File size: 8,091 Bytes
c6a4d24 ee74a14 c6a4d24 8d0a106 bf3af95 c6a4d24 6bdf77b c6a4d24 8d0a106 c6a4d24 ee74a14 c6a4d24 ee74a14 6bdf77b 8d0a106 bf3af95 8d0a106 6bdf77b bf3af95 6bdf77b bf3af95 ee74a14 8d0a106 ee74a14 8d0a106 ee74a14 8d0a106 ee74a14 bf3af95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""mMARCO dataset."""
from collections import defaultdict
from gc import collect
import datasets
from tqdm import tqdm
import random
_CITATION = """
@misc{bonifacio2021mmarco,
title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
eprint={2108.13897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_URL = "https://github.com/unicamp-dl/mMARCO"
_DESCRIPTION = """
mMARCO translated datasets
"""
_BASE_URLS = {
"collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/collections/",
"queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/train/",
"queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/dev/",
"runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/runs/",
"train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv",
}
LANGUAGES = [
"arabic",
"chinese",
"dutch",
"english",
"french",
"german",
"hindi",
"indonesian",
"italian",
"japanese",
"portuguese",
"russian",
"spanish",
"vietnamese",
]
class MMarco(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = (
[
datasets.BuilderConfig(
name=language,
description=f"{language.capitalize()} triples",
version=datasets.Version("2.0.0"),
)
for language in LANGUAGES
]
+ [
datasets.BuilderConfig(
name=f"collection-{language}",
description=f"{language.capitalize()} collection version v2",
version=datasets.Version("2.0.0"),
)
for language in LANGUAGES
]
+ [
datasets.BuilderConfig(
name=f"queries-{language}",
description=f"{language.capitalize()} queries version v2",
version=datasets.Version("2.0.0"),
)
for language in LANGUAGES
]
+ [
datasets.BuilderConfig(
name=f"runs-{language}",
description=f"{language.capitalize()} runs version v2",
version=datasets.Version("2.0.0"),
)
for language in LANGUAGES
]
+ [
datasets.BuilderConfig(
name=f"all",
description=f"All training data version v2",
version=datasets.Version("2.0.0"),
)
]
)
size_per_lang = {lang: 398792 for lang in LANGUAGES}
# $ cat triples.train.ids.small.tsv | cut -f 1 | sort | uniq | wc -l
# 398792
DEFAULT_CONFIG_NAME = "english"
def _info(self):
name = self.config.name
assert name in LANGUAGES + ["all"], f"Does not support languge {name}. Must be one of {LANGUAGES}."
features = {
"query_id": datasets.Value("string"),
"query": datasets.Value("string"),
"positive_passages": [
{'docid': datasets.Value('string'), 'text': datasets.Value('string')}
],
"negative_passages": [
{'docid': datasets.Value('string'), 'text': datasets.Value('string')}
],
}
return datasets.DatasetInfo(
description=f"{_DESCRIPTION}\n{self.config.description}",
features=datasets.Features(features),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
urls = {
"collection": {lang: _BASE_URLS["collections"] + lang + "_collection.tsv" for lang in languages},
"queries": {lang: _BASE_URLS["queries-train"] + lang + "_queries.train.tsv" for lang in languages},
"train": _BASE_URLS["train"],
}
dl_path = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_path["train"],
"args": {
"collection": dl_path["collection"],
"queries": dl_path["queries"],
},
},
)
]
def _generate_examples(self, files, args=None):
"""Yields examples."""
languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
# loading
runs = dict() # each query: [set(pos_passages), set(neg_passages)]
with open(files, encoding="utf-8") as f:
for (idx, line) in enumerate(f):
query_id, pos_id, neg_id = line.rstrip().split("\t")
if query_id not in runs:
runs[query_id] = [set(pos_id), set(neg_id)]
else:
runs[query_id][0].add(pos_id)
runs[query_id][1].add(neg_id)
# it would generate language by language so that it would be easier to constrain that each batch only contain one language;
for lang in tqdm(languages, desc=f"Preparing training example for {len(languages)} languages."):
n_missed_q = 0
n_missed_d = 0
collection_path, queries_path = args["collection"][lang], args["queries"][lang]
collection = {}
with open(collection_path, encoding="utf-8") as f:
collection = dict(line.rstrip().split("\t") for line in f)
queries = {}
with open(queries_path, encoding="utf-8") as f:
for line in f:
queries = dict(line.rstrip().split("\t") for line in f)
assert len(runs) == self.size_per_lang[lang]
for query_id, (pos_ids, neg_ids) in runs.items():
if query_id not in queries:
n_missed_q += 1
continue
pos_ids, neg_ids = list(pos_ids), list(neg_ids)
pos_ids = [d for d in pos_ids if d in collection]
neg_ids = [d for d in neg_ids if d in collection]
if len(neg_ids) == 0 or len(pos_ids) == 0:
n_missed_d += 1
continue
NNEG = min(10, len(neg_ids))
neg_ids = random.choices(neg_ids, k=NNEG)
features = {
"query_id": query_id,
"query": queries[query_id],
"positive_passages": [{
"docid": pos_id,
"text": collection[pos_id],
} for pos_id in pos_ids],
"negative_passages": [{
"docid": neg_id,
"text": collection[neg_id],
} for neg_id in neg_ids],
}
yield f"{lang}-{query_id}-{idx}", features
print(f'Number of missed Q: {n_missed_q}. Number of missed D: {n_missed_d}') |