156, 164, 241, 53, 410, 73, 153, 267, 197, 209, 58, 383, 114, 194, 340, 393, 83, 62, 59, 285, 142, 219, 7, 104, 124, 378, 195, 56, 100, 258, 180, 192, 1, 294, 359, 236, 191, 271, 325, 188, 253, 110, 77, 246, 332, 18, 80, 229, 256, 264, 329, 222, 31, 226, 43, 388, 45, 370, 251, 202, 21, 39, 310, 375, 216, 318, 4, 69, 16, 81, 385, 290, 212, 224, 33, 406, 12, 368, 42, 70, 315, 200], [-125, -217, -111, -227, 55, -12, -55, -251, -17, -90, -20, -156, -214, 73, -121, -220, 138, -234, -5, -171, 265, -99, -129, 73, 232, 17, -41, -237, -53, 138, -252, 73, -139, -248, -13, -14, 73, 138, -232, -197, 17, 17, -25, 138, 273, 410, 232, 73, -98, -216, 138, -104, -255, 138, -245, -172, -6, -233, -127, -148, 73, 17, -9, 138, -212, -169, -134, -247, -122, 138, -195, -16, 73, 222, -211, 305, 138, -226, 138, -28, -177, -176, 138, -225, -93, -149, 73, -94, -222, -224, 232, 138, -246, -241, -51, -244, 138, -230, 138, -109, -155, 73, 73, -147, 138, -24, -196, -132, -253, -107, -11, -119, -133, 73, 258, 138, -215, -250, -2, 55, -23, -126, 382, -136, -137, -18, -26, -3, -170, -10, -199, -240, -1, 17, 138, -124, -210, 138, 73, -92, 138, -236, -120, -209, 73, 138, -100, 73, -130, -202, -22, -213, 17, -50, -21, -219, 138, -19, 73, 138, 71, -231, -4, -117, -239, 138, 73, -138, -228, -201, 138, -128, -238, -4, -218, 138, -157, 138, 138, 267, 138, -249, 73, 17, 138, 73, 73, -221, -203, -52, -110, -223, 73, 138, 73, -175, -54, -174, 138, 73, 73, -16, 138, -15, 73, 17, 73, -135, -173, 73, -229, -200, -146, -96, 216, 184, -95, 328, -131, 184, 73, -97, 138, 73, 222, -242, 222, -112, -254, -179, 73, -91, 73, -168, -165, -8, -198, 138, -27, -164, -180, -123, 187, 138, 73, -29, 328, -243, -235, -118, 138, -108, -178, -7, -42]), ',': ([182, 218, 183, 274, 300, 29, 90, 405, 39, 100, 372, 70, 313, 185, 318, 107, 387, 325, 386, 186, 212, 346, 311, 120, 176, 38, 24, 65, 371, 75, 234, 4, 45, 106, 323, 293, 66, 92, 356, 352, 315, 161, 304, 110, 402, 321, 111, 228, 13, 245, 301, 235, 40, 384, 93, 143, 314, 118, 236, 413, 367, 423, 239, 2, 85, 421, 331, 8, 296, 127, 180, 5, 338, 224, 322, 348, 87, 373, 50, 76, 422, 16, 316, 86, 128, 123, 101, 364, 102, 103, 7, 68, 281, 307, 424, 163, 9, 35, 396, 133, 342, 214, 306, 332, 122, 178, 308, 394, 375, 221, 26, 231, 78, 6, 401, 275, 392, 377, 282, 299, 43, 389, 403, 297, 418, 276, 317, 46, 97, 283, 344, 129, 36, 336, 365, 53, 42, 419, 98, 124, 156, 64, 312, 353, 292, 21, 333, 359, 10, 335, 391, 181, 62, 72, 113, 417, 19, 32, 12, 27, 116, 174, 18, 44, 303, 411, 334, 390, 369, 298, 37, 63, 351, 393, 404, 69, 363, 3, 399, 105, 130, 84, 125, 302, 91, 420, 149, 309, 319, 131, 233, 324, 286, 354, 320, 79, 310], [-14, -17, -44, -114, -60, -109, -80, 412, -165, -16, -195, -178, -74, -45, -27, -78, -151, -200, -154, -47, -29, 263, -6, -160, 291, -133, -117, -115, -201, -20, -185, -164, -179, -13, -85, -21, -139, -19, -153, -207, -7, -101, -83, -43, -206, 368, -49, -155, -134, 263, -66, -192, -121, -205, -84, -56, -5, -169, -173, -36, -25, 412, -170, -107, -12, -34, -196, -124, -63, -183, -15, -132, -184, -193, 263, 263, -68, -202, -166, -18, -36, -123, -77, -62, -187, 230, -22, -57, -76, -4, -175, -138, -137, -69, -35, -88, -125, -126, 263, -115, -89, -28, -71, -194, -162, 263, -72, -199, -198, -46, -120, -172, -9, -122, -208, -116, -87, -197, -150, -61, -112, -32, -39, -64, -38, -204, -26, -177, -73, -152, -102, 237, -129, -189, -48, -157, -108, 412, -58, -174, -4, 165, -75, 385, -81, -168, -156, -135, -119, -161, -31, -16, -110, -82, -86, 263, -127, -128, -118, -167, -103, -256, -131, -176, -79, -33, -163, -36, -23, -59, -130, -113, 263, -203, -37, -180, -257, -111, 263, -10, 238, -65, -188, -67, -11, -40, 263, -70, -24, -171, -186, 263, 358, -136, -30, -56, -8]), 'LONG': ([53, 52, 222, 16, 31, 340, 36, 281, 134, 21, 333, 9, 18, 287, 68, 236, 164, 67, 357, 57, 37, 166, 280, 27, 35, 354, 243, 171, 328, 138, 10, 8, 231, 55, 284, 278, 88, 3, 124, 38, 23, 135, 360, 232, 131, 238, 197, 32, 74, 12, 359, 39, 24, 4, 117, 48, 29, 168, 40, 288, 60, 5, 187, 0, 66, 28, 65, 361, 239, 19, 33, 73, 118, 141, 13, 82, 388, 279, 26, 173, 6, 228, 50, 61, 270, 206, 59, 170, 261, 15, 169, 2, 1], [-157, -104, 19, -123, -242, -221, -129, -137, -246, -168, -156, -125, -131, 19, -138, -173, -218, 19, -144, -247, -130, -245, -143, -167, -126, -136, -220, -142, 19, 19, -119, -124, -172, 19, -145, -244, 19, 19, -174, -133, -3, -224, -252, 19, -171, 19, -249, -128, -248, -118, -135, -165, -117, -164, -255, 19, 19, 19, -121, -251, 19, -132, 19, -1, -139, 19, 19, -253, -170, -127, -243, 19, -169, 19, -134, 19, -254, 19, -120, 19, -122, -155, -166, 19, -222, -250, -223, 19, -219, -2, 19, 19, 19]), 'ELLIPSIS': ([238], [337]), '^': ([315, 156, 298, 296, 91, 97, 314, 100, 79, 212, 312, 76, 369, 424, 293, 110, 301, 299, 182, 90, 317, 311, 75, 303, 107, 389, 85, 316, 306, 367, 214, 308, 365, 313, 180, 307, 310, 102, 78, 111, 87, 92, 292, 185, 221, 183, 302, 106, 300, 181, 98, 143, 364, 319, 297, 309, 218, 101, 318, 86, 421, 411, 84, 105, 103, 186], [-7, -4, -59, -63, -11, -73, -5, -16, -56, -29, -75, -18, -23, -35, -21, -43, -66, -61, -14, 198, -26, -6, -20, -79, -78, -32, -12, -77, -71, -25, -28, -72, -48, -74, -15, -69, -8, -76, -9, -49, -68, -19, 198, -45, -46, -44, -67, -13, -60, -16, -58, -56, -57, -24, -64, -70, -17, -22, -27, -62, -34, -33, -65, -10, -4, -47]), '<': ([301, 212, 421, 105, 313, 186, 101, 365, 221, 315, 106, 364, 389, 314, 312, 181, 367, 297, 299, 91, 309, 78, 103, 156, 75, 293, 87, 310, 182, 296, 218, 183, 306, 97, 185, 79, 319, 369, 86, 298, 85, 98, 411, 311, 424, 300, 317, 100, 308, 307, 318, 84, 214, 302, 92, 180, 110, 111, 143, 76], [-66, -29, -34, -10, 203, -47, -22, -48, -46, -7, -13, -57, -32, -5, 203, -16, -25, -64, -61, -11, -70, -9, -4, -4, -20, -21, -68, -8, -14, -63, -17, -44, -71, 203, -45, -56, -24, -23, -62, -59, -12, -58, -33, -6, -35, -60, -26, -16, -72, -69, -27, -65, -28, -67, -19, -15, -43, -49, -56, -18]), 'GOTO': ([347, 136, 137, 164, 407, 409, 414, 244, 148, 262, 268, 269, 160, 260, 261, 395, 241, 243, 400, 135, 398, 159, 270, 61, 271, 416, 341, 140, 406, 349, 259, 141, 397, 415, 154, 264, 345, 155, 59, 340, 383, 144, 380, 145, 381, 379, 339, 52], [139, -211, -213, -218, 139, 139, -236, -240, 139, -228, 139, -239, -212, -226, -219, 139, 139, -220, -230, -224, -232, 139, -222, 139, -229, -231, -241, -209, -235, -215, -238, 139, -233, -234, -225, 139, -217, -214, -223, -221, 139, -210, -216, -227, 139, 139, -237, -104]), 'ENUM': ([170, 59, 3, 16, 8, 197, 88, 10, 61, 328, 13, 29, 231, 9, 279, 361, 228, 21, 37, 388, 50, 24, 40, 238, 33, 166, 117, 12, 164, 281, 2, 360, 280, 171, 53, 239, 66, 82, 168, 65, 27, 187, 23, 39, 57, 73, 28, 135, 357, 131, 5, 333, 138, 18, 169, 19, 32, 48, 15, 31, 206, 222, 278, 1, 141, 74, 52, 67, 340, 236, 35, 243, 287, 55, 60, 270, 118, 36, 38, 0, 288, 124, 26, 354, 359, 261, 232, 68, 284, 4, 134, 6, 173], [25, -223, 25, -123, -124, -249, 25, -119, 25, 25, -134, 25, -172, -125, 25, -253, -155, -168, -130, -254, -166, -117, -121, 25, -243, -245, -255, -118, -218, -137, 25, -252, -143, -142, -157, -170, -139, 25, 25, 25, -167, 25, -3, -165, -247, 25, 25, -224, -144, -171, -132, -156, 25, -131, 25, -127, -128, 25, -2, -242, -250, 25, -244, 25, 25, -248, -104, 25, -221, -173, -126, -220, 25, 25, 25, -222, -169, -129, -133, -1, -251, -174, -120, -136, -135, -219, 25, -138, -145, -164, -246, -122, 25]), 'PERIOD': ([319, 105, 91, 212, 78, 156, 76, 318, 311, 100, 293, 110, 315, 101, 182, 369, 367, 310, 218, 92, 180, 85, 317, 314, 106, 75, 181, 214, 103], [-24, -10, -11, -29, -9, -4, -18, -27, -6, -16, -21, 213, -7, -22, -14, -23, -25, -8, -17, -19, -15, -12, -26, -5, -13, -20, -16, -28, -4]), 'PP_END_DEFINE': ([310, 311, 323, 306, 362, 281, 100, 36, 101, 116, 19, 91, 103, 319, 98, 115, 107, 292, 88, 46, 371, 307, 84, 332, 289, 331, 32, 5, 308, 369, 316, 6, 364, 110, 359, 97, 111, 44, 312, 373, 303, 315, 86, 180, 302, 183, 223, 377, 221, 196, 16, 7, 318, 99, 226, 182, 389, 290, 296, 314, 4, 69, 106, 375, 18, 372, 181, 411, 35, 309, 70, 37, 313, 424, 8, 75, 82, 367, 393, 228, 48, 49, 301, 218, 39, 298, 325, 79, 421, 102, 38, 185, 45, 175, 13, 93, 105, 68, 392, 113, 365, 394, 76, 66, 9, 90, 212, 297, 299, 186, 293, 317, 300, 304, 224, 89, 188, 85, 333, 72, 92, 87, 214, 78, 354, 53], [-8, -6, -85, -71, 388, -137, -16, -129, -22, -103, -127, -11, -4, -24, -58, -190, -78, -81, -149, -177, -201, -69, -65, -194, 360, -196, -128, -132, -72, -23, -77, -122, -57, -43, -135, -73, -49, -176, -75, -202, -79, -7, -62, -15, -67, -44, -191, -197, -46, -148, -123, -175, -27, 206, -192, -14, -32, 361, -63, -5, -164, -180, -13, -198, -131, -195, -16, -33, -126, -70, -178, -130, -74, -35, -124, -20, -147, -25, -203, -155, 74, 117, -66, -17, -165, -59, -200, -56, -34, -76, -133, -45, -179, 288, -134, -84, -10, -138, -87, -86, -48, -199, -18, -139, -125, -80, -29, -64, -61, -47, -21, -26, -60, -83, -193, 197, -146, -12, -156, -82, -19, -68, -28, -9, -136, -157]), 'LEFT_OP': ([110, 299, 302, 309, 308, 103, 92, 76, 389, 75, 306, 111, 87, 86, 365, 91, 364, 424, 180, 106, 311, 105, 143, 181, 98, 212, 218, 317, 156, 101, 367, 369, 100, 310, 421, 182, 85, 186, 298, 318, 314, 79, 411, 185, 296, 300, 183, 214, 221, 315, 293, 307, 319, 84, 297, 301, 78], [-43, -61, -67, 194, 194, -4, -19, -18, -32, -20, 194, -49, 194, -62, -48, -11, -57, -35, -15, -13, -6, -10, -56, -16, -58, -29, -17, -26, -4, -22, -25, -23, -16, -8, -34, -14, -12, -47, -59, -27, -5, -56, -33, -45, -63, -60, -44, -28, -46, -7, -21, 194, -24, -65, -64, -66, -9]), 'DOUBLE': ([340, 6, 278, 164, 236, 88, 2, 270, 27, 18, 124, 279, 29, 228, 281, 0, 1, 359, 361, 10, 16, 35, 82, 354, 37, 65, 8, 9, 239, 288, 55, 141, 131, 73, 28, 280, 197, 360, 66, 170, 36, 166, 231, 21, 168, 169, 19, 74, 118, 222, 57, 187, 39, 238, 12, 13, 284, 31, 50, 4, 5, 134, 33, 135, 232, 243, 206, 48, 67, 3, 173, 23, 38, 40, 60, 388, 15, 357, 171, 328, 52, 138, 59, 68, 61, 287, 26, 32, 261, 117, 53, 333, 24], [-221, -122, -244, -218, -173, 36, 36, -222, -167, -131, -174, 36, 36, -155, -137, -1, 36, -135, -253, -119, -123, -126, 36, -136, -130, 36, -124, -125, -170, -251, 36, 36, -171, 36, 36, -143, -249, -252, -139, 36, -129, -245, -172, -168, 36, 36, -127, -248, -169, 36, -247, 36, -165, 36, -118, -134, -145, -242, -166, -164, -132, -246, -243, -224, 36, -220, -250, 36, 36, 36, 36, -3, -133, -121, 36, -254, -2, -144, -142, 36, -104, 36, -223, -138, 36, 36, -120, -128, -219, -255, -157, -156, -117]), 'INC_OP': ([189, 255, 264, 349, 159, 378, 96, 85, 114, 270, 252, 383, 225, 195, 410, 52, 267, 397, 214, 191, 380, 109, 140, 415, 257, 247, 256, 370, 249, 319, 77, 106, 262, 385, 244, 135, 217, 212, 181, 56, 216, 205, 355, 259, 138, 277, 341, 343, 91, 414, 345, 155, 251, 184, 294, 180, 137, 81, 241, 80, 145, 311, 59, 395, 190, 219, 248, 152, 367, 76, 141, 209, 254, 48, 369, 208, 273, 187, 318, 198, 347, 105, 317, 108, 175, 204, 409, 269, 83, 177, 243, 268, 101, 382, 156, 407, 100, 315, 194, 73, 258, 192, 182, 211, 253, 144, 229, 160, 199, 293, 246, 271, 310, 339, 103, 218, 368, 416, 167, 261, 75, 104, 260, 329, 92, 340, 110, 400, 164, 203, 148, 61, 136, 250, 381, 290, 406, 154, 220, 285, 379, 398, 314, 78, 202, 193, 263, 142, 265, 95], [77, -94, 77, -215, 77, 77, -51, -12, 77, -222, -92, 77, 77, 77, 77, -104, 77, -233, -28, 77, -216, -53, -209, -234, 77, -93, -97, 77, -100, -24, 77, -13, -228, 77, -240, -224, 77, -29, -16, 77, 77, 77, 77, -238, 77, 77, -241, 77, -11, -236, -217, -214, -91, 77, 77, -15, -213, 77, 77, 77, -227, -6, -223, 77, 77, 77, -99, 77, -25, -18, 77, 77, -90, 77, -23, 77, 77, 77, -27, 77, 77, -10, -26, -55, 77, 77, 77, -239, -52, 77, -220, 77, -22, 77, -4, 77, -16, -7, 77, 77, 77, 77, -14, 77, -96, -210, 77, -212, 77, -21, -95, -229, -8, -237, -4, -17, 77, -231, 77, -219, -20, -54, -226, 77, -19, -221, 214, -230, -218, 77, 77, 77, -211, -98, 77, 77, -235, -225, 77, 77, 77, -232, -5, -9, 77, 77, 77, 77, 77, -50]), '|': ([316, 421, 105, 301, 297, 212, 186, 293, 317, 107, 365, 310, 296, 182, 85, 308, 309, 78, 369, 411, 300, 100, 101, 313, 97, 185, 319, 92, 315, 180, 86, 292, 311, 307, 84, 389, 111, 143, 76, 72, 181, 314, 364, 303, 75, 299, 87, 218, 306, 91, 79, 103, 102, 298, 156, 98, 183, 318, 90, 221, 110, 106, 424, 312, 214, 367, 302, 304], [-77, -34, -10, -66, -64, -29, -47, -21, -26, -78, -48, -8, -63, -14, -12, -72, -70, -9, -23, -33, -60, -16, -22, -74, -73, -45, -24, -19, -7, -15, -62, -81, -6, -69, -65, -32, -49, -56, -18, 177, -16, -5, -57, -79, -20, -61, -68, -17, -71, -11, -56, -4, -76, -59, -4, -58, -44, -27, -80, -46, -43, -13, -35, -75, -28, -25, -67, 177]), 'NE_OP': ([421, 105, 221, 186, 182, 297, 293, 78, 317, 365, 313, 212, 85, 309, 369, 296, 302, 86, 316, 101, 97, 185, 306, 300, 100, 411, 180, 319, 389, 92, 315, 84, 311, 367, 181, 307, 301, 76, 310, 218, 111, 143, 102, 364, 298, 98, 318, 314, 424, 308, 75, 299, 110, 87, 106, 156, 91, 79, 214, 103, 183, 312], [-34, -10, -46, -47, -14, -64, -21, -9, -26, -48, -74, -29, -12, -70, -23, -63, -67, -62, 208, -22, -73, -45, -71, -60, -16, -33, -15, -24, -32, -19, -7, -65, -6, -25, -16, -69, -66, -18, -8, -17, -49, -56, 208, -57, -59, -58, -27, -5, -35, -72, -20, -61, -43, -68, -13, -4, -11, -56, -28, -4, -44, -75]), 'SHORT': ([10, 50, 82, 357, 36, 138, 13, 141, 26, 27, 57, 340, 8, 40, 284, 261, 228, 333, 12, 231, 278, 19, 3, 288, 280, 166, 88, 354, 67, 1, 170, 73, 68, 48, 328, 18, 15, 0, 21, 187, 6, 37, 232, 29, 279, 16, 164, 236, 238, 197, 24, 31, 388, 59, 61, 9, 38, 281, 222, 239, 169, 23, 55, 168, 118, 131, 134, 53, 35, 4, 32, 66, 39, 270, 173, 52, 2, 287, 361, 124, 28, 5, 171, 74, 243, 117, 359, 135, 206, 33, 65, 60, 360], [-119, -166, 9, -144, -129, 9, -134, 9, -120, -167, -247, -221, -124, -121, -145, -219, -155, -156, -118, -172, -244, -127, 9, -251, -143, -245, 9, -136, 9, 9, 9, 9, -138, 9, 9, -131, -2, -1, -168, 9, -122, -130, 9, 9, 9, -123, -218, -173, 9, -249, -117, -242, -254, -223, 9, -125, -133, -137, 9, -170, 9, -3, 9, 9, -169, -171, -246, -157, -126, -164, -128, -139, -165, -222, 9, -104, 9, 9, -253, -174, 9, -132, -142, -248, -220, -255, -135, -224, -250, -243, 9, 9, -252]), 'CONSTANT': ([152, 257, 345, 61, 368, 407, 144, 155, 263, 190, 140, 184, 343, 349, 225, 251, 398, 211, 341, 217, 160, 203, 294, 409, 381, 138, 416, 199, 137, 269, 271, 205, 290, 378, 192, 59, 73, 370, 220, 395, 52, 270, 154, 267, 253, 260, 259, 273, 250, 83, 191, 258, 195, 208, 248, 202, 142, 104, 194, 410, 347, 193, 136, 159, 329, 80, 339, 177, 216, 262, 261, 198, 385, 209, 175, 96, 406, 355, 187, 141, 167, 340, 249, 277, 383, 380, 382, 48, 219, 241, 414, 254, 400, 204, 247, 81, 256, 246, 415, 77, 135, 148, 56, 252, 285, 189, 109, 244, 229, 255, 268, 264, 145, 108, 397, 243, 164, 265, 379, 95, 114], [78, 78, -217, 78, 78, 78, -210, -214, 78, 78, -209, 78, 78, -215, 78, -91, -232, 78, -241, 78, -212, 78, 78, 78, 78, 78, -231, 78, -213, -239, -229, 78, 78, 78, 78, -223, 78, 78, 78, 78, -104, -222, -225, 78, -96, -226, -238, 78, -98, -52, 78, 78, 78, 78, -99, 78, 78, -54, 78, 78, 78, 78, -211, 78, 78, 78, -237, 78, 78, -228, -219, 78, 78, 78, 78, -51, -235, 78, 78, 78, 78, -221, -100, 78, 78, -216, 78, 78, 78, 78, -236, -90, -230, 78, -93, 78, -97, -95, -234, 78, -224, 78, 78, -92, 78, 78, -53, -240, 78, -94, 78, 78, -227, -55, -233, -220, -218, 78, 78, -50, 78]), 'DEC_OP': ([52, 397, 192, 190, 252, 258, 285, 395, 268, 81, 219, 246, 92, 250, 416, 95, 400, 409, 249, 270, 78, 256, 310, 343, 269, 254, 407, 259, 263, 76, 85, 314, 140, 379, 109, 208, 257, 108, 145, 144, 277, 155, 311, 271, 199, 294, 198, 175, 182, 193, 253, 135, 243, 340, 204, 367, 220, 247, 187, 203, 398, 152, 211, 378, 177, 156, 75, 385, 225, 241, 218, 217, 355, 194, 96, 105, 184, 154, 244, 382, 137, 255, 414, 260, 61, 48, 181, 103, 164, 59, 191, 262, 114, 202, 229, 212, 267, 205, 369, 91, 73, 100, 261, 56, 83, 410, 167, 273, 159, 248, 349, 110, 142, 341, 264, 104, 293, 315, 180, 370, 141, 101, 381, 195, 380, 345, 347, 329, 290, 317, 251, 339, 216, 80, 265, 318, 383, 138, 406, 160, 415, 189, 368, 136, 77, 319, 214, 106, 148, 209], [-104, -233, 80, 80, -92, 80, 80, 80, 80, 80, 80, -95, -19, -98, -231, -50, -230, 80, -100, -222, -9, -97, -8, 80, -239, -90, 80, -238, 80, -18, -12, -5, -209, 80, -53, 80, 80, -55, -227, -210, 80, -214, -6, -229, 80, 80, 80, 80, -14, 80, -96, -224, -220, -221, 80, -25, 80, -93, 80, 80, -232, 80, 80, 80, 80, -4, -20, 80, 80, 80, -17, 80, 80, 80, -51, -10, 80, -225, -240, 80, -213, -94, -236, -226, 80, 80, -16, -4, -218, -223, 80, -228, 80, 80, 80, -29, 80, 80, -23, -11, 80, -16, -219, 80, -52, 80, 80, 80, 80, -99, -215, 212, 80, -241, 80, -54, -21, -7, -15, 80, 80, -22, 80, 80, -216, -217, 80, 80, 80, -26, -91, -237, 80, 80, 80, -27, 80, 80, -235, -212, -234, 80, 80, -211, 80, -24, -28, -13, 80, 80]), 'STATIC': ([340, 281, 141, 4, 360, 206, 118, 74, 37, 131, 28, 53, 288, 3, 57, 359, 135, 0, 6, 124, 228, 29, 9, 27, 333, 239, 31, 12, 66, 8, 40, 164, 197, 361, 39, 61, 35, 1, 134, 388, 24, 18, 222, 354, 168, 238, 32, 13, 38, 36, 68, 59, 16, 328, 10, 60, 5, 166, 270, 232, 19, 2, 21, 278, 52, 15, 117, 261, 26, 23, 55, 33, 65, 236, 50, 243, 231], [-221, -137, 10, -164, -252, -250, -169, -248, -130, -171, 10, -157, -251, 10, -247, -135, -224, -1, -122, -174, -155, 10, -125, -167, -156, -170, -242, -118, -139, -124, -121, -218, -249, -253, -165, 10, -126, 10, -246, -254, -117, -131, 10, -136, 10, 10, -128, -134, -133, -129, -138, -223, -123, 10, -119, 10, -132, -245, -222, 10, -127, 10, -168, -244, -104, -2, -255, -219, -120, -3, 10, -243, 10, -173, -166, -220, -172]), 'EQ_OP': ([100, 308, 103, 311, 84, 314, 101, 301, 185, 307, 212, 421, 297, 369, 317, 367, 319, 186, 78, 110, 79, 310, 97, 298, 312, 299, 318, 315, 424, 98, 182, 364, 111, 156, 309, 300, 86, 87, 316, 106, 306, 85, 296, 313, 105, 143, 183, 91, 218, 181, 214, 221, 302, 411, 365, 293, 102, 92, 76, 389, 180, 75], [-16, -72, -4, -6, -65, -5, -22, -66, -45, -69, -29, -34, -64, -23, -26, -25, -24, -47, -9, -43, -56, -8, -73, -59, -75, -61, -27, -7, -35, -58, -14, -57, -49, -4, -70, -60, -62, -68, 209, -13, -71, -12, -63, -74, -10, -56, -44, -11, -17, -16, -28, -46, -67, -33, -48, -21, 209, -19, -18, -32, -15, -20]), 'SIZEOF': ([80, 343, 203, 254, 192, 73, 268, 247, 345, 368, 191, 96, 187, 219, 253, 81, 249, 339, 95, 415, 406, 381, 209, 407, 269, 199, 190, 264, 290, 380, 263, 410, 152, 259, 77, 217, 167, 56, 265, 195, 141, 148, 137, 341, 204, 270, 193, 398, 378, 244, 383, 400, 379, 114, 241, 255, 246, 285, 145, 142, 229, 164, 294, 347, 144, 250, 414, 409, 251, 395, 220, 48, 397, 216, 225, 160, 267, 194, 262, 205, 189, 140, 184, 260, 349, 177, 59, 109, 370, 329, 211, 108, 83, 136, 138, 52, 261, 256, 61, 252, 135, 248, 154, 277, 104, 159, 273, 155, 416, 257, 208, 340, 271, 355, 385, 198, 175, 258, 382, 243, 202], [81, 81, 81, -90, 81, 81, 81, -93, -217, 81, 81, -51, 81, 81, -96, 81, -100, -237, -50, -234, -235, 81, 81, 81, -239, 81, 81, 81, 81, -216, 81, 81, 81, -238, 81, 81, 81, 81, 81, 81, 81, 81, -213, -241, 81, -222, 81, -232, 81, -240, 81, -230, 81, 81, 81, -94, -95, 81, -227, 81, 81, -218, 81, 81, -210, -98, -236, 81, -91, 81, 81, 81, -233, 81, 81, -212, 81, 81, -228, 81, 81, -209, 81, -226, -215, 81, -223, -53, 81, 81, 81, -55, -52, -211, 81, -104, -219, -97, 81, -92, -224, -99, -225, 81, -54, 81, 81, -214, -231, 81, 81, -221, -229, 81, 81, 81, 81, 81, 81, -220, 81]), '+': ([208, 109, 164, 191, 110, 144, 293, 252, 183, 395, 269, 212, 409, 268, 217, 273, 381, 100, 105, 192, 246, 314, 56, 83, 243, 329, 290, 317, 310, 219, 92, 248, 152, 365, 265, 264, 138, 343, 298, 424, 277, 400, 301, 79, 257, 256, 106, 84, 140, 145, 244, 190, 319, 253, 260, 339, 186, 263, 383, 182, 193, 349, 378, 368, 142, 225, 136, 385, 296, 249, 148, 175, 299, 421, 155, 311, 340, 345, 204, 218, 271, 254, 199, 187, 61, 194, 159, 211, 85, 75, 154, 135, 86, 220, 247, 398, 114, 181, 180, 96, 318, 195, 156, 369, 262, 407, 389, 411, 258, 285, 294, 101, 76, 103, 216, 81, 80, 143, 59, 415, 341, 205, 410, 267, 370, 141, 270, 379, 78, 52, 241, 111, 167, 261, 300, 108, 91, 177, 382, 406, 137, 315, 189, 297, 95, 203, 77, 214, 380, 416, 104, 397, 414, 355, 202, 229, 251, 98, 259, 185, 184, 367, 198, 209, 364, 73, 160, 255, 302, 347, 221, 250, 48], [83, -53, -218, 83, -43, -210, -21, -92, -44, 83, -239, -29, 83, 83, 83, 83, 83, -16, -10, 83, -95, -5, 83, -52, -220, 83, 83, -26, -8, 83, -19, -99, 83, -48, 83, 83, 83, 83, -59, -35, 83, -230, 189, -56, 83, -97, -13, 189, -209, -227, -240, 83, -24, -96, -226, -237, -47, 83, 83, -14, 83, -215, 83, 83, 83, 83, -211, 83, -63, -100, 83, 83, -61, -34, -214, -6, -221, -217, 83, -17, -229, -90, 83, 83, 83, 83, 83, 83, -12, -20, -225, -224, -62, 83, -93, -232, 83, -16, -15, -51, -27, 83, -4, -23, -228, 83, -32, -33, 83, 83, 83, -22, -18, -4, 83, 83, 83, -56, -223, -234, -241, 83, 83, 83, 83, 83, -222, 83, -9, -104, 83, -49, 83, -219, -60, -55, -11, 83, 83, -235, -213, -7, 83, -64, -50, 83, 83, -28, -216, -231, -54, -233, -236, 83, 83, 83, -91, -58, -238, -45, 83, -25, 83, 83, -57, 83, -212, -94, 189, 83, -46, -98, 83]), 'UNSIGNED': ([36, 52, 231, 135, 18, 66, 50, 206, 287, 35, 170, 141, 61, 53, 2, 10, 357, 333, 88, 73, 131, 281, 164, 222, 67, 59, 60, 55, 39, 134, 16, 354, 124, 171, 232, 359, 328, 5, 243, 38, 118, 360, 24, 4, 278, 65, 37, 32, 236, 28, 12, 40, 23, 187, 166, 340, 74, 19, 48, 228, 13, 173, 239, 27, 138, 168, 284, 31, 388, 0, 169, 197, 117, 82, 361, 279, 1, 33, 29, 238, 280, 8, 57, 288, 26, 6, 3, 261, 270, 68, 21, 9, 15], [-129, -104, -172, -224, -131, -139, -166, -250, 18, -126, 18, 18, 18, -157, 18, -119, -144, -156, 18, 18, -171, -137, -218, 18, 18, -223, 18, 18, -165, -246, -123, -136, -174, -142, 18, -135, 18, -132, -220, -133, -169, -252, -117, -164, -244, 18, -130, -128, -173, 18, -118, -121, -3, 18, -245, -221, -248, -127, 18, -155, -134, 18, -170, -167, 18, 18, -145, -242, -254, -1, 18, -249, -255, 18, -253, 18, 18, -243, 18, 18, -143, -124, -247, -251, -120, -122, 18, -219, -222, -138, -168, -125, -2]), '/': ([180, 369, 300, 86, 76, 315, 367, 75, 411, 111, 364, 91, 100, 98, 317, 78, 101, 314, 92, 221, 186, 365, 297, 293, 106, 183, 212, 105, 110, 421, 218, 318, 298, 185, 79, 181, 319, 424, 214, 389, 310, 103, 143, 156, 296, 299, 182, 311, 85], [-15, -23, -60, 193, -18, -7, -25, -20, -33, -49, -57, -11, -16, -58, -26, -9, -22, -5, -19, -46, -47, -48, 193, -21, -13, -44, -29, -10, -43, -34, -17, -27, -59, -45, -56, -16, -24, -35, -28, -32, -8, -4, -56, -4, 193, -61, -14, -6, -12]), ';': ([113, 42, 245, 333, 90, 50, 359, 264, 38, 116, 63, 98, 312, 145, 342, 367, 301, 124, 212, 409, 131, 5, 182, 75, 4, 270, 88, 52, 309, 66, 397, 13, 12, 240, 356, 303, 317, 148, 21, 424, 298, 2, 311, 158, 185, 118, 218, 271, 231, 10, 319, 76, 282, 214, 314, 36, 302, 299, 243, 172, 261, 84, 144, 260, 35, 398, 380, 181, 64, 395, 269, 339, 268, 26, 316, 242, 105, 306, 160, 276, 341, 82, 135, 296, 241, 79, 384, 414, 30, 196, 136, 143, 87, 3, 244, 107, 421, 19, 292, 186, 262, 155, 29, 354, 389, 402, 349, 392, 163, 37, 106, 8, 408, 140, 85, 154, 111, 416, 65, 343, 369, 91, 286, 386, 364, 161, 68, 156, 61, 275, 323, 407, 164, 411, 180, 27, 18, 293, 387, 379, 308, 53, 137, 97, 58, 43, 159, 141, 281, 347, 221, 142, 258, 236, 102, 62, 59, 101, 110, 365, 147, 20, 283, 157, 40, 297, 315, 310, 304, 340, 400, 345, 274, 300, 183, 344, 78, 9, 381, 103, 6, 313, 239, 86, 415, 259, 133, 16, 93, 92, 307, 39, 383, 318, 24, 406, 100, 72, 188, 228, 149, 32], [-86, -108, 341, -156, -80, -166, -135, 145, -133, -103, -113, -58, -75, -227, -89, -25, -66, -174, -29, 145, -171, -132, -14, -20, -164, -222, -149, -104, -70, -139, -233, -134, -118, 339, -153, -79, -26, 145, -168, -35, -59, -107, -6, 271, -45, -169, -17, -229, -172, -119, -24, -18, -150, -28, -5, -129, -67, -61, -220, 284, -219, -65, -210, -226, -126, -232, -216, -16, -106, 145, -239, -237, 145, -120, -77, 271, -10, -71, -212, -204, -241, -147, -224, -63, 145, -56, -205, -236, -105, -148, -211, -56, -68, -111, -240, -78, -34, -127, -81, -47, -228, -214, -109, -136, -32, -206, -215, -87, -88, -130, -13, -124, 415, -209, -12, -225, -49, -231, -115, 145, -23, -11, 357, -154, -57, -101, -138, -4, 145, -116, -85, 145, -218, -33, -15, -167, -131, -21, -151, 145, -72, -157, -213, -73, -105, -112, 145, 145, -137, 145, -46, 244, 145, -173, -76, -110, -223, -22, -43, -48, 259, 52, -152, 269, -121, -64, -7, -8, -83, -221, -230, -217, -114, -60, -44, -102, -9, -125, 145, -4, -122, -74, -170, -62, -234, -238, -115, -123, -84, -19, -69, -165, 145, -27, -117, -235, -16, -82, -146, -155, 262, -128]), '?': ([85, 111, 302, 369, 91, 103, 107, 100, 365, 323, 92, 221, 101, 364, 97, 367, 93, 183, 303, 317, 110, 313, 411, 218, 180, 309, 102, 98, 185, 301, 86, 181, 90, 78, 318, 314, 212, 310, 143, 306, 319, 315, 84, 298, 389, 312, 300, 182, 311, 307, 421, 76, 72, 299, 424, 113, 75, 87, 304, 316, 292, 105, 214, 79, 106, 296, 308, 297, 186, 293, 156], [-12, -49, -67, -23, -11, -4, -78, -16, -48, -85, -19, -46, -22, -57, -73, -25, -84, -44, -79, -26, -43, -74, -33, -17, -15, -70, -76, -58, -45, -66, -62, -16, -80, -9, -27, -5, -29, -8, -56, -71, -24, -7, -65, -59, -32, -75, -60, -14, -6, -69, -34, -18, -82, -61, -35, 220, -20, -68, -83, -77, -81, -10, -28, -56, -13, -63, -72, -64, -47, -21, -4]), '$end': ([23, 361, 340, 15, 31, 388, 0, 74, 57, 52, 134, 117, 261, 33, 166, 1, 360, 278, 288, 270, 243, 206, 164, 197], [-3, -253, -221, -2, -242, -254, -1, -248, -247, -104, -246, -255, -219, -243, -245, 0, -252, -244, -251, -222, -220, -250, -218, -249]), 'FOR': ([347, 141, 340, 135, 400, 155, 144, 268, 52, 164, 243, 397, 136, 260, 345, 61, 137, 406, 262, 244, 339, 407, 241, 160, 159, 271, 154, 395, 145, 381, 264, 59, 259, 383, 379, 415, 341, 148, 398, 380, 349, 409, 416, 140, 414, 261, 269, 270], [146, 146, -221, -224, -230, -214, -210, 146, -104, -218, -220, -233, -211, -226, -217, 146, -213, -235, -228, -240, -237, 146, 146, -212, 146, -229, -225, 146, -227, 146, 146, -223, -238, 146, 146, -234, -241, 146, -232, -216, -215, 146, -231, -209, -236, -219, -239, -222]), 'UNION': ([228, 65, 173, 238, 68, 40, 37, 284, 278, 287, 13, 357, 3, 23, 333, 236, 24, 354, 164, 1, 21, 232, 66, 38, 170, 222, 36, 12, 280, 243, 39, 57, 328, 33, 141, 0, 8, 29, 60, 135, 35, 82, 169, 16, 231, 48, 67, 10, 206, 270, 5, 15, 32, 61, 73, 18, 361, 28, 52, 59, 281, 134, 55, 124, 27, 168, 197, 6, 261, 239, 53, 340, 9, 118, 19, 288, 4, 74, 50, 138, 388, 171, 31, 279, 360, 26, 2, 166, 131, 88, 187, 117, 359], [-155, 22, 22, 22, -138, -121, -130, -145, -244, 22, -134, -144, 22, -3, -156, -173, -117, -136, -218, 22, -168, 22, -139, -133, 22, 22, -129, -118, -143, -220, -165, -247, 22, -243, 22, -1, -124, 22, 22, -224, -126, 22, 22, -123, -172, 22, 22, -119, -250, -222, -132, -2, -128, 22, 22, -131, -253, 22, -104, -223, -137, -246, 22, -174, -167, 22, -249, -122, -219, -170, -157, -221, -125, -169, -127, -251, -164, -248, -166, 22, -254, -142, -242, 22, -252, -120, 22, -245, -171, 22, 22, -255, -135]), 'ELSE': ([340, 345, 269, 339, 271, 416, 140, 137, 136, 400, 259, 406, 261, 415, 243, 397, 349, 155, 144, 398, 145, 341, 262, 270, 414, 160, 244, 380, 164], [-221, -217, -239, -237, -229, -231, -209, -213, -211, 409, -238, -235, -219, -234, -220, -233, -215, -214, -210, -232, -227, -241, -228, -222, -236, -212, -240, -216, -218]), '[': ([377, 32, 394, 7, 44, 105, 182, 4, 332, 359, 82, 46, 124, 212, 76, 91, 37, 70, 8, 13, 128, 2, 29, 239, 218, 62, 317, 369, 18, 45, 315, 16, 231, 319, 43, 3, 331, 38, 293, 236, 27, 393, 318, 88, 100, 115, 232, 78, 21, 281, 110, 66, 69, 53, 24, 36, 226, 118, 373, 12, 39, 371, 188, 10, 180, 314, 131, 5, 333, 325, 35, 19, 224, 196, 214, 228, 50, 75, 375, 40, 311, 106, 6, 222, 310, 181, 9, 103, 92, 26, 354, 68, 85, 156, 367, 372, 235, 42, 101], [-197, -128, -199, -175, -176, -10, -14, -164, 329, -135, -147, -177, -174, -29, -18, -11, -130, -178, -124, -134, 225, -107, -109, -170, -17, -110, -26, -23, -131, -179, -7, -123, -172, -24, -112, -111, -196, -133, -21, -173, 56, -203, -27, -149, -16, 225, 225, -9, -168, -137, 217, -139, -180, -157, -117, -129, 225, -169, -202, -118, -165, -201, -146, -119, -15, -5, -171, -132, -156, -200, -126, -127, 329, -148, -28, -155, 56, -20, -198, -121, -6, -13, -122, 225, -8, -16, -125, -4, -19, -120, -136, -138, -12, -4, -25, -195, 225, -108, -22]), 'OR_OP': ([221, 156, 86, 312, 97, 367, 302, 316, 365, 300, 110, 314, 218, 84, 309, 113, 318, 98, 307, 185, 103, 306, 319, 78, 87, 91, 100, 424, 303, 143, 323, 421, 310, 186, 72, 411, 297, 101, 180, 106, 311, 369, 304, 92, 85, 105, 90, 293, 93, 183, 298, 212, 102, 79, 308, 76, 301, 313, 75, 292, 107, 296, 111, 364, 299, 389, 181, 214, 317, 315, 182], [-46, -4, -62, -75, -73, -25, -67, -77, -48, -60, -43, -5, -17, -65, -70, 219, -27, -58, -69, -45, -4, -71, -24, -9, -68, -11, -16, -35, -79, -56, -85, -34, -8, -47, -82, -33, -64, -22, -15, -13, -6, -23, -83, -19, -12, -10, -80, -21, -84, -44, -59, -29, -76, -56, -72, -18, -66, -74, -20, -81, -78, -63, -49, -57, -61, -32, -16, -28, -26, -7, -14]), 'SUB_ASSIGN': ([293, 105, 79, 186, 367, 421, 318, 221, 218, 424, 111, 78, 411, 317, 92, 311, 389, 185, 91, 314, 310, 103, 180, 315, 365, 76, 183, 214, 182, 85, 156, 101, 212, 143, 110, 369, 364, 181, 106, 100, 75, 319], [-21, -10, -56, -47, -25, -34, -27, -46, -17, -35, -49, -9, -33, -26, -19, -6, -32, -45, -11, -5, -8, -4, -15, -7, -48, -18, -44, -28, -14, -12, -4, -22, -29, 246, -43, -23, -57, -16, -13, -16, -20, -24]), 'XOR_ASSIGN': ([182, 156, 91, 311, 78, 183, 85, 100, 369, 365, 389, 315, 185, 424, 76, 214, 143, 310, 92, 221, 110, 106, 421, 79, 319, 218, 101, 411, 75, 186, 180, 367, 111, 103, 317, 364, 105, 181, 314, 318, 212, 293], [-14, -4, -11, -6, -9, -44, -12, -16, -23, -48, -32, -7, -45, -35, -18, -28, 248, -8, -19, -46, -43, -13, -34, -56, -24, -17, -22, -33, -20, -47, -15, -25, -49, -4, -26, -57, -10, -16, -5, -27, -29, -21]), 'INT': ([2, 29, 32, 61, 27, 59, 88, 82, 117, 65, 16, 124, 3, 239, 236, 9, 288, 131, 360, 359, 24, 1, 28, 141, 279, 232, 281, 55, 66, 8, 135, 170, 197, 354, 53, 164, 118, 280, 231, 238, 48, 284, 18, 37, 361, 13, 388, 31, 357, 0, 73, 52, 169, 21, 173, 38, 40, 206, 287, 270, 5, 33, 36, 15, 12, 19, 74, 26, 278, 39, 50, 57, 68, 138, 134, 166, 60, 168, 67, 6, 261, 35, 340, 222, 187, 228, 4, 243, 10, 328, 171, 23, 333], [35, 35, -128, 35, -167, -223, 35, 35, -255, 35, -123, -174, 35, -170, -173, -125, -251, -171, -252, -135, -117, 35, 35, 35, 35, 35, -137, 35, -139, -124, -224, 35, -249, -136, -157, -218, -169, -143, -172, 35, 35, -145, -131, -130, -253, -134, -254, -242, -144, -1, 35, -104, 35, -168, 35, -133, -121, -250, 35, -222, -132, -243, -129, -2, -118, -127, -248, -120, -244, -165, -166, -247, -138, 35, -246, -245, 35, 35, 35, -122, -219, -126, -221, 35, 35, -155, -164, -220, -119, 35, -142, -3, -156]), 'SIGNED': ([31, 6, 53, 168, 50, 28, 287, 284, 0, 36, 2, 170, 35, 27, 124, 38, 360, 10, 57, 32, 281, 134, 131, 359, 333, 171, 59, 118, 67, 13, 173, 388, 3, 88, 166, 23, 328, 288, 138, 354, 222, 5, 66, 73, 236, 74, 48, 278, 24, 141, 239, 279, 37, 197, 65, 12, 9, 243, 39, 68, 187, 15, 206, 357, 280, 55, 261, 82, 169, 29, 4, 1, 228, 19, 16, 40, 26, 270, 231, 60, 8, 340, 238, 21, 117, 18, 361, 61, 33, 135, 164, 52, 232], [-242, -122, -157, 37, -166, 37, 37, -145, -1, -129, 37, 37, -126, -167, -174, -133, -252, -119, -247, -128, -137, -246, -171, -135, -156, -142, -223, -169, 37, -134, 37, -254, 37, 37, -245, -3, 37, -251, 37, -136, 37, -132, -139, 37, -173, -248, 37, -244, -117, 37, -170, 37, -130, -249, 37, -118, -125, -220, -165, -138, 37, -2, -250, -144, -143, 37, -219, 37, 37, 37, -164, 37, -155, -127, -123, -121, -120, -222, -172, 37, -124, -221, 37, -168, -255, -131, -253, 37, -243, -224, -218, -104, 37]), 'CONTINUE': ([155, 340, 243, 345, 271, 347, 383, 154, 264, 269, 260, 380, 144, 241, 407, 136, 160, 159, 400, 137, 339, 416, 259, 349, 268, 406, 148, 415, 398, 135, 164, 381, 414, 145, 61, 141, 395, 140, 52, 59, 261, 270, 379, 397, 244, 341, 262, 409], [-214, -221, -220, -217, -229, 147, 147, -225, 147, -239, -226, -216, -210, 147, 147, -211, -212, 147, -230, -213, -237, -231, -238, -215, 147, -235, 147, -234, -232, -224, -218, 147, -236, -227, 147, 147, 147, -209, -104, -223, -219, -222, 147, -233, -240, -241, -228, 147]), 'MUL_ASSIGN': ([311, 105, 76, 318, 100, 317, 389, 365, 183, 314, 78, 91, 181, 315, 182, 85, 369, 424, 185, 319, 364, 106, 310, 75, 411, 79, 214, 143, 180, 221, 111, 421, 92, 103, 212, 186, 101, 110, 156, 293, 367, 218], [-6, -10, -18, -27, -16, -26, -32, -48, -44, -5, -9, -11, -16, -7, -14, -12, -23, -35, -45, -24, -57, -13, -8, -20, -33, -56, -28, 251, -15, -46, -49, -34, -19, -4, -29, -47, -22, -43, -4, -21, -25, -17]), '{': ([341, 52, 416, 379, 397, 124, 159, 409, 136, 407, 164, 66, 41, 243, 395, 137, 398, 339, 271, 381, 241, 145, 380, 261, 144, 415, 269, 383, 262, 340, 406, 34, 135, 414, 140, 168, 264, 53, 141, 349, 270, 154, 27, 60, 148, 25, 68, 131, 61, 167, 260, 21, 385, 268, 118, 28, 231, 347, 236, 59, 155, 400, 345, 22, 277, 160, 239, 259, 244, 65, 50], [-241, -104, -231, 61, -233, -174, 61, 61, -211, 61, -218, 169, 67, -220, 61, -213, -232, -237, -229, 61, 61, -227, -216, -219, -210, -234, -239, 61, -228, -221, -235, -140, -224, -236, -209, 61, 61, 119, 61, -215, -222, -225, -167, 61, 61, 54, 173, -171, 61, 277, -226, -168, 277, 61, -169, 61, -172, 61, -173, -223, -214, -230, -217, -141, 277, -212, -170, -238, -240, 61, -166]), 'RIGHT_OP': ([315, 86, 319, 369, 307, 78, 311, 365, 212, 317, 300, 308, 309, 296, 297, 301, 367, 293, 105, 185, 143, 424, 186, 85, 103, 91, 182, 183, 87, 421, 75, 79, 221, 314, 318, 306, 218, 310, 156, 364, 214, 299, 106, 110, 111, 98, 389, 100, 180, 92, 411, 84, 298, 101, 302, 76, 181], [-7, -62, -24, -23, 195, -9, -6, -48, -29, -26, -60, 195, 195, -63, -64, -66, -25, -21, -10, -45, -56, -35, -47, -12, -4, -11, -14, -44, 195, -34, -20, -56, -46, -5, -27, 195, -17, -8, -4, -57, -28, -61, -13, -43, -49, -58, -32, -16, -15, -19, -33, -65, -59, -22, -67, -18, -16]), 'REGISTER': ([168, 2, 13, 118, 39, 360, 4, 68, 340, 261, 52, 231, 238, 74, 53, 333, 206, 0, 124, 361, 36, 135, 359, 65, 33, 131, 31, 6, 9, 141, 59, 24, 1, 388, 40, 8, 27, 5, 278, 66, 38, 28, 197, 354, 61, 37, 239, 35, 29, 270, 21, 55, 23, 3, 243, 166, 26, 281, 10, 60, 117, 328, 228, 232, 134, 50, 57, 32, 12, 19, 164, 16, 15, 18, 288, 222, 236], [40, 40, -134, -169, -165, -252, -164, -138, -221, -219, -104, -172, 40, -248, -157, -156, -250, -1, -174, -253, -129, -224, -135, 40, -243, -171, -242, -122, -125, 40, -223, -117, 40, -254, -121, -124, -167, -132, -244, -139, -133, 40, -249, -136, 40, -130, -170, -126, 40, -222, -168, 40, -3, 40, -220, -245, -120, -137, -119, 40, -255, 40, -155, 40, -246, -166, -247, -128, -118, -127, -218, -123, -2, -131, -251, 40, -173]), 'RIGHT_ASSIGN': ([221, 185, 183, 218, 182, 364, 369, 367, 78, 186, 156, 111, 389, 315, 91, 421, 318, 310, 105, 103, 110, 75, 92, 79, 181, 100, 106, 76, 143, 424, 365, 317, 311, 293, 212, 319, 101, 214, 85, 180, 314, 411], [-46, -45, -44, -17, -14, -57, -23, -25, -9, -47, -4, -49, -32, -7, -11, -34, -27, -8, -10, -4, -43, -20, -19, -56, -16, -16, -13, -18, 256, -35, -48, -26, -6, -21, -29, -24, -22, -28, -12, -15, -5, -33]), 'DEFAULT': ([159, 52, 155, 407, 345, 140, 381, 141, 260, 416, 154, 383, 397, 341, 379, 380, 59, 269, 339, 136, 270, 137, 271, 164, 160, 145, 241, 414, 243, 395, 262, 406, 261, 259, 61, 340, 400, 268, 135, 349, 415, 148, 244, 347, 144, 264, 398, 409], [150, -104, -214, 150, -217, -209, 150, 150, -226, -231, -225, 150, -233, -241, 150, -216, -223, -239, -237, -211, -222, -213, -229, -218, -212, -227, 150, -236, -220, 150, -228, -235, -219, -238, 150, -221, -230, 150, -224, -215, -234, 150, -240, 150, -210, 150, -232, 150]), 'CHAR': ([206, 15, 18, 164, 4, 13, 280, 21, 55, 29, 135, 26, 60, 361, 197, 37, 278, 228, 68, 141, 360, 48, 66, 12, 1, 39, 138, 288, 239, 169, 5, 279, 9, 187, 23, 354, 82, 236, 65, 24, 222, 284, 31, 73, 74, 166, 333, 2, 67, 118, 57, 3, 170, 171, 88, 28, 134, 32, 8, 340, 59, 35, 287, 173, 131, 281, 52, 6, 10, 243, 0, 231, 359, 388, 232, 27, 238, 328, 124, 50, 168, 38, 16, 261, 36, 117, 33, 53, 357, 61, 270, 19, 40], [-250, -2, -131, -218, -164, -134, -143, -168, 8, 8, -224, -120, 8, -253, -249, -130, -244, -155, -138, 8, -252, 8, -139, -118, 8, -165, 8, -251, -170, 8, -132, 8, -125, 8, -3, -136, 8, -173, 8, -117, 8, -145, -242, 8, -248, -245, -156, 8, 8, -169, -247, 8, 8, -142, 8, 8, -246, -128, -124, -221, -223, -126, 8, 8, -171, -137, -104, -122, -119, -220, -1, -172, -135, -254, 8, -167, 8, 8, -174, -166, 8, -133, -123, -219, -129, -255, -243, -157, -144, 8, -222, -127, -121]), 'WHILE': ([244, 160, 347, 137, 269, 259, 341, 52, 136, 145, 164, 415, 349, 397, 339, 379, 380, 59, 264, 409, 345, 159, 141, 148, 155, 272, 243, 260, 398, 140, 154, 406, 381, 61, 270, 407, 400, 241, 268, 340, 383, 414, 135, 416, 262, 271, 261, 144, 395], [-240, -212, 151, -213, -239, -238, -241, -104, -211, -227, -218, -234, -215, -233, -237, 151, -216, -223, 151, 151, -217, 151, 151, 151, -214, 350, -220, -226, -232, -209, -225, -235, 151, 151, -222, 151, -230, 151, 151, -221, 151, -236, -224, -231, -228, -229, -219, -210, 151]), 'EXTERN': ([4, 1, 31, 23, 117, 29, 270, 361, 32, 21, 281, 59, 333, 65, 57, 359, 206, 124, 68, 236, 328, 66, 261, 15, 26, 50, 232, 6, 243, 53, 164, 197, 24, 118, 36, 238, 12, 33, 222, 134, 40, 60, 228, 61, 16, 5, 38, 2, 19, 231, 3, 340, 0, 27, 28, 360, 55, 9, 39, 131, 37, 288, 10, 8, 239, 74, 278, 35, 18, 135, 141, 168, 13, 354, 388, 166, 52], [-164, 12, -242, -3, -255, 12, -222, -253, -128, -168, -137, -223, -156, 12, -247, -135, -250, -174, -138, -173, 12, -139, -219, -2, -120, -166, 12, -122, -220, -157, -218, -249, -117, -169, -129, 12, -118, -243, 12, -246, -121, 12, -155, 12, -123, -132, -133, 12, -127, -172, 12, -221, -1, -167, 12, -252, 12, -125, -165, -171, -130, -251, -119, -124, -170, -248, -244, -126, -131, -224, 12, 12, -134, -136, -254, -245, -104]), 'RETURN': ([416, 347, 52, 406, 136, 260, 241, 164, 383, 339, 264, 340, 145, 148, 159, 269, 135, 244, 262, 414, 141, 61, 271, 398, 379, 415, 243, 400, 381, 341, 155, 59, 259, 349, 397, 407, 160, 140, 345, 137, 144, 395, 409, 154, 380, 270, 268, 261], [-231, 142, -104, -235, -211, -226, 142, -218, 142, -237, 142, -221, -227, 142, 142, -239, -224, -240, -228, -236, 142, 142, -229, -232, 142, -234, -220, -230, 142, -241, -214, -223, -238, -215, -233, 142, -212, -209, -217, -213, -210, 142, 142, -225, -216, -222, 142, -219]), '__ASM__': ([385, 381, 167, 407, 164, 135, 269, 416, 258, 144, 175, 398, 202, 382, 260, 109, 285, 368, 252, 397, 160, 198, 229, 345, 137, 257, 104, 211, 80, 48, 189, 191, 380, 370, 96, 148, 378, 290, 249, 203, 261, 246, 263, 177, 108, 243, 410, 340, 190, 400, 355, 253, 192, 219, 136, 277, 81, 244, 141, 138, 270, 294, 339, 329, 262, 264, 414, 383, 379, 154, 114, 217, 140, 56, 254, 209, 341, 267, 61, 343, 152, 406, 409, 83, 59, 268, 250, 52, 220, 216, 241, 347, 271, 395, 415, 187, 247, 73, 155, 204, 225, 255, 193, 349, 142, 199, 208, 184, 259, 145, 194, 251, 77, 248, 265, 195, 95, 273, 256, 205, 159], [94, 94, 94, 94, -218, -224, -239, -231, 94, -210, 94, -232, 94, 94, -226, -53, 94, 94, -92, -233, -212, 94, 94, -217, -213, 94, -54, 94, 94, 94, 94, 94, -216, 94, -51, 94, 94, 94, -100, 94, -219, -95, 94, 94, -55, -220, 94, -221, 94, -230, 94, -96, 94, 94, -211, 94, 94, -240, 94, 94, -222, 94, -237, 94, -228, 94, -236, 94, 94, -225, 94, 94, -209, 94, -90, 94, -241, 94, 94, 94, 94, -235, 94, -52, -223, 94, -98, -104, 94, 94, 94, 94, -229, 94, -234, 94, -93, 94, -214, 94, 94, -94, 94, -215, 94, 94, 94, 94, -238, -227, 94, -91, 94, -99, 94, 94, -50, 94, -97, 94, 94]), 'CASE': ([381, 395, 259, 341, 345, 241, 339, 409, 379, 137, 380, 159, 136, 269, 154, 270, 145, 397, 264, 164, 243, 135, 148, 59, 340, 260, 144, 271, 407, 140, 141, 244, 52, 414, 155, 416, 398, 400, 262, 268, 160, 406, 349, 347, 383, 61, 415, 261], [152, 152, -238, -241, -217, 152, -237, 152, 152, -213, -216, 152, -211, -239, -225, -222, -227, -233, 152, -218, -220, -224, 152, -223, -221, -226, -210, -229, 152, -209, 152, -240, -104, -236, -214, -231, -232, -230, -228, 152, -212, -235, -215, 152, 152, 152, -234, -219]), 'PP_DEFINE_MACRO_NAME': ([11], [47]), '&': ([205, 98, 106, 256, 52, 329, 214, 407, 136, 91, 308, 202, 95, 148, 156, 381, 318, 211, 219, 187, 306, 191, 198, 260, 349, 315, 184, 192, 385, 290, 140, 181, 257, 142, 145, 84, 92, 277, 285, 254, 154, 340, 312, 249, 216, 409, 241, 319, 220, 389, 382, 195, 251, 300, 313, 83, 261, 398, 316, 185, 78, 355, 271, 73, 270, 416, 424, 167, 104, 85, 370, 255, 177, 341, 317, 218, 262, 379, 248, 189, 383, 135, 252, 209, 314, 77, 48, 108, 293, 301, 194, 79, 364, 225, 310, 298, 87, 183, 190, 59, 406, 414, 307, 250, 61, 294, 56, 253, 229, 369, 411, 299, 246, 267, 160, 365, 111, 421, 114, 311, 180, 243, 264, 199, 378, 144, 103, 368, 203, 339, 347, 102, 164, 258, 143, 367, 96, 193, 296, 107, 75, 247, 268, 137, 309, 141, 101, 109, 400, 395, 343, 80, 244, 265, 273, 212, 397, 100, 186, 302, 217, 410, 204, 97, 105, 175, 182, 76, 269, 138, 86, 208, 155, 81, 221, 159, 415, 345, 259, 152, 297, 263, 380, 110, 303], [95, -58, -13, -97, -104, 95, -28, 95, -211, -11, -72, 95, -50, 95, -4, 95, -27, 95, 95, 95, -71, 95, 95, -226, -215, -7, 95, 95, 95, 95, -209, -16, 95, 95, -227, -65, -19, 95, 95, -90, -225, -221, -75, -100, 95, 95, 95, -24, 95, -32, 95, 95, -91, -60, -74, -52, -219, -232, -77, -45, -9, 95, -229, 95, -222, -231, -35, 95, -54, -12, 95, -94, 95, -241, -26, -17, -228, 95, -99, 95, 95, -224, -92, 95, -5, 95, 95, -55, -21, -66, 95, -56, -57, 95, -8, -59, -68, -44, 95, -223, -235, -236, -69, -98, 95, 95, 95, -96, 95, -23, -33, -61, -95, 95, -212, -48, -49, -34, 95, -6, -15, -220, 95, 95, 95, -210, -4, 95, 95, -237, 95, -76, -218, 95, -56, -25, -51, 95, -63, 211, -20, -93, 95, -213, -70, 95, -22, -53, -230, 95, 95, 95, -240, 95, 95, -29, -233, -16, -47, -67, 95, 95, 95, -73, -10, 95, -14, -18, -239, 95, -62, 95, -214, 95, -46, 95, -234, -217, -238, 95, -64, 95, -216, -43, 211]), '*': ([52, 45, 208, 278, 195, 300, 268, 214, 385, 204, 185, 290, 191, 277, 2, 182, 270, 260, 219, 187, 104, 206, 311, 145, 196, 297, 256, 247, 56, 81, 218, 148, 192, 141, 199, 134, 109, 271, 39, 361, 202, 10, 389, 414, 319, 44, 12, 249, 264, 31, 255, 341, 315, 232, 407, 251, 343, 177, 4, 314, 269, 288, 23, 262, 26, 250, 0, 205, 243, 198, 166, 137, 261, 48, 15, 105, 86, 35, 140, 197, 383, 381, 257, 354, 76, 263, 193, 379, 40, 8, 98, 285, 59, 416, 221, 241, 68, 36, 378, 128, 398, 294, 58, 13, 265, 19, 156, 380, 6, 143, 367, 92, 293, 299, 267, 79, 85, 18, 5, 24, 229, 222, 136, 78, 298, 1, 225, 7, 259, 349, 317, 164, 310, 411, 29, 110, 281, 100, 360, 246, 160, 217, 186, 77, 96, 329, 115, 83, 220, 188, 38, 395, 175, 9, 370, 152, 111, 82, 318, 69, 88, 37, 43, 365, 400, 180, 333, 30, 254, 135, 359, 33, 406, 409, 369, 42, 228, 415, 16, 358, 3, 61, 364, 345, 339, 211, 347, 66, 252, 273, 53, 410, 73, 216, 165, 184, 209, 32, 114, 388, 382, 101, 75, 244, 212, 62, 340, 167, 138, 144, 368, 103, 355, 189, 106, 74, 253, 80, 296, 17, 172, 424, 258, 159, 108, 57, 194, 95, 181, 155, 421, 142, 117, 91, 397, 183, 248, 203, 154, 190], [-104, -179, 96, -244, 96, -60, 96, -28, 96, 96, -45, 96, 96, 96, -107, -14, -222, -226, 96, 96, -54, -250, -6, -227, -148, 191, -97, -93, 96, 96, -17, 96, 96, 96, 96, -246, -53, -229, -165, -253, 96, -119, -32, -236, -24, 7, -118, -100, 96, -242, -94, -241, -7, 7, 96, -91, 96, 96, -164, -5, -239, -251, -3, -228, -120, -98, -1, 96, -220, 96, -245, -213, -219, 96, -2, -10, 191, -126, -209, -249, 96, 96, 96, -136, -18, 96, 96, 96, -121, -124, -58, 96, -223, -231, -46, 96, -138, -129, 96, 7, -232, 96, 7, -134, 96, -127, -4, -216, -122, -56, -25, -19, -21, -61, 96, -56, -12, -131, -132, -117, 96, 7, -211, -9, -59, 7, 96, 7, -238, -215, -26, -218, -8, -33, -109, -43, -137, -16, -252, -95, -212, 96, -47, 96, -51, 96, 7, -52, 96, -146, -133, 96, 96, -125, 96, 96, -49, -147, -27, -180, -149, -130, -112, -48, -230, -15, -156, 7, -90, -224, -135, -243, -235, 96, -23, -108, -155, -234, -123, 7, -111, 96, -57, -217, -237, 96, 96, -139, -92, 96, -157, 96, 96, 96, 7, 96, 96, -128, 96, -254, 96, -22, -20, -240, -29, -110, -221, 96, 96, -210, 96, -4, 96, 96, -13, -248, -96, 96, 191, 7, 7, -35, 96, 96, -55, -247, 96, -50, -16, -214, -34, 96, -255, -11, -233, -44, -99, 96, -225, 96]), 'SWITCH': ([414, 380, 270, 155, 145, 340, 379, 59, 261, 262, 406, 144, 241, 395, 398, 409, 160, 243, 61, 349, 381, 407, 397, 148, 154, 264, 141, 268, 415, 383, 259, 400, 135, 269, 271, 347, 137, 345, 159, 341, 244, 416, 339, 260, 136, 140, 164, 52], [-236, -216, -222, -214, -227, -221, 153, -223, -219, -228, -235, -210, 153, 153, -232, 153, -212, -220, 153, -215, 153, 153, -233, 153, -225, 153, 153, 153, -234, 153, -238, -230, -224, -239, -229, 153, -213, -217, 153, -241, -240, -231, -237, -226, -211, -209, -218, -104]), 'AND_ASSIGN': ([421, 389, 111, 311, 318, 181, 143, 367, 110, 76, 411, 293, 186, 156, 319, 106, 314, 221, 183, 365, 185, 78, 103, 182, 180, 100, 310, 101, 214, 369, 91, 212, 364, 75, 315, 85, 218, 424, 105, 79, 317, 92], [-34, -32, -49, -6, -27, -16, 250, -25, -43, -18, -33, -21, -47, -4, -24, -13, -5, -46, -44, -48, -45, -9, -4, -14, -15, -16, -8, -22, -28, -23, -11, -29, -57, -20, -7, -12, -17, -35, -10, -56, -26, -19]), 'IDENTIFIER': ([9, 246, 160, 217, 82, 209, 194, 257, 83, 55, 23, 0, 259, 243, 164, 16, 141, 88, 215, 281, 128, 134, 58, 33, 5, 144, 329, 38, 175, 370, 345, 59, 333, 108, 24, 62, 1, 138, 77, 397, 216, 409, 19, 42, 17, 22, 172, 159, 211, 360, 37, 43, 400, 66, 254, 268, 252, 145, 207, 273, 225, 349, 53, 382, 188, 190, 3, 155, 294, 167, 142, 104, 196, 406, 368, 96, 248, 220, 195, 74, 61, 73, 152, 54, 165, 191, 361, 114, 10, 388, 253, 199, 358, 381, 264, 139, 31, 203, 154, 80, 340, 270, 232, 244, 52, 25, 398, 347, 189, 414, 192, 12, 184, 187, 198, 137, 213, 35, 45, 117, 202, 177, 208, 269, 247, 81, 262, 95, 70, 258, 36, 204, 210, 251, 18, 57, 343, 48, 140, 197, 13, 44, 249, 263, 260, 277, 255, 230, 288, 34, 407, 15, 219, 109, 39, 14, 41, 26, 30, 4, 235, 68, 278, 56, 148, 250, 379, 383, 385, 237, 205, 271, 2, 290, 261, 267, 119, 410, 339, 206, 341, 229, 256, 354, 380, 136, 193, 395, 40, 285, 8, 7, 6, 265, 166, 416, 46, 69, 241, 355, 378, 135, 359, 32, 29, 228, 415], [-125, -95, -212, 103, -147, 103, 103, 103, -52, 125, -3, -1, -238, -220, -218, -123, 156, -149, 318, -137, 21, -246, 21, -243, -132, -210, 103, -133, 103, 103, -217, -223, -156, -55, -117, -110, 21, 103, 103, -233, 103, 156, -127, -108, 21, -141, 21, 156, 103, -252, -130, -112, -230, -139, -90, 156, -92, -227, 103, 103, 103, -215, -157, 103, -146, 103, -111, -214, 103, 103, 103, -54, -148, -235, 103, -51, -99, 103, 103, -248, 156, 103, 103, 122, 21, 103, -253, 103, -119, -254, -96, 103, 21, 156, 156, 240, -242, 103, -225, 103, -221, -222, 21, -240, -104, 53, -232, 156, 103, -236, 103, -118, 103, 103, 103, -213, 317, -126, -179, -255, 103, 103, 103, -239, -93, 103, -228, -50, -178, 103, -129, 103, 103, -91, -131, -247, 103, 103, -209, -249, -134, -176, -100, 103, -226, 103, -94, 122, -251, -140, 156, -2, 103, -53, -165, 21, 68, -120, 21, -164, 21, -138, -244, 103, 156, -98, 156, 156, 103, 336, 103, -229, -107, 103, -219, 103, 122, 103, -237, -250, -241, 103, -97, -136, -216, -211, 103, 156, -121, 103, -124, -175, -122, 103, -245, -231, -177, -180, 156, 103, 103, -224, -135, -128, -109, -155, -234]), 'ADD_ASSIGN': ([424, 181, 369, 78, 91, 218, 156, 293, 185, 79, 182, 315, 85, 221, 314, 100, 111, 143, 214, 367, 92, 180, 364, 421, 105, 212, 317, 103, 186, 183, 75, 365, 310, 101, 411, 106, 311, 318, 319, 389, 110, 76], [-35, -16, -23, -9, -11, -17, -4, -21, -45, -56, -14, -7, -12, -46, -5, -16, -49, 255, -28, -25, -19, -15, -57, -34, -10, -29, -26, -4, -47, -44, -20, -48, -8, -22, -33, -13, -6, -27, -24, -32, -43, -18]), '>': ([300, 298, 85, 221, 296, 389, 183, 98, 79, 181, 424, 87, 411, 421, 143, 367, 105, 307, 364, 309, 313, 317, 111, 182, 186, 106, 314, 306, 318, 312, 214, 369, 91, 110, 308, 365, 315, 310, 100, 302, 156, 75, 319, 311, 97, 101, 180, 92, 86, 76, 299, 218, 297, 84, 301, 293, 103, 212, 185, 78], [-60, -59, -12, -46, -63, -32, -44, -58, -56, -16, -35, -68, -33, -34, -56, -25, -10, -69, -57, -70, 205, -26, -49, -14, -47, -13, -5, -71, -27, 205, -28, -23, -11, -43, -72, -48, -7, -8, -16, -67, -4, -20, -24, -6, 205, -22, -15, -19, -62, -18, -61, -17, -64, -65, -66, -21, -4, -29, -45, -9]), 'PP_MACRO_PARAM': ([83, 263, 207, 414, 144, 385, 225, 220, 48, 211, 104, 382, 108, 368, 370, 277, 56, 254, 192, 290, 216, 205, 138, 61, 410, 250, 202, 381, 71, 91, 155, 142, 219, 378, 256, 141, 329, 258, 189, 195, 199, 137, 218, 52, 261, 184, 270, 114, 265, 249, 269, 341, 260, 229, 135, 398, 241, 204, 264, 257, 190, 268, 380, 217, 406, 73, 154, 416, 285, 167, 77, 187, 96, 182, 349, 177, 109, 253, 259, 148, 210, 246, 112, 345, 267, 339, 262, 409, 343, 395, 81, 340, 415, 255, 193, 145, 198, 271, 355, 181, 152, 175, 383, 85, 400, 194, 397, 106, 273, 247, 209, 80, 243, 160, 75, 180, 191, 379, 244, 251, 203, 136, 347, 291, 140, 252, 407, 100, 208, 164, 95, 59, 248, 159, 294], [-52, 100, 310, -236, -210, 100, 100, 100, 100, 100, -54, 100, -55, 100, 100, 100, 100, -90, 100, 100, 100, 100, 100, 100, 100, -98, 100, 100, 174, -11, -214, 100, 100, 100, -97, 100, 100, 100, 100, 100, 100, -213, -17, -104, -219, 100, -222, 100, 100, -100, -239, -241, -226, 100, -224, -232, 100, 100, 100, 100, 100, 100, -216, 100, -235, 100, -225, -231, 100, 100, 100, 100, -51, -14, -215, 100, -53, -96, -238, 100, 315, -95, 218, -217, 100, -237, -228, 100, 100, 100, 100, -221, -234, -94, 100, -227, 100, -229, 100, -16, 100, 100, 100, -12, -230, 100, -233, -13, 100, -93, 100, 100, -220, -212, 181, -15, 100, 100, -240, -91, 100, -211, 100, 363, -209, -92, 100, -16, 100, -218, -50, -223, -99, 100, 100]), 'GE_OP': ([110, 84, 297, 186, 214, 79, 106, 317, 302, 78, 306, 221, 367, 312, 300, 182, 156, 98, 180, 87, 299, 181, 411, 103, 301, 389, 307, 424, 97, 75, 364, 111, 86, 308, 293, 76, 315, 212, 314, 183, 101, 310, 313, 296, 92, 143, 311, 100, 218, 91, 319, 421, 185, 85, 105, 298, 318, 365, 369, 309], [-43, -65, -64, -47, -28, -56, -13, -26, -67, -9, -71, -46, -25, 204, -60, -14, -4, -58, -15, -68, -61, -16, -33, -4, -66, -32, -69, -35, 204, -20, -57, -49, -62, -72, -21, -18, -7, -29, -5, -44, -22, -8, 204, -63, -19, -56, -6, -16, -17, -11, -24, -34, -45, -12, -10, -59, -27, -48, -23, -70]), 'STRING_LITERAL': ([211, 182, 340, 184, 61, 187, 96, 414, 241, 406, 343, 252, 160, 255, 193, 52, 216, 257, 395, 249, 409, 271, 199, 398, 260, 243, 400, 219, 269, 380, 192, 218, 413, 208, 225, 385, 248, 263, 148, 381, 345, 136, 349, 155, 246, 305, 108, 145, 268, 339, 251, 277, 341, 250, 190, 180, 195, 390, 256, 259, 285, 415, 189, 258, 265, 81, 140, 83, 397, 264, 56, 290, 383, 104, 142, 194, 209, 106, 75, 273, 48, 329, 254, 77, 267, 368, 138, 347, 244, 159, 370, 59, 410, 253, 135, 379, 412, 262, 100, 378, 204, 141, 177, 164, 80, 109, 144, 261, 191, 217, 355, 91, 152, 247, 407, 167, 181, 294, 220, 85, 154, 198, 73, 175, 203, 229, 137, 416, 202, 382, 205, 95, 114, 422, 270], [91, -14, -221, 91, 91, 91, -51, -236, 91, -235, 91, -92, -212, -94, 91, -104, 91, 91, 91, -100, 91, -229, 91, -232, -226, -220, -230, 91, -239, -216, 91, -17, 91, 91, 91, 91, -99, 91, 91, 91, -217, -211, -215, -214, -95, 91, -55, -227, 91, -237, -91, 91, -241, -98, 91, -15, 91, 91, -97, -238, 91, -234, 91, 91, 91, 91, -209, -52, -233, 91, 91, 91, 91, -54, 91, 91, 91, -13, 91, 91, 91, 91, -90, 91, 91, 91, 91, 91, -240, 91, 91, -223, 91, -96, -224, 91, 91, -228, -16, 91, 91, 91, 91, -218, 91, -53, -210, -219, 91, 91, 91, -11, 91, -93, 91, 91, -16, 91, 91, -12, -225, 91, 91, 91, 91, 91, -213, -231, 91, 91, 91, -50, 91, 91, -222]), 'MOD_ASSIGN': ([76, 293, 369, 365, 182, 156, 221, 319, 101, 424, 185, 110, 100, 181, 411, 318, 389, 103, 367, 317, 214, 314, 364, 315, 212, 310, 79, 78, 105, 183, 92, 106, 180, 218, 111, 143, 311, 186, 91, 85, 75, 421], [-18, -21, -23, -48, -14, -4, -46, -24, -22, -35, -45, -43, -16, -16, -33, -27, -32, -4, -25, -26, -28, -5, -57, -7, -29, -8, -56, -9, -10, -44, -19, -13, -15, -17, -49, 247, -6, -47, -11, -12, -20, -34]), ':': ([231, 143, 297, 5, 97, 82, 318, 86, 403, 317, 228, 310, 299, 418, 90, 110, 358, 196, 32, 364, 78, 292, 413, 365, 309, 344, 116, 113, 111, 359, 301, 75, 323, 296, 419, 302, 172, 124, 36, 88, 180, 105, 308, 293, 354, 103, 313, 8, 424, 21, 405, 163, 316, 303, 333, 118, 307, 100, 306, 156, 38, 9, 92, 304, 298, 150, 37, 98, 72, 319, 185, 87, 283, 369, 404, 107, 421, 311, 79, 281, 50, 102, 218, 39, 84, 214, 411, 101, 16, 392, 186, 76, 324, 420, 93, 4, 27, 188, 367, 66, 239, 35, 390, 266, 131, 212, 106, 18, 342, 315, 389, 300, 182, 314, 68, 366, 236, 53, 85, 221, 13, 181, 6, 183, 312, 91, 161, 19], [-172, -56, -64, -132, -73, -147, -27, -62, -39, -26, -155, -8, -61, -38, -80, -43, 285, -148, -128, -57, -9, -81, -36, -48, -70, -102, -103, -86, -49, -135, -66, -20, -85, -63, 422, -67, 285, -174, -129, -149, -15, -10, -72, -21, -136, -4, -74, -124, -35, -168, 413, -88, -77, -79, -156, -169, -69, -16, -71, 268, -133, -125, -19, -83, -59, 264, -130, -58, -82, -24, -45, -68, 355, -23, -37, -78, -34, -6, -56, -137, -166, -76, -17, -165, -65, -28, -33, -22, -123, -87, -47, -18, 370, -40, -84, -164, -167, -146, -25, -139, -170, -126, -36, 347, -171, -29, -13, -131, -89, -7, -32, -60, -14, -5, -138, 390, -173, -157, -12, -46, -134, -16, -122, -44, -75, -11, -101, -127]), 'TYPE_NAME': ([57, 13, 65, 67, 228, 74, 53, 173, 82, 68, 138, 41, 35, 32, 361, 278, 169, 279, 60, 21, 37, 28, 16, 124, 197, 166, 354, 5, 12, 59, 24, 236, 19, 61, 168, 55, 357, 22, 8, 243, 360, 388, 4, 359, 6, 10, 333, 2, 48, 134, 141, 36, 88, 135, 66, 38, 340, 3, 33, 231, 27, 9, 34, 50, 39, 29, 15, 1, 238, 288, 164, 131, 40, 18, 239, 222, 270, 52, 328, 206, 287, 284, 187, 26, 73, 118, 261, 280, 170, 117, 0, 171, 31, 232, 281, 23], [-247, -134, 13, 13, -155, -248, -157, 13, 13, -138, 13, 66, -126, -128, -253, -244, 13, 13, 13, -168, -130, 13, -123, -174, -249, -245, -136, -132, -118, -223, -117, -173, -127, 13, 13, 13, -144, -141, -124, -220, -252, -254, -164, -135, -122, -119, -156, 13, 13, -246, 13, -129, 13, -224, -139, -133, -221, 13, -243, -172, -167, -125, -140, -166, -165, 13, -2, 13, 13, -251, -218, -171, -121, -131, -170, 13, -222, -104, 13, -250, 13, -145, 13, -120, 13, -169, -219, -143, 13, -255, -1, -142, -242, 13, -137, -3]), 'OR_ASSIGN': ([110, 91, 218, 76, 78, 185, 212, 317, 221, 318, 424, 75, 365, 315, 182, 111, 364, 85, 106, 103, 101, 314, 100, 180, 92, 293, 183, 79, 389, 105, 369, 143, 319, 310, 311, 186, 367, 214, 181, 411, 156, 421], [-43, -11, -17, -18, -9, -45, -29, -26, -46, -27, -35, -20, -48, -7, -14, -49, -57, -12, -13, -4, -22, -5, -16, -15, -19, -21, -44, -56, -32, -10, -23, 249, -24, -8, -6, -47, -25, -28, -16, -33, -4, -34]), 'BREAK': ([241, 407, 269, 59, 155, 260, 397, 270, 137, 154, 345, 135, 61, 141, 349, 262, 383, 261, 409, 259, 400, 145, 416, 264, 341, 243, 268, 415, 380, 271, 347, 244, 398, 148, 340, 414, 159, 164, 339, 144, 395, 136, 140, 160, 406, 381, 52, 379], [157, 157, -239, -223, -214, -226, -233, -222, -213, -225, -217, -224, 157, 157, -215, -228, 157, -219, 157, -238, -230, -227, -231, 157, -241, -220, 157, -234, -216, -229, 157, -240, -232, 157, -221, -236, 157, -218, -237, -210, 157, -211, -209, -212, -235, 157, -104, 157]), 'VOLATILE': ([340, 170, 66, 74, 7, 45, 261, 360, 40, 8, 19, 26, 59, 357, 38, 4, 13, 278, 94, 57, 23, 187, 117, 236, 138, 279, 53, 280, 1, 206, 0, 243, 270, 61, 18, 5, 131, 169, 287, 35, 168, 6, 52, 166, 31, 48, 16, 388, 222, 24, 281, 354, 9, 231, 12, 239, 69, 60, 164, 27, 65, 33, 135, 359, 82, 50, 124, 284, 29, 173, 3, 333, 21, 88, 328, 68, 232, 288, 141, 73, 39, 171, 197, 361, 15, 55, 32, 238, 228, 37, 67, 134, 28, 44, 118, 36, 2, 10], [-221, 39, -139, -248, 39, -179, -219, -252, -121, -124, -127, -120, -223, -144, -133, -164, -134, -244, 200, -247, -3, 39, -255, -173, 39, 39, -157, -143, 39, -250, -1, -220, -222, 39, -131, -132, -171, 39, 39, -126, 39, -122, -104, -245, -242, 39, -123, -254, 39, -117, -137, -136, -125, -172, -118, -170, -180, 39, -218, -167, 39, -243, -224, -135, 39, -166, -174, -145, 39, 39, 39, -156, -168, 39, 39, -138, 39, -251, 39, 39, -165, -142, -249, -253, -2, 39, -128, 39, -155, -130, 39, -246, 39, 39, -169, -129, 39, -119]), 'error': ([136, 345, 380, 383, 347, 264, 341, 59, 141, 261, 349, 159, 164, 400, 61, 137, 244, 262, 241, 398, 260, 414, 154, 135, 271, 155, 144, 340, 243, 258, 379, 269, 145, 259, 343, 140, 270, 11, 381, 407, 268, 395, 409, 416, 397, 148, 415, 160, 406, 52, 339], [-211, -217, -216, 242, 242, 242, -241, -223, 242, -219, -215, 242, -218, -230, 158, -213, -240, -228, 242, -232, -226, -236, -225, -224, -229, -214, -210, -221, -220, 242, 242, -239, -227, -238, 242, -209, -222, 49, 242, 242, 242, 242, 242, -231, -233, 242, -234, -212, -235, -104, -237]), '~': ([416, 56, 397, 410, 244, 380, 189, 285, 252, 246, 160, 256, 217, 195, 262, 263, 400, 254, 194, 251, 225, 249, 77, 241, 48, 202, 415, 382, 204, 191, 355, 144, 368, 80, 345, 152, 209, 277, 154, 340, 243, 167, 141, 175, 339, 329, 136, 290, 193, 347, 271, 199, 261, 138, 381, 269, 159, 104, 135, 248, 81, 268, 83, 273, 407, 258, 219, 187, 406, 96, 250, 164, 73, 379, 260, 253, 414, 192, 385, 198, 255, 229, 137, 52, 216, 409, 370, 109, 203, 177, 148, 211, 205, 398, 184, 190, 114, 247, 155, 341, 208, 349, 343, 257, 220, 140, 294, 383, 265, 259, 378, 145, 267, 61, 264, 142, 270, 108, 395, 95, 59], [-231, 104, -233, 104, -240, -216, 104, 104, -92, -95, -212, -97, 104, 104, -228, 104, -230, -90, 104, -91, 104, -100, 104, 104, 104, 104, -234, 104, 104, 104, 104, -210, 104, 104, -217, 104, 104, 104, -225, -221, -220, 104, 104, 104, -237, 104, -211, 104, 104, 104, -229, 104, -219, 104, 104, -239, 104, -54, -224, -99, 104, 104, -52, 104, 104, 104, 104, 104, -235, -51, -98, -218, 104, 104, -226, -96, -236, 104, 104, 104, -94, 104, -213, -104, 104, 104, 104, -53, 104, 104, 104, 104, 104, -232, 104, 104, 104, -93, -214, -241, 104, -215, 104, 104, 104, -209, 104, 104, 104, -238, 104, -227, 104, 104, 104, 104, -222, -55, 104, -50, -223]), 'DO': ([381, 271, 347, 243, 339, 136, 155, 383, 415, 140, 380, 409, 398, 137, 397, 59, 159, 416, 164, 407, 379, 259, 270, 145, 141, 264, 340, 345, 144, 160, 135, 414, 52, 154, 260, 241, 395, 148, 61, 244, 269, 400, 262, 349, 268, 406, 261, 341], [159, -229, 159, -220, -237, -211, -214, 159, -234, -209, -216, 159, -232, -213, -233, -223, 159, -231, -218, 159, 159, -238, -222, -227, 159, 159, -221, -217, -210, -212, -224, -236, -104, -225, -226, 159, 159, 159, 159, -240, -239, -230, -228, -215, 159, -235, -219, -241]), 'CONST': ([359, 166, 19, 24, 388, 31, 9, 173, 270, 32, 37, 59, 118, 10, 88, 45, 50, 13, 18, 28, 231, 15, 117, 60, 21, 26, 61, 68, 55, 360, 222, 6, 74, 261, 124, 27, 3, 67, 171, 206, 354, 33, 197, 232, 135, 2, 16, 8, 4, 357, 141, 73, 340, 38, 281, 29, 228, 12, 236, 39, 44, 82, 57, 48, 164, 278, 5, 69, 7, 361, 134, 52, 168, 53, 138, 288, 36, 239, 23, 66, 287, 35, 243, 328, 169, 333, 0, 40, 279, 284, 238, 170, 65, 131, 187, 280, 1], [-135, -245, -127, -117, -254, -242, -125, 4, -222, -128, -130, -223, -169, -119, 4, -179, -166, -134, -131, 4, -172, -2, -255, 4, -168, -120, 4, -138, 4, -252, 4, -122, -248, -219, -174, -167, 4, 4, -142, -250, -136, -243, -249, 4, -224, 4, -123, -124, -164, -144, 4, 4, -221, -133, -137, 4, -155, -118, -173, -165, 4, 4, -247, 4, -218, -244, -132, -180, 4, -253, -246, -104, 4, -157, 4, -251, -129, -170, -3, -139, 4, -126, -220, 4, 4, -156, -1, -121, 4, -145, 4, 4, 4, -171, 4, -143, 4]), '!': ([241, 246, 341, 204, 265, 269, 189, 262, 73, 220, 77, 229, 138, 285, 96, 104, 243, 254, 263, 108, 61, 379, 270, 152, 155, 380, 398, 159, 211, 80, 253, 109, 59, 177, 244, 193, 381, 256, 249, 260, 167, 95, 290, 144, 250, 294, 247, 397, 216, 205, 148, 194, 382, 257, 198, 217, 370, 261, 145, 209, 414, 255, 416, 409, 52, 191, 339, 164, 202, 349, 410, 343, 199, 267, 406, 187, 225, 56, 140, 175, 355, 141, 340, 208, 190, 347, 219, 251, 142, 114, 137, 385, 378, 160, 273, 48, 195, 329, 135, 258, 407, 400, 81, 345, 252, 277, 395, 83, 203, 154, 264, 184, 192, 268, 271, 415, 383, 136, 248, 368, 259], [108, -95, -241, 108, 108, -239, 108, -228, 108, 108, 108, 108, 108, 108, -51, -54, -220, -90, 108, -55, 108, 108, -222, 108, -214, -216, -232, 108, 108, 108, -96, -53, -223, 108, -240, 108, 108, -97, -100, -226, 108, -50, 108, -210, -98, 108, -93, -233, 108, 108, 108, 108, 108, 108, 108, 108, 108, -219, -227, 108, -236, -94, -231, 108, -104, 108, -237, -218, 108, -215, 108, 108, 108, 108, -235, 108, 108, 108, -209, 108, 108, 108, -221, 108, 108, 108, 108, -91, 108, 108, -213, 108, 108, -212, 108, 108, 108, 108, -224, 108, 108, -230, 108, -217, -92, 108, 108, -52, 108, -225, 108, 108, 108, 108, -229, -234, 108, -211, -99, 108, -238]), '_BOOL': ([238, 88, 18, 138, 66, 50, 53, 135, 74, 236, 28, 12, 16, 2, 36, 3, 6, 388, 59, 280, 270, 288, 9, 357, 206, 13, 243, 82, 8, 197, 231, 33, 117, 171, 239, 328, 57, 222, 68, 32, 40, 354, 278, 168, 29, 134, 37, 279, 131, 118, 169, 261, 35, 164, 124, 26, 187, 0, 361, 340, 4, 52, 141, 60, 10, 359, 67, 1, 39, 38, 333, 5, 228, 232, 61, 287, 166, 15, 19, 360, 23, 173, 65, 24, 73, 281, 27, 48, 31, 55, 21, 284, 170], [16, 16, -131, 16, -139, -166, -157, -224, -248, -173, 16, -118, -123, 16, -129, 16, -122, -254, -223, -143, -222, -251, -125, -144, -250, -134, -220, 16, -124, -249, -172, -243, -255, -142, -170, 16, -247, 16, -138, -128, -121, -136, -244, 16, 16, -246, -130, 16, -171, -169, 16, -219, -126, -218, -174, -120, 16, -1, -253, -221, -164, -104, 16, 16, -119, -135, 16, 16, -165, -133, -156, -132, -155, 16, 16, 16, -245, -2, -127, -252, -3, 16, 16, -117, 16, -137, -167, 16, -242, 16, -168, -145, 16]), '%': ([424, 98, 311, 314, 86, 92, 103, 212, 293, 76, 111, 389, 75, 365, 110, 180, 299, 300, 296, 214, 91, 78, 319, 315, 100, 310, 183, 186, 297, 182, 367, 411, 79, 221, 421, 218, 318, 298, 364, 369, 156, 101, 143, 185, 317, 85, 181, 106, 105], [-35, -58, -6, -5, 192, -19, -4, -29, -21, -18, -49, -32, -20, -48, -43, -15, -61, -60, 192, -28, -11, -9, -24, -7, -16, -8, -44, -47, 192, -14, -25, -33, -56, -46, -34, -17, -27, -59, -57, -23, -4, -22, -56, -45, -26, -12, -16, -13, -10]), ')': ([29, 68, 106, 391, 12, 310, 348, 318, 131, 346, 179, 16, 70, 331, 309, 423, 97, 42, 392, 371, 6, 281, 130, 223, 369, 118, 161, 36, 304, 46, 299, 378, 231, 13, 311, 332, 342, 115, 127, 325, 44, 373, 92, 389, 75, 113, 419, 413, 84, 337, 316, 185, 38, 32, 86, 233, 296, 62, 344, 5, 53, 321, 375, 196, 224, 307, 354, 319, 239, 76, 399, 124, 420, 69, 292, 40, 88, 212, 100, 180, 27, 163, 24, 336, 78, 128, 303, 178, 55, 9, 333, 366, 174, 422, 323, 365, 403, 234, 102, 262, 182, 300, 317, 51, 312, 297, 93, 101, 72, 411, 295, 21, 90, 393, 293, 218, 71, 26, 417, 85, 338, 98, 313, 351, 143, 7, 236, 126, 418, 306, 214, 37, 8, 396, 110, 228, 363, 424, 404, 232, 181, 18, 3, 50, 326, 66, 176, 103, 129, 183, 320, 328, 405, 79, 216, 10, 39, 87, 394, 377, 43, 314, 390, 372, 91, 301, 19, 221, 367, 2, 105, 302, 235, 315, 82, 359, 298, 308, 145, 35, 125, 421, 45, 186, 188, 226, 327, 111, 271, 364, 374, 222, 4, 107], [-109, -138, -13, -31, -118, -8, 381, -27, -171, 379, 294, -123, -178, -196, -70, 424, -73, -108, -87, -201, -122, -137, -181, -191, -23, -169, -101, -129, -83, -177, -61, 395, -172, -134, -6, -194, -89, -190, -183, -200, -176, -202, -19, -32, -20, -86, 421, -36, -65, -182, -77, -45, -133, -128, -62, -186, -63, -110, -102, -132, -157, 367, -198, -148, -193, -69, -136, -24, -170, -18, 408, -174, -40, -180, -81, -121, -149, -29, -16, -15, -167, -88, -117, -189, -9, -187, -79, 293, 124, -125, -156, 389, -256, -36, -85, -48, -39, -185, -76, -228, -14, -60, -26, 118, -75, -64, -84, -22, -82, -33, 365, -168, -80, -203, -21, -17, 175, -120, 420, -12, -184, -58, -74, 383, -56, -175, -173, 231, -38, -71, -28, -130, -124, 407, -43, -155, -257, -35, -37, 325, -16, -131, -111, -166, 371, -139, 290, -4, 236, -44, -30, 373, 411, -56, 319, -119, -165, -68, -199, -197, -112, -5, -36, -195, -11, -66, -127, -46, -25, -107, -10, -67, -192, -7, -147, -135, -59, -72, -227, -126, -188, -34, -179, -47, -146, -192, 372, -49, -229, -57, 393, 325, -164, -78]), '-': ([378, 300, 364, 83, 409, 252, 61, 98, 148, 247, 261, 311, 246, 248, 110, 315, 156, 424, 250, 310, 101, 78, 407, 81, 318, 183, 154, 180, 202, 329, 379, 296, 184, 177, 181, 203, 381, 190, 297, 347, 104, 76, 85, 48, 52, 368, 290, 355, 389, 415, 251, 285, 263, 302, 75, 79, 365, 383, 160, 155, 244, 249, 209, 144, 73, 187, 175, 182, 108, 243, 135, 254, 298, 340, 186, 205, 395, 185, 152, 159, 59, 106, 367, 385, 192, 370, 56, 398, 345, 253, 220, 256, 105, 219, 77, 267, 271, 95, 369, 421, 216, 262, 264, 414, 218, 294, 229, 217, 255, 273, 189, 265, 103, 91, 143, 225, 100, 164, 136, 380, 114, 397, 339, 109, 299, 145, 194, 212, 268, 349, 410, 258, 221, 193, 269, 257, 211, 270, 92, 84, 140, 241, 208, 293, 343, 260, 96, 259, 317, 141, 167, 138, 142, 406, 137, 341, 382, 301, 319, 80, 214, 195, 314, 416, 111, 411, 204, 277, 400, 199, 191, 198, 86], [109, -60, -57, -52, 109, -92, 109, -58, 109, -93, -219, -6, -95, -99, -43, -7, -4, -35, -98, -8, -22, -9, 109, 109, -27, -44, -225, -15, 109, 109, 109, -63, 109, 109, -16, 109, 109, 109, -64, 109, -54, -18, -12, 109, -104, 109, 109, 109, -32, -234, -91, 109, 109, 190, -20, -56, -48, 109, -212, -214, -240, -100, 109, -210, 109, 109, 109, -14, -55, -220, -224, -90, -59, -221, -47, 109, 109, -45, 109, 109, -223, -13, -25, 109, 109, 109, 109, -232, -217, -96, 109, -97, -10, 109, 109, 109, -229, -50, -23, -34, 109, -228, 109, -236, -17, 109, 109, 109, -94, 109, 109, 109, -4, -11, -56, 109, -16, -218, -211, -216, 109, -233, -237, -53, -61, -227, 109, -29, 109, -215, 109, 109, -46, 109, -239, 109, 109, -222, -19, 190, -209, 109, 109, -21, 109, -226, -51, -238, -26, 109, 109, 109, 109, -235, -213, -241, 109, 190, -24, 109, -28, 109, -5, -231, -49, -33, 109, 109, -230, 109, 109, 109, -62]), 'CHARACTER_CONSTANT': ([380, 250, 204, 199, 81, 290, 148, 83, 400, 252, 140, 329, 247, 414, 177, 381, 285, 383, 382, 379, 56, 249, 184, 203, 209, 73, 104, 191, 48, 52, 368, 355, 415, 251, 205, 263, 349, 416, 160, 385, 155, 370, 378, 345, 253, 187, 175, 398, 244, 77, 262, 108, 243, 144, 154, 294, 229, 217, 152, 273, 189, 265, 159, 59, 192, 220, 256, 114, 397, 219, 109, 267, 271, 145, 61, 216, 264, 135, 255, 194, 269, 257, 270, 164, 225, 136, 410, 339, 241, 406, 407, 141, 268, 138, 142, 137, 341, 248, 211, 347, 208, 343, 260, 96, 277, 190, 195, 340, 259, 167, 258, 198, 409, 202, 80, 261, 193, 95, 254, 246, 395], [-216, -98, 105, 105, 105, 105, 105, -52, -230, -92, -209, 105, -93, -236, 105, 105, 105, 105, 105, 105, 105, -100, 105, 105, 105, 105, -54, 105, 105, -104, 105, 105, -234, -91, 105, 105, -215, -231, -212, 105, -214, 105, 105, -217, -96, 105, 105, -232, -240, 105, -228, -55, -220, -210, -225, 105, 105, 105, 105, 105, 105, 105, 105, -223, 105, 105, -97, 105, -233, 105, -53, 105, -229, -227, 105, 105, 105, -224, -94, 105, -239, 105, -222, -218, 105, -211, 105, -237, 105, -235, 105, 105, 105, 105, 105, -213, -241, -99, 105, 105, 105, 105, -226, -51, 105, 105, 105, -221, -238, 105, 105, 105, 105, 105, 105, -219, 105, -50, -90, -95, 105]), 'PP_STRINGIFY': ([195, 160, 104, 268, 263, 145, 259, 77, 290, 347, 100, 220, 204, 142, 155, 345, 382, 193, 177, 96, 269, 255, 249, 409, 381, 180, 164, 190, 91, 211, 199, 218, 252, 294, 137, 136, 85, 285, 194, 217, 329, 273, 257, 256, 355, 205, 189, 208, 379, 370, 108, 167, 95, 270, 247, 181, 415, 410, 148, 159, 75, 59, 253, 135, 400, 198, 243, 106, 395, 340, 219, 339, 261, 152, 229, 260, 380, 397, 144, 264, 154, 184, 191, 262, 216, 73, 267, 114, 244, 48, 254, 414, 140, 383, 246, 241, 83, 192, 271, 182, 248, 187, 265, 250, 109, 407, 406, 368, 225, 385, 202, 141, 138, 378, 81, 175, 56, 258, 341, 349, 398, 416, 203, 52, 61, 80, 251, 209, 343, 277], [112, -212, -54, 112, 112, -227, -238, 112, 112, 112, -16, 112, 112, 112, -214, -217, 112, 112, 112, -51, -239, -94, -100, 112, 112, -15, -218, 112, -11, 112, 112, -17, -92, 112, -213, -211, -12, 112, 112, 112, 112, 112, 112, -97, 112, 112, 112, 112, 112, 112, -55, 112, -50, -222, -93, -16, -234, 112, 112, 112, 112, -223, -96, -224, -230, 112, -220, -13, 112, -221, 112, -237, -219, 112, 112, -226, -216, -233, -210, 112, -225, 112, 112, -228, 112, 112, 112, 112, -240, 112, -90, -236, -209, 112, -95, 112, -52, 112, -229, -14, -99, 112, 112, -98, -53, 112, -235, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, -241, -215, -232, -231, 112, -104, 112, 112, -91, 112, 112, 112]), 'PTR_OP': ([110, 319, 181, 85, 369, 91, 315, 92, 103, 218, 100, 76, 106, 78, 314, 101, 105, 293, 180, 214, 310, 182, 311, 317, 367, 318, 156, 212, 75], [215, -24, -16, -12, -23, -11, -7, -19, -4, -17, -16, -18, -13, -9, -5, -22, -10, -21, -15, -28, -8, -14, -6, -26, -25, -27, -4, -29, -20]), '=': ([65, 424, 156, 133, 389, 182, 118, 185, 143, 315, 85, 78, 21, 218, 91, 122, 293, 79, 27, 314, 100, 221, 239, 369, 421, 310, 92, 180, 186, 111, 367, 364, 106, 124, 50, 212, 101, 236, 105, 231, 319, 214, 311, 317, 110, 103, 76, 183, 131, 75, 365, 181, 411, 318], [167, -35, -4, 167, -32, -14, -169, -45, 254, -7, -12, -9, -168, -17, -11, 229, -21, -56, -167, -5, -16, -46, -170, -23, -34, -8, -19, -15, -47, -49, -25, -57, -13, -174, -166, -29, -22, -173, -10, -172, -24, -28, -6, -26, -43, -4, -18, -44, -171, -20, -48, -16, -33, -27]), 'TYPEDEF': ([131, 52, 40, 333, 328, 236, 21, 270, 3, 35, 28, 38, 16, 231, 57, 26, 61, 55, 222, 232, 74, 68, 15, 261, 2, 37, 6, 141, 50, 288, 10, 359, 281, 5, 33, 27, 340, 388, 31, 117, 18, 135, 53, 134, 278, 8, 66, 9, 13, 1, 361, 60, 197, 118, 164, 19, 23, 354, 168, 32, 36, 24, 239, 59, 238, 29, 243, 166, 12, 65, 0, 4, 39, 124, 360, 206, 228], [-171, -104, -121, -156, 24, -173, -168, -222, 24, -126, 24, -133, -123, -172, -247, -120, 24, 24, 24, 24, -248, -138, -2, -219, 24, -130, -122, 24, -166, -251, -119, -135, -137, -132, -243, -167, -221, -254, -242, -255, -131, -224, -157, -246, -244, -124, -139, -125, -134, 24, -253, 24, -249, -169, -218, -127, -3, -136, 24, -128, -129, -117, -170, -223, 24, 24, -220, -245, -118, 24, -1, -164, -165, -174, -252, -250, -155]), 'AUTO': ([278, 60, 36, 3, 57, 31, 236, 28, 33, 8, 59, 37, 27, 65, 232, 18, 66, 333, 340, 40, 288, 231, 13, 228, 39, 206, 10, 360, 361, 35, 26, 74, 131, 38, 32, 261, 239, 243, 68, 16, 15, 124, 9, 359, 270, 12, 118, 21, 388, 1, 135, 2, 197, 50, 117, 24, 5, 141, 53, 164, 168, 23, 61, 238, 29, 55, 222, 4, 281, 354, 328, 166, 6, 52, 19, 0, 134], [-244, 26, -129, 26, -247, -242, -173, 26, -243, -124, -223, -130, -167, 26, 26, -131, -139, -156, -221, -121, -251, -172, -134, -155, -165, -250, -119, -252, -253, -126, -120, -248, -171, -133, -128, -219, -170, -220, -138, -123, -2, -174, -125, -135, -222, -118, -169, -168, -254, 26, -224, 26, -249, -166, -255, -117, -132, 26, -157, -218, 26, -3, 26, 26, 26, 26, 26, -164, -137, -136, 26, -245, -122, -104, -127, -1, -246]), 'AND_OP': ([101, 301, 97, 76, 308, 107, 424, 93, 293, 364, 111, 319, 75, 311, 411, 84, 296, 90, 86, 143, 183, 100, 300, 106, 302, 72, 92, 212, 367, 185, 314, 299, 105, 421, 110, 310, 307, 91, 313, 180, 186, 292, 323, 79, 312, 303, 156, 298, 87, 309, 218, 182, 306, 318, 317, 103, 365, 369, 102, 98, 297, 181, 221, 315, 85, 214, 389, 304, 316, 78], [-22, -66, -73, -18, -72, -78, -35, 199, -21, -57, -49, -24, -20, -6, -33, -65, -63, -80, -62, -56, -44, -16, -60, -13, -67, -82, -19, -29, -25, -45, -5, -61, -10, -34, -43, -8, -69, -11, -74, -15, -47, -81, 199, -56, -75, -79, -4, -59, -68, -70, -17, -14, -71, -27, -26, -4, -48, -23, -76, -58, -64, -16, -46, -7, -12, -28, -32, -83, -77, -9]), ']': ([106, 304, 132, 342, 424, 316, 221, 317, 303, 182, 102, 76, 322, 296, 116, 113, 93, 344, 369, 421, 225, 364, 186, 365, 180, 218, 214, 302, 161, 72, 298, 292, 311, 107, 79, 86, 300, 318, 329, 309, 389, 105, 185, 301, 293, 183, 110, 315, 92, 312, 181, 75, 313, 308, 307, 85, 323, 163, 411, 392, 212, 101, 306, 314, 97, 87, 297, 330, 376, 310, 98, 78, 299, 103, 111, 367, 100, 56, 84, 319, 91, 90, 143], [-13, -83, 239, -89, -35, -77, -46, -26, -79, -14, -76, -18, 369, -63, -103, -86, -84, -102, -23, -34, 331, -57, -47, -48, -15, -17, -28, -67, -101, -82, -59, -81, -6, -78, -56, -62, -60, -27, 375, -70, -32, -10, -45, -66, -21, -44, -43, -7, -19, -75, -16, -20, -74, -72, -69, -12, -85, -88, -33, -87, -29, -22, -71, -5, -73, -68, -64, 377, 394, -8, -58, -9, -61, -4, -49, -25, -16, 131, -65, -24, -11, -80, -56]), 'IF': ([241, 260, 61, 262, 269, 145, 144, 141, 349, 159, 398, 244, 379, 400, 259, 415, 340, 341, 339, 164, 381, 140, 137, 380, 154, 261, 395, 148, 52, 409, 416, 406, 243, 160, 155, 383, 347, 271, 414, 264, 268, 397, 59, 407, 135, 136, 345, 270], [162, -226, 162, -228, -239, -227, -210, 162, -215, 162, -232, -240, 162, -230, -238, -234, -221, -241, -237, -218, 162, -209, -213, -216, -225, -219, 162, 162, -104, 162, -231, -235, -220, -212, -214, 162, 162, -229, -236, 162, 162, -233, -223, 162, -224, -211, -217, -222]), 'STRUCT': ([15, 354, 124, 238, 29, 39, 359, 48, 12, 74, 26, 131, 53, 171, 68, 138, 360, 21, 261, 170, 18, 88, 278, 37, 3, 27, 67, 31, 357, 59, 66, 32, 388, 231, 206, 38, 10, 270, 281, 16, 57, 187, 61, 284, 117, 1, 5, 164, 239, 173, 82, 134, 166, 36, 280, 222, 6, 73, 141, 279, 169, 328, 118, 55, 197, 28, 340, 50, 65, 228, 236, 0, 333, 287, 40, 4, 35, 19, 60, 9, 13, 361, 23, 135, 288, 24, 52, 168, 33, 232, 2, 8, 243], [-2, -136, -174, 34, 34, -165, -135, 34, -118, -248, -120, -171, -157, -142, -138, 34, -252, -168, -219, 34, -131, 34, -244, -130, 34, -167, 34, -242, -144, -223, -139, -128, -254, -172, -250, -133, -119, -222, -137, -123, -247, 34, 34, -145, -255, 34, -132, -218, -170, 34, 34, -246, -245, -129, -143, 34, -122, 34, 34, 34, 34, 34, -169, 34, -249, 34, -221, -166, 34, -155, -173, -1, -156, 34, -121, -164, -126, -127, 34, -125, -134, -253, -3, -224, -251, -117, -104, 34, -243, 34, 34, -124, -220]), 'PP_IDENTIFIER_PASTE': ([310, 100, 103, 156, 315], [207, 207, 210, 210, 207]), 'PP_DEFINE_NAME': ([11], [48]), 'FLOAT': ([13, 357, 88, 340, 29, 231, 53, 1, 35, 82, 39, 10, 279, 55, 173, 74, 239, 228, 9, 222, 360, 36, 141, 8, 32, 238, 135, 168, 281, 52, 278, 287, 24, 21, 134, 61, 50, 138, 187, 66, 23, 12, 6, 73, 28, 328, 124, 4, 0, 354, 206, 359, 388, 57, 3, 18, 19, 48, 166, 232, 164, 236, 65, 40, 170, 37, 26, 31, 333, 27, 261, 59, 243, 16, 2, 270, 197, 33, 288, 67, 169, 5, 60, 131, 280, 117, 15, 284, 171, 118, 361, 68, 38], [-134, -144, 32, -221, 32, -172, -157, 32, -126, 32, -165, -119, 32, 32, 32, -248, -170, -155, -125, 32, -252, -129, 32, -124, -128, 32, -224, 32, -137, -104, -244, 32, -117, -168, -246, 32, -166, 32, 32, -139, -3, -118, -122, 32, 32, 32, -174, -164, -1, -136, -250, -135, -254, -247, 32, -131, -127, 32, -245, 32, -218, -173, 32, -121, 32, -130, -120, -242, -156, -167, -219, -223, -220, -123, 32, -222, -249, -243, -251, 32, 32, -132, 32, -171, -143, -255, -2, -145, -142, -169, -253, -138, -133]), 'LEFT_ASSIGN': ([367, 101, 314, 365, 85, 421, 180, 186, 317, 221, 364, 79, 212, 369, 318, 218, 100, 78, 111, 319, 110, 424, 143, 389, 315, 293, 181, 106, 92, 185, 311, 411, 76, 183, 182, 310, 156, 105, 91, 214, 75, 103], [-25, -22, -5, -48, -12, -34, -15, -47, -26, -46, -57, -56, -29, -23, -27, -17, -16, -9, -49, -24, -43, -35, 253, -32, -7, -21, -16, -13, -19, -45, -6, -33, -18, -44, -14, -8, -4, -10, -11, -28, -20, -4]), '}': ([292, 181, 212, 269, 244, 221, 103, 261, 389, 303, 296, 98, 384, 398, 300, 102, 111, 367, 385, 364, 123, 85, 61, 341, 287, 148, 120, 154, 163, 260, 106, 401, 353, 160, 218, 137, 315, 279, 352, 319, 312, 87, 298, 271, 313, 84, 241, 214, 340, 302, 311, 79, 317, 380, 414, 357, 76, 411, 91, 136, 309, 397, 406, 122, 421, 323, 342, 243, 171, 135, 186, 392, 424, 280, 230, 284, 52, 299, 182, 308, 270, 339, 107, 141, 116, 93, 59, 349, 306, 90, 415, 105, 144, 400, 155, 145, 97, 140, 185, 158, 101, 227, 297, 110, 164, 301, 334, 310, 276, 78, 307, 316, 75, 365, 293, 259, 304, 72, 335, 121, 416, 314, 402, 100, 170, 143, 345, 318, 113, 86, 369, 183, 92, 180, 262], [-81, -16, -29, -239, -240, -46, -4, -219, -32, -79, -63, -58, -205, -232, -60, -76, -49, -25, 402, -57, -158, -12, 164, -241, 359, 261, -160, -225, -88, -226, -13, -208, 384, -212, -17, -213, -7, 354, -207, -24, -75, -68, -59, -229, -74, -65, 340, -28, -221, -67, -6, -56, -26, -216, -236, -144, -18, -33, -11, -211, -70, -233, -235, -162, -34, -85, -89, -220, -142, -224, -47, -87, -35, -143, -159, -145, -104, -61, -14, -72, -222, -237, -78, 243, -103, -84, -223, -215, -71, -80, -234, -10, -210, -230, -214, -227, -73, -209, -45, 270, -22, 333, -64, -43, -218, -66, -163, -8, -204, -9, -69, -77, -20, -48, -21, -238, -83, -82, -161, 228, -231, -5, -206, -16, 281, -56, -217, -27, -86, -62, -23, -44, -19, -15, -228])} _lr_action = {} for (_k, _v) in _lr_action_items.items(): for (_x, _y) in zip(_v[0], _v[1]): _lr_action[_x, _k] = _y del _lr_action_items _lr_goto_items = {'expression_statement': ([395, 264, 347, 343, 409, 381, 258, 141, 148, 407, 379, 61, 159, 241, 383, 268], [136, 136, 136, 378, 136, 136, 343, 136, 136, 136, 136, 136, 136, 136, 136, 136]), 'storage_class_specifier': ([29, 141, 28, 222, 55, 60, 61, 232, 65, 2, 3, 328, 1, 238, 168], [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'str_opt_expr_pair': ([422, 412, 413, 390], [404, 418, 404, 404]), 'constant': ([191, 152, 211, 329, 61, 187, 159, 407, 81, 409, 205, 273, 80, 277, 202, 56, 241, 114, 209, 379, 383, 203, 194, 395, 385, 378, 48, 368, 355, 268, 265, 190, 189, 229, 177, 225, 264, 204, 381, 370, 347, 193, 257, 198, 382, 220, 343, 217, 290, 216, 77, 142, 141, 267, 192, 258, 199, 73, 148, 175, 208, 195, 184, 410, 294, 219, 263, 138, 167, 285], [92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92]), 'volatile_opt': ([94], [201]), 'unary_expression': ([273, 202, 208, 114, 209, 138, 192, 370, 229, 194, 263, 175, 198, 241, 265, 195, 184, 177, 410, 225, 187, 219, 409, 381, 148, 77, 407, 167, 189, 193, 257, 191, 382, 217, 152, 211, 290, 159, 142, 141, 385, 294, 379, 80, 258, 285, 368, 73, 203, 268, 56, 347, 383, 329, 204, 395, 48, 355, 205, 343, 277, 190, 264, 216, 61, 267, 81, 199, 220, 378], [143, 79, 79, 79, 79, 143, 79, 79, 79, 79, 143, 79, 79, 143, 143, 79, 143, 79, 143, 79, 143, 79, 143, 143, 143, 183, 143, 143, 79, 79, 143, 79, 143, 143, 79, 79, 79, 143, 143, 143, 143, 79, 143, 185, 143, 79, 143, 143, 79, 143, 79, 143, 143, 79, 79, 143, 79, 79, 79, 143, 143, 79, 143, 143, 143, 143, 186, 79, 143, 143]), 'struct_or_union_specifier': ([138, 2, 168, 88, 169, 222, 67, 65, 328, 187, 48, 55, 1, 279, 238, 82, 28, 73, 232, 141, 61, 3, 287, 60, 170, 29, 173], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]), 'exclusive_or_expression': ([329, 355, 148, 73, 264, 184, 219, 152, 216, 407, 229, 48, 141, 285, 61, 410, 138, 370, 343, 267, 187, 167, 257, 217, 177, 241, 347, 159, 383, 199, 382, 395, 379, 220, 56, 381, 277, 385, 378, 290, 263, 268, 273, 258, 368, 175, 142, 225, 265, 409], [90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 292, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90]), 'identifier_list': ([55], [129]), 'define': ([1], [23]), 'initializer': ([385, 277, 167], [401, 352, 275]), 'macro_param': ([329, 225, 167, 208, 56, 81, 191, 148, 193, 273, 257, 294, 203, 159, 381, 209, 385, 395, 343, 355, 194, 378, 265, 383, 177, 80, 205, 189, 190, 410, 219, 229, 75, 175, 264, 216, 241, 142, 192, 202, 217, 220, 48, 211, 114, 409, 187, 267, 368, 285, 277, 290, 184, 73, 258, 268, 77, 195, 61, 141, 198, 382, 407, 347, 138, 199, 204, 263, 152, 370, 379], [106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 180, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106]), 'struct_declaration_list': ([173, 67, 169], [287, 170, 279]), 'macro_parameter_list': ([71], [176]), 'enumerator': ([54, 119, 230], [120, 120, 335]), 'declaration_list': ([61, 28, 65], [141, 60, 168]), 'iteration_statement': ([148, 264, 407, 395, 383, 61, 159, 241, 379, 381, 347, 141, 268, 409], [137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137]), 'additive_expression': ([265, 329, 355, 217, 220, 229, 395, 257, 73, 264, 142, 138, 208, 285, 61, 268, 381, 195, 56, 277, 343, 290, 152, 216, 407, 199, 209, 48, 383, 241, 148, 187, 382, 410, 141, 205, 370, 203, 204, 347, 379, 263, 184, 368, 219, 409, 167, 202, 378, 211, 159, 194, 258, 267, 175, 273, 385, 225, 177, 198], [84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 302, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 301, 84, 84, 84, 84, 84, 84, 84, 84]), 'assignment_expression': ([167, 216, 258, 265, 220, 148, 347, 264, 184, 217, 410, 241, 263, 381, 383, 407, 378, 267, 385, 187, 409, 379, 277, 73, 273, 268, 159, 257, 141, 61, 395, 382, 343, 142, 368, 138], [276, 320, 161, 161, 161, 161, 161, 161, 161, 161, 161, 161, 344, 161, 161, 161, 161, 161, 276, 161, 161, 161, 276, 161, 161, 161, 161, 342, 161, 161, 161, 161, 161, 161, 391, 161]), 'external_declaration': ([1], [15]), 'type_specifier': ([67, 29, 28, 328, 88, 279, 48, 173, 232, 238, 141, 222, 3, 60, 82, 287, 65, 138, 61, 73, 168, 169, 1, 55, 187, 170, 2], [82, 29, 29, 29, 82, 82, 82, 82, 29, 29, 29, 29, 29, 29, 82, 82, 29, 82, 29, 82, 29, 82, 29, 29, 82, 82, 29]), 'compound_statement': ([60, 264, 409, 383, 159, 268, 241, 65, 347, 141, 61, 381, 407, 148, 379, 168, 28, 395], [134, 144, 144, 144, 144, 144, 144, 166, 144, 144, 144, 144, 144, 144, 144, 278, 57, 144]), 'inclusive_or_expression': ([73, 407, 152, 409, 329, 379, 167, 385, 184, 368, 61, 395, 175, 48, 148, 241, 347, 159, 268, 277, 370, 199, 220, 56, 225, 216, 267, 378, 343, 219, 258, 265, 383, 381, 229, 285, 410, 217, 263, 257, 355, 290, 138, 142, 264, 382, 141, 187, 273], [72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 304, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72]), 'pointer': ([58, 44, 165, 17, 232, 358, 7, 172, 30, 128, 115, 1, 222], [14, 70, 14, 14, 235, 14, 46, 14, 14, 235, 226, 14, 226]), 'selection_statement': ([407, 141, 61, 347, 159, 268, 148, 241, 264, 409, 395, 379, 381, 383], [160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160, 160]), 'postfix_expression': ([73, 192, 294, 56, 199, 194, 263, 187, 383, 378, 175, 77, 217, 141, 152, 189, 285, 159, 219, 142, 193, 257, 329, 355, 81, 395, 379, 268, 381, 205, 202, 190, 410, 204, 61, 241, 290, 208, 148, 229, 407, 277, 265, 114, 184, 409, 203, 138, 267, 216, 343, 198, 264, 191, 347, 382, 211, 48, 220, 177, 368, 273, 225, 385, 195, 370, 167, 80, 258, 209], [110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110]), 'asm_expression': ([290, 241, 56, 142, 395, 273, 385, 202, 141, 205, 48, 378, 204, 265, 329, 268, 383, 199, 80, 198, 184, 192, 148, 343, 194, 73, 159, 370, 229, 258, 187, 257, 225, 189, 138, 114, 407, 211, 219, 177, 263, 285, 355, 209, 175, 203, 277, 379, 264, 195, 220, 409, 152, 347, 216, 193, 267, 382, 190, 61, 167, 410, 368, 381, 81, 77, 208, 217, 294, 191], [111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111]), 'declaration_impl': ([28, 168, 65, 61, 141, 1, 60], [20, 20, 20, 20, 20, 20, 20]), 'and_expression': ([370, 167, 217, 152, 285, 198, 73, 219, 381, 385, 383, 273, 257, 61, 141, 199, 290, 343, 263, 184, 329, 264, 410, 56, 379, 395, 268, 159, 347, 241, 225, 409, 148, 277, 216, 229, 265, 187, 138, 378, 267, 220, 355, 175, 142, 258, 382, 48, 177, 368, 407], [107, 107, 107, 107, 107, 303, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107]), 'type_name': ([73, 48, 138, 187], [179, 89, 179, 295]), 'relational_expression': ([378, 73, 241, 217, 264, 382, 263, 48, 211, 225, 285, 258, 381, 177, 347, 268, 159, 368, 175, 273, 219, 329, 409, 343, 138, 184, 56, 209, 355, 257, 142, 148, 187, 370, 267, 277, 198, 395, 216, 152, 379, 410, 220, 61, 383, 141, 167, 199, 208, 265, 385, 407, 229, 290], [97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 313, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 312, 97, 97, 97, 97, 97]), 'statement': ([264, 407, 381, 347, 379, 148, 409, 159, 241, 395, 61, 141, 268, 383], [345, 414, 398, 380, 397, 260, 416, 272, 260, 406, 154, 154, 349, 400]), 'cast_expression': ([395, 407, 217, 385, 159, 347, 229, 202, 177, 257, 211, 343, 189, 193, 273, 73, 285, 258, 209, 198, 216, 184, 264, 114, 194, 382, 203, 378, 409, 205, 219, 187, 267, 138, 381, 329, 208, 220, 195, 56, 142, 268, 61, 141, 175, 148, 379, 370, 192, 204, 152, 191, 241, 48, 190, 225, 294, 410, 199, 167, 290, 265, 383, 368, 277, 263, 355], [98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 300, 98, 98, 98, 98, 98, 98, 98, 98, 98, 221, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 299, 98, 98, 298, 98, 98, 98, 98, 364, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98]), 'init_declarator': ([58, 165, 30], [63, 274, 63]), 'struct_declarator_list': ([172], [286]), 'logical_or_expression': ([343, 407, 265, 217, 285, 395, 347, 258, 273, 257, 410, 138, 184, 378, 264, 73, 381, 216, 142, 382, 268, 61, 141, 187, 267, 175, 220, 370, 148, 48, 409, 56, 167, 379, 152, 263, 329, 290, 241, 225, 383, 385, 277, 368, 159, 229, 355], [113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113]), 'unary_operator': ([77, 141, 241, 148, 277, 159, 192, 407, 56, 184, 194, 409, 294, 203, 187, 217, 205, 189, 198, 219, 202, 142, 382, 190, 211, 220, 204, 368, 273, 257, 225, 258, 167, 208, 379, 385, 229, 265, 114, 138, 378, 267, 175, 290, 61, 285, 191, 355, 370, 343, 48, 193, 177, 329, 152, 195, 81, 80, 209, 264, 395, 216, 73, 268, 381, 199, 263, 410, 347, 383], [114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114]), 'translation_unit': ([0], [1]), 'struct_or_union': ([55, 141, 3, 88, 173, 232, 170, 287, 328, 48, 60, 2, 61, 82, 238, 138, 67, 222, 169, 29, 187, 279, 168, 1, 28, 73, 65], [41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41]), 'type_qualifier_list': ([7], [44]), 'struct_declaration': ([279, 169, 67, 287, 173, 170], [280, 171, 171, 280, 171, 280]), 'string_literal': ([203, 148, 381, 265, 220, 216, 395, 202, 294, 382, 80, 219, 412, 347, 77, 241, 211, 167, 192, 410, 189, 142, 56, 184, 370, 217, 422, 263, 198, 285, 205, 383, 152, 379, 175, 190, 195, 390, 75, 407, 264, 177, 277, 290, 378, 225, 208, 191, 114, 267, 355, 187, 409, 329, 204, 258, 343, 368, 193, 138, 199, 159, 268, 257, 141, 48, 229, 61, 385, 305, 81, 194, 413, 209, 73, 273], [85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 403, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 403, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 403, 182, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 366, 85, 85, 403, 85, 85, 85]), 'parameter_type_list': ([222, 232, 328, 55], [326, 326, 374, 126]), 'parameter_declaration': ([328, 232, 238, 55, 222], [127, 127, 338, 127, 127]), 'multiplicative_expression': ([381, 167, 61, 195, 355, 204, 138, 379, 203, 409, 198, 175, 177, 258, 285, 277, 225, 187, 219, 211, 268, 48, 194, 148, 142, 257, 73, 378, 56, 395, 202, 229, 407, 159, 189, 209, 343, 385, 329, 273, 265, 208, 368, 290, 382, 205, 141, 184, 199, 383, 220, 190, 264, 410, 216, 217, 152, 241, 370, 267, 347, 263], [86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 296, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 297, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86]), 'declarator': ([232, 165, 1, 30, 128, 58, 172, 17, 358], [51, 133, 28, 65, 234, 133, 283, 51, 283]), 'argument_expression_list': ([216], [321]), 'str_opt_expr_pair_list': ([390, 413, 422], [405, 419, 423]), 'statement_list': ([61, 141], [148, 241]), 'constant_expression': ([48, 290, 56, 175, 225, 285, 152, 329, 355, 229], [99, 362, 132, 289, 330, 356, 266, 376, 386, 334]), 'enumerator_list_iso': ([54, 119], [123, 123]), 'primary_expression': ([385, 73, 187, 220, 370, 267, 277, 199, 191, 209, 204, 241, 347, 208, 257, 48, 211, 205, 159, 355, 194, 379, 219, 61, 141, 175, 290, 329, 198, 343, 216, 138, 184, 56, 264, 265, 294, 152, 410, 285, 192, 258, 407, 229, 202, 77, 381, 378, 148, 273, 268, 409, 395, 80, 81, 382, 195, 225, 177, 142, 203, 368, 114, 190, 193, 217, 383, 189, 167, 263], [101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101]), 'declaration_specifiers': ([29, 222, 238, 232, 28, 168, 328, 60, 1, 61, 141, 55, 65, 3, 2], [62, 128, 128, 128, 58, 58, 128, 58, 30, 58, 58, 128, 58, 43, 42]), 'declaration': ([141, 60, 1, 168, 65, 28, 61], [135, 135, 31, 135, 59, 59, 59]), 'direct_declarator': ([172, 1, 128, 235, 14, 30, 358, 232, 58, 17, 165], [27, 27, 27, 50, 50, 27, 27, 27, 27, 27, 27]), 'logical_and_expression': ([347, 56, 407, 355, 138, 378, 61, 141, 379, 395, 290, 220, 48, 175, 263, 410, 258, 285, 277, 225, 187, 267, 73, 229, 142, 381, 329, 273, 265, 167, 368, 343, 385, 383, 184, 264, 241, 409, 370, 268, 216, 217, 152, 219, 148, 257, 159, 382], [93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 323, 93, 93, 93, 93]), 'init_declarator_list': ([58, 30], [64, 64]), 'shift_expression': ([208, 229, 211, 378, 241, 184, 216, 410, 285, 141, 409, 379, 217, 395, 265, 263, 202, 257, 56, 167, 199, 187, 219, 159, 258, 370, 264, 209, 175, 220, 205, 385, 142, 225, 329, 273, 368, 383, 347, 355, 177, 48, 343, 152, 267, 382, 407, 198, 277, 148, 61, 290, 204, 203, 73, 381, 268, 138], [87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 306, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 309, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 308, 307, 87, 87, 87, 87]), 'equality_expression': ([48, 268, 381, 378, 343, 368, 216, 267, 56, 199, 385, 225, 177, 198, 383, 265, 355, 241, 217, 148, 229, 395, 257, 347, 409, 61, 379, 277, 184, 290, 152, 167, 407, 211, 159, 258, 175, 273, 187, 382, 329, 141, 220, 73, 264, 370, 142, 138, 263, 285, 219, 410], [102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 316, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102]), 'jump_statement': ([264, 159, 381, 379, 347, 407, 141, 268, 241, 148, 61, 395, 383, 409], [155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155, 155]), 'struct_declarator': ([358, 172], [387, 282]), 'function_definition': ([1], [33]), 'parameter_list': ([328, 222, 55, 232], [130, 130, 130, 130]), 'enum_specifier': ([82, 170, 29, 168, 61, 1, 3, 88, 48, 222, 169, 232, 65, 287, 60, 238, 173, 28, 328, 67, 187, 141, 73, 279, 138, 55, 2], [38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38]), 'type_qualifier': ([187, 55, 88, 82, 44, 28, 169, 328, 238, 279, 65, 173, 222, 60, 141, 7, 287, 2, 138, 73, 232, 29, 168, 67, 3, 61, 48, 170, 1], [88, 3, 88, 88, 69, 3, 88, 3, 3, 88, 3, 88, 3, 3, 3, 45, 88, 3, 88, 88, 3, 3, 3, 88, 3, 3, 88, 88, 3]), 'enumerator_list': ([119, 54], [227, 121]), 'labeled_statement': ([141, 148, 395, 407, 61, 383, 379, 159, 268, 241, 347, 264, 409, 381], [140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140, 140]), 'abstract_declarator': ([115, 222, 232, 128], [223, 327, 327, 233]), 'specifier_qualifier_list': ([169, 170, 173, 48, 279, 73, 187, 138, 287, 88, 82, 67], [172, 172, 172, 115, 172, 115, 115, 115, 172, 196, 188, 172]), 'multi_string_literal': ([205, 267, 138, 203, 184, 114, 265, 229, 343, 290, 81, 410, 385, 61, 257, 204, 193, 192, 347, 190, 142, 202, 381, 159, 219, 268, 285, 379, 152, 395, 217, 294, 209, 264, 263, 194, 199, 407, 241, 355, 258, 80, 195, 189, 141, 77, 175, 273, 382, 220, 378, 383, 187, 56, 73, 198, 216, 167, 370, 277, 148, 409, 225, 329, 368, 177, 48, 211, 208, 191], [75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75]), 'assignment_operator': ([143], [257]), 'initializer_list': ([277], [353]), 'conditional_expression': ([257, 56, 217, 285, 187, 265, 141, 258, 241, 148, 48, 385, 216, 368, 273, 184, 329, 159, 378, 343, 267, 407, 73, 225, 263, 410, 370, 277, 268, 382, 264, 167, 175, 152, 395, 409, 138, 61, 290, 355, 229, 220, 381, 383, 142, 379, 347], [163, 116, 163, 116, 163, 163, 163, 163, 163, 163, 116, 163, 163, 163, 163, 163, 116, 163, 163, 163, 163, 163, 163, 116, 163, 163, 392, 163, 163, 163, 163, 163, 116, 116, 163, 163, 163, 163, 116, 116, 116, 163, 163, 163, 163, 163, 163]), 'direct_abstract_declarator': ([115, 235, 226, 128, 232, 222], [224, 332, 332, 224, 224, 224]), 'identifier': ([205, 410, 368, 285, 407, 294, 195, 56, 264, 208, 203, 277, 355, 273, 175, 263, 199, 258, 81, 207, 148, 385, 267, 61, 141, 77, 329, 290, 220, 210, 167, 73, 193, 219, 381, 204, 382, 138, 347, 225, 177, 265, 229, 48, 184, 187, 378, 189, 192, 216, 383, 209, 217, 343, 409, 114, 190, 241, 202, 198, 257, 80, 142, 370, 159, 211, 152, 268, 191, 379, 395, 194], [76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 311, 76, 76, 76, 76, 76, 76, 76, 76, 76, 314, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76]), 'expression': ([378, 73, 187, 381, 343, 409, 265, 61, 268, 379, 347, 264, 267, 142, 273, 383, 138, 410, 258, 141, 159, 148, 382, 184, 217, 395, 220, 407, 241], [396, 178, 178, 149, 149, 149, 346, 149, 149, 149, 149, 149, 348, 245, 351, 149, 178, 417, 149, 149, 149, 149, 399, 178, 322, 149, 324, 149, 149])} _lr_goto = {} for (_k, _v) in _lr_goto_items.items(): for (_x, _y) in zip(_v[0], _v[1]): _lr_goto[_x, _k] = _y del _lr_goto_items _lr_productions = [("S'", 1, None, None, None), ('translation_unit', 0, 'p_translation_unit', 'ctypesgencore/parser/cgrammar.py', 57), ('translation_unit', 2, 'p_translation_unit', 'ctypesgencore/parser/cgrammar.py', 58), ('translation_unit', 2, 'p_translation_unit', 'ctypesgencore/parser/cgrammar.py', 59), ('identifier', 1, 'p_identifier', 'ctypesgencore/parser/cgrammar.py', 67), ('identifier', 3, 'p_identifier', 'ctypesgencore/parser/cgrammar.py', 68), ('identifier', 3, 'p_identifier', 'ctypesgencore/parser/cgrammar.py', 69), ('identifier', 3, 'p_identifier', 'ctypesgencore/parser/cgrammar.py', 70), ('identifier', 3, 'p_identifier', 'ctypesgencore/parser/cgrammar.py', 71), ('constant', 1, 'p_constant', 'ctypesgencore/parser/cgrammar.py', 87), ('constant', 1, 'p_constant', 'ctypesgencore/parser/cgrammar.py', 88), ('string_literal', 1, 'p_string_literal', 'ctypesgencore/parser/cgrammar.py', 111), ('multi_string_literal', 1, 'p_multi_string_literal', 'ctypesgencore/parser/cgrammar.py', 115), ('multi_string_literal', 1, 'p_multi_string_literal', 'ctypesgencore/parser/cgrammar.py', 116), ('multi_string_literal', 2, 'p_multi_string_literal', 'ctypesgencore/parser/cgrammar.py', 117), ('multi_string_literal', 2, 'p_multi_string_literal', 'ctypesgencore/parser/cgrammar.py', 118), ('macro_param', 1, 'p_macro_param', 'ctypesgencore/parser/cgrammar.py', 127), ('macro_param', 2, 'p_macro_param', 'ctypesgencore/parser/cgrammar.py', 128), ('primary_expression', 1, 'p_primary_expression', 'ctypesgencore/parser/cgrammar.py', 136), ('primary_expression', 1, 'p_primary_expression', 'ctypesgencore/parser/cgrammar.py', 137), ('primary_expression', 1, 'p_primary_expression', 'ctypesgencore/parser/cgrammar.py', 138), ('primary_expression', 3, 'p_primary_expression', 'ctypesgencore/parser/cgrammar.py', 139), ('postfix_expression', 1, 'p_postfix_expression', 'ctypesgencore/parser/cgrammar.py', 147), ('postfix_expression', 4, 'p_postfix_expression', 'ctypesgencore/parser/cgrammar.py', 148), ('postfix_expression', 3, 'p_postfix_expression', 'ctypesgencore/parser/cgrammar.py', 149), ('postfix_expression', 4, 'p_postfix_expression', 'ctypesgencore/parser/cgrammar.py', 150), ('postfix_expression', 3, 'p_postfix_expression', 'ctypesgencore/parser/cgrammar.py', 151), ('postfix_expression', 3, 'p_postfix_expression', 'ctypesgencore/parser/cgrammar.py', 152), ('postfix_expression', 2, 'p_postfix_expression', 'ctypesgencore/parser/cgrammar.py', 153), ('postfix_expression', 2, 'p_postfix_expression', 'ctypesgencore/parser/cgrammar.py', 154), ('argument_expression_list', 1, 'p_argument_expression_list', 'ctypesgencore/parser/cgrammar.py', 187), ('argument_expression_list', 3, 'p_argument_expression_list', 'ctypesgencore/parser/cgrammar.py', 188), ('asm_expression', 5, 'p_asm_expression', 'ctypesgencore/parser/cgrammar.py', 197), ('asm_expression', 7, 'p_asm_expression', 'ctypesgencore/parser/cgrammar.py', 198), ('asm_expression', 9, 'p_asm_expression', 'ctypesgencore/parser/cgrammar.py', 199), ('asm_expression', 11, 'p_asm_expression', 'ctypesgencore/parser/cgrammar.py', 200), ('str_opt_expr_pair_list', 0, 'p_str_opt_expr_pair_list', 'ctypesgencore/parser/cgrammar.py', 212), ('str_opt_expr_pair_list', 1, 'p_str_opt_expr_pair_list', 'ctypesgencore/parser/cgrammar.py', 213), ('str_opt_expr_pair_list', 3, 'p_str_opt_expr_pair_list', 'ctypesgencore/parser/cgrammar.py', 214), ('str_opt_expr_pair', 1, 'p_str_opt_expr_pair', 'ctypesgencore/parser/cgrammar.py', 218), ('str_opt_expr_pair', 4, 'p_str_opt_expr_pair', 'ctypesgencore/parser/cgrammar.py', 219), ('volatile_opt', 0, 'p_volatile_opt', 'ctypesgencore/parser/cgrammar.py', 223), ('volatile_opt', 1, 'p_volatile_opt', 'ctypesgencore/parser/cgrammar.py', 224), ('unary_expression', 1, 'p_unary_expression', 'ctypesgencore/parser/cgrammar.py', 239), ('unary_expression', 2, 'p_unary_expression', 'ctypesgencore/parser/cgrammar.py', 240), ('unary_expression', 2, 'p_unary_expression', 'ctypesgencore/parser/cgrammar.py', 241), ('unary_expression', 2, 'p_unary_expression', 'ctypesgencore/parser/cgrammar.py', 242), ('unary_expression', 2, 'p_unary_expression', 'ctypesgencore/parser/cgrammar.py', 243), ('unary_expression', 4, 'p_unary_expression', 'ctypesgencore/parser/cgrammar.py', 244), ('unary_expression', 1, 'p_unary_expression', 'ctypesgencore/parser/cgrammar.py', 245), ('unary_operator', 1, 'p_unary_operator', 'ctypesgencore/parser/cgrammar.py', 262), ('unary_operator', 1, 'p_unary_operator', 'ctypesgencore/parser/cgrammar.py', 263), ('unary_operator', 1, 'p_unary_operator', 'ctypesgencore/parser/cgrammar.py', 264), ('unary_operator', 1, 'p_unary_operator', 'ctypesgencore/parser/cgrammar.py', 265), ('unary_operator', 1, 'p_unary_operator', 'ctypesgencore/parser/cgrammar.py', 266), ('unary_operator', 1, 'p_unary_operator', 'ctypesgencore/parser/cgrammar.py', 267), ('cast_expression', 1, 'p_cast_expression', 'ctypesgencore/parser/cgrammar.py', 272), ('cast_expression', 4, 'p_cast_expression', 'ctypesgencore/parser/cgrammar.py', 273), ('multiplicative_expression', 1, 'p_multiplicative_expression', 'ctypesgencore/parser/cgrammar.py', 287), ('multiplicative_expression', 3, 'p_multiplicative_expression', 'ctypesgencore/parser/cgrammar.py', 288), ('multiplicative_expression', 3, 'p_multiplicative_expression', 'ctypesgencore/parser/cgrammar.py', 289), ('multiplicative_expression', 3, 'p_multiplicative_expression', 'ctypesgencore/parser/cgrammar.py', 290), ('additive_expression', 1, 'p_additive_expression', 'ctypesgencore/parser/cgrammar.py', 305), ('additive_expression', 3, 'p_additive_expression', 'ctypesgencore/parser/cgrammar.py', 306), ('additive_expression', 3, 'p_additive_expression', 'ctypesgencore/parser/cgrammar.py', 307), ('shift_expression', 1, 'p_shift_expression', 'ctypesgencore/parser/cgrammar.py', 322), ('shift_expression', 3, 'p_shift_expression', 'ctypesgencore/parser/cgrammar.py', 323), ('shift_expression', 3, 'p_shift_expression', 'ctypesgencore/parser/cgrammar.py', 324), ('relational_expression', 1, 'p_relational_expression', 'ctypesgencore/parser/cgrammar.py', 341), ('relational_expression', 3, 'p_relational_expression', 'ctypesgencore/parser/cgrammar.py', 342), ('relational_expression', 3, 'p_relational_expression', 'ctypesgencore/parser/cgrammar.py', 343), ('relational_expression', 3, 'p_relational_expression', 'ctypesgencore/parser/cgrammar.py', 344), ('relational_expression', 3, 'p_relational_expression', 'ctypesgencore/parser/cgrammar.py', 345), ('equality_expression', 1, 'p_equality_expression', 'ctypesgencore/parser/cgrammar.py', 360), ('equality_expression', 3, 'p_equality_expression', 'ctypesgencore/parser/cgrammar.py', 361), ('equality_expression', 3, 'p_equality_expression', 'ctypesgencore/parser/cgrammar.py', 362), ('and_expression', 1, 'p_and_expression', 'ctypesgencore/parser/cgrammar.py', 372), ('and_expression', 3, 'p_and_expression', 'ctypesgencore/parser/cgrammar.py', 373), ('exclusive_or_expression', 1, 'p_exclusive_or_expression', 'ctypesgencore/parser/cgrammar.py', 382), ('exclusive_or_expression', 3, 'p_exclusive_or_expression', 'ctypesgencore/parser/cgrammar.py', 383), ('inclusive_or_expression', 1, 'p_inclusive_or_expression', 'ctypesgencore/parser/cgrammar.py', 392), ('inclusive_or_expression', 3, 'p_inclusive_or_expression', 'ctypesgencore/parser/cgrammar.py', 393), ('logical_and_expression', 1, 'p_logical_and_expression', 'ctypesgencore/parser/cgrammar.py', 402), ('logical_and_expression', 3, 'p_logical_and_expression', 'ctypesgencore/parser/cgrammar.py', 403), ('logical_or_expression', 1, 'p_logical_or_expression', 'ctypesgencore/parser/cgrammar.py', 412), ('logical_or_expression', 3, 'p_logical_or_expression', 'ctypesgencore/parser/cgrammar.py', 413), ('conditional_expression', 1, 'p_conditional_expression', 'ctypesgencore/parser/cgrammar.py', 422), ('conditional_expression', 5, 'p_conditional_expression', 'ctypesgencore/parser/cgrammar.py', 423), ('assignment_expression', 1, 'p_assignment_expression', 'ctypesgencore/parser/cgrammar.py', 444), ('assignment_expression', 3, 'p_assignment_expression', 'ctypesgencore/parser/cgrammar.py', 445), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 460), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 461), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 462), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 463), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 464), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 465), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 466), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 467), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 468), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 469), ('assignment_operator', 1, 'p_assignment_operator', 'ctypesgencore/parser/cgrammar.py', 470), ('expression', 1, 'p_expression', 'ctypesgencore/parser/cgrammar.py', 475), ('expression', 3, 'p_expression', 'ctypesgencore/parser/cgrammar.py', 476), ('constant_expression', 1, 'p_constant_expression', 'ctypesgencore/parser/cgrammar.py', 482), ('declaration', 2, 'p_declaration', 'ctypesgencore/parser/cgrammar.py', 487), ('declaration_impl', 1, 'p_declaration_impl', 'ctypesgencore/parser/cgrammar.py', 494), ('declaration_impl', 2, 'p_declaration_impl', 'ctypesgencore/parser/cgrammar.py', 495), ('declaration_specifiers', 1, 'p_declaration_specifiers', 'ctypesgencore/parser/cgrammar.py', 519), ('declaration_specifiers', 2, 'p_declaration_specifiers', 'ctypesgencore/parser/cgrammar.py', 520), ('declaration_specifiers', 1, 'p_declaration_specifiers', 'ctypesgencore/parser/cgrammar.py', 521), ('declaration_specifiers', 2, 'p_declaration_specifiers', 'ctypesgencore/parser/cgrammar.py', 522), ('declaration_specifiers', 1, 'p_declaration_specifiers', 'ctypesgencore/parser/cgrammar.py', 523), ('declaration_specifiers', 2, 'p_declaration_specifiers', 'ctypesgencore/parser/cgrammar.py', 524), ('init_declarator_list', 1, 'p_init_declarator_list', 'ctypesgencore/parser/cgrammar.py', 532), ('init_declarator_list', 3, 'p_init_declarator_list', 'ctypesgencore/parser/cgrammar.py', 533), ('init_declarator', 1, 'p_init_declarator', 'ctypesgencore/parser/cgrammar.py', 541), ('init_declarator', 3, 'p_init_declarator', 'ctypesgencore/parser/cgrammar.py', 542), ('storage_class_specifier', 1, 'p_storage_class_specifier', 'ctypesgencore/parser/cgrammar.py', 549), ('storage_class_specifier', 1, 'p_storage_class_specifier', 'ctypesgencore/parser/cgrammar.py', 550), ('storage_class_specifier', 1, 'p_storage_class_specifier', 'ctypesgencore/parser/cgrammar.py', 551), ('storage_class_specifier', 1, 'p_storage_class_specifier', 'ctypesgencore/parser/cgrammar.py', 552), ('storage_class_specifier', 1, 'p_storage_class_specifier', 'ctypesgencore/parser/cgrammar.py', 553), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 558), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 559), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 560), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 561), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 562), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 563), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 564), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 565), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 566), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 567), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 568), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 569), ('type_specifier', 1, 'p_type_specifier', 'ctypesgencore/parser/cgrammar.py', 570), ('struct_or_union_specifier', 5, 'p_struct_or_union_specifier', 'ctypesgencore/parser/cgrammar.py', 579), ('struct_or_union_specifier', 5, 'p_struct_or_union_specifier', 'ctypesgencore/parser/cgrammar.py', 580), ('struct_or_union_specifier', 4, 'p_struct_or_union_specifier', 'ctypesgencore/parser/cgrammar.py', 581), ('struct_or_union_specifier', 2, 'p_struct_or_union_specifier', 'ctypesgencore/parser/cgrammar.py', 582), ('struct_or_union_specifier', 2, 'p_struct_or_union_specifier', 'ctypesgencore/parser/cgrammar.py', 583), ('struct_or_union', 1, 'p_struct_or_union', 'ctypesgencore/parser/cgrammar.py', 599), ('struct_or_union', 1, 'p_struct_or_union', 'ctypesgencore/parser/cgrammar.py', 600), ('struct_declaration_list', 1, 'p_struct_declaration_list', 'ctypesgencore/parser/cgrammar.py', 605), ('struct_declaration_list', 2, 'p_struct_declaration_list', 'ctypesgencore/parser/cgrammar.py', 606), ('struct_declaration', 3, 'p_struct_declaration', 'ctypesgencore/parser/cgrammar.py', 614), ('struct_declaration', 2, 'p_struct_declaration', 'ctypesgencore/parser/cgrammar.py', 615), ('specifier_qualifier_list', 2, 'p_specifier_qualifier_list', 'ctypesgencore/parser/cgrammar.py', 635), ('specifier_qualifier_list', 1, 'p_specifier_qualifier_list', 'ctypesgencore/parser/cgrammar.py', 636), ('specifier_qualifier_list', 2, 'p_specifier_qualifier_list', 'ctypesgencore/parser/cgrammar.py', 637), ('specifier_qualifier_list', 1, 'p_specifier_qualifier_list', 'ctypesgencore/parser/cgrammar.py', 638), ('struct_declarator_list', 1, 'p_struct_declarator_list', 'ctypesgencore/parser/cgrammar.py', 647), ('struct_declarator_list', 3, 'p_struct_declarator_list', 'ctypesgencore/parser/cgrammar.py', 648), ('struct_declarator', 1, 'p_struct_declarator', 'ctypesgencore/parser/cgrammar.py', 656), ('struct_declarator', 2, 'p_struct_declarator', 'ctypesgencore/parser/cgrammar.py', 657), ('struct_declarator', 3, 'p_struct_declarator', 'ctypesgencore/parser/cgrammar.py', 658), ('enum_specifier', 4, 'p_enum_specifier', 'ctypesgencore/parser/cgrammar.py', 669), ('enum_specifier', 5, 'p_enum_specifier', 'ctypesgencore/parser/cgrammar.py', 670), ('enum_specifier', 2, 'p_enum_specifier', 'ctypesgencore/parser/cgrammar.py', 671), ('enumerator_list', 1, 'p_enumerator_list', 'ctypesgencore/parser/cgrammar.py', 684), ('enumerator_list', 2, 'p_enumerator_list', 'ctypesgencore/parser/cgrammar.py', 685), ('enumerator_list_iso', 1, 'p_enumerator_list_iso', 'ctypesgencore/parser/cgrammar.py', 692), ('enumerator_list_iso', 3, 'p_enumerator_list_iso', 'ctypesgencore/parser/cgrammar.py', 693), ('enumerator', 1, 'p_enumerator', 'ctypesgencore/parser/cgrammar.py', 701), ('enumerator', 3, 'p_enumerator', 'ctypesgencore/parser/cgrammar.py', 702), ('type_qualifier', 1, 'p_type_qualifier', 'ctypesgencore/parser/cgrammar.py', 710), ('type_qualifier', 1, 'p_type_qualifier', 'ctypesgencore/parser/cgrammar.py', 711), ('declarator', 2, 'p_declarator', 'ctypesgencore/parser/cgrammar.py', 716), ('declarator', 1, 'p_declarator', 'ctypesgencore/parser/cgrammar.py', 717), ('direct_declarator', 1, 'p_direct_declarator', 'ctypesgencore/parser/cgrammar.py', 729), ('direct_declarator', 3, 'p_direct_declarator', 'ctypesgencore/parser/cgrammar.py', 730), ('direct_declarator', 4, 'p_direct_declarator', 'ctypesgencore/parser/cgrammar.py', 731), ('direct_declarator', 3, 'p_direct_declarator', 'ctypesgencore/parser/cgrammar.py', 732), ('direct_declarator', 4, 'p_direct_declarator', 'ctypesgencore/parser/cgrammar.py', 733), ('direct_declarator', 4, 'p_direct_declarator', 'ctypesgencore/parser/cgrammar.py', 734), ('direct_declarator', 3, 'p_direct_declarator', 'ctypesgencore/parser/cgrammar.py', 735), ('pointer', 1, 'p_pointer', 'ctypesgencore/parser/cgrammar.py', 764), ('pointer', 2, 'p_pointer', 'ctypesgencore/parser/cgrammar.py', 765), ('pointer', 2, 'p_pointer', 'ctypesgencore/parser/cgrammar.py', 766), ('pointer', 3, 'p_pointer', 'ctypesgencore/parser/cgrammar.py', 767), ('type_qualifier_list', 1, 'p_type_qualifier_list', 'ctypesgencore/parser/cgrammar.py', 784), ('type_qualifier_list', 2, 'p_type_qualifier_list', 'ctypesgencore/parser/cgrammar.py', 785), ('parameter_type_list', 1, 'p_parameter_type_list', 'ctypesgencore/parser/cgrammar.py', 793), ('parameter_type_list', 3, 'p_parameter_type_list', 'ctypesgencore/parser/cgrammar.py', 794), ('parameter_list', 1, 'p_parameter_list', 'ctypesgencore/parser/cgrammar.py', 803), ('parameter_list', 3, 'p_parameter_list', 'ctypesgencore/parser/cgrammar.py', 804), ('parameter_declaration', 2, 'p_parameter_declaration', 'ctypesgencore/parser/cgrammar.py', 812), ('parameter_declaration', 2, 'p_parameter_declaration', 'ctypesgencore/parser/cgrammar.py', 813), ('parameter_declaration', 1, 'p_parameter_declaration', 'ctypesgencore/parser/cgrammar.py', 814), ('identifier_list', 1, 'p_identifier_list', 'ctypesgencore/parser/cgrammar.py', 822), ('identifier_list', 3, 'p_identifier_list', 'ctypesgencore/parser/cgrammar.py', 823), ('type_name', 1, 'p_type_name', 'ctypesgencore/parser/cgrammar.py', 835), ('type_name', 2, 'p_type_name', 'ctypesgencore/parser/cgrammar.py', 836), ('abstract_declarator', 1, 'p_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 852), ('abstract_declarator', 1, 'p_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 853), ('abstract_declarator', 2, 'p_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 854), ('direct_abstract_declarator', 3, 'p_direct_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 873), ('direct_abstract_declarator', 2, 'p_direct_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 874), ('direct_abstract_declarator', 3, 'p_direct_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 875), ('direct_abstract_declarator', 3, 'p_direct_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 876), ('direct_abstract_declarator', 4, 'p_direct_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 877), ('direct_abstract_declarator', 2, 'p_direct_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 878), ('direct_abstract_declarator', 3, 'p_direct_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 879), ('direct_abstract_declarator', 3, 'p_direct_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 880), ('direct_abstract_declarator', 4, 'p_direct_abstract_declarator', 'ctypesgencore/parser/cgrammar.py', 881), ('initializer', 1, 'p_initializer', 'ctypesgencore/parser/cgrammar.py', 918), ('initializer', 3, 'p_initializer', 'ctypesgencore/parser/cgrammar.py', 919), ('initializer', 4, 'p_initializer', 'ctypesgencore/parser/cgrammar.py', 920), ('initializer_list', 1, 'p_initializer_list', 'ctypesgencore/parser/cgrammar.py', 924), ('initializer_list', 3, 'p_initializer_list', 'ctypesgencore/parser/cgrammar.py', 925), ('statement', 1, 'p_statement', 'ctypesgencore/parser/cgrammar.py', 929), ('statement', 1, 'p_statement', 'ctypesgencore/parser/cgrammar.py', 930), ('statement', 1, 'p_statement', 'ctypesgencore/parser/cgrammar.py', 931), ('statement', 1, 'p_statement', 'ctypesgencore/parser/cgrammar.py', 932), ('statement', 1, 'p_statement', 'ctypesgencore/parser/cgrammar.py', 933), ('statement', 1, 'p_statement', 'ctypesgencore/parser/cgrammar.py', 934), ('labeled_statement', 3, 'p_labeled_statement', 'ctypesgencore/parser/cgrammar.py', 938), ('labeled_statement', 4, 'p_labeled_statement', 'ctypesgencore/parser/cgrammar.py', 939), ('labeled_statement', 3, 'p_labeled_statement', 'ctypesgencore/parser/cgrammar.py', 940), ('compound_statement', 2, 'p_compound_statement', 'ctypesgencore/parser/cgrammar.py', 944), ('compound_statement', 3, 'p_compound_statement', 'ctypesgencore/parser/cgrammar.py', 945), ('compound_statement', 3, 'p_compound_statement', 'ctypesgencore/parser/cgrammar.py', 946), ('compound_statement', 4, 'p_compound_statement', 'ctypesgencore/parser/cgrammar.py', 947), ('compound_statement', 3, 'p_compound_statement_error', 'ctypesgencore/parser/cgrammar.py', 951), ('declaration_list', 1, 'p_declaration_list', 'ctypesgencore/parser/cgrammar.py', 956), ('declaration_list', 2, 'p_declaration_list', 'ctypesgencore/parser/cgrammar.py', 957), ('statement_list', 1, 'p_statement_list', 'ctypesgencore/parser/cgrammar.py', 961), ('statement_list', 2, 'p_statement_list', 'ctypesgencore/parser/cgrammar.py', 962), ('expression_statement', 1, 'p_expression_statement', 'ctypesgencore/parser/cgrammar.py', 966), ('expression_statement', 2, 'p_expression_statement', 'ctypesgencore/parser/cgrammar.py', 967), ('expression_statement', 2, 'p_expression_statement_error', 'ctypesgencore/parser/cgrammar.py', 970), ('selection_statement', 5, 'p_selection_statement', 'ctypesgencore/parser/cgrammar.py', 975), ('selection_statement', 7, 'p_selection_statement', 'ctypesgencore/parser/cgrammar.py', 976), ('selection_statement', 5, 'p_selection_statement', 'ctypesgencore/parser/cgrammar.py', 977), ('iteration_statement', 5, 'p_iteration_statement', 'ctypesgencore/parser/cgrammar.py', 981), ('iteration_statement', 7, 'p_iteration_statement', 'ctypesgencore/parser/cgrammar.py', 982), ('iteration_statement', 6, 'p_iteration_statement', 'ctypesgencore/parser/cgrammar.py', 983), ('iteration_statement', 7, 'p_iteration_statement', 'ctypesgencore/parser/cgrammar.py', 984), ('jump_statement', 3, 'p_jump_statement', 'ctypesgencore/parser/cgrammar.py', 988), ('jump_statement', 2, 'p_jump_statement', 'ctypesgencore/parser/cgrammar.py', 989), ('jump_statement', 2, 'p_jump_statement', 'ctypesgencore/parser/cgrammar.py', 990), ('jump_statement', 2, 'p_jump_statement', 'ctypesgencore/parser/cgrammar.py', 991), ('jump_statement', 3, 'p_jump_statement', 'ctypesgencore/parser/cgrammar.py', 992), ('external_declaration', 1, 'p_external_declaration', 'ctypesgencore/parser/cgrammar.py', 996), ('external_declaration', 1, 'p_external_declaration', 'ctypesgencore/parser/cgrammar.py', 997), ('function_definition', 4, 'p_function_definition', 'ctypesgencore/parser/cgrammar.py', 1003), ('function_definition', 3, 'p_function_definition', 'ctypesgencore/parser/cgrammar.py', 1004), ('function_definition', 3, 'p_function_definition', 'ctypesgencore/parser/cgrammar.py', 1005), ('function_definition', 2, 'p_function_definition', 'ctypesgencore/parser/cgrammar.py', 1006), ('define', 3, 'p_define', 'ctypesgencore/parser/cgrammar.py', 1010), ('define', 4, 'p_define', 'ctypesgencore/parser/cgrammar.py', 1011), ('define', 4, 'p_define', 'ctypesgencore/parser/cgrammar.py', 1012), ('define', 5, 'p_define', 'ctypesgencore/parser/cgrammar.py', 1013), ('define', 6, 'p_define', 'ctypesgencore/parser/cgrammar.py', 1014), ('define', 6, 'p_define', 'ctypesgencore/parser/cgrammar.py', 1015), ('define', 7, 'p_define', 'ctypesgencore/parser/cgrammar.py', 1016), ('define', 3, 'p_define_error', 'ctypesgencore/parser/cgrammar.py', 1049), ('macro_parameter_list', 1, 'p_macro_parameter_list', 'ctypesgencore/parser/cgrammar.py', 1078), ('macro_parameter_list', 3, 'p_macro_parameter_list', 'ctypesgencore/parser/cgrammar.py', 1079)]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # @author JourWon # @date 2021/12/29 # @file pyIf.py if __name__ == "__main__": n = 10 if n < 0: print(-1) elif n == 0: print(0) else: print(1)
if __name__ == '__main__': n = 10 if n < 0: print(-1) elif n == 0: print(0) else: print(1)
n=int(input()) s=input() s=s.split(' ') m=int(input()) v=0 p=0 b=input() b=b.split(' ') for x in range(0,m): a=int(b[x]) for i in range(0,n): if a==int(s[i]): v=v+i+1 p=p+n-i print(str(v)+' '+str(p))
n = int(input()) s = input() s = s.split(' ') m = int(input()) v = 0 p = 0 b = input() b = b.split(' ') for x in range(0, m): a = int(b[x]) for i in range(0, n): if a == int(s[i]): v = v + i + 1 p = p + n - i print(str(v) + ' ' + str(p))
# Uzd. Nr.3 num = int(input("Please Enter a number that you would like to check: ")) #input a number to check if num > 1: # to exclude all numbers < 2, those are not prime numbers for i in range(2, int(num**0.5)+1): #loop for checking the number (square root) # same result will be ### for i in range(2, int(num/2)+1): ### devided by 2 - the simple way if num % i == 0: #check if for the modulus of number from interpretator should be 0, if not than FALSE print(f"{num} is not a prime, it divides by {i}") break else: print(f" {num} is a prime number") #if number is > than 1, and is a prime else: print(f"{num} is not a prime number") #if number <= 1 than not a a prime
num = int(input('Please Enter a number that you would like to check: ')) if num > 1: for i in range(2, int(num ** 0.5) + 1): if num % i == 0: print(f'{num} is not a prime, it divides by {i}') break else: print(f' {num} is a prime number') else: print(f'{num} is not a prime number')
class Solution: def isAnagram(self, s: str, t: str) -> bool: len1, len2 = len(s), len(t) if len1 != len2: return False elif len1 == 1: if s!= t: return False else: return True else: dict1 = {} dict2 = {} for i, j in zip(s, t): if i in dict1: dict1[i] += 1 else: dict1[i] = 1 if j in dict2: dict2[j] += 1 else: dict2[j] = 1 print(f"-----{dict1}----") print(f"+++++{dict2}++++") if dict2 == dict1: return True else: return False if __name__ == "__main__": case1 = ["anagram", "nagaram"] s = Solution() s.isAnagram(case1[0], case1[1])
class Solution: def is_anagram(self, s: str, t: str) -> bool: (len1, len2) = (len(s), len(t)) if len1 != len2: return False elif len1 == 1: if s != t: return False else: return True else: dict1 = {} dict2 = {} for (i, j) in zip(s, t): if i in dict1: dict1[i] += 1 else: dict1[i] = 1 if j in dict2: dict2[j] += 1 else: dict2[j] = 1 print(f'-----{dict1}----') print(f'+++++{dict2}++++') if dict2 == dict1: return True else: return False if __name__ == '__main__': case1 = ['anagram', 'nagaram'] s = solution() s.isAnagram(case1[0], case1[1])
# Lecture 9.1, slide 10 def sqrtBi(x, eps): low = 0.0 high = max(1, x) ans = (high + low) / 2.0 while abs(ans ** 2 - x) >= eps: if ans ** 2 < x: low = ans else: high = ans ans = (high + low) / 2.0 return ans
def sqrt_bi(x, eps): low = 0.0 high = max(1, x) ans = (high + low) / 2.0 while abs(ans ** 2 - x) >= eps: if ans ** 2 < x: low = ans else: high = ans ans = (high + low) / 2.0 return ans
def dir2tree(dirs): result = None for dir in dirs: if dir['parent_id']== None: result = Node(dir['id'], dir['name']) else: result.add_parent(dir['parent_id'], Node(dir['id'], dir['name'])) return result class Node: def __init__(self, id, name): self.id = id self.name = name self.nodes = list() self.nodesid = list() def show(self): return "({} {})\n".format(self.id, self.name) def __str__(self): r = self.show() for n in self.nodes: r += '----' + str(n) return r def __repr__(self): return str(self) def add(self, node): self.nodes.append(node) self.nodesid.append(node.id) def add_parent(self, parent_id, node): if self.id == parent_id: self.add(node) for n in self.nodes: n.add_parent(parent_id, node) def map(self, fun): res = str(fun(self)) for n in self.nodes: res += n.map(fun) return res def map_to_div(self, level=0): res = "<div id='{}' class='tree level-{}'>{}".format(self.id, level, self.name) for n in self.nodes: res += n.map_to_div(level + 1) return res + "</div>" class Dir: def __init__(self, name, id, parent_id): self.name = name self.id = id self.parent_id = parent_id def __str__(self): return "|{} {} {}| ".format(self.name, self.id, self.parent_id) def __repr__(self): return str(self) def __getitem__(self, key): return getattr(self, key) dirs = [ Dir("arot", 1, None), Dir("b", 2, 1), Dir("c", 3, 1), Dir("e", 5, 2), Dir("f", 6, 2), Dir("end", 7, 5), ] d = dir2tree(dirs) print(d) print(d.nodes) d.map(lambda x: print(x.name)) print(d.map_to_div())
def dir2tree(dirs): result = None for dir in dirs: if dir['parent_id'] == None: result = node(dir['id'], dir['name']) else: result.add_parent(dir['parent_id'], node(dir['id'], dir['name'])) return result class Node: def __init__(self, id, name): self.id = id self.name = name self.nodes = list() self.nodesid = list() def show(self): return '({} {})\n'.format(self.id, self.name) def __str__(self): r = self.show() for n in self.nodes: r += '----' + str(n) return r def __repr__(self): return str(self) def add(self, node): self.nodes.append(node) self.nodesid.append(node.id) def add_parent(self, parent_id, node): if self.id == parent_id: self.add(node) for n in self.nodes: n.add_parent(parent_id, node) def map(self, fun): res = str(fun(self)) for n in self.nodes: res += n.map(fun) return res def map_to_div(self, level=0): res = "<div id='{}' class='tree level-{}'>{}".format(self.id, level, self.name) for n in self.nodes: res += n.map_to_div(level + 1) return res + '</div>' class Dir: def __init__(self, name, id, parent_id): self.name = name self.id = id self.parent_id = parent_id def __str__(self): return '|{} {} {}| '.format(self.name, self.id, self.parent_id) def __repr__(self): return str(self) def __getitem__(self, key): return getattr(self, key) dirs = [dir('arot', 1, None), dir('b', 2, 1), dir('c', 3, 1), dir('e', 5, 2), dir('f', 6, 2), dir('end', 7, 5)] d = dir2tree(dirs) print(d) print(d.nodes) d.map(lambda x: print(x.name)) print(d.map_to_div())
# http://codingbat.com/prob/p149391 def xyz_there(str): for i in range(len(str)-2): if (str[i:i+3] == "xyz"): if ( i == 0 or (i != 0 and str[i-1] != '.') ): return True return False
def xyz_there(str): for i in range(len(str) - 2): if str[i:i + 3] == 'xyz': if i == 0 or (i != 0 and str[i - 1] != '.'): return True return False
def extractTigertranslationsOrg(item): ''' Parser for 'tigertranslations.org' ''' ttmp = item['title'].replace("10 Years", "<snip> years").replace("10 Years Later", "<snip> years") vol, chp, frag, postfix = extractVolChapterFragmentPostfix(ttmp) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('I Will Not Become an Enemy!', 'I Will Not Become an Enemy!', 'translated'), ('My Sister the Heroine, and I the Villainess', 'My Sister the Heroine, and I the Villainess', 'translated'), ('Isekai ni Kita Boku wa Kiyoubinbode Subaya-sa Tayorina Tabi o Suru', 'Isekai ni Kita Boku wa Kiyoubinbode Subaya-sa Tayorina Tabi o Suru', 'translated'), ('Jack of all Trades', 'Isekai ni Kita Boku wa Kiyoubinbode Subaya-sa Tayorina Tabi o Suru', 'translated'), ('Prison Dungeon and the Exiled Hero', 'Prison Dungeon and the Exiled Hero', 'translated'), ('Two Saints wander off into a Different World', 'Two Saints wander off into a Different World', 'translated'), ('Lioncourt War', 'A History of the Lioncourt War', 'translated'), ('realist demon king', 'The Legendary Rebuilding of a World by a Realist Demon King', 'translated'), ('Koko wa Ore ni Makasete Saki ni Ike to Itte kara 10 Nen ga Tattara Densetsu ni Natteita', 'Koko wa Ore ni Makasete Saki ni Ike to Itte kara 10 Nen ga Tattara Densetsu ni Natteita', 'translated'), ('Tensei Kenja no Isekai Raifu ~Daini no Shokugyo wo Ete, Sekai Saikyou ni Narimashita', 'Tensei Kenja no Isekai Raifu ~Daini no Shokugyo wo Ete, Sekai Saikyou ni Narimashita~', 'translated'), ('the legendary rebuilding of a world by a realist demon king', 'the legendary rebuilding of a world by a realist demon king', 'translated'), ('ohanabatake no maousama', 'ohanabatake no maousama', 'translated'), ('Only with Your Heart', 'Only with Your Heart', 'translated'), ('ryusousha ha shizukani kurashitai', 'ryusousha ha shizukani kurashitai', 'translated'), ('makai hongi', 'makai hongi', 'translated'), ('the cave king will live a paradise life -becoming the strongest with the mining skill?-', 'the cave king will live a paradise life -becoming the strongest with the mining skill?-', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] # Handle annoying series with numbers in the title. if 'Koko wa Ore ni Makasete Saki ni Ike to Itte kara 10 Nen ga Tattara Densetsu ni Natteita' in item['tags'] and chp == 10: return False for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
def extract_tigertranslations_org(item): """ Parser for 'tigertranslations.org' """ ttmp = item['title'].replace('10 Years', '<snip> years').replace('10 Years Later', '<snip> years') (vol, chp, frag, postfix) = extract_vol_chapter_fragment_postfix(ttmp) if not (chp or vol) or 'preview' in item['title'].lower(): return None tagmap = [('I Will Not Become an Enemy!', 'I Will Not Become an Enemy!', 'translated'), ('My Sister the Heroine, and I the Villainess', 'My Sister the Heroine, and I the Villainess', 'translated'), ('Isekai ni Kita Boku wa Kiyoubinbode Subaya-sa Tayorina Tabi o Suru', 'Isekai ni Kita Boku wa Kiyoubinbode Subaya-sa Tayorina Tabi o Suru', 'translated'), ('Jack of all Trades', 'Isekai ni Kita Boku wa Kiyoubinbode Subaya-sa Tayorina Tabi o Suru', 'translated'), ('Prison Dungeon and the Exiled Hero', 'Prison Dungeon and the Exiled Hero', 'translated'), ('Two Saints wander off into a Different World', 'Two Saints wander off into a Different World', 'translated'), ('Lioncourt War', 'A History of the Lioncourt War', 'translated'), ('realist demon king', 'The Legendary Rebuilding of a World by a Realist Demon King', 'translated'), ('Koko wa Ore ni Makasete Saki ni Ike to Itte kara 10 Nen ga Tattara Densetsu ni Natteita', 'Koko wa Ore ni Makasete Saki ni Ike to Itte kara 10 Nen ga Tattara Densetsu ni Natteita', 'translated'), ('Tensei Kenja no Isekai Raifu ~Daini no Shokugyo wo Ete, Sekai Saikyou ni Narimashita', 'Tensei Kenja no Isekai Raifu ~Daini no Shokugyo wo Ete, Sekai Saikyou ni Narimashita~', 'translated'), ('the legendary rebuilding of a world by a realist demon king', 'the legendary rebuilding of a world by a realist demon king', 'translated'), ('ohanabatake no maousama', 'ohanabatake no maousama', 'translated'), ('Only with Your Heart', 'Only with Your Heart', 'translated'), ('ryusousha ha shizukani kurashitai', 'ryusousha ha shizukani kurashitai', 'translated'), ('makai hongi', 'makai hongi', 'translated'), ('the cave king will live a paradise life -becoming the strongest with the mining skill?-', 'the cave king will live a paradise life -becoming the strongest with the mining skill?-', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel')] if 'Koko wa Ore ni Makasete Saki ni Ike to Itte kara 10 Nen ga Tattara Densetsu ni Natteita' in item['tags'] and chp == 10: return False for (tagname, name, tl_type) in tagmap: if tagname in item['tags']: return build_release_message_with_type(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
expected_output = { "instance": { "isp": { "level": { 1: { "lspid": { "router-5.00-00": { "lsp": { "seq_num": "0x00000003", "checksum": "0x8074460", "local_router": False, "holdtime": 457, "attach_bit": 0, "p_bit": 0, "overload_bit": 0, }, "area_address": "49", "nlpid": ["0xcc"], "hostname": "router-5", "ip_address": "172.16.186.5", "ip_neighbor": { "172.16.115.0/24": { "ip_prefix": "172.16.115.0", "prefix_length": "24", "metric": 0, }, "172.16.166.0/24": { "ip_prefix": "172.16.166.0", "prefix_length": "24", "metric": 10, }, "172.16.166.0/24": { "ip_prefix": "172.16.166.0", "prefix_length": "24", "metric": 10, }, }, "is_neighbor": { "router-11.00": { "metric": 10}, "router-11.01": { "metric": 10}, }, }, "router-11.00-00": { "lsp": { "seq_num": "0x0000000b", "checksum": "0x8074460", "local_router": True, "holdtime": 1161, "attach_bit": 0, "p_bit": 0, "overload_bit": 0, }, "area_address": "49", "nlpid": ["0xcc"], "hostname": "router-11", "ip_address": "172.16.196.11", "ip_neighbor": { "172.16.76.0/24": { "ip_prefix": "172.16.76.0", "prefix_length": "24", "metric": 0, }, "172.16.166.0/24": { "ip_prefix": "172.16.166.0", "prefix_length": "24", "metric": 10, }, "172.16.166.0/24": { "ip_prefix": "172.16.166.0", "prefix_length": "24", "metric": 10, }, }, "is_neighbor": { "router-11.01": { "metric": 10}, "router-5.00": { "metric": 10}, }, }, "router-11.01-00": { "lsp": { "seq_num": "0x00000001", "checksum": "0x80770ec", "local_router": True, "holdtime": 457, "attach_bit": 0, "p_bit": 0, "overload_bit": 0, }, "is_neighbor": { "router-11.00": { "metric": 0}, "router-5.00": { "metric": 0}, }, }, }, "total_lsp_count": 3, "local_lsp_count": 2, }, 2: { "lspid": { "router-5.00-00": { "lsp": { "seq_num": "0x00000005", "checksum": "0x807997c", "local_router": False, "holdtime": 457, "attach_bit": 0, "p_bit": 0, "overload_bit": 0, }, "area_address": "49", "nlpid": ["0xcc"], "hostname": "router-5", "ip_address": "172.16.166.5", "ip_neighbor": { "172.16.115.0/24": { "ip_prefix": "172.16.115.0", "prefix_length": "24", "metric": 0, }, "172.16.166.0/24": { "ip_prefix": "172.16.166.0", "prefix_length": "24", "metric": 10, }, "172.16.94.0/24": { "ip_prefix": "172.16.94.0", "prefix_length": "24", "metric": 10, }, "172.16.21.0/24": { "ip_prefix": "172.16.21.0", "prefix_length": "24", "metric": 10, }, }, "is_neighbor": { "router-11.00": { "metric": 10}, "router-11.01": { "metric": 10}, }, }, "router-11.00-00": { "lsp": { "seq_num": "0x0000000d", "checksum": "0x807997c", "local_router": True, "holdtime": 1184, "attach_bit": 0, "p_bit": 0, "overload_bit": 0, }, "area_address": "49", "nlpid": ["0xcc"], "hostname": "router-11", "ip_address": "172.28.111.111", "ip_neighbor": { "172.16.21.0/24": { "ip_prefix": "172.16.21.0", "prefix_length": "24", "metric": 0, }, "172.16.166.0/24": { "ip_prefix": "172.16.166.0", "prefix_length": "24", "metric": 10, }, "172.16.166.0/24": { "ip_prefix": "172.16.166.0", "prefix_length": "24", "metric": 10, }, "172.16.115.0/24": { "ip_prefix": "172.16.115.0", "prefix_length": "24", "metric": 10, }, }, "is_neighbor": { "router-11.01": { "metric": 10}, "router-5.00": { "metric": 10}, }, }, "router-gsr11.01-00": { "lsp": { "seq_num": "0x00000001", "checksum": "0x80770ec", "local_router": True, "holdtime": 457, "attach_bit": 0, "p_bit": 0, "overload_bit": 0, }, "is_neighbor": { "router-11.00": { "metric": 0}, "router-5.00": { "metric": 0}, }, }, }, "total_lsp_count": 3, "local_lsp_count": 2, }, } } } }
expected_output = {'instance': {'isp': {'level': {1: {'lspid': {'router-5.00-00': {'lsp': {'seq_num': '0x00000003', 'checksum': '0x8074460', 'local_router': False, 'holdtime': 457, 'attach_bit': 0, 'p_bit': 0, 'overload_bit': 0}, 'area_address': '49', 'nlpid': ['0xcc'], 'hostname': 'router-5', 'ip_address': '172.16.186.5', 'ip_neighbor': {'172.16.115.0/24': {'ip_prefix': '172.16.115.0', 'prefix_length': '24', 'metric': 0}, '172.16.166.0/24': {'ip_prefix': '172.16.166.0', 'prefix_length': '24', 'metric': 10}, '172.16.166.0/24': {'ip_prefix': '172.16.166.0', 'prefix_length': '24', 'metric': 10}}, 'is_neighbor': {'router-11.00': {'metric': 10}, 'router-11.01': {'metric': 10}}}, 'router-11.00-00': {'lsp': {'seq_num': '0x0000000b', 'checksum': '0x8074460', 'local_router': True, 'holdtime': 1161, 'attach_bit': 0, 'p_bit': 0, 'overload_bit': 0}, 'area_address': '49', 'nlpid': ['0xcc'], 'hostname': 'router-11', 'ip_address': '172.16.196.11', 'ip_neighbor': {'172.16.76.0/24': {'ip_prefix': '172.16.76.0', 'prefix_length': '24', 'metric': 0}, '172.16.166.0/24': {'ip_prefix': '172.16.166.0', 'prefix_length': '24', 'metric': 10}, '172.16.166.0/24': {'ip_prefix': '172.16.166.0', 'prefix_length': '24', 'metric': 10}}, 'is_neighbor': {'router-11.01': {'metric': 10}, 'router-5.00': {'metric': 10}}}, 'router-11.01-00': {'lsp': {'seq_num': '0x00000001', 'checksum': '0x80770ec', 'local_router': True, 'holdtime': 457, 'attach_bit': 0, 'p_bit': 0, 'overload_bit': 0}, 'is_neighbor': {'router-11.00': {'metric': 0}, 'router-5.00': {'metric': 0}}}}, 'total_lsp_count': 3, 'local_lsp_count': 2}, 2: {'lspid': {'router-5.00-00': {'lsp': {'seq_num': '0x00000005', 'checksum': '0x807997c', 'local_router': False, 'holdtime': 457, 'attach_bit': 0, 'p_bit': 0, 'overload_bit': 0}, 'area_address': '49', 'nlpid': ['0xcc'], 'hostname': 'router-5', 'ip_address': '172.16.166.5', 'ip_neighbor': {'172.16.115.0/24': {'ip_prefix': '172.16.115.0', 'prefix_length': '24', 'metric': 0}, '172.16.166.0/24': {'ip_prefix': '172.16.166.0', 'prefix_length': '24', 'metric': 10}, '172.16.94.0/24': {'ip_prefix': '172.16.94.0', 'prefix_length': '24', 'metric': 10}, '172.16.21.0/24': {'ip_prefix': '172.16.21.0', 'prefix_length': '24', 'metric': 10}}, 'is_neighbor': {'router-11.00': {'metric': 10}, 'router-11.01': {'metric': 10}}}, 'router-11.00-00': {'lsp': {'seq_num': '0x0000000d', 'checksum': '0x807997c', 'local_router': True, 'holdtime': 1184, 'attach_bit': 0, 'p_bit': 0, 'overload_bit': 0}, 'area_address': '49', 'nlpid': ['0xcc'], 'hostname': 'router-11', 'ip_address': '172.28.111.111', 'ip_neighbor': {'172.16.21.0/24': {'ip_prefix': '172.16.21.0', 'prefix_length': '24', 'metric': 0}, '172.16.166.0/24': {'ip_prefix': '172.16.166.0', 'prefix_length': '24', 'metric': 10}, '172.16.166.0/24': {'ip_prefix': '172.16.166.0', 'prefix_length': '24', 'metric': 10}, '172.16.115.0/24': {'ip_prefix': '172.16.115.0', 'prefix_length': '24', 'metric': 10}}, 'is_neighbor': {'router-11.01': {'metric': 10}, 'router-5.00': {'metric': 10}}}, 'router-gsr11.01-00': {'lsp': {'seq_num': '0x00000001', 'checksum': '0x80770ec', 'local_router': True, 'holdtime': 457, 'attach_bit': 0, 'p_bit': 0, 'overload_bit': 0}, 'is_neighbor': {'router-11.00': {'metric': 0}, 'router-5.00': {'metric': 0}}}}, 'total_lsp_count': 3, 'local_lsp_count': 2}}}}}
a = [1, 2, 3, 4, 5,] print(*a) for i in a: print(i, end=' ')
a = [1, 2, 3, 4, 5] print(*a) for i in a: print(i, end=' ')
# # This file contains the Python code from Program 16.21 of # "Data Structures and Algorithms # with Object-Oriented Design Patterns in Python" # by Bruno R. Preiss. # # Copyright (c) 2003 by Bruno R. Preiss, P.Eng. All rights reserved. # # http://www.brpreiss.com/books/opus7/programs/pgm16_21.txt # class Algorithms(object): def criticalPathAnalysis(g): n = g.numberOfVertices earliestTime = Array(n) earliestTime[0] = 0 g.topologicalOrderTraversal( Algorithms.EarliestTimeVisitor(earliestTime)) latestTime = Array(n) latestTime[n - 1] = earliestTime[n - 1] g.depthFirstTraversal(PostOrder( Algorithms.LatestTimeVisitor(latestTime)), 0) slackGraph = DigraphAsLists(n) for v in xrange(n): slackGraph.addVertex(v) for e in g.edges: slack = latestTime[e.v1.number] - \ earliestTime[e.v0.number] - e.weight slackGraph.addEdge( e.v0.number, e.v1.number, e.weight) return Algorithms.DijkstrasAlgorithm(slackGraph, 0) criticalPathAnalysis = staticmethod(criticalPathAnalysis)
class Algorithms(object): def critical_path_analysis(g): n = g.numberOfVertices earliest_time = array(n) earliestTime[0] = 0 g.topologicalOrderTraversal(Algorithms.EarliestTimeVisitor(earliestTime)) latest_time = array(n) latestTime[n - 1] = earliestTime[n - 1] g.depthFirstTraversal(post_order(Algorithms.LatestTimeVisitor(latestTime)), 0) slack_graph = digraph_as_lists(n) for v in xrange(n): slackGraph.addVertex(v) for e in g.edges: slack = latestTime[e.v1.number] - earliestTime[e.v0.number] - e.weight slackGraph.addEdge(e.v0.number, e.v1.number, e.weight) return Algorithms.DijkstrasAlgorithm(slackGraph, 0) critical_path_analysis = staticmethod(criticalPathAnalysis)
# Some basic tests DataManager = tools.dynamicImportDev('dataManager').Manager # traininigDataFun, trainingData = tools.importData('training') # trainingDataProvider = DataProvider( # data = traininigDataFun, # bz = env.training.bz, # stochasticSampling = False, # indexingShape = [trainingData.shape[0]] # ) # print(np.array(trainingDataProvider(1)[0]).shape) validationDataFun, validationData = tools.importData('validation') print(len(validationData)) validationDataProvider = DataManager( data = validationDataFun, bz = env.training.bz, stochasticSampling = False, reshuffle = True, indexingShape = [len(validationData)] ) print(np.array(validationDataProvider(1)[1]).shape) # prove that reshouffling works by # 1) showing that we get the same number of indexs as original indexs (minux batch size leftovers) # 2) the data we get matches the index provided equivalents in the origina ordered data source indxs = [] data for i, data, indx in validationDataProvider: print(np.array(data[1])[:, :, :, 0].shape, validationData[indx][:, :, :, 3].shape) print(np.mean(np.array(data[1])[:, :, :, 0] == validationData[indx][:, :, :, 3])) indxs += list(indx) len(len(validationData) - len(validationData)%env.training.bz)
data_manager = tools.dynamicImportDev('dataManager').Manager (validation_data_fun, validation_data) = tools.importData('validation') print(len(validationData)) validation_data_provider = data_manager(data=validationDataFun, bz=env.training.bz, stochasticSampling=False, reshuffle=True, indexingShape=[len(validationData)]) print(np.array(validation_data_provider(1)[1]).shape) indxs = [] data for (i, data, indx) in validationDataProvider: print(np.array(data[1])[:, :, :, 0].shape, validationData[indx][:, :, :, 3].shape) print(np.mean(np.array(data[1])[:, :, :, 0] == validationData[indx][:, :, :, 3])) indxs += list(indx) len(len(validationData) - len(validationData) % env.training.bz)
class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: data = {} output = [] for i in range(len(nums)): v = target - nums[i] if v in data.values(): output.append(nums.index(v)) output.append(i) data[i] = nums[i] return output
class Solution: def two_sum(self, nums: List[int], target: int) -> List[int]: data = {} output = [] for i in range(len(nums)): v = target - nums[i] if v in data.values(): output.append(nums.index(v)) output.append(i) data[i] = nums[i] return output
EXAMPLE = True MYSQL_HOST = "development.com" VERSION = 1 AGE = 15 NAME = "MIKE" IMAGE_1 = "aaa" IMAGE_2 = "bbb" IMAGE_4 = "a" IMAGE_5 = "b"
example = True mysql_host = 'development.com' version = 1 age = 15 name = 'MIKE' image_1 = 'aaa' image_2 = 'bbb' image_4 = 'a' image_5 = 'b'
total_secs = int(input("How many seconds, in total?")) hours = total_secs // 3600 secs_still_remaining = total_secs / 60 minutes = secs_still_remaining // 60 secs_finally_remaining = secs_still_remaining / 60 print("Hrs=", hours, " mines=", minutes, "secs=", secs_finally_remaining) name=int(input("What is your name?")) print("okey", name)
total_secs = int(input('How many seconds, in total?')) hours = total_secs // 3600 secs_still_remaining = total_secs / 60 minutes = secs_still_remaining // 60 secs_finally_remaining = secs_still_remaining / 60 print('Hrs=', hours, ' mines=', minutes, 'secs=', secs_finally_remaining) name = int(input('What is your name?')) print('okey', name)
class Solution: def minSwap(self, A: [int], B: [int]) -> int: swap, keep = 1, 0 for i in range(1, len(A)): if A[i] <= A[i - 1] or B[i] <= B[i - 1]: # swap nswap = keep + 1 nkeep = swap elif A[i] > B[i - 1] and B[i] > A[i - 1]: # swap or keep nkeep = min(keep, swap) nswap = nkeep + 1 else: # keep nkeep = keep nswap = swap + 1 swap, keep = nswap, nkeep return min(swap, keep)
class Solution: def min_swap(self, A: [int], B: [int]) -> int: (swap, keep) = (1, 0) for i in range(1, len(A)): if A[i] <= A[i - 1] or B[i] <= B[i - 1]: nswap = keep + 1 nkeep = swap elif A[i] > B[i - 1] and B[i] > A[i - 1]: nkeep = min(keep, swap) nswap = nkeep + 1 else: nkeep = keep nswap = swap + 1 (swap, keep) = (nswap, nkeep) return min(swap, keep)
price_vegetables = float(input()) price_fruits = float(input()) kg_vegetables = int(input()) kg_fruits = int(input()) print(str((price_fruits*kg_fruits + price_vegetables*kg_vegetables)/1.94))
price_vegetables = float(input()) price_fruits = float(input()) kg_vegetables = int(input()) kg_fruits = int(input()) print(str((price_fruits * kg_fruits + price_vegetables * kg_vegetables) / 1.94))
with open('abc.txt', 'w+') as file: file.write('linha 1\n') file.write('linha 2\n') file.write('linha 3\n') file.seek(0) print(file.read())
with open('abc.txt', 'w+') as file: file.write('linha 1\n') file.write('linha 2\n') file.write('linha 3\n') file.seek(0) print(file.read())
# # PySNMP MIB module CISCO-TN3270SERVER-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-TN3270SERVER-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:57:52 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint, ValueSizeConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint", "ValueSizeConstraint", "ConstraintsIntersection") ciscoMgmt, = mibBuilder.importSymbols("CISCO-SMI", "ciscoMgmt") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") Counter64, Gauge32, ModuleIdentity, Bits, Counter32, MibScalar, MibTable, MibTableRow, MibTableColumn, Integer32, TimeTicks, NotificationType, IpAddress, ObjectIdentity, iso, Unsigned32, MibIdentifier = mibBuilder.importSymbols("SNMPv2-SMI", "Counter64", "Gauge32", "ModuleIdentity", "Bits", "Counter32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Integer32", "TimeTicks", "NotificationType", "IpAddress", "ObjectIdentity", "iso", "Unsigned32", "MibIdentifier") DisplayString, TruthValue, MacAddress, TextualConvention, TimeStamp = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TruthValue", "MacAddress", "TextualConvention", "TimeStamp") ciscoTn3270ServerMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 9, 54)) ciscoTn3270ServerMIB.setRevisions(('1997-01-22 00:00', '1996-09-12 00:00',)) if mibBuilder.loadTexts: ciscoTn3270ServerMIB.setLastUpdated('9701220000Z') if mibBuilder.loadTexts: ciscoTn3270ServerMIB.setOrganization('Cisco Systems, Inc.') tn3270sObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1)) tn3270sGlobal = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1)) tn3270sStats = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2)) tn3270sPu = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3)) tn3270sIp = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4)) tn3270sLu = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5)) tn3270sPuNail = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6)) tn3270sIpNail = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7)) class Tn3270sUnsigned32(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 4294967295) class Tn3270sTCPPort(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 65535) class Tn3270sPUIndex(Tn3270sUnsigned32): status = 'current' class Tn3270sLUIndex(Tn3270sUnsigned32): status = 'current' class Tn3270sCpuCard(DisplayString): status = 'current' subtypeSpec = DisplayString.subtypeSpec + ValueSizeConstraint(10, 16) tn3270sGlobalTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1), ) if mibBuilder.loadTexts: tn3270sGlobalTable.setStatus('current') tn3270sGlobalEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1), ).setIndexNames((0, "CISCO-TN3270SERVER-MIB", "tn3270sIndex")) if mibBuilder.loadTexts: tn3270sGlobalEntry.setStatus('current') tn3270sIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 1), Tn3270sUnsigned32()) if mibBuilder.loadTexts: tn3270sIndex.setStatus('current') tn3270sCpuCard = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 2), Tn3270sCpuCard()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sCpuCard.setStatus('current') tn3270sMaxLus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 3), Tn3270sUnsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sMaxLus.setStatus('current') tn3270sLusInUse = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 4), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLusInUse.setStatus('current') tn3270sStartupTime = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 5), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStartupTime.setStatus('current') tn3270sGlobalTcpPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 6), Tn3270sTCPPort()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sGlobalTcpPort.setStatus('current') tn3270sGlobalIdleTimeout = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65534))).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sGlobalIdleTimeout.setStatus('current') tn3270sGlobalKeepAlive = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65534))).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sGlobalKeepAlive.setStatus('current') tn3270sGlobalUnbindAction = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("keep", 1), ("disconnect", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sGlobalUnbindAction.setStatus('current') tn3270sGlobalGenericPool = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("permit", 1), ("deny", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sGlobalGenericPool.setStatus('current') tn3270sTimingMarkSupported = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 11), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sTimingMarkSupported.setStatus('current') tn3270sRunningTime = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 12), Tn3270sUnsigned32()).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sRunningTime.setStatus('current') tn3270sStatsTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1), ) if mibBuilder.loadTexts: tn3270sStatsTable.setStatus('current') tn3270sStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1), ).setIndexNames((0, "CISCO-TN3270SERVER-MIB", "tn3270sIndex"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sStatsServerAddr"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sStatsServerTcpPort")) if mibBuilder.loadTexts: tn3270sStatsEntry.setStatus('current') tn3270sStatsServerAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 1), IpAddress()) if mibBuilder.loadTexts: tn3270sStatsServerAddr.setStatus('current') tn3270sStatsServerTcpPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 2), Tn3270sTCPPort()) if mibBuilder.loadTexts: tn3270sStatsServerTcpPort.setStatus('current') tn3270sStatsMaxSess = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsMaxSess.setStatus('current') tn3270sStatsSpareSess = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsSpareSess.setStatus('current') tn3270sStatsConnectsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsConnectsIn.setStatus('current') tn3270sStatsDisconnects = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsDisconnects.setStatus('current') tn3270sStatsTN3270ConnectsFailed = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsTN3270ConnectsFailed.setStatus('current') tn3270sStatsInboundChains = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsInboundChains.setStatus('current') tn3270sStatsOutboundChains = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsOutboundChains.setStatus('current') tn3270sStatsSampledHostResponses = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsSampledHostResponses.setStatus('current') tn3270sStatsNetSampledHostResponseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 11), Tn3270sUnsigned32()).setUnits('10milliseconds').setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsNetSampledHostResponseTime.setStatus('current') tn3270sStatsSampledClientResponses = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 12), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsSampledClientResponses.setStatus('current') tn3270sStatsNetSampledClientResponseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 13), Tn3270sUnsigned32()).setUnits('10milliseconds').setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sStatsNetSampledClientResponseTime.setStatus('current') tn3270sPuTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1), ) if mibBuilder.loadTexts: tn3270sPuTable.setStatus('current') tn3270sPuEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1), ).setIndexNames((0, "CISCO-TN3270SERVER-MIB", "tn3270sIndex"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sPuIndex")) if mibBuilder.loadTexts: tn3270sPuEntry.setStatus('current') tn3270sPuIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 1), Tn3270sPUIndex()) if mibBuilder.loadTexts: tn3270sPuIndex.setStatus('current') tn3270sPuIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 2), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuIpAddr.setStatus('current') tn3270sPuTcpPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 3), Tn3270sTCPPort()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuTcpPort.setStatus('current') tn3270sPuIdleTimeout = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuIdleTimeout.setStatus('current') tn3270sPuKeepAlive = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuKeepAlive.setStatus('current') tn3270sPuUnbindAction = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("keep", 1), ("disconnect", 2), ("inherit", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuUnbindAction.setStatus('current') tn3270sPuGenericPool = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("permit", 1), ("deny", 2), ("inherit", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuGenericPool.setStatus('current') tn3270sPuState = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=NamedValues(("shut", 1), ("reset", 2), ("inactive", 3), ("test", 4), ("xid", 5), ("pActpu", 6), ("active", 7), ("actBusy", 8)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuState.setStatus('current') tn3270sPuType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("dlur", 1), ("direct", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuType.setStatus('current') tn3270sPuLuSeed = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 10), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 6))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuLuSeed.setStatus('current') tn3270sLocalSapAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 11), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 254))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLocalSapAddress.setStatus('current') tn3270sRemoteSapAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 12), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 254))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sRemoteSapAddress.setStatus('current') tn3270sRemoteMacAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 13), MacAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sRemoteMacAddress.setStatus('current') tn3270sPuIpPrecedenceScreen = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 14), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 7))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuIpPrecedenceScreen.setStatus('current') tn3270sPuIpPrecedencePrinter = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 15), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 7))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuIpPrecedencePrinter.setStatus('current') tn3270sPuIpTosScreen = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 16), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuIpTosScreen.setStatus('current') tn3270sPuIpTosPrinter = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 17), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuIpTosPrinter.setStatus('current') tn3270sIpTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1), ) if mibBuilder.loadTexts: tn3270sIpTable.setStatus('current') tn3270sIpEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1), ).setIndexNames((0, "CISCO-TN3270SERVER-MIB", "tn3270sIndex"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sIpClientAddr"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sIpClientTcpPort")) if mibBuilder.loadTexts: tn3270sIpEntry.setStatus('current') tn3270sIpClientAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1, 1), IpAddress()) if mibBuilder.loadTexts: tn3270sIpClientAddr.setStatus('current') tn3270sIpClientTcpPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1, 2), Tn3270sTCPPort()) if mibBuilder.loadTexts: tn3270sIpClientTcpPort.setStatus('current') tn3270sIpPuIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1, 3), Tn3270sPUIndex()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sIpPuIndex.setStatus('current') tn3270sIpLuIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1, 4), Tn3270sLUIndex()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sIpLuIndex.setStatus('current') tn3270sLuTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1), ) if mibBuilder.loadTexts: tn3270sLuTable.setStatus('current') tn3270sLuEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1), ).setIndexNames((0, "CISCO-TN3270SERVER-MIB", "tn3270sIndex"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sLuPuIndex"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sLuIndex")) if mibBuilder.loadTexts: tn3270sLuEntry.setStatus('current') tn3270sLuPuIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 1), Tn3270sPUIndex()) if mibBuilder.loadTexts: tn3270sLuPuIndex.setStatus('current') tn3270sLuIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 2), Tn3270sLUIndex()) if mibBuilder.loadTexts: tn3270sLuIndex.setStatus('current') tn3270sLuClientAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 3), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuClientAddr.setStatus('current') tn3270sLuClientTcpPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 4), Tn3270sTCPPort()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuClientTcpPort.setStatus('current') tn3270sLuTelnetType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("tn3270", 1), ("tn3270e", 2), ("neverConnect", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuTelnetType.setStatus('current') tn3270sLuTermModel = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 17))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuTermModel.setStatus('current') tn3270sLuState = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13))).clone(namedValues=NamedValues(("inactive", 1), ("active", 2), ("pSdt", 3), ("actSession", 4), ("pActlu", 5), ("pNotifyAv", 6), ("pNotifyUa", 7), ("pReset", 8), ("pPsid", 9), ("pBind", 10), ("pUnbind", 11), ("unbindWt", 12), ("sdtWt", 13)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuState.setStatus('current') tn3270sLuCurInbPacing = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 63))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuCurInbPacing.setStatus('current') tn3270sLuCurInbQsize = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 9), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 63))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuCurInbQsize.setStatus('current') tn3270sLuCurOutQsize = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 10), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 63))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuCurOutQsize.setStatus('current') tn3270sLuIdleTime = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 11), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuIdleTime.setStatus('current') tn3270sLuType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 12), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("dynamic", 1), ("static", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuType.setStatus('current') tn3270sLuAppnLinkIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 13), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuAppnLinkIndex.setStatus('current') tn3270sLuLfsid = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 14), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuLfsid.setStatus('current') tn3270sLuLastEvent = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 15), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuLastEvent.setStatus('obsolete') tn3270sLuEvents = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 16), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 16))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuEvents.setStatus('current') tn3270sLuNail = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 17), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sLuNail.setStatus('current') tn3270sPuNailTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1), ) if mibBuilder.loadTexts: tn3270sPuNailTable.setStatus('current') tn3270sPuNailEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1), ).setIndexNames((0, "CISCO-TN3270SERVER-MIB", "tn3270sIndex"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sPuIndex"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sPuNailClientIpAddr"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sPuNailLuFirst")) if mibBuilder.loadTexts: tn3270sPuNailEntry.setStatus('current') tn3270sPuNailClientIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 1), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuNailClientIpAddr.setStatus('current') tn3270sPuNailClientIpMask = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 2), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuNailClientIpMask.setStatus('current') tn3270sPuNailType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("screen", 1), ("printer", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuNailType.setStatus('current') tn3270sPuNailLuFirst = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuNailLuFirst.setStatus('current') tn3270sPuNailLuLast = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sPuNailLuLast.setStatus('current') tn3270sIpNailTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1), ) if mibBuilder.loadTexts: tn3270sIpNailTable.setStatus('current') tn3270sIpNailEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1), ).setIndexNames((0, "CISCO-TN3270SERVER-MIB", "tn3270sIndex"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sIpNailClientIpAddr"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sPuIndex"), (0, "CISCO-TN3270SERVER-MIB", "tn3270sIpNailLuFirst")) if mibBuilder.loadTexts: tn3270sIpNailEntry.setStatus('current') tn3270sIpNailClientIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 1), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sIpNailClientIpAddr.setStatus('current') tn3270sIpNailClientIpMask = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 2), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sIpNailClientIpMask.setStatus('current') tn3270sIpNailType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("screen", 1), ("printer", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sIpNailType.setStatus('current') tn3270sIpNailLuFirst = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sIpNailLuFirst.setStatus('current') tn3270sIpNailLuLast = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: tn3270sIpNailLuLast.setStatus('current') ciscoTn3270ServerMIBNotificationPrefix = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 2)) ciscoTn3270ServerMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 3)) ciscoTn3270ServerMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 1)) ciscoTn3270ServerMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 2)) ciscoTn3270ServerMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 1, 1)).setObjects(("CISCO-TN3270SERVER-MIB", "ciscoTn3270ServerMIBGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoTn3270ServerMIBCompliance = ciscoTn3270ServerMIBCompliance.setStatus('current') ciscoTn3270ServerMIBGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 2, 1)).setObjects(("CISCO-TN3270SERVER-MIB", "tn3270sCpuCard"), ("CISCO-TN3270SERVER-MIB", "tn3270sMaxLus"), ("CISCO-TN3270SERVER-MIB", "tn3270sLusInUse"), ("CISCO-TN3270SERVER-MIB", "tn3270sStartupTime"), ("CISCO-TN3270SERVER-MIB", "tn3270sGlobalTcpPort"), ("CISCO-TN3270SERVER-MIB", "tn3270sGlobalIdleTimeout"), ("CISCO-TN3270SERVER-MIB", "tn3270sGlobalKeepAlive"), ("CISCO-TN3270SERVER-MIB", "tn3270sGlobalUnbindAction"), ("CISCO-TN3270SERVER-MIB", "tn3270sGlobalGenericPool"), ("CISCO-TN3270SERVER-MIB", "tn3270sTimingMarkSupported"), ("CISCO-TN3270SERVER-MIB", "tn3270sRunningTime"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsMaxSess"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsSpareSess"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsConnectsIn"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsDisconnects"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsTN3270ConnectsFailed"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsInboundChains"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsOutboundChains"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsSampledHostResponses"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsNetSampledHostResponseTime"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsSampledClientResponses"), ("CISCO-TN3270SERVER-MIB", "tn3270sStatsNetSampledClientResponseTime"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuIpAddr"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuTcpPort"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuIdleTimeout"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuKeepAlive"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuUnbindAction"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuGenericPool"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuState"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuType"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuLuSeed"), ("CISCO-TN3270SERVER-MIB", "tn3270sLocalSapAddress"), ("CISCO-TN3270SERVER-MIB", "tn3270sRemoteSapAddress"), ("CISCO-TN3270SERVER-MIB", "tn3270sRemoteMacAddress"), ("CISCO-TN3270SERVER-MIB", "tn3270sIpPuIndex"), ("CISCO-TN3270SERVER-MIB", "tn3270sIpLuIndex"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuClientAddr"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuClientTcpPort"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuTelnetType"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuTermModel"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuState"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuCurInbPacing"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuCurInbQsize"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuCurOutQsize"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuIdleTime"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuType"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuAppnLinkIndex"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuLfsid"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuEvents")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoTn3270ServerMIBGroup = ciscoTn3270ServerMIBGroup.setStatus('current') ciscoTn3270ServerMIBComplianceObsolete = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 1, 2)).setObjects(("CISCO-TN3270SERVER-MIB", "ciscoTn3270ServerMIBGroupObsolete")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoTn3270ServerMIBComplianceObsolete = ciscoTn3270ServerMIBComplianceObsolete.setStatus('obsolete') ciscoTn3270ServerMIBGroupObsolete = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 2, 2)).setObjects(("CISCO-TN3270SERVER-MIB", "tn3270sLuLastEvent")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoTn3270ServerMIBGroupObsolete = ciscoTn3270ServerMIBGroupObsolete.setStatus('obsolete') ciscoTn3270ServerMIBComplianceRev1 = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 1, 3)).setObjects(("CISCO-TN3270SERVER-MIB", "ciscoTn3270ServerMIBGroup"), ("CISCO-TN3270SERVER-MIB", "ciscoTn3270ServerMIBGroupRev1")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoTn3270ServerMIBComplianceRev1 = ciscoTn3270ServerMIBComplianceRev1.setStatus('current') ciscoTn3270ServerMIBGroupRev1 = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 2, 3)).setObjects(("CISCO-TN3270SERVER-MIB", "tn3270sPuIpPrecedenceScreen"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuIpPrecedencePrinter"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuIpTosScreen"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuIpTosPrinter"), ("CISCO-TN3270SERVER-MIB", "tn3270sLuNail"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuNailClientIpAddr"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuNailClientIpMask"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuNailType"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuNailLuFirst"), ("CISCO-TN3270SERVER-MIB", "tn3270sPuNailLuLast"), ("CISCO-TN3270SERVER-MIB", "tn3270sIpNailClientIpAddr"), ("CISCO-TN3270SERVER-MIB", "tn3270sIpNailClientIpMask"), ("CISCO-TN3270SERVER-MIB", "tn3270sIpNailType"), ("CISCO-TN3270SERVER-MIB", "tn3270sIpNailLuFirst"), ("CISCO-TN3270SERVER-MIB", "tn3270sIpNailLuLast")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoTn3270ServerMIBGroupRev1 = ciscoTn3270ServerMIBGroupRev1.setStatus('current') mibBuilder.exportSymbols("CISCO-TN3270SERVER-MIB", tn3270sIpNailClientIpAddr=tn3270sIpNailClientIpAddr, tn3270sStartupTime=tn3270sStartupTime, ciscoTn3270ServerMIBGroupObsolete=ciscoTn3270ServerMIBGroupObsolete, tn3270sLu=tn3270sLu, tn3270sLusInUse=tn3270sLusInUse, tn3270sLuPuIndex=tn3270sLuPuIndex, tn3270sStatsEntry=tn3270sStatsEntry, tn3270sPuNailTable=tn3270sPuNailTable, tn3270sPuType=tn3270sPuType, PYSNMP_MODULE_ID=ciscoTn3270ServerMIB, tn3270sLuLfsid=tn3270sLuLfsid, ciscoTn3270ServerMIBComplianceObsolete=ciscoTn3270ServerMIBComplianceObsolete, tn3270sCpuCard=tn3270sCpuCard, tn3270sPuState=tn3270sPuState, tn3270sPuNailType=tn3270sPuNailType, tn3270sStatsTN3270ConnectsFailed=tn3270sStatsTN3270ConnectsFailed, tn3270sLocalSapAddress=tn3270sLocalSapAddress, tn3270sPuNailLuFirst=tn3270sPuNailLuFirst, tn3270sPuIdleTimeout=tn3270sPuIdleTimeout, tn3270sIpNailLuLast=tn3270sIpNailLuLast, tn3270sRemoteSapAddress=tn3270sRemoteSapAddress, ciscoTn3270ServerMIBConformance=ciscoTn3270ServerMIBConformance, tn3270sStatsServerTcpPort=tn3270sStatsServerTcpPort, tn3270sGlobalEntry=tn3270sGlobalEntry, tn3270sStatsNetSampledHostResponseTime=tn3270sStatsNetSampledHostResponseTime, Tn3270sUnsigned32=Tn3270sUnsigned32, tn3270sLuIdleTime=tn3270sLuIdleTime, tn3270sLuTelnetType=tn3270sLuTelnetType, Tn3270sCpuCard=Tn3270sCpuCard, tn3270sPuGenericPool=tn3270sPuGenericPool, tn3270sLuNail=tn3270sLuNail, tn3270sStatsOutboundChains=tn3270sStatsOutboundChains, tn3270sGlobalIdleTimeout=tn3270sGlobalIdleTimeout, tn3270sObjects=tn3270sObjects, tn3270sIpLuIndex=tn3270sIpLuIndex, ciscoTn3270ServerMIBNotificationPrefix=ciscoTn3270ServerMIBNotificationPrefix, tn3270sLuTable=tn3270sLuTable, tn3270sLuClientTcpPort=tn3270sLuClientTcpPort, tn3270sPuIndex=tn3270sPuIndex, tn3270sIpNailTable=tn3270sIpNailTable, tn3270sPuTable=tn3270sPuTable, tn3270sIpNailEntry=tn3270sIpNailEntry, tn3270sPuIpTosPrinter=tn3270sPuIpTosPrinter, tn3270sTimingMarkSupported=tn3270sTimingMarkSupported, ciscoTn3270ServerMIBGroupRev1=ciscoTn3270ServerMIBGroupRev1, tn3270sPuTcpPort=tn3270sPuTcpPort, tn3270sPuEntry=tn3270sPuEntry, ciscoTn3270ServerMIB=ciscoTn3270ServerMIB, tn3270sLuIndex=tn3270sLuIndex, Tn3270sLUIndex=Tn3270sLUIndex, tn3270sIpClientAddr=tn3270sIpClientAddr, tn3270sGlobalTcpPort=tn3270sGlobalTcpPort, tn3270sGlobalUnbindAction=tn3270sGlobalUnbindAction, tn3270sRemoteMacAddress=tn3270sRemoteMacAddress, tn3270sStatsSampledClientResponses=tn3270sStatsSampledClientResponses, ciscoTn3270ServerMIBCompliances=ciscoTn3270ServerMIBCompliances, tn3270sStatsConnectsIn=tn3270sStatsConnectsIn, Tn3270sTCPPort=Tn3270sTCPPort, tn3270sIpEntry=tn3270sIpEntry, tn3270sPuIpTosScreen=tn3270sPuIpTosScreen, tn3270sStatsInboundChains=tn3270sStatsInboundChains, tn3270sGlobalTable=tn3270sGlobalTable, tn3270sIpNail=tn3270sIpNail, tn3270sPuIpAddr=tn3270sPuIpAddr, tn3270sPuIpPrecedencePrinter=tn3270sPuIpPrecedencePrinter, tn3270sPuIpPrecedenceScreen=tn3270sPuIpPrecedenceScreen, tn3270sIpPuIndex=tn3270sIpPuIndex, tn3270sPuLuSeed=tn3270sPuLuSeed, tn3270sRunningTime=tn3270sRunningTime, tn3270sPuNailLuLast=tn3270sPuNailLuLast, ciscoTn3270ServerMIBGroups=ciscoTn3270ServerMIBGroups, tn3270sLuEvents=tn3270sLuEvents, tn3270sPuKeepAlive=tn3270sPuKeepAlive, tn3270sStats=tn3270sStats, tn3270sPuNailEntry=tn3270sPuNailEntry, tn3270sLuClientAddr=tn3270sLuClientAddr, tn3270sLuAppnLinkIndex=tn3270sLuAppnLinkIndex, tn3270sPuNailClientIpAddr=tn3270sPuNailClientIpAddr, tn3270sIp=tn3270sIp, tn3270sPuNail=tn3270sPuNail, tn3270sStatsServerAddr=tn3270sStatsServerAddr, tn3270sGlobalKeepAlive=tn3270sGlobalKeepAlive, tn3270sLuLastEvent=tn3270sLuLastEvent, tn3270sPu=tn3270sPu, tn3270sMaxLus=tn3270sMaxLus, tn3270sGlobalGenericPool=tn3270sGlobalGenericPool, tn3270sGlobal=tn3270sGlobal, tn3270sStatsMaxSess=tn3270sStatsMaxSess, tn3270sStatsSampledHostResponses=tn3270sStatsSampledHostResponses, tn3270sPuNailClientIpMask=tn3270sPuNailClientIpMask, tn3270sStatsDisconnects=tn3270sStatsDisconnects, tn3270sIpTable=tn3270sIpTable, ciscoTn3270ServerMIBComplianceRev1=ciscoTn3270ServerMIBComplianceRev1, Tn3270sPUIndex=Tn3270sPUIndex, tn3270sLuCurOutQsize=tn3270sLuCurOutQsize, tn3270sLuType=tn3270sLuType, tn3270sStatsSpareSess=tn3270sStatsSpareSess, ciscoTn3270ServerMIBGroup=ciscoTn3270ServerMIBGroup, tn3270sLuState=tn3270sLuState, tn3270sIpNailClientIpMask=tn3270sIpNailClientIpMask, tn3270sLuEntry=tn3270sLuEntry, tn3270sIndex=tn3270sIndex, tn3270sLuTermModel=tn3270sLuTermModel, tn3270sIpNailType=tn3270sIpNailType, tn3270sLuCurInbPacing=tn3270sLuCurInbPacing, tn3270sPuUnbindAction=tn3270sPuUnbindAction, ciscoTn3270ServerMIBCompliance=ciscoTn3270ServerMIBCompliance, tn3270sStatsNetSampledClientResponseTime=tn3270sStatsNetSampledClientResponseTime, tn3270sStatsTable=tn3270sStatsTable, tn3270sIpNailLuFirst=tn3270sIpNailLuFirst, tn3270sIpClientTcpPort=tn3270sIpClientTcpPort, tn3270sLuCurInbQsize=tn3270sLuCurInbQsize)
(octet_string, integer, object_identifier) = mibBuilder.importSymbols('ASN1', 'OctetString', 'Integer', 'ObjectIdentifier') (named_values,) = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues') (constraints_union, value_range_constraint, single_value_constraint, value_size_constraint, constraints_intersection) = mibBuilder.importSymbols('ASN1-REFINEMENT', 'ConstraintsUnion', 'ValueRangeConstraint', 'SingleValueConstraint', 'ValueSizeConstraint', 'ConstraintsIntersection') (cisco_mgmt,) = mibBuilder.importSymbols('CISCO-SMI', 'ciscoMgmt') (object_group, notification_group, module_compliance) = mibBuilder.importSymbols('SNMPv2-CONF', 'ObjectGroup', 'NotificationGroup', 'ModuleCompliance') (counter64, gauge32, module_identity, bits, counter32, mib_scalar, mib_table, mib_table_row, mib_table_column, integer32, time_ticks, notification_type, ip_address, object_identity, iso, unsigned32, mib_identifier) = mibBuilder.importSymbols('SNMPv2-SMI', 'Counter64', 'Gauge32', 'ModuleIdentity', 'Bits', 'Counter32', 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'Integer32', 'TimeTicks', 'NotificationType', 'IpAddress', 'ObjectIdentity', 'iso', 'Unsigned32', 'MibIdentifier') (display_string, truth_value, mac_address, textual_convention, time_stamp) = mibBuilder.importSymbols('SNMPv2-TC', 'DisplayString', 'TruthValue', 'MacAddress', 'TextualConvention', 'TimeStamp') cisco_tn3270_server_mib = module_identity((1, 3, 6, 1, 4, 1, 9, 9, 54)) ciscoTn3270ServerMIB.setRevisions(('1997-01-22 00:00', '1996-09-12 00:00')) if mibBuilder.loadTexts: ciscoTn3270ServerMIB.setLastUpdated('9701220000Z') if mibBuilder.loadTexts: ciscoTn3270ServerMIB.setOrganization('Cisco Systems, Inc.') tn3270s_objects = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1)) tn3270s_global = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1)) tn3270s_stats = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2)) tn3270s_pu = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3)) tn3270s_ip = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4)) tn3270s_lu = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5)) tn3270s_pu_nail = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6)) tn3270s_ip_nail = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7)) class Tn3270Sunsigned32(TextualConvention, Integer32): status = 'current' subtype_spec = Integer32.subtypeSpec + value_range_constraint(0, 4294967295) class Tn3270Stcpport(TextualConvention, Integer32): status = 'current' subtype_spec = Integer32.subtypeSpec + value_range_constraint(0, 65535) class Tn3270Spuindex(Tn3270sUnsigned32): status = 'current' class Tn3270Sluindex(Tn3270sUnsigned32): status = 'current' class Tn3270Scpucard(DisplayString): status = 'current' subtype_spec = DisplayString.subtypeSpec + value_size_constraint(10, 16) tn3270s_global_table = mib_table((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1)) if mibBuilder.loadTexts: tn3270sGlobalTable.setStatus('current') tn3270s_global_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1)).setIndexNames((0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIndex')) if mibBuilder.loadTexts: tn3270sGlobalEntry.setStatus('current') tn3270s_index = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 1), tn3270s_unsigned32()) if mibBuilder.loadTexts: tn3270sIndex.setStatus('current') tn3270s_cpu_card = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 2), tn3270s_cpu_card()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sCpuCard.setStatus('current') tn3270s_max_lus = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 3), tn3270s_unsigned32().subtype(subtypeSpec=value_range_constraint(1, 65535))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sMaxLus.setStatus('current') tn3270s_lus_in_use = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 4), gauge32().subtype(subtypeSpec=value_range_constraint(0, 65535))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLusInUse.setStatus('current') tn3270s_startup_time = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 5), time_stamp()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStartupTime.setStatus('current') tn3270s_global_tcp_port = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 6), tn3270s_tcp_port()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sGlobalTcpPort.setStatus('current') tn3270s_global_idle_timeout = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 7), integer32().subtype(subtypeSpec=value_range_constraint(0, 65534))).setUnits('seconds').setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sGlobalIdleTimeout.setStatus('current') tn3270s_global_keep_alive = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 8), integer32().subtype(subtypeSpec=value_range_constraint(0, 65534))).setUnits('seconds').setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sGlobalKeepAlive.setStatus('current') tn3270s_global_unbind_action = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 9), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('keep', 1), ('disconnect', 2)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sGlobalUnbindAction.setStatus('current') tn3270s_global_generic_pool = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 10), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('permit', 1), ('deny', 2)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sGlobalGenericPool.setStatus('current') tn3270s_timing_mark_supported = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 11), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sTimingMarkSupported.setStatus('current') tn3270s_running_time = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 1, 1, 1, 12), tn3270s_unsigned32()).setUnits('seconds').setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sRunningTime.setStatus('current') tn3270s_stats_table = mib_table((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1)) if mibBuilder.loadTexts: tn3270sStatsTable.setStatus('current') tn3270s_stats_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1)).setIndexNames((0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIndex'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sStatsServerAddr'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sStatsServerTcpPort')) if mibBuilder.loadTexts: tn3270sStatsEntry.setStatus('current') tn3270s_stats_server_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 1), ip_address()) if mibBuilder.loadTexts: tn3270sStatsServerAddr.setStatus('current') tn3270s_stats_server_tcp_port = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 2), tn3270s_tcp_port()) if mibBuilder.loadTexts: tn3270sStatsServerTcpPort.setStatus('current') tn3270s_stats_max_sess = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 3), gauge32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsMaxSess.setStatus('current') tn3270s_stats_spare_sess = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 4), gauge32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsSpareSess.setStatus('current') tn3270s_stats_connects_in = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 5), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsConnectsIn.setStatus('current') tn3270s_stats_disconnects = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 6), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsDisconnects.setStatus('current') tn3270s_stats_tn3270_connects_failed = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 7), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsTN3270ConnectsFailed.setStatus('current') tn3270s_stats_inbound_chains = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 8), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsInboundChains.setStatus('current') tn3270s_stats_outbound_chains = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 9), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsOutboundChains.setStatus('current') tn3270s_stats_sampled_host_responses = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 10), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsSampledHostResponses.setStatus('current') tn3270s_stats_net_sampled_host_response_time = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 11), tn3270s_unsigned32()).setUnits('10milliseconds').setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsNetSampledHostResponseTime.setStatus('current') tn3270s_stats_sampled_client_responses = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 12), counter32()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsSampledClientResponses.setStatus('current') tn3270s_stats_net_sampled_client_response_time = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 2, 1, 1, 13), tn3270s_unsigned32()).setUnits('10milliseconds').setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sStatsNetSampledClientResponseTime.setStatus('current') tn3270s_pu_table = mib_table((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1)) if mibBuilder.loadTexts: tn3270sPuTable.setStatus('current') tn3270s_pu_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1)).setIndexNames((0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIndex'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sPuIndex')) if mibBuilder.loadTexts: tn3270sPuEntry.setStatus('current') tn3270s_pu_index = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 1), tn3270s_pu_index()) if mibBuilder.loadTexts: tn3270sPuIndex.setStatus('current') tn3270s_pu_ip_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 2), ip_address()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuIpAddr.setStatus('current') tn3270s_pu_tcp_port = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 3), tn3270s_tcp_port()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuTcpPort.setStatus('current') tn3270s_pu_idle_timeout = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 4), integer32().subtype(subtypeSpec=value_range_constraint(0, 65535))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuIdleTimeout.setStatus('current') tn3270s_pu_keep_alive = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 5), integer32().subtype(subtypeSpec=value_range_constraint(0, 65535))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuKeepAlive.setStatus('current') tn3270s_pu_unbind_action = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 6), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3))).clone(namedValues=named_values(('keep', 1), ('disconnect', 2), ('inherit', 3)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuUnbindAction.setStatus('current') tn3270s_pu_generic_pool = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 7), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3))).clone(namedValues=named_values(('permit', 1), ('deny', 2), ('inherit', 3)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuGenericPool.setStatus('current') tn3270s_pu_state = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 8), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=named_values(('shut', 1), ('reset', 2), ('inactive', 3), ('test', 4), ('xid', 5), ('pActpu', 6), ('active', 7), ('actBusy', 8)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuState.setStatus('current') tn3270s_pu_type = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 9), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('dlur', 1), ('direct', 2)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuType.setStatus('current') tn3270s_pu_lu_seed = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 10), display_string().subtype(subtypeSpec=value_size_constraint(1, 6))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuLuSeed.setStatus('current') tn3270s_local_sap_address = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 11), integer32().subtype(subtypeSpec=value_range_constraint(1, 254))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLocalSapAddress.setStatus('current') tn3270s_remote_sap_address = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 12), integer32().subtype(subtypeSpec=value_range_constraint(1, 254))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sRemoteSapAddress.setStatus('current') tn3270s_remote_mac_address = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 13), mac_address()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sRemoteMacAddress.setStatus('current') tn3270s_pu_ip_precedence_screen = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 14), integer32().subtype(subtypeSpec=value_range_constraint(0, 7))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuIpPrecedenceScreen.setStatus('current') tn3270s_pu_ip_precedence_printer = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 15), integer32().subtype(subtypeSpec=value_range_constraint(0, 7))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuIpPrecedencePrinter.setStatus('current') tn3270s_pu_ip_tos_screen = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 16), integer32().subtype(subtypeSpec=value_range_constraint(0, 15))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuIpTosScreen.setStatus('current') tn3270s_pu_ip_tos_printer = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 3, 1, 1, 17), integer32().subtype(subtypeSpec=value_range_constraint(0, 15))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuIpTosPrinter.setStatus('current') tn3270s_ip_table = mib_table((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1)) if mibBuilder.loadTexts: tn3270sIpTable.setStatus('current') tn3270s_ip_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1)).setIndexNames((0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIndex'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIpClientAddr'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIpClientTcpPort')) if mibBuilder.loadTexts: tn3270sIpEntry.setStatus('current') tn3270s_ip_client_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1, 1), ip_address()) if mibBuilder.loadTexts: tn3270sIpClientAddr.setStatus('current') tn3270s_ip_client_tcp_port = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1, 2), tn3270s_tcp_port()) if mibBuilder.loadTexts: tn3270sIpClientTcpPort.setStatus('current') tn3270s_ip_pu_index = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1, 3), tn3270s_pu_index()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sIpPuIndex.setStatus('current') tn3270s_ip_lu_index = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 4, 1, 1, 4), tn3270s_lu_index()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sIpLuIndex.setStatus('current') tn3270s_lu_table = mib_table((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1)) if mibBuilder.loadTexts: tn3270sLuTable.setStatus('current') tn3270s_lu_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1)).setIndexNames((0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIndex'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sLuPuIndex'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sLuIndex')) if mibBuilder.loadTexts: tn3270sLuEntry.setStatus('current') tn3270s_lu_pu_index = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 1), tn3270s_pu_index()) if mibBuilder.loadTexts: tn3270sLuPuIndex.setStatus('current') tn3270s_lu_index = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 2), tn3270s_lu_index()) if mibBuilder.loadTexts: tn3270sLuIndex.setStatus('current') tn3270s_lu_client_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 3), ip_address()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuClientAddr.setStatus('current') tn3270s_lu_client_tcp_port = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 4), tn3270s_tcp_port()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuClientTcpPort.setStatus('current') tn3270s_lu_telnet_type = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 5), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3))).clone(namedValues=named_values(('tn3270', 1), ('tn3270e', 2), ('neverConnect', 3)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuTelnetType.setStatus('current') tn3270s_lu_term_model = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 6), display_string().subtype(subtypeSpec=value_size_constraint(1, 17))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuTermModel.setStatus('current') tn3270s_lu_state = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 7), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13))).clone(namedValues=named_values(('inactive', 1), ('active', 2), ('pSdt', 3), ('actSession', 4), ('pActlu', 5), ('pNotifyAv', 6), ('pNotifyUa', 7), ('pReset', 8), ('pPsid', 9), ('pBind', 10), ('pUnbind', 11), ('unbindWt', 12), ('sdtWt', 13)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuState.setStatus('current') tn3270s_lu_cur_inb_pacing = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 8), integer32().subtype(subtypeSpec=value_range_constraint(0, 63))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuCurInbPacing.setStatus('current') tn3270s_lu_cur_inb_qsize = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 9), integer32().subtype(subtypeSpec=value_range_constraint(0, 63))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuCurInbQsize.setStatus('current') tn3270s_lu_cur_out_qsize = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 10), integer32().subtype(subtypeSpec=value_range_constraint(0, 63))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuCurOutQsize.setStatus('current') tn3270s_lu_idle_time = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 11), integer32().subtype(subtypeSpec=value_range_constraint(0, 65535))).setUnits('seconds').setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuIdleTime.setStatus('current') tn3270s_lu_type = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 12), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('dynamic', 1), ('static', 2)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuType.setStatus('current') tn3270s_lu_appn_link_index = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 13), display_string().subtype(subtypeSpec=value_size_constraint(1, 8))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuAppnLinkIndex.setStatus('current') tn3270s_lu_lfsid = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 14), integer32().subtype(subtypeSpec=value_range_constraint(0, 65535))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuLfsid.setStatus('current') tn3270s_lu_last_event = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 15), time_stamp()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuLastEvent.setStatus('obsolete') tn3270s_lu_events = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 16), octet_string().subtype(subtypeSpec=value_size_constraint(0, 16))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuEvents.setStatus('current') tn3270s_lu_nail = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 5, 1, 1, 17), truth_value()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sLuNail.setStatus('current') tn3270s_pu_nail_table = mib_table((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1)) if mibBuilder.loadTexts: tn3270sPuNailTable.setStatus('current') tn3270s_pu_nail_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1)).setIndexNames((0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIndex'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sPuIndex'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sPuNailClientIpAddr'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sPuNailLuFirst')) if mibBuilder.loadTexts: tn3270sPuNailEntry.setStatus('current') tn3270s_pu_nail_client_ip_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 1), ip_address()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuNailClientIpAddr.setStatus('current') tn3270s_pu_nail_client_ip_mask = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 2), ip_address()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuNailClientIpMask.setStatus('current') tn3270s_pu_nail_type = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 3), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('screen', 1), ('printer', 2)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuNailType.setStatus('current') tn3270s_pu_nail_lu_first = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 4), integer32().subtype(subtypeSpec=value_range_constraint(1, 255))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuNailLuFirst.setStatus('current') tn3270s_pu_nail_lu_last = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 6, 1, 1, 5), integer32().subtype(subtypeSpec=value_range_constraint(1, 255))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sPuNailLuLast.setStatus('current') tn3270s_ip_nail_table = mib_table((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1)) if mibBuilder.loadTexts: tn3270sIpNailTable.setStatus('current') tn3270s_ip_nail_entry = mib_table_row((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1)).setIndexNames((0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIndex'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIpNailClientIpAddr'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sPuIndex'), (0, 'CISCO-TN3270SERVER-MIB', 'tn3270sIpNailLuFirst')) if mibBuilder.loadTexts: tn3270sIpNailEntry.setStatus('current') tn3270s_ip_nail_client_ip_addr = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 1), ip_address()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sIpNailClientIpAddr.setStatus('current') tn3270s_ip_nail_client_ip_mask = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 2), ip_address()).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sIpNailClientIpMask.setStatus('current') tn3270s_ip_nail_type = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 3), integer32().subtype(subtypeSpec=constraints_union(single_value_constraint(1, 2))).clone(namedValues=named_values(('screen', 1), ('printer', 2)))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sIpNailType.setStatus('current') tn3270s_ip_nail_lu_first = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 4), integer32().subtype(subtypeSpec=value_range_constraint(1, 255))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sIpNailLuFirst.setStatus('current') tn3270s_ip_nail_lu_last = mib_table_column((1, 3, 6, 1, 4, 1, 9, 9, 54, 1, 7, 1, 1, 5), integer32().subtype(subtypeSpec=value_range_constraint(1, 255))).setMaxAccess('readonly') if mibBuilder.loadTexts: tn3270sIpNailLuLast.setStatus('current') cisco_tn3270_server_mib_notification_prefix = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 2)) cisco_tn3270_server_mib_conformance = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 3)) cisco_tn3270_server_mib_compliances = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 1)) cisco_tn3270_server_mib_groups = mib_identifier((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 2)) cisco_tn3270_server_mib_compliance = module_compliance((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 1, 1)).setObjects(('CISCO-TN3270SERVER-MIB', 'ciscoTn3270ServerMIBGroup')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_tn3270_server_mib_compliance = ciscoTn3270ServerMIBCompliance.setStatus('current') cisco_tn3270_server_mib_group = object_group((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 2, 1)).setObjects(('CISCO-TN3270SERVER-MIB', 'tn3270sCpuCard'), ('CISCO-TN3270SERVER-MIB', 'tn3270sMaxLus'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLusInUse'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStartupTime'), ('CISCO-TN3270SERVER-MIB', 'tn3270sGlobalTcpPort'), ('CISCO-TN3270SERVER-MIB', 'tn3270sGlobalIdleTimeout'), ('CISCO-TN3270SERVER-MIB', 'tn3270sGlobalKeepAlive'), ('CISCO-TN3270SERVER-MIB', 'tn3270sGlobalUnbindAction'), ('CISCO-TN3270SERVER-MIB', 'tn3270sGlobalGenericPool'), ('CISCO-TN3270SERVER-MIB', 'tn3270sTimingMarkSupported'), ('CISCO-TN3270SERVER-MIB', 'tn3270sRunningTime'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsMaxSess'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsSpareSess'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsConnectsIn'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsDisconnects'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsTN3270ConnectsFailed'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsInboundChains'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsOutboundChains'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsSampledHostResponses'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsNetSampledHostResponseTime'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsSampledClientResponses'), ('CISCO-TN3270SERVER-MIB', 'tn3270sStatsNetSampledClientResponseTime'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuIpAddr'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuTcpPort'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuIdleTimeout'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuKeepAlive'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuUnbindAction'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuGenericPool'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuState'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuType'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuLuSeed'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLocalSapAddress'), ('CISCO-TN3270SERVER-MIB', 'tn3270sRemoteSapAddress'), ('CISCO-TN3270SERVER-MIB', 'tn3270sRemoteMacAddress'), ('CISCO-TN3270SERVER-MIB', 'tn3270sIpPuIndex'), ('CISCO-TN3270SERVER-MIB', 'tn3270sIpLuIndex'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuClientAddr'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuClientTcpPort'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuTelnetType'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuTermModel'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuState'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuCurInbPacing'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuCurInbQsize'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuCurOutQsize'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuIdleTime'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuType'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuAppnLinkIndex'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuLfsid'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuEvents')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_tn3270_server_mib_group = ciscoTn3270ServerMIBGroup.setStatus('current') cisco_tn3270_server_mib_compliance_obsolete = module_compliance((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 1, 2)).setObjects(('CISCO-TN3270SERVER-MIB', 'ciscoTn3270ServerMIBGroupObsolete')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_tn3270_server_mib_compliance_obsolete = ciscoTn3270ServerMIBComplianceObsolete.setStatus('obsolete') cisco_tn3270_server_mib_group_obsolete = object_group((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 2, 2)).setObjects(('CISCO-TN3270SERVER-MIB', 'tn3270sLuLastEvent')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_tn3270_server_mib_group_obsolete = ciscoTn3270ServerMIBGroupObsolete.setStatus('obsolete') cisco_tn3270_server_mib_compliance_rev1 = module_compliance((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 1, 3)).setObjects(('CISCO-TN3270SERVER-MIB', 'ciscoTn3270ServerMIBGroup'), ('CISCO-TN3270SERVER-MIB', 'ciscoTn3270ServerMIBGroupRev1')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_tn3270_server_mib_compliance_rev1 = ciscoTn3270ServerMIBComplianceRev1.setStatus('current') cisco_tn3270_server_mib_group_rev1 = object_group((1, 3, 6, 1, 4, 1, 9, 9, 54, 3, 2, 3)).setObjects(('CISCO-TN3270SERVER-MIB', 'tn3270sPuIpPrecedenceScreen'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuIpPrecedencePrinter'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuIpTosScreen'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuIpTosPrinter'), ('CISCO-TN3270SERVER-MIB', 'tn3270sLuNail'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuNailClientIpAddr'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuNailClientIpMask'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuNailType'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuNailLuFirst'), ('CISCO-TN3270SERVER-MIB', 'tn3270sPuNailLuLast'), ('CISCO-TN3270SERVER-MIB', 'tn3270sIpNailClientIpAddr'), ('CISCO-TN3270SERVER-MIB', 'tn3270sIpNailClientIpMask'), ('CISCO-TN3270SERVER-MIB', 'tn3270sIpNailType'), ('CISCO-TN3270SERVER-MIB', 'tn3270sIpNailLuFirst'), ('CISCO-TN3270SERVER-MIB', 'tn3270sIpNailLuLast')) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cisco_tn3270_server_mib_group_rev1 = ciscoTn3270ServerMIBGroupRev1.setStatus('current') mibBuilder.exportSymbols('CISCO-TN3270SERVER-MIB', tn3270sIpNailClientIpAddr=tn3270sIpNailClientIpAddr, tn3270sStartupTime=tn3270sStartupTime, ciscoTn3270ServerMIBGroupObsolete=ciscoTn3270ServerMIBGroupObsolete, tn3270sLu=tn3270sLu, tn3270sLusInUse=tn3270sLusInUse, tn3270sLuPuIndex=tn3270sLuPuIndex, tn3270sStatsEntry=tn3270sStatsEntry, tn3270sPuNailTable=tn3270sPuNailTable, tn3270sPuType=tn3270sPuType, PYSNMP_MODULE_ID=ciscoTn3270ServerMIB, tn3270sLuLfsid=tn3270sLuLfsid, ciscoTn3270ServerMIBComplianceObsolete=ciscoTn3270ServerMIBComplianceObsolete, tn3270sCpuCard=tn3270sCpuCard, tn3270sPuState=tn3270sPuState, tn3270sPuNailType=tn3270sPuNailType, tn3270sStatsTN3270ConnectsFailed=tn3270sStatsTN3270ConnectsFailed, tn3270sLocalSapAddress=tn3270sLocalSapAddress, tn3270sPuNailLuFirst=tn3270sPuNailLuFirst, tn3270sPuIdleTimeout=tn3270sPuIdleTimeout, tn3270sIpNailLuLast=tn3270sIpNailLuLast, tn3270sRemoteSapAddress=tn3270sRemoteSapAddress, ciscoTn3270ServerMIBConformance=ciscoTn3270ServerMIBConformance, tn3270sStatsServerTcpPort=tn3270sStatsServerTcpPort, tn3270sGlobalEntry=tn3270sGlobalEntry, tn3270sStatsNetSampledHostResponseTime=tn3270sStatsNetSampledHostResponseTime, Tn3270sUnsigned32=Tn3270sUnsigned32, tn3270sLuIdleTime=tn3270sLuIdleTime, tn3270sLuTelnetType=tn3270sLuTelnetType, Tn3270sCpuCard=Tn3270sCpuCard, tn3270sPuGenericPool=tn3270sPuGenericPool, tn3270sLuNail=tn3270sLuNail, tn3270sStatsOutboundChains=tn3270sStatsOutboundChains, tn3270sGlobalIdleTimeout=tn3270sGlobalIdleTimeout, tn3270sObjects=tn3270sObjects, tn3270sIpLuIndex=tn3270sIpLuIndex, ciscoTn3270ServerMIBNotificationPrefix=ciscoTn3270ServerMIBNotificationPrefix, tn3270sLuTable=tn3270sLuTable, tn3270sLuClientTcpPort=tn3270sLuClientTcpPort, tn3270sPuIndex=tn3270sPuIndex, tn3270sIpNailTable=tn3270sIpNailTable, tn3270sPuTable=tn3270sPuTable, tn3270sIpNailEntry=tn3270sIpNailEntry, tn3270sPuIpTosPrinter=tn3270sPuIpTosPrinter, tn3270sTimingMarkSupported=tn3270sTimingMarkSupported, ciscoTn3270ServerMIBGroupRev1=ciscoTn3270ServerMIBGroupRev1, tn3270sPuTcpPort=tn3270sPuTcpPort, tn3270sPuEntry=tn3270sPuEntry, ciscoTn3270ServerMIB=ciscoTn3270ServerMIB, tn3270sLuIndex=tn3270sLuIndex, Tn3270sLUIndex=Tn3270sLUIndex, tn3270sIpClientAddr=tn3270sIpClientAddr, tn3270sGlobalTcpPort=tn3270sGlobalTcpPort, tn3270sGlobalUnbindAction=tn3270sGlobalUnbindAction, tn3270sRemoteMacAddress=tn3270sRemoteMacAddress, tn3270sStatsSampledClientResponses=tn3270sStatsSampledClientResponses, ciscoTn3270ServerMIBCompliances=ciscoTn3270ServerMIBCompliances, tn3270sStatsConnectsIn=tn3270sStatsConnectsIn, Tn3270sTCPPort=Tn3270sTCPPort, tn3270sIpEntry=tn3270sIpEntry, tn3270sPuIpTosScreen=tn3270sPuIpTosScreen, tn3270sStatsInboundChains=tn3270sStatsInboundChains, tn3270sGlobalTable=tn3270sGlobalTable, tn3270sIpNail=tn3270sIpNail, tn3270sPuIpAddr=tn3270sPuIpAddr, tn3270sPuIpPrecedencePrinter=tn3270sPuIpPrecedencePrinter, tn3270sPuIpPrecedenceScreen=tn3270sPuIpPrecedenceScreen, tn3270sIpPuIndex=tn3270sIpPuIndex, tn3270sPuLuSeed=tn3270sPuLuSeed, tn3270sRunningTime=tn3270sRunningTime, tn3270sPuNailLuLast=tn3270sPuNailLuLast, ciscoTn3270ServerMIBGroups=ciscoTn3270ServerMIBGroups, tn3270sLuEvents=tn3270sLuEvents, tn3270sPuKeepAlive=tn3270sPuKeepAlive, tn3270sStats=tn3270sStats, tn3270sPuNailEntry=tn3270sPuNailEntry, tn3270sLuClientAddr=tn3270sLuClientAddr, tn3270sLuAppnLinkIndex=tn3270sLuAppnLinkIndex, tn3270sPuNailClientIpAddr=tn3270sPuNailClientIpAddr, tn3270sIp=tn3270sIp, tn3270sPuNail=tn3270sPuNail, tn3270sStatsServerAddr=tn3270sStatsServerAddr, tn3270sGlobalKeepAlive=tn3270sGlobalKeepAlive, tn3270sLuLastEvent=tn3270sLuLastEvent, tn3270sPu=tn3270sPu, tn3270sMaxLus=tn3270sMaxLus, tn3270sGlobalGenericPool=tn3270sGlobalGenericPool, tn3270sGlobal=tn3270sGlobal, tn3270sStatsMaxSess=tn3270sStatsMaxSess, tn3270sStatsSampledHostResponses=tn3270sStatsSampledHostResponses, tn3270sPuNailClientIpMask=tn3270sPuNailClientIpMask, tn3270sStatsDisconnects=tn3270sStatsDisconnects, tn3270sIpTable=tn3270sIpTable, ciscoTn3270ServerMIBComplianceRev1=ciscoTn3270ServerMIBComplianceRev1, Tn3270sPUIndex=Tn3270sPUIndex, tn3270sLuCurOutQsize=tn3270sLuCurOutQsize, tn3270sLuType=tn3270sLuType, tn3270sStatsSpareSess=tn3270sStatsSpareSess, ciscoTn3270ServerMIBGroup=ciscoTn3270ServerMIBGroup, tn3270sLuState=tn3270sLuState, tn3270sIpNailClientIpMask=tn3270sIpNailClientIpMask, tn3270sLuEntry=tn3270sLuEntry, tn3270sIndex=tn3270sIndex, tn3270sLuTermModel=tn3270sLuTermModel, tn3270sIpNailType=tn3270sIpNailType, tn3270sLuCurInbPacing=tn3270sLuCurInbPacing, tn3270sPuUnbindAction=tn3270sPuUnbindAction, ciscoTn3270ServerMIBCompliance=ciscoTn3270ServerMIBCompliance, tn3270sStatsNetSampledClientResponseTime=tn3270sStatsNetSampledClientResponseTime, tn3270sStatsTable=tn3270sStatsTable, tn3270sIpNailLuFirst=tn3270sIpNailLuFirst, tn3270sIpClientTcpPort=tn3270sIpClientTcpPort, tn3270sLuCurInbQsize=tn3270sLuCurInbQsize)
MAGIC = [20210318223204031831, 1145141919810] BASE58 = '123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ' def encode(msg: str) -> str: temp = 0 for m in msg: temp = temp * 256 + ord(m) temp = (temp ^ MAGIC[0]) + MAGIC[1] msg = '' while temp: msg = BASE58[temp % 58] + msg temp //= 58 return msg def decode(msg: str) -> str: temp = 0 for m in msg: temp = temp * 58 + BASE58.index(m) temp = temp - MAGIC[1] ^ MAGIC[0] msg = '' while temp: msg = chr(temp % 256) + msg temp //= 256 return msg if __name__ == '__main__': print(encode('1145141919'))
magic = [20210318223204031831, 1145141919810] base58 = '123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ' def encode(msg: str) -> str: temp = 0 for m in msg: temp = temp * 256 + ord(m) temp = (temp ^ MAGIC[0]) + MAGIC[1] msg = '' while temp: msg = BASE58[temp % 58] + msg temp //= 58 return msg def decode(msg: str) -> str: temp = 0 for m in msg: temp = temp * 58 + BASE58.index(m) temp = temp - MAGIC[1] ^ MAGIC[0] msg = '' while temp: msg = chr(temp % 256) + msg temp //= 256 return msg if __name__ == '__main__': print(encode('1145141919'))
def binary_search(arr, item): low = 0 high = len(arr)-1 result = -1 while (low <= high): mid = (low + high)//2 if item == arr[mid]: result = mid high = mid - 1 elif (item < arr[mid]): high = mid - 1 else: low = mid + 1 return result
def binary_search(arr, item): low = 0 high = len(arr) - 1 result = -1 while low <= high: mid = (low + high) // 2 if item == arr[mid]: result = mid high = mid - 1 elif item < arr[mid]: high = mid - 1 else: low = mid + 1 return result
n = int(input()) if n == 1: print('x') elif n % 2 == 0: for x in range(n//2): print(" " * x + "\\" + " " * 2*(n//2-(x+1)) + "/") for x in range(n//2): print(" " * (n//2-(x+1)) + "/" + " " * 2*x + "\\") elif (n % 2) == 1: for i in range(n//2): print(" " * i + "\\" + " " * (2*(n//2-(i+1))+1) + "/") print(" " * ((n//2)) + "X") for i in range(n//2): print(" " * (n//2-(i+1)) + "/" + " " * ((2*i)+1) + "\\") rows_cols = int(input()) if rows_cols == 1: print("X") elif (rows_cols % 2) == 0: for i in range(rows_cols//2): print(" " * i + "\\" + " " * 2*(rows_cols//2-(i+1)) + "/") for i in range(rows_cols//2): print(" " * (rows_cols//2-(i+1)) + "/" + " " * 2*i + "\\") elif (rows_cols % 2) == 1: for i in range(rows_cols//2): print(" " * i + "\\" + " " * (2*(rows_cols//2-(i+1))+1) + "/") print(" " * ((rows_cols//2)) + "X") for i in range(rows_cols//2): print(" " * (rows_cols//2-(i+1)) + "/" + " " * ((2*i)+1) + "\\")
n = int(input()) if n == 1: print('x') elif n % 2 == 0: for x in range(n // 2): print(' ' * x + '\\' + ' ' * 2 * (n // 2 - (x + 1)) + '/') for x in range(n // 2): print(' ' * (n // 2 - (x + 1)) + '/' + ' ' * 2 * x + '\\') elif n % 2 == 1: for i in range(n // 2): print(' ' * i + '\\' + ' ' * (2 * (n // 2 - (i + 1)) + 1) + '/') print(' ' * (n // 2) + 'X') for i in range(n // 2): print(' ' * (n // 2 - (i + 1)) + '/' + ' ' * (2 * i + 1) + '\\') rows_cols = int(input()) if rows_cols == 1: print('X') elif rows_cols % 2 == 0: for i in range(rows_cols // 2): print(' ' * i + '\\' + ' ' * 2 * (rows_cols // 2 - (i + 1)) + '/') for i in range(rows_cols // 2): print(' ' * (rows_cols // 2 - (i + 1)) + '/' + ' ' * 2 * i + '\\') elif rows_cols % 2 == 1: for i in range(rows_cols // 2): print(' ' * i + '\\' + ' ' * (2 * (rows_cols // 2 - (i + 1)) + 1) + '/') print(' ' * (rows_cols // 2) + 'X') for i in range(rows_cols // 2): print(' ' * (rows_cols // 2 - (i + 1)) + '/' + ' ' * (2 * i + 1) + '\\')
#!/usr/bin/python line = "Przykladoy tekst do zadania z przedmiotu Python" allWords = line.split() result = sum(len(x) for x in allWords) print(result)
line = 'Przykladoy tekst do zadania z przedmiotu Python' all_words = line.split() result = sum((len(x) for x in allWords)) print(result)
params={ 'enc_type': 'lstm', 'dec_type': 'lstm', 'nz': 32, 'ni': 128, 'enc_nh': 512, 'dec_nh': 512, 'log_niter': 50, 'dec_dropout_in': 0.5, 'dec_dropout_out': 0.5, 'batch_size': 32, 'epochs': 100, 'test_nepoch': 5, 'train_data': 'datasets/snli_data/snli.train.txt', 'val_data': 'datasets/snli_data/snli.valid.txt', 'test_data': 'datasets/snli_data/snli.test.txt', 'ais_prior': 'normal', 'ais_T': 500, 'ais_K': 3, "label": False }
params = {'enc_type': 'lstm', 'dec_type': 'lstm', 'nz': 32, 'ni': 128, 'enc_nh': 512, 'dec_nh': 512, 'log_niter': 50, 'dec_dropout_in': 0.5, 'dec_dropout_out': 0.5, 'batch_size': 32, 'epochs': 100, 'test_nepoch': 5, 'train_data': 'datasets/snli_data/snli.train.txt', 'val_data': 'datasets/snli_data/snli.valid.txt', 'test_data': 'datasets/snli_data/snli.test.txt', 'ais_prior': 'normal', 'ais_T': 500, 'ais_K': 3, 'label': False}
while True: s = input("[>] Enter string (for exit enter empty string): ") if s: print(f"[+] Lenght of string: {len(s)}") else: break
while True: s = input('[>] Enter string (for exit enter empty string): ') if s: print(f'[+] Lenght of string: {len(s)}') else: break
for i in range(int(input())): fact=1 a=int(input()) for j in range(1,a+1,1): fact=fact*j print(fact)
for i in range(int(input())): fact = 1 a = int(input()) for j in range(1, a + 1, 1): fact = fact * j print(fact)
createElement = React.createElement createContext = React.createContext forwardRef = React.forwardRef Component = ReactComponent = React.Component useState = React.useState useEffect = React.useEffect useContext = React.useContext useReducer = React.useReducer useCallback = React.useCallback useMemo = React.useMemo useRef = React.useRef useImperativeHandle = React.useImperativeHandle useLayoutEffect = React.useLayoutEffect useDebugValue = React.useDebugValue def withDeps(*deps): useHook = this def decorator(fn): useHook(fn, deps) return fn return decorator useEffect.withDeps = withDeps useLayoutEffect.withDeps = withDeps def useCallbackWithDeps(*deps): def decorator(fn): return React.useCallback(fn, deps) return decorator useCallback.withDeps = useCallbackWithDeps
create_element = React.createElement create_context = React.createContext forward_ref = React.forwardRef component = react_component = React.Component use_state = React.useState use_effect = React.useEffect use_context = React.useContext use_reducer = React.useReducer use_callback = React.useCallback use_memo = React.useMemo use_ref = React.useRef use_imperative_handle = React.useImperativeHandle use_layout_effect = React.useLayoutEffect use_debug_value = React.useDebugValue def with_deps(*deps): use_hook = this def decorator(fn): use_hook(fn, deps) return fn return decorator useEffect.withDeps = withDeps useLayoutEffect.withDeps = withDeps def use_callback_with_deps(*deps): def decorator(fn): return React.useCallback(fn, deps) return decorator useCallback.withDeps = useCallbackWithDeps
class dotLoadCommonAttributes_t(object): # no doc aPartFilter=None AutomaticPrimaryAxisWeight=None BoundingBoxDx=None BoundingBoxDy=None BoundingBoxDz=None CreateFixedSupportConditionsAutomatically=None FatherId=None LoadAttachment=None LoadDispersionAngle=None LoadGroupId=None ModelObject=None PartNames=None PrimaryAxisDirection=None Spanning=None Weight=None
class Dotloadcommonattributes_T(object): a_part_filter = None automatic_primary_axis_weight = None bounding_box_dx = None bounding_box_dy = None bounding_box_dz = None create_fixed_support_conditions_automatically = None father_id = None load_attachment = None load_dispersion_angle = None load_group_id = None model_object = None part_names = None primary_axis_direction = None spanning = None weight = None
class Graph: def __init__(self, vertices): self.__nodes = vertices self.__edges = {} def add_edges(self, node1,node2): if (min(node1,node2),max(node1,node2)) in self.__edges: self.__edges[(min(node1,node2),max(node1,node2))] += 1 else: self.__edges[(min(node1,node2),max(node1,node2))] = 0 def add_edges_from_list(self, lista): aux = 0 pares_criados = [(min(val1,val2), max(val1,val2)) for val1 in lista[:len(lista)//2] for val2 in lista[aux+1:] if val1 != val2 ] for par in pares_criados: if par in self.__edges: self.__edges[par] += 1 else: self.__edges[par] = 0 def get_edges(self): return self.__edges
class Graph: def __init__(self, vertices): self.__nodes = vertices self.__edges = {} def add_edges(self, node1, node2): if (min(node1, node2), max(node1, node2)) in self.__edges: self.__edges[min(node1, node2), max(node1, node2)] += 1 else: self.__edges[min(node1, node2), max(node1, node2)] = 0 def add_edges_from_list(self, lista): aux = 0 pares_criados = [(min(val1, val2), max(val1, val2)) for val1 in lista[:len(lista) // 2] for val2 in lista[aux + 1:] if val1 != val2] for par in pares_criados: if par in self.__edges: self.__edges[par] += 1 else: self.__edges[par] = 0 def get_edges(self): return self.__edges
lista = [] listaPar = [] listaImpar = [] continuar ='s' while continuar in 'Ss': valor = int(input('Insira o seu numero : ')) lista.append(valor) if valor % 2 == 0 : listaPar.append(valor) if valor % 2 == 1 : listaImpar.append(valor) continuar = str(input('Continuar [S/N] ?')) print('Lista completa',lista) print('Lista par',listaPar) print('Lista impar : ',listaImpar)
lista = [] lista_par = [] lista_impar = [] continuar = 's' while continuar in 'Ss': valor = int(input('Insira o seu numero : ')) lista.append(valor) if valor % 2 == 0: listaPar.append(valor) if valor % 2 == 1: listaImpar.append(valor) continuar = str(input('Continuar [S/N] ?')) print('Lista completa', lista) print('Lista par', listaPar) print('Lista impar : ', listaImpar)
name = "S - Interfering Lines" description = "Oscilloscope lines overlap" knob1 = "Number of Lines" knob2 = "Outer Spread" knob3 = "Center Spread" knob4 = "Color" released = "March 21 2017"
name = 'S - Interfering Lines' description = 'Oscilloscope lines overlap' knob1 = 'Number of Lines' knob2 = 'Outer Spread' knob3 = 'Center Spread' knob4 = 'Color' released = 'March 21 2017'
def precision_S(y_test, y_pred): corr_negative, corr_issue, corr_solution = 0, 0, 0 count_negative, count_issue, count_solution = 0, 0, 0 for i, prediction in enumerate(y_pred): if prediction[0] == 1: count_negative += 1 if y_test[i][0] == 1: corr_negative += 1 if prediction[1] == 1: count_issue += 1 if y_test[i][1] == 1: corr_issue += 1 # if prediction[2] == 1: # count_solution += 1 # if y_test[i][2] == 1: # corr_solution += 1 precision_negative = float(corr_negative) / float(count_negative) precision_issue = float(corr_issue) / float(count_issue) # precision_solution = float(corr_solution) / float(count_solution) return precision_issue def recall_S(y_test, y_pred): # truth_number = 0 # corr_number = 0 corr_negative, corr_issue, corr_solution = 0, 0, 0 count_negative, count_issue, count_solution = 0, 0, 0 for i, testing in enumerate(y_test): if testing[0] == 1: count_negative += 1 if y_pred[i][0] == 1: corr_negative += 1 if testing[1] == 1: count_issue += 1 if y_pred[i][1] == 1: corr_issue += 1 # if testing[2] == 1: # count_solution += 1 # if y_pred[i][2] == 1: # corr_solution += 1 # test_pos_list = [] # for j in range(3): # if testing[j] == 1: # test_pos_list.append(j) # if 0 not in test_pos_list and (1 in test_pos_list or 2 in test_pos_list): # truth_number += 1 # for truth_index in test_pos_list: # if y_pred[i][truth_index] == 1 and truth_index != 0: # corr_number += 1 # break recall_negative = float(corr_negative) / float(count_negative) recall_issue = float(corr_issue) / float(count_issue) # recall_solution = float(corr_solution) / float(count_solution) return recall_issue
def precision_s(y_test, y_pred): (corr_negative, corr_issue, corr_solution) = (0, 0, 0) (count_negative, count_issue, count_solution) = (0, 0, 0) for (i, prediction) in enumerate(y_pred): if prediction[0] == 1: count_negative += 1 if y_test[i][0] == 1: corr_negative += 1 if prediction[1] == 1: count_issue += 1 if y_test[i][1] == 1: corr_issue += 1 precision_negative = float(corr_negative) / float(count_negative) precision_issue = float(corr_issue) / float(count_issue) return precision_issue def recall_s(y_test, y_pred): (corr_negative, corr_issue, corr_solution) = (0, 0, 0) (count_negative, count_issue, count_solution) = (0, 0, 0) for (i, testing) in enumerate(y_test): if testing[0] == 1: count_negative += 1 if y_pred[i][0] == 1: corr_negative += 1 if testing[1] == 1: count_issue += 1 if y_pred[i][1] == 1: corr_issue += 1 recall_negative = float(corr_negative) / float(count_negative) recall_issue = float(corr_issue) / float(count_issue) return recall_issue
def cmn_denom(num, denom): while num % denom != 0: old_num = num old_denon = denom num = old_denon denom = old_num % old_denon return denom class Fraction: def __init__(self, num, denom): self.num = num self.denom = denom def __str__(self): return str(self.num) + " / " + str(self.denom) def __add__(self, other): new_num = self.num * other.denom + self.denom * other.num new_den = self.denom * other.denom common_den = cmn_denom(new_num, new_den) return Fraction(new_num // common_den, new_den // common_den) def __sub__(self, other): new_num = self.num * other.denom - self.denom * other.num new_den = self.denom * other.denom common_den = cmn_denom(new_num, new_den) return Fraction(new_num // common_den, new_den // common_den) def __mul__(self, other): new_num = self.num * other.num new_den = self.denom * other.denom common_den = cmn_denom(new_num, new_den) return Fraction(new_num // common_den, new_den // common_den) def __truediv__(self, other): new_num = self.num * other.denom new_den = self.denom * other.num common_den = cmn_denom(new_num, new_den) return Fraction(new_num // common_den, new_den // common_den) if __name__ == '__main__': fraction1 = Fraction(4, 5) fraction2 = Fraction(1, 8) print(fraction1 + fraction2) print(fraction1 - fraction2) print(fraction1 * fraction2) print(fraction1 / fraction2)
def cmn_denom(num, denom): while num % denom != 0: old_num = num old_denon = denom num = old_denon denom = old_num % old_denon return denom class Fraction: def __init__(self, num, denom): self.num = num self.denom = denom def __str__(self): return str(self.num) + ' / ' + str(self.denom) def __add__(self, other): new_num = self.num * other.denom + self.denom * other.num new_den = self.denom * other.denom common_den = cmn_denom(new_num, new_den) return fraction(new_num // common_den, new_den // common_den) def __sub__(self, other): new_num = self.num * other.denom - self.denom * other.num new_den = self.denom * other.denom common_den = cmn_denom(new_num, new_den) return fraction(new_num // common_den, new_den // common_den) def __mul__(self, other): new_num = self.num * other.num new_den = self.denom * other.denom common_den = cmn_denom(new_num, new_den) return fraction(new_num // common_den, new_den // common_den) def __truediv__(self, other): new_num = self.num * other.denom new_den = self.denom * other.num common_den = cmn_denom(new_num, new_den) return fraction(new_num // common_den, new_den // common_den) if __name__ == '__main__': fraction1 = fraction(4, 5) fraction2 = fraction(1, 8) print(fraction1 + fraction2) print(fraction1 - fraction2) print(fraction1 * fraction2) print(fraction1 / fraction2)
jill = 10 iack = 10 print(str(iack)+" "+str(jill)) for i in range(iack): print(i) for j in range(jill): print(jill + j*2) print("0 0")
jill = 10 iack = 10 print(str(iack) + ' ' + str(jill)) for i in range(iack): print(i) for j in range(jill): print(jill + j * 2) print('0 0')
#for defining n inputs from the user print('enter 0 to stop.\n') def enter(x): while x: x=input() x=input() enter(x) #------------------ done ---------------------------
print('enter 0 to stop.\n') def enter(x): while x: x = input() x = input() enter(x)
def f(): x = 8 def g(): nonlocal x x = 9 return x
def f(): x = 8 def g(): nonlocal x x = 9 return x
''' Leser filer gitt filnavn '''
""" Leser filer gitt filnavn """
# area_of_n-sided_polygon.py # https://www.codewars.com/kata/5727500a20c7f837fc001869/train/python # We use the "shoelace formula" to calculate the area. # https://www.101computing.net/the-shoelace-algorithm/ def area_polygon(vertex): if len(vertex) < 3: return -1 a = vertex[len(vertex) - 1][0]*vertex[0][1] b = vertex[len(vertex) - 1][1]*vertex[0][0] for i in range(len(vertex) - 1): a += vertex[i][0] * vertex[i + 1][1] b += vertex[i][1] * vertex[i + 1][0] return round((abs(a - b) / 2), 1) # Round to nearest 1/10. if __name__ == "__main__": print(area_polygon([(1, 1), (3, 4), (6, 1)])) print(area_polygon([(1, 3), (3, 3), (3, 1), (1, 1)])) print(area_polygon([(0, 5), (3, 3), (2, -3), (-2, -3), (-3, 3)]))
def area_polygon(vertex): if len(vertex) < 3: return -1 a = vertex[len(vertex) - 1][0] * vertex[0][1] b = vertex[len(vertex) - 1][1] * vertex[0][0] for i in range(len(vertex) - 1): a += vertex[i][0] * vertex[i + 1][1] b += vertex[i][1] * vertex[i + 1][0] return round(abs(a - b) / 2, 1) if __name__ == '__main__': print(area_polygon([(1, 1), (3, 4), (6, 1)])) print(area_polygon([(1, 3), (3, 3), (3, 1), (1, 1)])) print(area_polygon([(0, 5), (3, 3), (2, -3), (-2, -3), (-3, 3)]))
add_library('opencv_processing') img = None opencv = None def setup(): img = loadImage("test.jpg") size(img.width, img.height, P2D) opencv = OpenCV(this, img) def draw(): opencv.loadImage(img) opencv.brightness(int(map(mouseX, 0, width, -255, 255))) image(opencv.getOutput(), 0, 0)
add_library('opencv_processing') img = None opencv = None def setup(): img = load_image('test.jpg') size(img.width, img.height, P2D) opencv = open_cv(this, img) def draw(): opencv.loadImage(img) opencv.brightness(int(map(mouseX, 0, width, -255, 255))) image(opencv.getOutput(), 0, 0)
def controllo_input(n): if len(n) < 4: raise TypeError("Errore: il numero deve avere minimo 4 cifre") def ordina_crescente(n): return "".join(sorted(n)) def ordina_decrescente(n): return "".join(reversed(sorted(n))) def costante_kaprekar(n): iterazioni_max_kaprekar = 7 for i in range(iterazioni_max_kaprekar): kaprekar = int(ordina_decrescente(str(n))) - int(ordina_crescente(str(n))) print("Iterazioni:", i+1, ">>", int(ordina_decrescente(str(n))), "-", int(ordina_crescente(str(n))), "=", kaprekar) n = kaprekar if n == 6174 or n == 0: print("Numero di iterazioni:", i+1) break def main(): print("Costante di Kaprekar\n") n = str(input(">> ")) controllo_input(n) costante_kaprekar(n) if __name__ == "__main__": main()
def controllo_input(n): if len(n) < 4: raise type_error('Errore: il numero deve avere minimo 4 cifre') def ordina_crescente(n): return ''.join(sorted(n)) def ordina_decrescente(n): return ''.join(reversed(sorted(n))) def costante_kaprekar(n): iterazioni_max_kaprekar = 7 for i in range(iterazioni_max_kaprekar): kaprekar = int(ordina_decrescente(str(n))) - int(ordina_crescente(str(n))) print('Iterazioni:', i + 1, '>>', int(ordina_decrescente(str(n))), '-', int(ordina_crescente(str(n))), '=', kaprekar) n = kaprekar if n == 6174 or n == 0: print('Numero di iterazioni:', i + 1) break def main(): print('Costante di Kaprekar\n') n = str(input('>> ')) controllo_input(n) costante_kaprekar(n) if __name__ == '__main__': main()
def dato(diametro): if diametro == 1: # varilla de 8mm return 0.40 if diametro == 0: # varilla de 12mm return 0.60 if diametro == 2: # varilla de 14mm return 0.70 if diametro == 3: # varilla de 16mm return 0.80 if diametro == 4: # varilla de 18mm return 0.90 if diametro == 5: # varilla de 20mm return 1
def dato(diametro): if diametro == 1: return 0.4 if diametro == 0: return 0.6 if diametro == 2: return 0.7 if diametro == 3: return 0.8 if diametro == 4: return 0.9 if diametro == 5: return 1
match x: case Class(1, foo=2, bar=3): pass
match x: case Class(1, foo=2, bar=3): pass
# https://leetcode.com/problems/minimize-maximum-pair-sum-in-array class Solution: def minPairSum(self, nums: List[int]) -> int: nums = sorted(nums) ans = 0 for i in range(len(nums) // 2): val = nums[i] + nums[-1 - i] ans = max(ans, val) return ans
class Solution: def min_pair_sum(self, nums: List[int]) -> int: nums = sorted(nums) ans = 0 for i in range(len(nums) // 2): val = nums[i] + nums[-1 - i] ans = max(ans, val) return ans