mmarco-corpus / mmarco-corpus.py
Xinyu Crystina ZHANG
init
8305e3a
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""mMARCO dataset."""
from collections import defaultdict
from gc import collect
import datasets
_CITATION = """
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_URL = "https://github.com/unicamp-dl/mMARCO"
_DESCRIPTION = """
mMARCO translated datasets
"""
_BASE_URLS = {
"collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/collections/",
"queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/train/",
"queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/dev/",
"runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/runs/",
"train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv",
}
LANGUAGES = [
"arabic",
"chinese",
"dutch",
"english",
"french",
"german",
"hindi",
"indonesian",
"italian",
"japanese",
"portuguese",
"russian",
"spanish",
"vietnamese",
]
class MMarco(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=language,
description=f"{language.capitalize()} triples",
version=datasets.Version("2.0.0"),
)
for language in LANGUAGES
]
# size_per_lang = {lang: 398792 for lang in LANGUAGES}
# $ cat triples.train.ids.small.tsv | cut -f 1 | sort | uniq | wc -l
# 398792
DEFAULT_CONFIG_NAME = "english"
def _info(self):
name = self.config.name
assert name in LANGUAGES
# features = {
# "query_id": datasets.Value("string"),
# "query": datasets.Value("string"),
# "positive_passages": [
# {'docid': datasets.Value('string'), 'text': datasets.Value('string')}
# ],
# "negative_passages": [
# {'docid': datasets.Value('string'), 'text': datasets.Value('string')}
# ],
# }
features = datasets.Features(
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')}
)
return datasets.DatasetInfo(
description=f"{_DESCRIPTION}\n{self.config.description}",
features=datasets.Features(features),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
urls = {
"collection": {lang: _BASE_URLS["collections"] + lang + "_collection.tsv" for lang in languages},
}
dl_path = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
# "files": dl_path["train"],
'files': dl_path["collection"],
},
)
]
def _generate_examples(self, files):
"""Yields examples."""
# languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
# loading
collection_path = files[self.config.name]
with open(collection_path, encoding="utf-8") as f:
for line in f:
doc_id, doc = line.rstrip().split("\t")
# collection[doc_id] = doc
yield doc_id, {"docid": doc_id, "title": "", "text": doc}