|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class ContextualAlphaMask(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int = 768, |
|
): |
|
super(ContextualAlphaMask, self).__init__() |
|
self.dim = dim |
|
|
|
half_dim = dim // 2 |
|
quarter_dim = dim // 4 |
|
|
|
self.fc1 = nn.Linear(self.dim, self.dim) |
|
self.fc2 = nn.Linear(self.dim, half_dim) |
|
self.norm1 = nn.LayerNorm(half_dim) |
|
self.fc3 = nn.Linear(half_dim, half_dim) |
|
self.fc4 = nn.Linear(half_dim, quarter_dim) |
|
self.norm2 = nn.LayerNorm(quarter_dim) |
|
self.fc5 = nn.Linear(quarter_dim, quarter_dim) |
|
self.fc6 = nn.Linear(quarter_dim, 1) |
|
|
|
self.fc6.weight.data.normal_(mean=0.0, std=0.0001) |
|
self.act_fn = nn.GELU() |
|
|
|
def forward(self, x): |
|
|
|
x = self.fc1(x) |
|
x = self.act_fn(x) |
|
x = self.fc2(x) |
|
x = self.norm1(x) |
|
x = self.act_fn(x) |
|
x = self.fc3(x) |
|
x = self.act_fn(x) |
|
x = self.fc4(x) |
|
x = self.norm2(x) |
|
x = self.act_fn(x) |
|
x = self.fc5(x) |
|
x = self.act_fn(x) |
|
x = self.fc6(x) |
|
x = torch.sigmoid(x) |
|
return x |
|
|
|
|
|
class ZipperModule(nn.Module): |
|
def __init__( |
|
self, |
|
in_size, |
|
in_tokens, |
|
out_size, |
|
out_tokens, |
|
hidden_size, |
|
hidden_tokens, |
|
use_residual=False, |
|
): |
|
super().__init__() |
|
self.in_size = in_size |
|
self.in_tokens = in_tokens |
|
self.out_size = out_size |
|
self.out_tokens = out_tokens |
|
self.hidden_size = hidden_size |
|
self.hidden_tokens = hidden_tokens |
|
self.use_residual = use_residual |
|
|
|
self.act_fn = nn.GELU() |
|
self.layernorm = nn.LayerNorm(self.in_size) |
|
|
|
self.conv1 = nn.Conv1d(self.in_tokens, self.hidden_tokens, 1) |
|
|
|
self.fc1 = nn.Linear(self.in_size, self.hidden_size) |
|
|
|
self.conv2 = nn.Conv1d(self.hidden_tokens, self.out_tokens, 1) |
|
|
|
self.fc2 = nn.Linear(self.hidden_size, self.out_size) |
|
|
|
def forward(self, x): |
|
residual = x |
|
x = self.layernorm(x) |
|
x = self.conv1(x) |
|
x = self.act_fn(x) |
|
x = self.fc1(x) |
|
x = self.act_fn(x) |
|
x = self.conv2(x) |
|
x = self.act_fn(x) |
|
x = self.fc2(x) |
|
if self.use_residual: |
|
x = x + residual |
|
return x |
|
|
|
|
|
class ZipperResampler(nn.Module): |
|
def __init__( |
|
self, |
|
in_size, |
|
in_tokens, |
|
out_size, |
|
out_tokens, |
|
hidden_size, |
|
hidden_tokens, |
|
num_blocks=1, |
|
is_conv_input=False, |
|
): |
|
super().__init__() |
|
self.is_conv_input = is_conv_input |
|
|
|
module_list = [] |
|
for i in range(num_blocks): |
|
|
|
this_in_size = in_size |
|
this_in_tokens = in_tokens |
|
this_out_size = out_size |
|
this_out_tokens = out_tokens |
|
this_hidden_size = hidden_size |
|
this_hidden_tokens = hidden_tokens |
|
use_residual = False |
|
|
|
|
|
if i == 0: |
|
this_in_size = in_size |
|
this_in_tokens = in_tokens |
|
if num_blocks == 1: |
|
this_out_size = out_size |
|
this_out_tokens = out_tokens |
|
else: |
|
this_out_size = hidden_size |
|
this_out_tokens = hidden_tokens |
|
elif i == num_blocks - 1: |
|
this_out_size = out_size |
|
this_out_tokens = out_tokens |
|
if num_blocks == 1: |
|
this_in_size = in_size |
|
this_in_tokens = in_tokens |
|
else: |
|
this_in_size = hidden_size |
|
this_in_tokens = hidden_tokens |
|
else: |
|
this_out_size = hidden_size |
|
this_out_tokens = hidden_tokens |
|
this_in_size = hidden_size |
|
this_in_tokens = hidden_tokens |
|
use_residual = True |
|
|
|
module_list.append(ZipperModule( |
|
in_size=this_in_size, |
|
in_tokens=this_in_tokens, |
|
out_size=this_out_size, |
|
out_tokens=this_out_tokens, |
|
hidden_size=this_hidden_size, |
|
hidden_tokens=this_hidden_tokens, |
|
use_residual=use_residual |
|
)) |
|
|
|
self.blocks = nn.ModuleList(module_list) |
|
|
|
self.ctx_alpha = ContextualAlphaMask( |
|
dim=out_size, |
|
) |
|
|
|
def forward(self, x): |
|
if self.is_conv_input: |
|
|
|
x = x.view(x.size(0), x.size(1), -1) |
|
|
|
x = x.permute(0, 2, 1) |
|
|
|
for block in self.blocks: |
|
x = block(x) |
|
alpha = self.ctx_alpha(x) |
|
return x * alpha |
|
|