crystantine's picture
Upload 190 files
1ba389d verified
import os
import random
from collections import OrderedDict
from typing import Union, Literal, List, Optional
import numpy as np
from diffusers import T2IAdapter, AutoencoderTiny, ControlNetModel
import torch.functional as F
from safetensors.torch import load_file
from torch.utils.data import DataLoader, ConcatDataset
from toolkit import train_tools
from toolkit.basic import value_map, adain, get_mean_std
from toolkit.clip_vision_adapter import ClipVisionAdapter
from toolkit.config_modules import GuidanceConfig
from toolkit.data_loader import get_dataloader_datasets
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO, FileItemDTO
from toolkit.guidance import get_targeted_guidance_loss, get_guidance_loss, GuidanceType
from toolkit.image_utils import show_tensors, show_latents
from toolkit.ip_adapter import IPAdapter
from toolkit.custom_adapter import CustomAdapter
from toolkit.prompt_utils import PromptEmbeds, concat_prompt_embeds
from toolkit.reference_adapter import ReferenceAdapter
from toolkit.stable_diffusion_model import StableDiffusion, BlankNetwork
from toolkit.train_tools import get_torch_dtype, apply_snr_weight, add_all_snr_to_noise_scheduler, \
apply_learnable_snr_gos, LearnableSNRGamma
import gc
import torch
from jobs.process import BaseSDTrainProcess
from torchvision import transforms
from diffusers import EMAModel
import math
from toolkit.train_tools import precondition_model_outputs_flow_match
def flush():
torch.cuda.empty_cache()
gc.collect()
adapter_transforms = transforms.Compose([
transforms.ToTensor(),
])
class SDTrainer(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
super().__init__(process_id, job, config, **kwargs)
self.assistant_adapter: Union['T2IAdapter', 'ControlNetModel', None]
self.do_prior_prediction = False
self.do_long_prompts = False
self.do_guided_loss = False
self.taesd: Optional[AutoencoderTiny] = None
self._clip_image_embeds_unconditional: Union[List[str], None] = None
self.negative_prompt_pool: Union[List[str], None] = None
self.batch_negative_prompt: Union[List[str], None] = None
self.scaler = torch.cuda.amp.GradScaler()
self.is_bfloat = self.train_config.dtype == "bfloat16" or self.train_config.dtype == "bf16"
self.do_grad_scale = True
if self.is_fine_tuning:
self.do_grad_scale = False
if self.adapter_config is not None:
if self.adapter_config.train:
self.do_grad_scale = False
if self.train_config.dtype in ["fp16", "float16"]:
# patch the scaler to allow fp16 training
org_unscale_grads = self.scaler._unscale_grads_
def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
return org_unscale_grads(optimizer, inv_scale, found_inf, True)
self.scaler._unscale_grads_ = _unscale_grads_replacer
def before_model_load(self):
pass
def before_dataset_load(self):
self.assistant_adapter = None
# get adapter assistant if one is set
if self.train_config.adapter_assist_name_or_path is not None:
adapter_path = self.train_config.adapter_assist_name_or_path
if self.train_config.adapter_assist_type == "t2i":
# dont name this adapter since we are not training it
self.assistant_adapter = T2IAdapter.from_pretrained(
adapter_path, torch_dtype=get_torch_dtype(self.train_config.dtype)
).to(self.device_torch)
elif self.train_config.adapter_assist_type == "control_net":
self.assistant_adapter = ControlNetModel.from_pretrained(
adapter_path, torch_dtype=get_torch_dtype(self.train_config.dtype)
).to(self.device_torch, dtype=get_torch_dtype(self.train_config.dtype))
else:
raise ValueError(f"Unknown adapter assist type {self.train_config.adapter_assist_type}")
self.assistant_adapter.eval()
self.assistant_adapter.requires_grad_(False)
flush()
if self.train_config.train_turbo and self.train_config.show_turbo_outputs:
if self.model_config.is_xl:
self.taesd = AutoencoderTiny.from_pretrained("madebyollin/taesdxl",
torch_dtype=get_torch_dtype(self.train_config.dtype))
else:
self.taesd = AutoencoderTiny.from_pretrained("madebyollin/taesd",
torch_dtype=get_torch_dtype(self.train_config.dtype))
self.taesd.to(dtype=get_torch_dtype(self.train_config.dtype), device=self.device_torch)
self.taesd.eval()
self.taesd.requires_grad_(False)
def hook_before_train_loop(self):
if self.train_config.do_prior_divergence:
self.do_prior_prediction = True
# move vae to device if we did not cache latents
if not self.is_latents_cached:
self.sd.vae.eval()
self.sd.vae.to(self.device_torch)
else:
# offload it. Already cached
self.sd.vae.to('cpu')
flush()
add_all_snr_to_noise_scheduler(self.sd.noise_scheduler, self.device_torch)
if self.adapter is not None:
self.adapter.to(self.device_torch)
# check if we have regs and using adapter and caching clip embeddings
has_reg = self.datasets_reg is not None and len(self.datasets_reg) > 0
is_caching_clip_embeddings = self.datasets is not None and any([self.datasets[i].cache_clip_vision_to_disk for i in range(len(self.datasets))])
if has_reg and is_caching_clip_embeddings:
# we need a list of unconditional clip image embeds from other datasets to handle regs
unconditional_clip_image_embeds = []
datasets = get_dataloader_datasets(self.data_loader)
for i in range(len(datasets)):
unconditional_clip_image_embeds += datasets[i].clip_vision_unconditional_cache
if len(unconditional_clip_image_embeds) == 0:
raise ValueError("No unconditional clip image embeds found. This should not happen")
self._clip_image_embeds_unconditional = unconditional_clip_image_embeds
if self.train_config.negative_prompt is not None:
if os.path.exists(self.train_config.negative_prompt):
with open(self.train_config.negative_prompt, 'r') as f:
self.negative_prompt_pool = f.readlines()
# remove empty
self.negative_prompt_pool = [x.strip() for x in self.negative_prompt_pool if x.strip() != ""]
else:
# single prompt
self.negative_prompt_pool = [self.train_config.negative_prompt]
def process_output_for_turbo(self, pred, noisy_latents, timesteps, noise, batch):
# to process turbo learning, we make one big step from our current timestep to the end
# we then denoise the prediction on that remaining step and target our loss to our target latents
# this currently only works on euler_a (that I know of). Would work on others, but needs to be coded to do so.
# needs to be done on each item in batch as they may all have different timesteps
batch_size = pred.shape[0]
pred_chunks = torch.chunk(pred, batch_size, dim=0)
noisy_latents_chunks = torch.chunk(noisy_latents, batch_size, dim=0)
timesteps_chunks = torch.chunk(timesteps, batch_size, dim=0)
latent_chunks = torch.chunk(batch.latents, batch_size, dim=0)
noise_chunks = torch.chunk(noise, batch_size, dim=0)
with torch.no_grad():
# set the timesteps to 1000 so we can capture them to calculate the sigmas
self.sd.noise_scheduler.set_timesteps(
self.sd.noise_scheduler.config.num_train_timesteps,
device=self.device_torch
)
train_timesteps = self.sd.noise_scheduler.timesteps.clone().detach()
train_sigmas = self.sd.noise_scheduler.sigmas.clone().detach()
# set the scheduler to one timestep, we build the step and sigmas for each item in batch for the partial step
self.sd.noise_scheduler.set_timesteps(
1,
device=self.device_torch
)
denoised_pred_chunks = []
target_pred_chunks = []
for i in range(batch_size):
pred_item = pred_chunks[i]
noisy_latents_item = noisy_latents_chunks[i]
timesteps_item = timesteps_chunks[i]
latents_item = latent_chunks[i]
noise_item = noise_chunks[i]
with torch.no_grad():
timestep_idx = [(train_timesteps == t).nonzero().item() for t in timesteps_item][0]
single_step_timestep_schedule = [timesteps_item.squeeze().item()]
# extract the sigma idx for our midpoint timestep
sigmas = train_sigmas[timestep_idx:timestep_idx + 1].to(self.device_torch)
end_sigma_idx = random.randint(timestep_idx, len(train_sigmas) - 1)
end_sigma = train_sigmas[end_sigma_idx:end_sigma_idx + 1].to(self.device_torch)
# add noise to our target
# build the big sigma step. The to step will now be to 0 giving it a full remaining denoising half step
# self.sd.noise_scheduler.sigmas = torch.cat([sigmas, torch.zeros_like(sigmas)]).detach()
self.sd.noise_scheduler.sigmas = torch.cat([sigmas, end_sigma]).detach()
# set our single timstep
self.sd.noise_scheduler.timesteps = torch.from_numpy(
np.array(single_step_timestep_schedule, dtype=np.float32)
).to(device=self.device_torch)
# set the step index to None so it will be recalculated on first step
self.sd.noise_scheduler._step_index = None
denoised_latent = self.sd.noise_scheduler.step(
pred_item, timesteps_item, noisy_latents_item.detach(), return_dict=False
)[0]
residual_noise = (noise_item * end_sigma.flatten()).detach().to(self.device_torch, dtype=get_torch_dtype(
self.train_config.dtype))
# remove the residual noise from the denoised latents. Output should be a clean prediction (theoretically)
denoised_latent = denoised_latent - residual_noise
denoised_pred_chunks.append(denoised_latent)
denoised_latents = torch.cat(denoised_pred_chunks, dim=0)
# set the scheduler back to the original timesteps
self.sd.noise_scheduler.set_timesteps(
self.sd.noise_scheduler.config.num_train_timesteps,
device=self.device_torch
)
output = denoised_latents / self.sd.vae.config['scaling_factor']
output = self.sd.vae.decode(output).sample
if self.train_config.show_turbo_outputs:
# since we are completely denoising, we can show them here
with torch.no_grad():
show_tensors(output)
# we return our big partial step denoised latents as our pred and our untouched latents as our target.
# you can do mse against the two here or run the denoised through the vae for pixel space loss against the
# input tensor images.
return output, batch.tensor.to(self.device_torch, dtype=get_torch_dtype(self.train_config.dtype))
# you can expand these in a child class to make customization easier
def calculate_loss(
self,
noise_pred: torch.Tensor,
noise: torch.Tensor,
noisy_latents: torch.Tensor,
timesteps: torch.Tensor,
batch: 'DataLoaderBatchDTO',
mask_multiplier: Union[torch.Tensor, float] = 1.0,
prior_pred: Union[torch.Tensor, None] = None,
**kwargs
):
loss_target = self.train_config.loss_target
is_reg = any(batch.get_is_reg_list())
prior_mask_multiplier = None
target_mask_multiplier = None
dtype = get_torch_dtype(self.train_config.dtype)
has_mask = batch.mask_tensor is not None
with torch.no_grad():
loss_multiplier = torch.tensor(batch.loss_multiplier_list).to(self.device_torch, dtype=torch.float32)
if self.train_config.match_noise_norm:
# match the norm of the noise
noise_norm = torch.linalg.vector_norm(noise, ord=2, dim=(1, 2, 3), keepdim=True)
noise_pred_norm = torch.linalg.vector_norm(noise_pred, ord=2, dim=(1, 2, 3), keepdim=True)
noise_pred = noise_pred * (noise_norm / noise_pred_norm)
if self.train_config.pred_scaler != 1.0:
noise_pred = noise_pred * self.train_config.pred_scaler
target = None
if self.train_config.target_noise_multiplier != 1.0:
noise = noise * self.train_config.target_noise_multiplier
if self.train_config.correct_pred_norm or (self.train_config.inverted_mask_prior and prior_pred is not None and has_mask):
if self.train_config.correct_pred_norm and not is_reg:
with torch.no_grad():
# this only works if doing a prior pred
if prior_pred is not None:
prior_mean = prior_pred.mean([2,3], keepdim=True)
prior_std = prior_pred.std([2,3], keepdim=True)
noise_mean = noise_pred.mean([2,3], keepdim=True)
noise_std = noise_pred.std([2,3], keepdim=True)
mean_adjust = prior_mean - noise_mean
std_adjust = prior_std - noise_std
mean_adjust = mean_adjust * self.train_config.correct_pred_norm_multiplier
std_adjust = std_adjust * self.train_config.correct_pred_norm_multiplier
target_mean = noise_mean + mean_adjust
target_std = noise_std + std_adjust
eps = 1e-5
# match the noise to the prior
noise = (noise - noise_mean) / (noise_std + eps)
noise = noise * (target_std + eps) + target_mean
noise = noise.detach()
if self.train_config.inverted_mask_prior and prior_pred is not None and has_mask:
assert not self.train_config.train_turbo
with torch.no_grad():
# we need to make the noise prediction be a masked blending of noise and prior_pred
stretched_mask_multiplier = value_map(
mask_multiplier,
batch.file_items[0].dataset_config.mask_min_value,
1.0,
0.0,
1.0
)
prior_mask_multiplier = 1.0 - stretched_mask_multiplier
# target_mask_multiplier = mask_multiplier
# mask_multiplier = 1.0
target = noise
# target = (noise * mask_multiplier) + (prior_pred * prior_mask_multiplier)
# set masked multiplier to 1.0 so we dont double apply it
# mask_multiplier = 1.0
elif prior_pred is not None and not self.train_config.do_prior_divergence:
assert not self.train_config.train_turbo
# matching adapter prediction
target = prior_pred
elif self.sd.prediction_type == 'v_prediction':
# v-parameterization training
target = self.sd.noise_scheduler.get_velocity(batch.tensor, noise, timesteps)
elif self.sd.is_flow_matching:
target = (noise - batch.latents).detach()
else:
target = noise
if target is None:
target = noise
pred = noise_pred
if self.train_config.train_turbo:
pred, target = self.process_output_for_turbo(pred, noisy_latents, timesteps, noise, batch)
ignore_snr = False
if loss_target == 'source' or loss_target == 'unaugmented':
assert not self.train_config.train_turbo
# ignore_snr = True
if batch.sigmas is None:
raise ValueError("Batch sigmas is None. This should not happen")
# src https://github.com/huggingface/diffusers/blob/324d18fba23f6c9d7475b0ff7c777685f7128d40/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L1190
denoised_latents = noise_pred * (-batch.sigmas) + noisy_latents
weighing = batch.sigmas ** -2.0
if loss_target == 'source':
# denoise the latent and compare to the latent in the batch
target = batch.latents
elif loss_target == 'unaugmented':
# we have to encode images into latents for now
# we also denoise as the unaugmented tensor is not a noisy diffirental
with torch.no_grad():
unaugmented_latents = self.sd.encode_images(batch.unaugmented_tensor).to(self.device_torch, dtype=dtype)
unaugmented_latents = unaugmented_latents * self.train_config.latent_multiplier
target = unaugmented_latents.detach()
# Get the target for loss depending on the prediction type
if self.sd.noise_scheduler.config.prediction_type == "epsilon":
target = target # we are computing loss against denoise latents
elif self.sd.noise_scheduler.config.prediction_type == "v_prediction":
target = self.sd.noise_scheduler.get_velocity(target, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.sd.noise_scheduler.config.prediction_type}")
# mse loss without reduction
loss_per_element = (weighing.float() * (denoised_latents.float() - target.float()) ** 2)
loss = loss_per_element
else:
if self.train_config.loss_type == "mae":
loss = torch.nn.functional.l1_loss(pred.float(), target.float(), reduction="none")
else:
loss = torch.nn.functional.mse_loss(pred.float(), target.float(), reduction="none")
# handle linear timesteps and only adjust the weight of the timesteps
if self.sd.is_flow_matching and (self.train_config.linear_timesteps or self.train_config.linear_timesteps2):
# calculate the weights for the timesteps
timestep_weight = self.sd.noise_scheduler.get_weights_for_timesteps(
timesteps,
v2=self.train_config.linear_timesteps2
).to(loss.device, dtype=loss.dtype)
timestep_weight = timestep_weight.view(-1, 1, 1, 1).detach()
loss = loss * timestep_weight
if self.train_config.do_prior_divergence and prior_pred is not None:
loss = loss + (torch.nn.functional.mse_loss(pred.float(), prior_pred.float(), reduction="none") * -1.0)
if self.train_config.train_turbo:
mask_multiplier = mask_multiplier[:, 3:, :, :]
# resize to the size of the loss
mask_multiplier = torch.nn.functional.interpolate(mask_multiplier, size=(pred.shape[2], pred.shape[3]), mode='nearest')
# multiply by our mask
loss = loss * mask_multiplier
prior_loss = None
if self.train_config.inverted_mask_prior and prior_pred is not None and prior_mask_multiplier is not None:
assert not self.train_config.train_turbo
if self.train_config.loss_type == "mae":
prior_loss = torch.nn.functional.l1_loss(pred.float(), prior_pred.float(), reduction="none")
else:
prior_loss = torch.nn.functional.mse_loss(pred.float(), prior_pred.float(), reduction="none")
prior_loss = prior_loss * prior_mask_multiplier * self.train_config.inverted_mask_prior_multiplier
if torch.isnan(prior_loss).any():
print("Prior loss is nan")
prior_loss = None
else:
prior_loss = prior_loss.mean([1, 2, 3])
# loss = loss + prior_loss
# loss = loss + prior_loss
# loss = loss + prior_loss
loss = loss.mean([1, 2, 3])
# apply loss multiplier before prior loss
loss = loss * loss_multiplier
if prior_loss is not None:
loss = loss + prior_loss
if not self.train_config.train_turbo:
if self.train_config.learnable_snr_gos:
# add snr_gamma
loss = apply_learnable_snr_gos(loss, timesteps, self.snr_gos)
elif self.train_config.snr_gamma is not None and self.train_config.snr_gamma > 0.000001 and not ignore_snr:
# add snr_gamma
loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler, self.train_config.snr_gamma,
fixed=True)
elif self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001 and not ignore_snr:
# add min_snr_gamma
loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler, self.train_config.min_snr_gamma)
loss = loss.mean()
# check for additional losses
if self.adapter is not None and hasattr(self.adapter, "additional_loss") and self.adapter.additional_loss is not None:
loss = loss + self.adapter.additional_loss.mean()
self.adapter.additional_loss = None
if self.train_config.target_norm_std:
# seperate out the batch and channels
pred_std = noise_pred.std([2, 3], keepdim=True)
norm_std_loss = torch.abs(self.train_config.target_norm_std_value - pred_std).mean()
loss = loss + norm_std_loss
return loss
def preprocess_batch(self, batch: 'DataLoaderBatchDTO'):
return batch
def get_guided_loss(
self,
noisy_latents: torch.Tensor,
conditional_embeds: PromptEmbeds,
match_adapter_assist: bool,
network_weight_list: list,
timesteps: torch.Tensor,
pred_kwargs: dict,
batch: 'DataLoaderBatchDTO',
noise: torch.Tensor,
unconditional_embeds: Optional[PromptEmbeds] = None,
**kwargs
):
loss = get_guidance_loss(
noisy_latents=noisy_latents,
conditional_embeds=conditional_embeds,
match_adapter_assist=match_adapter_assist,
network_weight_list=network_weight_list,
timesteps=timesteps,
pred_kwargs=pred_kwargs,
batch=batch,
noise=noise,
sd=self.sd,
unconditional_embeds=unconditional_embeds,
scaler=self.scaler,
**kwargs
)
return loss
def get_guided_loss_targeted_polarity(
self,
noisy_latents: torch.Tensor,
conditional_embeds: PromptEmbeds,
match_adapter_assist: bool,
network_weight_list: list,
timesteps: torch.Tensor,
pred_kwargs: dict,
batch: 'DataLoaderBatchDTO',
noise: torch.Tensor,
**kwargs
):
with torch.no_grad():
# Perform targeted guidance (working title)
dtype = get_torch_dtype(self.train_config.dtype)
conditional_latents = batch.latents.to(self.device_torch, dtype=dtype).detach()
unconditional_latents = batch.unconditional_latents.to(self.device_torch, dtype=dtype).detach()
mean_latents = (conditional_latents + unconditional_latents) / 2.0
unconditional_diff = (unconditional_latents - mean_latents)
conditional_diff = (conditional_latents - mean_latents)
# we need to determine the amount of signal and noise that would be present at the current timestep
# conditional_signal = self.sd.add_noise(conditional_diff, torch.zeros_like(noise), timesteps)
# unconditional_signal = self.sd.add_noise(torch.zeros_like(noise), unconditional_diff, timesteps)
# unconditional_signal = self.sd.add_noise(unconditional_diff, torch.zeros_like(noise), timesteps)
# conditional_blend = self.sd.add_noise(conditional_latents, unconditional_latents, timesteps)
# unconditional_blend = self.sd.add_noise(unconditional_latents, conditional_latents, timesteps)
# target_noise = noise + unconditional_signal
conditional_noisy_latents = self.sd.add_noise(
mean_latents,
noise,
timesteps
).detach()
unconditional_noisy_latents = self.sd.add_noise(
mean_latents,
noise,
timesteps
).detach()
# Disable the LoRA network so we can predict parent network knowledge without it
self.network.is_active = False
self.sd.unet.eval()
# Predict noise to get a baseline of what the parent network wants to do with the latents + noise.
# This acts as our control to preserve the unaltered parts of the image.
baseline_prediction = self.sd.predict_noise(
latents=unconditional_noisy_latents.to(self.device_torch, dtype=dtype).detach(),
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype).detach(),
timestep=timesteps,
guidance_scale=1.0,
**pred_kwargs # adapter residuals in here
).detach()
# double up everything to run it through all at once
cat_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
cat_latents = torch.cat([conditional_noisy_latents, conditional_noisy_latents], dim=0)
cat_timesteps = torch.cat([timesteps, timesteps], dim=0)
# since we are dividing the polarity from the middle out, we need to double our network
# weights on training since the convergent point will be at half network strength
negative_network_weights = [weight * -2.0 for weight in network_weight_list]
positive_network_weights = [weight * 2.0 for weight in network_weight_list]
cat_network_weight_list = positive_network_weights + negative_network_weights
# turn the LoRA network back on.
self.sd.unet.train()
self.network.is_active = True
self.network.multiplier = cat_network_weight_list
# do our prediction with LoRA active on the scaled guidance latents
prediction = self.sd.predict_noise(
latents=cat_latents.to(self.device_torch, dtype=dtype).detach(),
conditional_embeddings=cat_embeds.to(self.device_torch, dtype=dtype).detach(),
timestep=cat_timesteps,
guidance_scale=1.0,
**pred_kwargs # adapter residuals in here
)
pred_pos, pred_neg = torch.chunk(prediction, 2, dim=0)
pred_pos = pred_pos - baseline_prediction
pred_neg = pred_neg - baseline_prediction
pred_loss = torch.nn.functional.mse_loss(
pred_pos.float(),
unconditional_diff.float(),
reduction="none"
)
pred_loss = pred_loss.mean([1, 2, 3])
pred_neg_loss = torch.nn.functional.mse_loss(
pred_neg.float(),
conditional_diff.float(),
reduction="none"
)
pred_neg_loss = pred_neg_loss.mean([1, 2, 3])
loss = (pred_loss + pred_neg_loss) / 2.0
# loss = self.apply_snr(loss, timesteps)
loss = loss.mean()
loss.backward()
# detach it so parent class can run backward on no grads without throwing error
loss = loss.detach()
loss.requires_grad_(True)
return loss
def get_guided_loss_masked_polarity(
self,
noisy_latents: torch.Tensor,
conditional_embeds: PromptEmbeds,
match_adapter_assist: bool,
network_weight_list: list,
timesteps: torch.Tensor,
pred_kwargs: dict,
batch: 'DataLoaderBatchDTO',
noise: torch.Tensor,
**kwargs
):
with torch.no_grad():
# Perform targeted guidance (working title)
dtype = get_torch_dtype(self.train_config.dtype)
conditional_latents = batch.latents.to(self.device_torch, dtype=dtype).detach()
unconditional_latents = batch.unconditional_latents.to(self.device_torch, dtype=dtype).detach()
inverse_latents = unconditional_latents - (conditional_latents - unconditional_latents)
mean_latents = (conditional_latents + unconditional_latents) / 2.0
# unconditional_diff = (unconditional_latents - mean_latents)
# conditional_diff = (conditional_latents - mean_latents)
# we need to determine the amount of signal and noise that would be present at the current timestep
# conditional_signal = self.sd.add_noise(conditional_diff, torch.zeros_like(noise), timesteps)
# unconditional_signal = self.sd.add_noise(torch.zeros_like(noise), unconditional_diff, timesteps)
# unconditional_signal = self.sd.add_noise(unconditional_diff, torch.zeros_like(noise), timesteps)
# conditional_blend = self.sd.add_noise(conditional_latents, unconditional_latents, timesteps)
# unconditional_blend = self.sd.add_noise(unconditional_latents, conditional_latents, timesteps)
# make a differential mask
differential_mask = torch.abs(conditional_latents - unconditional_latents)
max_differential = \
differential_mask.max(dim=1, keepdim=True)[0].max(dim=2, keepdim=True)[0].max(dim=3, keepdim=True)[0]
differential_scaler = 1.0 / max_differential
differential_mask = differential_mask * differential_scaler
spread_point = 0.1
# adjust mask to amplify the differential at 0.1
differential_mask = ((differential_mask - spread_point) * 10.0) + spread_point
# clip it
differential_mask = torch.clamp(differential_mask, 0.0, 1.0)
# target_noise = noise + unconditional_signal
conditional_noisy_latents = self.sd.add_noise(
conditional_latents,
noise,
timesteps
).detach()
unconditional_noisy_latents = self.sd.add_noise(
unconditional_latents,
noise,
timesteps
).detach()
inverse_noisy_latents = self.sd.add_noise(
inverse_latents,
noise,
timesteps
).detach()
# Disable the LoRA network so we can predict parent network knowledge without it
self.network.is_active = False
self.sd.unet.eval()
# Predict noise to get a baseline of what the parent network wants to do with the latents + noise.
# This acts as our control to preserve the unaltered parts of the image.
# baseline_prediction = self.sd.predict_noise(
# latents=unconditional_noisy_latents.to(self.device_torch, dtype=dtype).detach(),
# conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype).detach(),
# timestep=timesteps,
# guidance_scale=1.0,
# **pred_kwargs # adapter residuals in here
# ).detach()
# double up everything to run it through all at once
cat_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
cat_latents = torch.cat([conditional_noisy_latents, unconditional_noisy_latents], dim=0)
cat_timesteps = torch.cat([timesteps, timesteps], dim=0)
# since we are dividing the polarity from the middle out, we need to double our network
# weights on training since the convergent point will be at half network strength
negative_network_weights = [weight * -1.0 for weight in network_weight_list]
positive_network_weights = [weight * 1.0 for weight in network_weight_list]
cat_network_weight_list = positive_network_weights + negative_network_weights
# turn the LoRA network back on.
self.sd.unet.train()
self.network.is_active = True
self.network.multiplier = cat_network_weight_list
# do our prediction with LoRA active on the scaled guidance latents
prediction = self.sd.predict_noise(
latents=cat_latents.to(self.device_torch, dtype=dtype).detach(),
conditional_embeddings=cat_embeds.to(self.device_torch, dtype=dtype).detach(),
timestep=cat_timesteps,
guidance_scale=1.0,
**pred_kwargs # adapter residuals in here
)
pred_pos, pred_neg = torch.chunk(prediction, 2, dim=0)
# create a loss to balance the mean to 0 between the two predictions
differential_mean_pred_loss = torch.abs(pred_pos - pred_neg).mean([1, 2, 3]) ** 2.0
# pred_pos = pred_pos - baseline_prediction
# pred_neg = pred_neg - baseline_prediction
pred_loss = torch.nn.functional.mse_loss(
pred_pos.float(),
noise.float(),
reduction="none"
)
# apply mask
pred_loss = pred_loss * (1.0 + differential_mask)
pred_loss = pred_loss.mean([1, 2, 3])
pred_neg_loss = torch.nn.functional.mse_loss(
pred_neg.float(),
noise.float(),
reduction="none"
)
# apply inverse mask
pred_neg_loss = pred_neg_loss * (1.0 - differential_mask)
pred_neg_loss = pred_neg_loss.mean([1, 2, 3])
# make a loss to balance to losses of the pos and neg so they are equal
# differential_mean_loss_loss = torch.abs(pred_loss - pred_neg_loss)
#
# differential_mean_loss = differential_mean_pred_loss + differential_mean_loss_loss
#
# # add a multiplier to balancing losses to make them the top priority
# differential_mean_loss = differential_mean_loss
# remove the grads from the negative as it is only a balancing loss
# pred_neg_loss = pred_neg_loss.detach()
# loss = pred_loss + pred_neg_loss + differential_mean_loss
loss = pred_loss + pred_neg_loss
# loss = self.apply_snr(loss, timesteps)
loss = loss.mean()
loss.backward()
# detach it so parent class can run backward on no grads without throwing error
loss = loss.detach()
loss.requires_grad_(True)
return loss
def get_prior_prediction(
self,
noisy_latents: torch.Tensor,
conditional_embeds: PromptEmbeds,
match_adapter_assist: bool,
network_weight_list: list,
timesteps: torch.Tensor,
pred_kwargs: dict,
batch: 'DataLoaderBatchDTO',
noise: torch.Tensor,
unconditional_embeds: Optional[PromptEmbeds] = None,
conditioned_prompts=None,
**kwargs
):
# todo for embeddings, we need to run without trigger words
was_unet_training = self.sd.unet.training
was_network_active = False
if self.network is not None:
was_network_active = self.network.is_active
self.network.is_active = False
can_disable_adapter = False
was_adapter_active = False
if self.adapter is not None and (isinstance(self.adapter, IPAdapter) or
isinstance(self.adapter, ReferenceAdapter) or
(isinstance(self.adapter, CustomAdapter))
):
can_disable_adapter = True
was_adapter_active = self.adapter.is_active
self.adapter.is_active = False
# do a prediction here so we can match its output with network multiplier set to 0.0
with torch.no_grad():
dtype = get_torch_dtype(self.train_config.dtype)
embeds_to_use = conditional_embeds.clone().detach()
# handle clip vision adapter by removing triggers from prompt and replacing with the class name
if (self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter)) or self.embedding is not None:
prompt_list = batch.get_caption_list()
class_name = ''
triggers = ['[trigger]', '[name]']
remove_tokens = []
if self.embed_config is not None:
triggers.append(self.embed_config.trigger)
for i in range(1, self.embed_config.tokens):
remove_tokens.append(f"{self.embed_config.trigger}_{i}")
if self.embed_config.trigger_class_name is not None:
class_name = self.embed_config.trigger_class_name
if self.adapter is not None:
triggers.append(self.adapter_config.trigger)
for i in range(1, self.adapter_config.num_tokens):
remove_tokens.append(f"{self.adapter_config.trigger}_{i}")
if self.adapter_config.trigger_class_name is not None:
class_name = self.adapter_config.trigger_class_name
for idx, prompt in enumerate(prompt_list):
for remove_token in remove_tokens:
prompt = prompt.replace(remove_token, '')
for trigger in triggers:
prompt = prompt.replace(trigger, class_name)
prompt_list[idx] = prompt
embeds_to_use = self.sd.encode_prompt(
prompt_list,
long_prompts=self.do_long_prompts).to(
self.device_torch,
dtype=dtype).detach()
# dont use network on this
# self.network.multiplier = 0.0
self.sd.unet.eval()
if self.adapter is not None and isinstance(self.adapter, IPAdapter) and not self.sd.is_flux:
# we need to remove the image embeds from the prompt except for flux
embeds_to_use: PromptEmbeds = embeds_to_use.clone().detach()
end_pos = embeds_to_use.text_embeds.shape[1] - self.adapter_config.num_tokens
embeds_to_use.text_embeds = embeds_to_use.text_embeds[:, :end_pos, :]
if unconditional_embeds is not None:
unconditional_embeds = unconditional_embeds.clone().detach()
unconditional_embeds.text_embeds = unconditional_embeds.text_embeds[:, :end_pos]
if unconditional_embeds is not None:
unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=dtype).detach()
prior_pred = self.sd.predict_noise(
latents=noisy_latents.to(self.device_torch, dtype=dtype).detach(),
conditional_embeddings=embeds_to_use.to(self.device_torch, dtype=dtype).detach(),
unconditional_embeddings=unconditional_embeds,
timestep=timesteps,
guidance_scale=self.train_config.cfg_scale,
rescale_cfg=self.train_config.cfg_rescale,
**pred_kwargs # adapter residuals in here
)
if was_unet_training:
self.sd.unet.train()
prior_pred = prior_pred.detach()
# remove the residuals as we wont use them on prediction when matching control
if match_adapter_assist and 'down_intrablock_additional_residuals' in pred_kwargs:
del pred_kwargs['down_intrablock_additional_residuals']
if match_adapter_assist and 'down_block_additional_residuals' in pred_kwargs:
del pred_kwargs['down_block_additional_residuals']
if match_adapter_assist and 'mid_block_additional_residual' in pred_kwargs:
del pred_kwargs['mid_block_additional_residual']
if can_disable_adapter:
self.adapter.is_active = was_adapter_active
# restore network
# self.network.multiplier = network_weight_list
if self.network is not None:
self.network.is_active = was_network_active
return prior_pred
def before_unet_predict(self):
pass
def after_unet_predict(self):
pass
def end_of_training_loop(self):
pass
def predict_noise(
self,
noisy_latents: torch.Tensor,
timesteps: Union[int, torch.Tensor] = 1,
conditional_embeds: Union[PromptEmbeds, None] = None,
unconditional_embeds: Union[PromptEmbeds, None] = None,
**kwargs,
):
dtype = get_torch_dtype(self.train_config.dtype)
return self.sd.predict_noise(
latents=noisy_latents.to(self.device_torch, dtype=dtype),
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
unconditional_embeddings=unconditional_embeds,
timestep=timesteps,
guidance_scale=self.train_config.cfg_scale,
detach_unconditional=False,
rescale_cfg=self.train_config.cfg_rescale,
**kwargs
)
def train_single_accumulation(self, batch: DataLoaderBatchDTO):
self.timer.start('preprocess_batch')
batch = self.preprocess_batch(batch)
dtype = get_torch_dtype(self.train_config.dtype)
# sanity check
if self.sd.vae.dtype != self.sd.vae_torch_dtype:
self.sd.vae = self.sd.vae.to(self.sd.vae_torch_dtype)
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
if encoder.dtype != self.sd.te_torch_dtype:
encoder.to(self.sd.te_torch_dtype)
else:
if self.sd.text_encoder.dtype != self.sd.te_torch_dtype:
self.sd.text_encoder.to(self.sd.te_torch_dtype)
noisy_latents, noise, timesteps, conditioned_prompts, imgs = self.process_general_training_batch(batch)
if self.train_config.do_cfg or self.train_config.do_random_cfg:
# pick random negative prompts
if self.negative_prompt_pool is not None:
negative_prompts = []
for i in range(noisy_latents.shape[0]):
num_neg = random.randint(1, self.train_config.max_negative_prompts)
this_neg_prompts = [random.choice(self.negative_prompt_pool) for _ in range(num_neg)]
this_neg_prompt = ', '.join(this_neg_prompts)
negative_prompts.append(this_neg_prompt)
self.batch_negative_prompt = negative_prompts
else:
self.batch_negative_prompt = ['' for _ in range(batch.latents.shape[0])]
if self.adapter and isinstance(self.adapter, CustomAdapter):
# condition the prompt
# todo handle more than one adapter image
self.adapter.num_control_images = 1
conditioned_prompts = self.adapter.condition_prompt(conditioned_prompts)
network_weight_list = batch.get_network_weight_list()
if self.train_config.single_item_batching:
network_weight_list = network_weight_list + network_weight_list
has_adapter_img = batch.control_tensor is not None
has_clip_image = batch.clip_image_tensor is not None
has_clip_image_embeds = batch.clip_image_embeds is not None
# force it to be true if doing regs as we handle those differently
if any([batch.file_items[idx].is_reg for idx in range(len(batch.file_items))]):
has_clip_image = True
if self._clip_image_embeds_unconditional is not None:
has_clip_image_embeds = True # we are caching embeds, handle that differently
has_clip_image = False
if self.adapter is not None and isinstance(self.adapter, IPAdapter) and not has_clip_image and has_adapter_img:
raise ValueError(
"IPAdapter control image is now 'clip_image_path' instead of 'control_path'. Please update your dataset config ")
match_adapter_assist = False
# check if we are matching the adapter assistant
if self.assistant_adapter:
if self.train_config.match_adapter_chance == 1.0:
match_adapter_assist = True
elif self.train_config.match_adapter_chance > 0.0:
match_adapter_assist = torch.rand(
(1,), device=self.device_torch, dtype=dtype
) < self.train_config.match_adapter_chance
self.timer.stop('preprocess_batch')
is_reg = False
with torch.no_grad():
loss_multiplier = torch.ones((noisy_latents.shape[0], 1, 1, 1), device=self.device_torch, dtype=dtype)
for idx, file_item in enumerate(batch.file_items):
if file_item.is_reg:
loss_multiplier[idx] = loss_multiplier[idx] * self.train_config.reg_weight
is_reg = True
adapter_images = None
sigmas = None
if has_adapter_img and (self.adapter or self.assistant_adapter):
with self.timer('get_adapter_images'):
# todo move this to data loader
if batch.control_tensor is not None:
adapter_images = batch.control_tensor.to(self.device_torch, dtype=dtype).detach()
# match in channels
if self.assistant_adapter is not None:
in_channels = self.assistant_adapter.config.in_channels
if adapter_images.shape[1] != in_channels:
# we need to match the channels
adapter_images = adapter_images[:, :in_channels, :, :]
else:
raise NotImplementedError("Adapter images now must be loaded with dataloader")
clip_images = None
if has_clip_image:
with self.timer('get_clip_images'):
# todo move this to data loader
if batch.clip_image_tensor is not None:
clip_images = batch.clip_image_tensor.to(self.device_torch, dtype=dtype).detach()
mask_multiplier = torch.ones((noisy_latents.shape[0], 1, 1, 1), device=self.device_torch, dtype=dtype)
if batch.mask_tensor is not None:
with self.timer('get_mask_multiplier'):
# upsampling no supported for bfloat16
mask_multiplier = batch.mask_tensor.to(self.device_torch, dtype=torch.float16).detach()
# scale down to the size of the latents, mask multiplier shape(bs, 1, width, height), noisy_latents shape(bs, channels, width, height)
mask_multiplier = torch.nn.functional.interpolate(
mask_multiplier, size=(noisy_latents.shape[2], noisy_latents.shape[3])
)
# expand to match latents
mask_multiplier = mask_multiplier.expand(-1, noisy_latents.shape[1], -1, -1)
mask_multiplier = mask_multiplier.to(self.device_torch, dtype=dtype).detach()
def get_adapter_multiplier():
if self.adapter and isinstance(self.adapter, T2IAdapter):
# training a t2i adapter, not using as assistant.
return 1.0
elif match_adapter_assist:
# training a texture. We want it high
adapter_strength_min = 0.9
adapter_strength_max = 1.0
else:
# training with assistance, we want it low
# adapter_strength_min = 0.4
# adapter_strength_max = 0.7
adapter_strength_min = 0.5
adapter_strength_max = 1.1
adapter_conditioning_scale = torch.rand(
(1,), device=self.device_torch, dtype=dtype
)
adapter_conditioning_scale = value_map(
adapter_conditioning_scale,
0.0,
1.0,
adapter_strength_min,
adapter_strength_max
)
return adapter_conditioning_scale
# flush()
with self.timer('grad_setup'):
# text encoding
grad_on_text_encoder = False
if self.train_config.train_text_encoder:
grad_on_text_encoder = True
if self.embedding is not None:
grad_on_text_encoder = True
if self.adapter and isinstance(self.adapter, ClipVisionAdapter):
grad_on_text_encoder = True
if self.adapter_config and self.adapter_config.type == 'te_augmenter':
grad_on_text_encoder = True
# have a blank network so we can wrap it in a context and set multipliers without checking every time
if self.network is not None:
network = self.network
else:
network = BlankNetwork()
# set the weights
network.multiplier = network_weight_list
# activate network if it exits
prompts_1 = conditioned_prompts
prompts_2 = None
if self.train_config.short_and_long_captions_encoder_split and self.sd.is_xl:
prompts_1 = batch.get_caption_short_list()
prompts_2 = conditioned_prompts
# make the batch splits
if self.train_config.single_item_batching:
if self.model_config.refiner_name_or_path is not None:
raise ValueError("Single item batching is not supported when training the refiner")
batch_size = noisy_latents.shape[0]
# chunk/split everything
noisy_latents_list = torch.chunk(noisy_latents, batch_size, dim=0)
noise_list = torch.chunk(noise, batch_size, dim=0)
timesteps_list = torch.chunk(timesteps, batch_size, dim=0)
conditioned_prompts_list = [[prompt] for prompt in prompts_1]
if imgs is not None:
imgs_list = torch.chunk(imgs, batch_size, dim=0)
else:
imgs_list = [None for _ in range(batch_size)]
if adapter_images is not None:
adapter_images_list = torch.chunk(adapter_images, batch_size, dim=0)
else:
adapter_images_list = [None for _ in range(batch_size)]
if clip_images is not None:
clip_images_list = torch.chunk(clip_images, batch_size, dim=0)
else:
clip_images_list = [None for _ in range(batch_size)]
mask_multiplier_list = torch.chunk(mask_multiplier, batch_size, dim=0)
if prompts_2 is None:
prompt_2_list = [None for _ in range(batch_size)]
else:
prompt_2_list = [[prompt] for prompt in prompts_2]
else:
noisy_latents_list = [noisy_latents]
noise_list = [noise]
timesteps_list = [timesteps]
conditioned_prompts_list = [prompts_1]
imgs_list = [imgs]
adapter_images_list = [adapter_images]
clip_images_list = [clip_images]
mask_multiplier_list = [mask_multiplier]
if prompts_2 is None:
prompt_2_list = [None]
else:
prompt_2_list = [prompts_2]
for noisy_latents, noise, timesteps, conditioned_prompts, imgs, adapter_images, clip_images, mask_multiplier, prompt_2 in zip(
noisy_latents_list,
noise_list,
timesteps_list,
conditioned_prompts_list,
imgs_list,
adapter_images_list,
clip_images_list,
mask_multiplier_list,
prompt_2_list
):
# if self.train_config.negative_prompt is not None:
# # add negative prompt
# conditioned_prompts = conditioned_prompts + [self.train_config.negative_prompt for x in
# range(len(conditioned_prompts))]
# if prompt_2 is not None:
# prompt_2 = prompt_2 + [self.train_config.negative_prompt for x in range(len(prompt_2))]
with (network):
# encode clip adapter here so embeds are active for tokenizer
if self.adapter and isinstance(self.adapter, ClipVisionAdapter):
with self.timer('encode_clip_vision_embeds'):
if has_clip_image:
conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
clip_images.detach().to(self.device_torch, dtype=dtype),
is_training=True,
has_been_preprocessed=True
)
else:
# just do a blank one
conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
torch.zeros(
(noisy_latents.shape[0], 3, 512, 512),
device=self.device_torch, dtype=dtype
),
is_training=True,
has_been_preprocessed=True,
drop=True
)
# it will be injected into the tokenizer when called
self.adapter(conditional_clip_embeds)
# do the custom adapter after the prior prediction
if self.adapter and isinstance(self.adapter, CustomAdapter) and has_clip_image:
quad_count = random.randint(1, 4)
self.adapter.train()
self.adapter.trigger_pre_te(
tensors_0_1=clip_images if not is_reg else None, # on regs we send none to get random noise
is_training=True,
has_been_preprocessed=True,
quad_count=quad_count,
batch_size=noisy_latents.shape[0]
)
with self.timer('encode_prompt'):
unconditional_embeds = None
if grad_on_text_encoder:
with torch.set_grad_enabled(True):
if isinstance(self.adapter, CustomAdapter):
self.adapter.is_unconditional_run = False
conditional_embeds = self.sd.encode_prompt(
conditioned_prompts, prompt_2,
dropout_prob=self.train_config.prompt_dropout_prob,
long_prompts=self.do_long_prompts).to(
self.device_torch,
dtype=dtype)
if self.train_config.do_cfg:
if isinstance(self.adapter, CustomAdapter):
self.adapter.is_unconditional_run = True
# todo only do one and repeat it
unconditional_embeds = self.sd.encode_prompt(
self.batch_negative_prompt,
self.batch_negative_prompt,
dropout_prob=self.train_config.prompt_dropout_prob,
long_prompts=self.do_long_prompts).to(
self.device_torch,
dtype=dtype)
if isinstance(self.adapter, CustomAdapter):
self.adapter.is_unconditional_run = False
else:
with torch.set_grad_enabled(False):
# make sure it is in eval mode
if isinstance(self.sd.text_encoder, list):
for te in self.sd.text_encoder:
te.eval()
else:
self.sd.text_encoder.eval()
if isinstance(self.adapter, CustomAdapter):
self.adapter.is_unconditional_run = False
conditional_embeds = self.sd.encode_prompt(
conditioned_prompts, prompt_2,
dropout_prob=self.train_config.prompt_dropout_prob,
long_prompts=self.do_long_prompts).to(
self.device_torch,
dtype=dtype)
if self.train_config.do_cfg:
if isinstance(self.adapter, CustomAdapter):
self.adapter.is_unconditional_run = True
unconditional_embeds = self.sd.encode_prompt(
self.batch_negative_prompt,
dropout_prob=self.train_config.prompt_dropout_prob,
long_prompts=self.do_long_prompts).to(
self.device_torch,
dtype=dtype)
if isinstance(self.adapter, CustomAdapter):
self.adapter.is_unconditional_run = False
# detach the embeddings
conditional_embeds = conditional_embeds.detach()
if self.train_config.do_cfg:
unconditional_embeds = unconditional_embeds.detach()
# flush()
pred_kwargs = {}
if has_adapter_img:
if (self.adapter and isinstance(self.adapter, T2IAdapter)) or (
self.assistant_adapter and isinstance(self.assistant_adapter, T2IAdapter)):
with torch.set_grad_enabled(self.adapter is not None):
adapter = self.assistant_adapter if self.assistant_adapter is not None else self.adapter
adapter_multiplier = get_adapter_multiplier()
with self.timer('encode_adapter'):
down_block_additional_residuals = adapter(adapter_images)
if self.assistant_adapter:
# not training. detach
down_block_additional_residuals = [
sample.to(dtype=dtype).detach() * adapter_multiplier for sample in
down_block_additional_residuals
]
else:
down_block_additional_residuals = [
sample.to(dtype=dtype) * adapter_multiplier for sample in
down_block_additional_residuals
]
pred_kwargs['down_intrablock_additional_residuals'] = down_block_additional_residuals
if self.adapter and isinstance(self.adapter, IPAdapter):
with self.timer('encode_adapter_embeds'):
# number of images to do if doing a quad image
quad_count = random.randint(1, 4)
image_size = self.adapter.input_size
if has_clip_image_embeds:
# todo handle reg images better than this
if is_reg:
# get unconditional image embeds from cache
embeds = [
load_file(random.choice(batch.clip_image_embeds_unconditional)) for i in
range(noisy_latents.shape[0])
]
conditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache(
embeds,
quad_count=quad_count
)
if self.train_config.do_cfg:
embeds = [
load_file(random.choice(batch.clip_image_embeds_unconditional)) for i in
range(noisy_latents.shape[0])
]
unconditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache(
embeds,
quad_count=quad_count
)
else:
conditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache(
batch.clip_image_embeds,
quad_count=quad_count
)
if self.train_config.do_cfg:
unconditional_clip_embeds = self.adapter.parse_clip_image_embeds_from_cache(
batch.clip_image_embeds_unconditional,
quad_count=quad_count
)
elif is_reg:
# we will zero it out in the img embedder
clip_images = torch.zeros(
(noisy_latents.shape[0], 3, image_size, image_size),
device=self.device_torch, dtype=dtype
).detach()
# drop will zero it out
conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
clip_images,
drop=True,
is_training=True,
has_been_preprocessed=False,
quad_count=quad_count
)
if self.train_config.do_cfg:
unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
torch.zeros(
(noisy_latents.shape[0], 3, image_size, image_size),
device=self.device_torch, dtype=dtype
).detach(),
is_training=True,
drop=True,
has_been_preprocessed=False,
quad_count=quad_count
)
elif has_clip_image:
conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
clip_images.detach().to(self.device_torch, dtype=dtype),
is_training=True,
has_been_preprocessed=True,
quad_count=quad_count,
# do cfg on clip embeds to normalize the embeddings for when doing cfg
# cfg_embed_strength=3.0 if not self.train_config.do_cfg else None
# cfg_embed_strength=3.0 if not self.train_config.do_cfg else None
)
if self.train_config.do_cfg:
unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
clip_images.detach().to(self.device_torch, dtype=dtype),
is_training=True,
drop=True,
has_been_preprocessed=True,
quad_count=quad_count
)
else:
print("No Clip Image")
print([file_item.path for file_item in batch.file_items])
raise ValueError("Could not find clip image")
if not self.adapter_config.train_image_encoder:
# we are not training the image encoder, so we need to detach the embeds
conditional_clip_embeds = conditional_clip_embeds.detach()
if self.train_config.do_cfg:
unconditional_clip_embeds = unconditional_clip_embeds.detach()
with self.timer('encode_adapter'):
self.adapter.train()
conditional_embeds = self.adapter(
conditional_embeds.detach(),
conditional_clip_embeds,
is_unconditional=False
)
if self.train_config.do_cfg:
unconditional_embeds = self.adapter(
unconditional_embeds.detach(),
unconditional_clip_embeds,
is_unconditional=True
)
else:
# wipe out unconsitional
self.adapter.last_unconditional = None
if self.adapter and isinstance(self.adapter, ReferenceAdapter):
# pass in our scheduler
self.adapter.noise_scheduler = self.lr_scheduler
if has_clip_image or has_adapter_img:
img_to_use = clip_images if has_clip_image else adapter_images
# currently 0-1 needs to be -1 to 1
reference_images = ((img_to_use - 0.5) * 2).detach().to(self.device_torch, dtype=dtype)
self.adapter.set_reference_images(reference_images)
self.adapter.noise_scheduler = self.sd.noise_scheduler
elif is_reg:
self.adapter.set_blank_reference_images(noisy_latents.shape[0])
else:
self.adapter.set_reference_images(None)
prior_pred = None
do_reg_prior = False
# if is_reg and (self.network is not None or self.adapter is not None):
# # we are doing a reg image and we have a network or adapter
# do_reg_prior = True
do_inverted_masked_prior = False
if self.train_config.inverted_mask_prior and batch.mask_tensor is not None:
do_inverted_masked_prior = True
do_correct_pred_norm_prior = self.train_config.correct_pred_norm
do_guidance_prior = False
if batch.unconditional_latents is not None:
# for this not that, we need a prior pred to normalize
guidance_type: GuidanceType = batch.file_items[0].dataset_config.guidance_type
if guidance_type == 'tnt':
do_guidance_prior = True
if ((
has_adapter_img and self.assistant_adapter and match_adapter_assist) or self.do_prior_prediction or do_guidance_prior or do_reg_prior or do_inverted_masked_prior or self.train_config.correct_pred_norm):
with self.timer('prior predict'):
prior_pred = self.get_prior_prediction(
noisy_latents=noisy_latents,
conditional_embeds=conditional_embeds,
match_adapter_assist=match_adapter_assist,
network_weight_list=network_weight_list,
timesteps=timesteps,
pred_kwargs=pred_kwargs,
noise=noise,
batch=batch,
unconditional_embeds=unconditional_embeds,
conditioned_prompts=conditioned_prompts
)
if prior_pred is not None:
prior_pred = prior_pred.detach()
# do the custom adapter after the prior prediction
if self.adapter and isinstance(self.adapter, CustomAdapter) and has_clip_image:
quad_count = random.randint(1, 4)
self.adapter.train()
conditional_embeds = self.adapter.condition_encoded_embeds(
tensors_0_1=clip_images,
prompt_embeds=conditional_embeds,
is_training=True,
has_been_preprocessed=True,
quad_count=quad_count
)
if self.train_config.do_cfg and unconditional_embeds is not None:
unconditional_embeds = self.adapter.condition_encoded_embeds(
tensors_0_1=clip_images,
prompt_embeds=unconditional_embeds,
is_training=True,
has_been_preprocessed=True,
is_unconditional=True,
quad_count=quad_count
)
if self.adapter and isinstance(self.adapter, CustomAdapter) and batch.extra_values is not None:
self.adapter.add_extra_values(batch.extra_values.detach())
if self.train_config.do_cfg:
self.adapter.add_extra_values(torch.zeros_like(batch.extra_values.detach()),
is_unconditional=True)
if has_adapter_img:
if (self.adapter and isinstance(self.adapter, ControlNetModel)) or (
self.assistant_adapter and isinstance(self.assistant_adapter, ControlNetModel)):
if self.train_config.do_cfg:
raise ValueError("ControlNetModel is not supported with CFG")
with torch.set_grad_enabled(self.adapter is not None):
adapter: ControlNetModel = self.assistant_adapter if self.assistant_adapter is not None else self.adapter
adapter_multiplier = get_adapter_multiplier()
with self.timer('encode_adapter'):
# add_text_embeds is pooled_prompt_embeds for sdxl
added_cond_kwargs = {}
if self.sd.is_xl:
added_cond_kwargs["text_embeds"] = conditional_embeds.pooled_embeds
added_cond_kwargs['time_ids'] = self.sd.get_time_ids_from_latents(noisy_latents)
down_block_res_samples, mid_block_res_sample = adapter(
noisy_latents,
timesteps,
encoder_hidden_states=conditional_embeds.text_embeds,
controlnet_cond=adapter_images,
conditioning_scale=1.0,
guess_mode=False,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)
pred_kwargs['down_block_additional_residuals'] = down_block_res_samples
pred_kwargs['mid_block_additional_residual'] = mid_block_res_sample
self.before_unet_predict()
# do a prior pred if we have an unconditional image, we will swap out the giadance later
if batch.unconditional_latents is not None or self.do_guided_loss:
# do guided loss
loss = self.get_guided_loss(
noisy_latents=noisy_latents,
conditional_embeds=conditional_embeds,
match_adapter_assist=match_adapter_assist,
network_weight_list=network_weight_list,
timesteps=timesteps,
pred_kwargs=pred_kwargs,
batch=batch,
noise=noise,
unconditional_embeds=unconditional_embeds,
mask_multiplier=mask_multiplier,
prior_pred=prior_pred,
)
else:
with self.timer('predict_unet'):
if unconditional_embeds is not None:
unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=dtype).detach()
noise_pred = self.predict_noise(
noisy_latents=noisy_latents.to(self.device_torch, dtype=dtype),
timesteps=timesteps,
conditional_embeds=conditional_embeds.to(self.device_torch, dtype=dtype),
unconditional_embeds=unconditional_embeds,
**pred_kwargs
)
self.after_unet_predict()
with self.timer('calculate_loss'):
noise = noise.to(self.device_torch, dtype=dtype).detach()
loss = self.calculate_loss(
noise_pred=noise_pred,
noise=noise,
noisy_latents=noisy_latents,
timesteps=timesteps,
batch=batch,
mask_multiplier=mask_multiplier,
prior_pred=prior_pred,
)
# check if nan
if torch.isnan(loss):
print("loss is nan")
loss = torch.zeros_like(loss).requires_grad_(True)
with self.timer('backward'):
# todo we have multiplier seperated. works for now as res are not in same batch, but need to change
loss = loss * loss_multiplier.mean()
# IMPORTANT if gradient checkpointing do not leave with network when doing backward
# it will destroy the gradients. This is because the network is a context manager
# and will change the multipliers back to 0.0 when exiting. They will be
# 0.0 for the backward pass and the gradients will be 0.0
# I spent weeks on fighting this. DON'T DO IT
# with fsdp_overlap_step_with_backward():
# if self.is_bfloat:
# loss.backward()
# else:
if not self.do_grad_scale:
loss.backward()
else:
self.scaler.scale(loss).backward()
return loss.detach()
# flush()
def hook_train_loop(self, batch: Union[DataLoaderBatchDTO, List[DataLoaderBatchDTO]]):
if isinstance(batch, list):
batch_list = batch
else:
batch_list = [batch]
total_loss = None
self.optimizer.zero_grad()
for batch in batch_list:
loss = self.train_single_accumulation(batch)
if total_loss is None:
total_loss = loss
else:
total_loss += loss
if len(batch_list) > 1 and self.model_config.low_vram:
torch.cuda.empty_cache()
if not self.is_grad_accumulation_step:
# fix this for multi params
if self.train_config.optimizer != 'adafactor':
if self.do_grad_scale:
self.scaler.unscale_(self.optimizer)
if isinstance(self.params[0], dict):
for i in range(len(self.params)):
torch.nn.utils.clip_grad_norm_(self.params[i]['params'], self.train_config.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(self.params, self.train_config.max_grad_norm)
# only step if we are not accumulating
with self.timer('optimizer_step'):
# self.optimizer.step()
if not self.do_grad_scale:
self.optimizer.step()
else:
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad(set_to_none=True)
if self.adapter and isinstance(self.adapter, CustomAdapter):
self.adapter.post_weight_update()
if self.ema is not None:
with self.timer('ema_update'):
self.ema.update()
else:
# gradient accumulation. Just a place for breakpoint
pass
# TODO Should we only step scheduler on grad step? If so, need to recalculate last step
with self.timer('scheduler_step'):
self.lr_scheduler.step()
if self.embedding is not None:
with self.timer('restore_embeddings'):
# Let's make sure we don't update any embedding weights besides the newly added token
self.embedding.restore_embeddings()
if self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter):
with self.timer('restore_adapter'):
# Let's make sure we don't update any embedding weights besides the newly added token
self.adapter.restore_embeddings()
loss_dict = OrderedDict(
{'loss': loss.item()}
)
self.end_of_training_loop()
return loss_dict