EsportsBenchTest / README.md
cthorrez's picture
update to 4
f19a957 verified
metadata
dataset_info:
  features:
    - name: date
      dtype: date32
    - name: competitor_1
      dtype: string
    - name: competitor_2
      dtype: string
    - name: outcome
      dtype: float64
    - name: match_id
      dtype: string
    - name: page
      dtype: string
  splits:
    - name: league_of_legends
      num_bytes: 23187788
      num_examples: 134309
    - name: counterstrike
      num_bytes: 29123721
      num_examples: 205705
    - name: rocket_league
      num_bytes: 25043083
      num_examples: 164480
    - name: starcraft1
      num_bytes: 12705765
      num_examples: 104210
    - name: starcraft2
      num_bytes: 62041737
      num_examples: 447649
    - name: smash_melee
      num_bytes: 45842662
      num_examples: 400935
    - name: smash_ultimate
      num_bytes: 32116543
      num_examples: 278180
    - name: dota2
      num_bytes: 9721322
      num_examples: 75088
    - name: overwatch
      num_bytes: 5155752
      num_examples: 36036
    - name: valorant
      num_bytes: 10140621
      num_examples: 73054
    - name: warcraft3
      num_bytes: 16344481
      num_examples: 138068
    - name: rainbow_six
      num_bytes: 10544493
      num_examples: 73785
    - name: halo
      num_bytes: 2406182
      num_examples: 16076
    - name: call_of_duty
      num_bytes: 2931605
      num_examples: 19933
    - name: tetris
      num_bytes: 872544
      num_examples: 6794
    - name: street_fighter
      num_bytes: 15123979
      num_examples: 92920
    - name: tekken
      num_bytes: 10627452
      num_examples: 67579
    - name: king_of_fighters
      num_bytes: 2984789
      num_examples: 18520
    - name: guilty_gear
      num_bytes: 3704362
      num_examples: 23527
    - name: ea_sports_fc
      num_bytes: 4462705
      num_examples: 33922
  download_size: 55617408
  dataset_size: 325081586
configs:
  - config_name: default
    data_files:
      - split: league_of_legends
        path: data/league_of_legends-*
      - split: counterstrike
        path: data/counterstrike-*
      - split: rocket_league
        path: data/rocket_league-*
      - split: starcraft1
        path: data/starcraft1-*
      - split: starcraft2
        path: data/starcraft2-*
      - split: smash_melee
        path: data/smash_melee-*
      - split: smash_ultimate
        path: data/smash_ultimate-*
      - split: dota2
        path: data/dota2-*
      - split: overwatch
        path: data/overwatch-*
      - split: valorant
        path: data/valorant-*
      - split: warcraft3
        path: data/warcraft3-*
      - split: rainbow_six
        path: data/rainbow_six-*
      - split: halo
        path: data/halo-*
      - split: call_of_duty
        path: data/call_of_duty-*
      - split: tetris
        path: data/tetris-*
      - split: street_fighter
        path: data/street_fighter-*
      - split: tekken
        path: data/tekken-*
      - split: king_of_fighters
        path: data/king_of_fighters-*
      - split: guilty_gear
        path: data/guilty_gear-*
      - split: ea_sports_fc
        path: data/ea_sports_fc-*

TESTING

EsportsBench: A Collection of Datasets for Benchmarking Rating Systems in Esports

EsportsBench is a collection of 20 esports competition datasets. Each row of each dataset represents a match played between either two players or two teams in a professional video game tournament. The goal of the datasets is to provide a resource for comparison and development of rating systems used to predict the results of esports matches based on past results. Date is complete up to 2024-03-31.

Recommended Usage

The recommended data split is to use the most recent year of data as the test set, and all data prior to that as train. There have been two releases so far:

  • 1.0 includes data up to 2024-03-31. Train: beginning to 2023-03-31, Test: 2023-04-01 to 2024-03-31
  • 2.0 includes data up to 2024-06-30. Train: beginning to 2023-06-30, Test: 2023-07-01 to 2024-06-30
import polars as pl
import datasets
esports = datasets.load_dataset('EsportsBench/EsportsBench', revision='1.0')
lol = esports['league_of_legends'].to_polars()
teams = pl.concat([lol['competitor_1'], lol['competitor_2']]).unique()
lol_train = lol.filter(pl.col('date') <= '2023-03-31')
lol_test = lol.filter((pl.col('date') >'2023-03-31') & (pl.col('date') <= '2024-03-31'))
print(f'train rows: {len(lol_train)}')
print(f'test rows: {len(lol_test)}')
print(f'num teams: {len(teams)}')
# train rows: 104737
# test rows: 17806
# num teams: 12829

The granulularity of the date column is at the day level and rows on the same date are not guaranteed to be ordered so when experimenting, it's best to make predictions for all matches on a given day before incorporating any of them into ratings or models.

# example prediction and update loop
rating_periods = lol.group_by('date', maintain_order=True)
for date, matches in rating_periods:
    print(f'Date: {date}')
    print(f'Matches: {len(matches)}')
    # probs = model.predict(matches)
    # model.update(matches)
# Date: 2011-03-14
# Matches: 3
# ...
# Date: 2024-03-31
# Matches: 47

Data Sources