|
import sys |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import weakref |
|
from typing import Union, TYPE_CHECKING, Optional |
|
from collections import OrderedDict |
|
|
|
from diffusers import Transformer2DModel, FluxTransformer2DModel |
|
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection |
|
|
|
from toolkit.config_modules import AdapterConfig |
|
from toolkit.paths import REPOS_ROOT |
|
sys.path.append(REPOS_ROOT) |
|
|
|
|
|
if TYPE_CHECKING: |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
from toolkit.custom_adapter import CustomAdapter |
|
|
|
|
|
class MLPR(nn.Module): |
|
def __init__( |
|
self, |
|
in_dim, |
|
in_channels, |
|
out_dim, |
|
out_channels, |
|
hidden_dim, |
|
hidden_channels, |
|
use_residual=True |
|
): |
|
super().__init__() |
|
if use_residual: |
|
assert in_dim == out_dim |
|
|
|
self.layer_norm = nn.LayerNorm(in_dim) |
|
|
|
self.fc1 = nn.Linear(in_dim, hidden_dim) |
|
self.conv1 = nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.fc2 = nn.Linear(hidden_dim, out_dim) |
|
self.conv2 = nn.Conv1d(hidden_channels, out_channels, 1) |
|
|
|
self.use_residual = use_residual |
|
self.act_fn = nn.GELU() |
|
|
|
def forward(self, x): |
|
residual = x |
|
x = self.layer_norm(x) |
|
x = self.fc1(x) |
|
x = self.conv1(x) |
|
x = self.act_fn(x) |
|
x = self.fc2(x) |
|
x = self.conv2(x) |
|
if self.use_residual: |
|
x = x + residual |
|
return x |
|
|
|
class AttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
class VisionDirectAdapterAttnProcessor(nn.Module): |
|
r""" |
|
Attention processor for Custom TE for PyTorch 2.0. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
adapter |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None, |
|
adapter_hidden_size=None, has_bias=False, **kwargs): |
|
super().__init__() |
|
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
|
|
self.hidden_size = hidden_size |
|
self.adapter_hidden_size = adapter_hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
|
|
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) |
|
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) |
|
|
|
@property |
|
def is_active(self): |
|
return self.adapter_ref().is_active |
|
|
|
|
|
@property |
|
def unconditional_embeds(self): |
|
return self.adapter_ref().adapter_ref().unconditional_embeds |
|
|
|
@property |
|
def conditional_embeds(self): |
|
return self.adapter_ref().adapter_ref().conditional_embeds |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
is_active = self.adapter_ref().is_active |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
if self.is_active and self.conditional_embeds is not None: |
|
|
|
adapter_hidden_states = self.conditional_embeds |
|
if adapter_hidden_states.shape[0] < batch_size: |
|
adapter_hidden_states = torch.cat([ |
|
self.unconditional_embeds, |
|
adapter_hidden_states |
|
], dim=0) |
|
|
|
if len(adapter_hidden_states.shape) == 2: |
|
adapter_hidden_states = adapter_hidden_states.unsqueeze(1) |
|
|
|
|
|
|
|
|
|
vd_key = self.to_k_adapter(adapter_hidden_states) |
|
vd_value = self.to_v_adapter(adapter_hidden_states) |
|
|
|
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
vd_hidden_states = F.scaled_dot_product_attention( |
|
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
vd_hidden_states = vd_hidden_states.to(query.dtype) |
|
|
|
hidden_states = hidden_states + self.scale * vd_hidden_states |
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class CustomFluxVDAttnProcessor2_0(torch.nn.Module): |
|
"""Attention processor used typically in processing the SD3-like self-attention projections.""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None, |
|
adapter_hidden_size=None, has_bias=False, block_idx=0, **kwargs): |
|
super().__init__() |
|
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
|
|
self.hidden_size = hidden_size |
|
self.adapter_hidden_size = adapter_hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.block_idx = block_idx |
|
|
|
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) |
|
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) |
|
|
|
@property |
|
def is_active(self): |
|
return self.adapter_ref().is_active |
|
|
|
|
|
@property |
|
def unconditional_embeds(self): |
|
return self.adapter_ref().adapter_ref().unconditional_embeds |
|
|
|
@property |
|
def conditional_embeds(self): |
|
return self.adapter_ref().adapter_ref().conditional_embeds |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
) -> torch.FloatTensor: |
|
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
|
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
if self.is_active and self.conditional_embeds is not None: |
|
adapter_hidden_states = self.conditional_embeds |
|
block_scaler = self.adapter_ref().block_scaler |
|
if block_scaler is not None: |
|
|
|
block_scaler = block_scaler[self.block_idx] + 1.0 |
|
|
|
if adapter_hidden_states.shape[0] < batch_size: |
|
adapter_hidden_states = torch.cat([ |
|
self.unconditional_embeds, |
|
adapter_hidden_states |
|
], dim=0) |
|
|
|
if len(adapter_hidden_states.shape) == 2: |
|
adapter_hidden_states = adapter_hidden_states.unsqueeze(1) |
|
|
|
|
|
|
|
|
|
vd_key = self.to_k_adapter(adapter_hidden_states) |
|
vd_value = self.to_v_adapter(adapter_hidden_states) |
|
|
|
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
vd_hidden_states = F.scaled_dot_product_attention( |
|
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
vd_hidden_states = vd_hidden_states.to(query.dtype) |
|
|
|
|
|
if block_scaler is not None: |
|
orig_dtype = vd_hidden_states.dtype |
|
if block_scaler.dtype != vd_hidden_states.dtype: |
|
vd_hidden_states = vd_hidden_states.to(block_scaler.dtype) |
|
vd_hidden_states = vd_hidden_states * block_scaler |
|
if block_scaler.dtype != orig_dtype: |
|
vd_hidden_states = vd_hidden_states.to(orig_dtype) |
|
|
|
hidden_states = hidden_states + self.scale * vd_hidden_states |
|
|
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states, hidden_states = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
return hidden_states, encoder_hidden_states |
|
else: |
|
return hidden_states |
|
|
|
class VisionDirectAdapter(torch.nn.Module): |
|
def __init__( |
|
self, |
|
adapter: 'CustomAdapter', |
|
sd: 'StableDiffusion', |
|
vision_model: Union[CLIPVisionModelWithProjection], |
|
): |
|
super(VisionDirectAdapter, self).__init__() |
|
is_pixart = sd.is_pixart |
|
is_flux = sd.is_flux |
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
self.sd_ref: weakref.ref = weakref.ref(sd) |
|
self.config: AdapterConfig = adapter.config |
|
self.vision_model_ref: weakref.ref = weakref.ref(vision_model) |
|
|
|
if adapter.config.clip_layer == "image_embeds": |
|
self.token_size = vision_model.config.projection_dim |
|
else: |
|
self.token_size = vision_model.config.hidden_size |
|
|
|
|
|
attn_procs = {} |
|
unet_sd = sd.unet.state_dict() |
|
|
|
attn_processor_keys = [] |
|
if is_pixart: |
|
transformer: Transformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
|
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn1") |
|
|
|
|
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn2") |
|
|
|
elif is_flux: |
|
transformer: FluxTransformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn") |
|
|
|
|
|
for i, module in transformer.single_transformer_blocks.named_children(): |
|
attn_processor_keys.append(f"single_transformer_blocks.{i}.attn") |
|
else: |
|
attn_processor_keys = list(sd.unet.attn_processors.keys()) |
|
|
|
current_idx = 0 |
|
|
|
for name in attn_processor_keys: |
|
if is_flux: |
|
cross_attention_dim = None |
|
else: |
|
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim'] |
|
if name.startswith("mid_block"): |
|
hidden_size = sd.unet.config['block_out_channels'][-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = sd.unet.config['block_out_channels'][block_id] |
|
elif name.startswith("transformer") or name.startswith("single_transformer"): |
|
if is_flux: |
|
hidden_size = 3072 |
|
else: |
|
hidden_size = sd.unet.config['cross_attention_dim'] |
|
else: |
|
|
|
raise ValueError(f"unknown attn processor name: {name}") |
|
if cross_attention_dim is None and not is_flux: |
|
attn_procs[name] = AttnProcessor2_0() |
|
else: |
|
layer_name = name.split(".processor")[0] |
|
if f"{layer_name}.to_k.weight._data" in unet_sd and is_flux: |
|
|
|
|
|
to_k_adapter = torch.randn(hidden_size, hidden_size) * 0.01 |
|
to_v_adapter = torch.randn(hidden_size, hidden_size) * 0.01 |
|
to_k_adapter = to_k_adapter.to(self.sd_ref().torch_dtype) |
|
to_v_adapter = to_v_adapter.to(self.sd_ref().torch_dtype) |
|
else: |
|
to_k_adapter = unet_sd[layer_name + ".to_k.weight"] |
|
to_v_adapter = unet_sd[layer_name + ".to_v.weight"] |
|
|
|
|
|
if to_k_adapter.shape[1] < self.token_size: |
|
to_k_adapter = torch.cat([ |
|
to_k_adapter, |
|
torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to( |
|
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 |
|
], |
|
dim=1 |
|
) |
|
to_v_adapter = torch.cat([ |
|
to_v_adapter, |
|
torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to( |
|
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 |
|
], |
|
dim=1 |
|
) |
|
elif to_k_adapter.shape[1] > self.token_size: |
|
to_k_adapter = to_k_adapter[:, :self.token_size] |
|
to_v_adapter = to_v_adapter[:, :self.token_size] |
|
|
|
|
|
|
|
else: |
|
to_k_adapter = to_k_adapter |
|
to_v_adapter = to_v_adapter |
|
|
|
|
|
|
|
|
|
weights = { |
|
"to_k_adapter.weight": to_k_adapter * 0.01, |
|
"to_v_adapter.weight": to_v_adapter * 0.01, |
|
} |
|
|
|
|
|
|
|
|
|
if is_flux: |
|
attn_procs[name] = CustomFluxVDAttnProcessor2_0( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
adapter=self, |
|
adapter_hidden_size=self.token_size, |
|
has_bias=False, |
|
block_idx=current_idx |
|
) |
|
else: |
|
attn_procs[name] = VisionDirectAdapterAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
adapter=self, |
|
adapter_hidden_size=self.token_size, |
|
has_bias=False, |
|
) |
|
current_idx += 1 |
|
attn_procs[name].load_state_dict(weights) |
|
|
|
if self.sd_ref().is_pixart: |
|
|
|
transformer: Transformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"] |
|
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"] |
|
self.adapter_modules = torch.nn.ModuleList([ |
|
transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks)) |
|
] + [ |
|
transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks)) |
|
]) |
|
elif self.sd_ref().is_flux: |
|
|
|
transformer: FluxTransformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
module.attn.processor = attn_procs[f"transformer_blocks.{i}.attn"] |
|
|
|
if not self.config.flux_only_double: |
|
|
|
for i, module in transformer.single_transformer_blocks.named_children(): |
|
module.attn.processor = attn_procs[f"single_transformer_blocks.{i}.attn"] |
|
|
|
if not self.config.flux_only_double: |
|
self.adapter_modules = torch.nn.ModuleList( |
|
[ |
|
transformer.transformer_blocks[i].attn.processor for i in |
|
range(len(transformer.transformer_blocks)) |
|
] + [ |
|
transformer.single_transformer_blocks[i].attn.processor for i in |
|
range(len(transformer.single_transformer_blocks)) |
|
] |
|
) |
|
else: |
|
self.adapter_modules = torch.nn.ModuleList( |
|
[ |
|
transformer.transformer_blocks[i].attn.processor for i in |
|
range(len(transformer.transformer_blocks)) |
|
] |
|
) |
|
else: |
|
sd.unet.set_attn_processor(attn_procs) |
|
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values()) |
|
|
|
num_modules = len(self.adapter_modules) |
|
if self.config.train_scaler: |
|
self.block_scaler = torch.nn.Parameter(torch.tensor([0.0] * num_modules).to( |
|
dtype=torch.float32, |
|
device=self.sd_ref().device_torch |
|
)) |
|
self.block_scaler.data = self.block_scaler.data.to(torch.float32) |
|
self.block_scaler.requires_grad = True |
|
else: |
|
self.block_scaler = None |
|
|
|
if self.config.num_tokens is not None: |
|
image_encoder_state_dict = self.adapter_ref().vision_encoder.state_dict() |
|
|
|
max_seq_len = 257 |
|
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict: |
|
|
|
max_seq_len = int( |
|
image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0]) |
|
self.resampler = MLPR( |
|
in_dim=self.token_size, |
|
in_channels=max_seq_len, |
|
out_dim=self.token_size, |
|
out_channels=self.config.num_tokens, |
|
hidden_dim=self.token_size, |
|
hidden_channels=max_seq_len, |
|
use_residual=False |
|
) |
|
|
|
def state_dict(self, destination=None, prefix='', keep_vars=False): |
|
if self.config.train_scaler: |
|
|
|
if destination is None: |
|
destination = OrderedDict() |
|
destination[prefix + 'block_scaler'] = self.block_scaler |
|
return destination |
|
return super().state_dict(destination, prefix, keep_vars) |
|
|
|
|
|
@property |
|
def is_active(self): |
|
return self.adapter_ref().is_active |
|
|
|
def forward(self, input): |
|
|
|
|
|
if self.block_scaler is not None and self.block_scaler.dtype != torch.float32: |
|
self.block_scaler.data = self.block_scaler.data.to(torch.float32) |
|
if self.config.num_tokens is not None: |
|
input = self.resampler(input) |
|
return input |
|
|
|
def to(self, *args, **kwargs): |
|
super().to(*args, **kwargs) |
|
if self.block_scaler is not None: |
|
if self.block_scaler.dtype != torch.float32: |
|
self.block_scaler.data = self.block_scaler.data.to(torch.float32) |
|
return self |
|
|
|
def post_weight_update(self): |
|
|
|
pass |
|
|