File size: 8,091 Bytes
c6a4d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee74a14
c6a4d24
 
8d0a106
bf3af95
c6a4d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bdf77b
 
 
 
c6a4d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d0a106
c6a4d24
 
 
 
 
 
ee74a14
c6a4d24
 
 
ee74a14
 
 
 
 
 
6bdf77b
8d0a106
bf3af95
 
 
8d0a106
 
 
 
 
 
 
 
 
 
 
6bdf77b
 
bf3af95
 
 
 
6bdf77b
bf3af95
 
 
 
 
 
 
 
 
ee74a14
 
8d0a106
ee74a14
 
8d0a106
ee74a14
 
 
8d0a106
ee74a14
 
bf3af95
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""mMARCO dataset."""

from collections import defaultdict
from gc import collect
import datasets
from tqdm import tqdm
import random


_CITATION = """
@misc{bonifacio2021mmarco,
      title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset},
      author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira},
      year={2021},
      eprint={2108.13897},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_URL = "https://github.com/unicamp-dl/mMARCO"

_DESCRIPTION = """
mMARCO translated datasets
"""


_BASE_URLS = {
    "collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/collections/",
    "queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/train/",
    "queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/queries/dev/",
    "runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/google/runs/",
    "train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv",
}

LANGUAGES = [
    "arabic",
    "chinese",
    "dutch",
    "english",
    "french",
    "german",
    "hindi",
    "indonesian",
    "italian",
    "japanese",
    "portuguese",
    "russian",
    "spanish",
    "vietnamese",
]


class MMarco(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = (
        [
            datasets.BuilderConfig(
                name=language,
                description=f"{language.capitalize()} triples",
                version=datasets.Version("2.0.0"),
            )
            for language in LANGUAGES
        ]
        + [
            datasets.BuilderConfig(
                name=f"collection-{language}",
                description=f"{language.capitalize()} collection version v2",
                version=datasets.Version("2.0.0"),
            )
            for language in LANGUAGES
        ]
        + [
            datasets.BuilderConfig(
                name=f"queries-{language}",
                description=f"{language.capitalize()} queries version v2",
                version=datasets.Version("2.0.0"),
            )
            for language in LANGUAGES
        ]
        + [
            datasets.BuilderConfig(
                name=f"runs-{language}",
                description=f"{language.capitalize()} runs version v2",
                version=datasets.Version("2.0.0"),
            )
            for language in LANGUAGES
        ]
        + [
            datasets.BuilderConfig(
                name=f"all",
                description=f"All training data version v2",
                version=datasets.Version("2.0.0"),
            )
        ]
    )
    
    size_per_lang = {lang: 398792 for lang in LANGUAGES}
    # $ cat triples.train.ids.small.tsv  | cut -f 1  | sort | uniq | wc -l 
    # 398792

    DEFAULT_CONFIG_NAME = "english"

    def _info(self):
        name = self.config.name
        assert name in LANGUAGES + ["all"], f"Does not support languge {name}. Must be one of {LANGUAGES}."

        features = {
            "query_id": datasets.Value("string"),
            "query": datasets.Value("string"),
            "positive_passages": [
                {'docid': datasets.Value('string'), 'text': datasets.Value('string')}
            ],
            "negative_passages": [
                {'docid': datasets.Value('string'), 'text': datasets.Value('string')}
            ],
        }

        return datasets.DatasetInfo(
            description=f"{_DESCRIPTION}\n{self.config.description}",
            features=datasets.Features(features),
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES
        urls = {
            "collection": {lang: _BASE_URLS["collections"] + lang + "_collection.tsv" for lang in languages},
            "queries": {lang: _BASE_URLS["queries-train"] + lang + "_queries.train.tsv" for lang in languages}, 
            "train": _BASE_URLS["train"],
        }
        dl_path = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": dl_path["train"],
                    "args": {
                        "collection": dl_path["collection"],
                        "queries": dl_path["queries"],
                    },
                },
            )
        ]


    def _generate_examples(self, files, args=None):
        """Yields examples."""

        languages = [self.config.name] if self.config.name in LANGUAGES else LANGUAGES

        # loading
        runs = dict() # each query: [set(pos_passages), set(neg_passages)]
        with open(files, encoding="utf-8") as f:
            for (idx, line) in enumerate(f):
                query_id, pos_id, neg_id = line.rstrip().split("\t")
                if query_id not in runs:
                    runs[query_id] = [set(pos_id), set(neg_id)]
                else:
                    runs[query_id][0].add(pos_id)
                    runs[query_id][1].add(neg_id)

        # it would generate language by language so that it would be easier to constrain that each batch only contain one language;
        for lang in tqdm(languages, desc=f"Preparing training example for {len(languages)} languages."):
            n_missed_q = 0
            n_missed_d = 0

            collection_path, queries_path = args["collection"][lang], args["queries"][lang]

            collection = {}
            with open(collection_path, encoding="utf-8") as f:
                collection = dict(line.rstrip().split("\t") for line in f)

            queries = {}
            with open(queries_path, encoding="utf-8") as f:
                for line in f:
                    queries = dict(line.rstrip().split("\t") for line in f)
 
            assert len(runs) == self.size_per_lang[lang]
            for query_id, (pos_ids, neg_ids) in runs.items():
                if query_id not in queries:
                    n_missed_q += 1
                    continue
 
                pos_ids, neg_ids = list(pos_ids), list(neg_ids)
                pos_ids = [d for d in pos_ids if d in collection]
                neg_ids = [d for d in neg_ids if d in collection]
                if len(neg_ids) == 0 or len(pos_ids) == 0:
                    n_missed_d += 1
                    continue

                NNEG = min(10, len(neg_ids))
                neg_ids = random.choices(neg_ids, k=NNEG)

                features = {
                    "query_id": query_id,
                    "query": queries[query_id],
                    "positive_passages": [{
                        "docid": pos_id, 
                        "text": collection[pos_id],
                    } for pos_id in pos_ids],
                    "negative_passages": [{
                        "docid": neg_id, 
                        "text": collection[neg_id],
                    } for neg_id in neg_ids],
                }
                yield f"{lang}-{query_id}-{idx}", features
            print(f'Number of missed Q: {n_missed_q}. Number of missed D: {n_missed_d}')