File size: 3,583 Bytes
2880d52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import pickle

import h5py
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from PIL import Image


class DenseCapDataset(Dataset):

    @staticmethod
    def collate_fn(batch):
        """Use in torch.utils.data.DataLoader
        """

        return tuple(zip(*batch)) # as tuples instead of stacked tensors

    @staticmethod
    def get_transform():
        """More complicated transform utils in torchvison/references/detection/transforms.py
        """

        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])

        return transform

    def __init__(self, img_dir_root, vg_data_path, look_up_tables_path, dataset_type=None, transform=None):

        assert dataset_type in {None, 'train', 'test', 'val'}

        super(DenseCapDataset, self).__init__()

        self.img_dir_root = img_dir_root
        self.vg_data_path = vg_data_path
        self.look_up_tables_path = look_up_tables_path
        self.dataset_type = dataset_type  # if dataset_type is None, all data will be use
        self.transform = transform

        # === load data here ====

        self.vg_data = h5py.File(vg_data_path, 'r')
        self.look_up_tables = pickle.load(open(look_up_tables_path, 'rb'))

    def set_dataset_type(self, dataset_type, verbose=True):

        assert dataset_type in {None, 'train', 'test', 'val'}

        if verbose:
            print('[DenseCapDataset]: {} switch to {}'.format(self.dataset_type, dataset_type))

        self.dataset_type = dataset_type

    def __getitem__(self, idx):

        vg_idx = self.look_up_tables['split'][self.dataset_type][idx] if self.dataset_type else idx

        img_path = os.path.join(self.img_dir_root, self.look_up_tables['idx_to_directory'][vg_idx],
                                self.look_up_tables['idx_to_filename'][vg_idx])

        img = Image.open(img_path).convert("RGB")
        if self.transform is not None:
            img = self.transform(img)
        else:
            img = transforms.ToTensor()(img)

        first_box_idx = self.vg_data['img_to_first_box'][vg_idx]
        last_box_idx = self.vg_data['img_to_last_box'][vg_idx]

        boxes = torch.as_tensor(self.vg_data['boxes'][first_box_idx: last_box_idx+1], dtype=torch.float32)
        caps = torch.as_tensor(self.vg_data['captions'][first_box_idx: last_box_idx+1], dtype=torch.long)
        caps_len = torch.as_tensor(self.vg_data['lengths'][first_box_idx: last_box_idx+1], dtype=torch.long)

        targets = {
            'boxes': boxes,
            'caps': caps,
            'caps_len': caps_len,
        }

        info = {
            'idx': vg_idx,
            'dir': self.look_up_tables['idx_to_directory'][vg_idx],
            'file_name': self.look_up_tables['idx_to_filename'][vg_idx]
        }

        return img, targets, info

    def __len__(self):

        if self.dataset_type:
            return len(self.look_up_tables['split'][self.dataset_type])
        else:
            return len(self.look_up_tables['filename_to_idx'])

if __name__ == '__main__':

    IMG_DIR_ROOT = './data/visual-genome'
    VG_DATA_PATH = './data/VG-regions.h5'
    LOOK_UP_TABLES_PATH = './data/VG-regions-dicts.pkl'

    dcd = DenseCapDataset(IMG_DIR_ROOT, VG_DATA_PATH, LOOK_UP_TABLES_PATH)

    print('all', len(dcd))
    print(dcd[0])

    for data_type in {'train', 'test', 'val'}:

        dcd.set_dataset_type(data_type)

        print(data_type, len(dcd))
        print(dcd[0])