|
--- |
|
annotations_creators: |
|
- no-annotation |
|
language_creators: |
|
- found |
|
language: |
|
- en |
|
license: cdla-permissive-2.0 |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 10K<n<100K |
|
source_datasets: |
|
- original |
|
task_categories: |
|
- unconditional-image-generation |
|
task_ids: [] |
|
pretty_name: crello |
|
tags: |
|
- graphic design |
|
- design templates |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: length |
|
dtype: int64 |
|
- name: group |
|
dtype: |
|
class_label: |
|
names: |
|
'0': SM |
|
'1': HC |
|
'2': MM |
|
'3': SMA |
|
'4': EO |
|
'5': BG |
|
- name: format |
|
dtype: |
|
class_label: |
|
names: |
|
'0': Instagram Story |
|
'1': Instagram |
|
'2': Facebook |
|
'3': Facebook cover |
|
'4': Twitter |
|
'5': Facebook AD |
|
'6': Poster |
|
'7': Instagram AD |
|
'8': Tumblr |
|
'9': Image |
|
'10': Pinterest |
|
'11': Flayer |
|
'12': FB event cover |
|
'13': Postcard |
|
'14': Invitation |
|
'15': Youtube |
|
'16': Email header |
|
'17': Medium Rectangle |
|
'18': Graphic |
|
'19': Large Rectangle |
|
'20': Poster US |
|
'21': Card |
|
'22': Logo |
|
'23': Title |
|
'24': Skyscraper |
|
'25': Leaderboard |
|
'26': Presentation |
|
'27': Gift Certificate |
|
'28': VK Universal Post |
|
'29': Youtube Thumbnail |
|
'30': Business card |
|
'31': Book Cover |
|
'32': Presentation Wide |
|
'33': VK Community Cover |
|
'34': Certificate |
|
'35': Zoom Background |
|
'36': VK Post with Button |
|
'37': T-Shirt |
|
'38': Instagram Highlight Cover |
|
'39': Coupon |
|
'40': Letterhead |
|
'41': IGTV Cover |
|
'42': Album Cover |
|
'43': LinkedIn Cover |
|
'44': Storyboard |
|
'45': Schedule Planner |
|
'46': Invoice |
|
'47': Resume |
|
'48': Recipe Card |
|
'49': Menu |
|
'50': Mood Board |
|
'51': Mind Map |
|
'52': Label |
|
'53': Newsletter |
|
'54': Brochure |
|
'55': Ticket |
|
'56': Proposal |
|
'57': Snapchat Geofilter |
|
'58': Snapchat Moment Filter |
|
'59': Twitch Offline Banner |
|
'60': Twitch Profile Banner |
|
'61': Infographic |
|
'62': Photo Book |
|
'63': Mobile Presentation |
|
'64': Web Banner |
|
'65': Gallery Image |
|
'66': Calendar |
|
- name: canvas_width |
|
dtype: int64 |
|
- name: canvas_height |
|
dtype: int64 |
|
- name: category |
|
dtype: |
|
class_label: |
|
names: |
|
'0': holidaysCelebration |
|
'1': foodDrinks |
|
'2': fashionStyle |
|
'3': businessFinance |
|
'4': homeStuff |
|
'5': handcraftArt |
|
'6': beauty |
|
'7': leisureEntertainment |
|
'8': natureWildlife |
|
'9': educationScience |
|
'10': technology |
|
'11': medical |
|
'12': socialActivityCharity |
|
'13': sportExtreme |
|
'14': realEstateBuilding |
|
'15': travelsVacations |
|
'16': pets |
|
'17': religions |
|
'18': citiesPlaces |
|
'19': industry |
|
'20': transportation |
|
'21': kidsParents |
|
'22': all |
|
- name: title |
|
dtype: string |
|
- name: suitability |
|
sequence: |
|
class_label: |
|
names: |
|
'0': mobile |
|
- name: keywords |
|
sequence: string |
|
- name: industries |
|
sequence: |
|
class_label: |
|
names: |
|
'0': marketingAds |
|
'1': entertainmentLeisure |
|
'2': services |
|
'3': retail |
|
'4': businessFinance |
|
'5': educationTraining |
|
'6': foodBeverages |
|
'7': artCrafts |
|
'8': fashionStyle |
|
'9': healthWellness |
|
'10': ecologyNature |
|
'11': nonProfitCharity |
|
'12': beautyCosmetics |
|
'13': techGadgets |
|
'14': homeLiving |
|
'15': familyKids |
|
'16': travelTourism |
|
'17': sportFitness |
|
'18': corporate |
|
'19': petsAnimals |
|
'20': realEstateConstruction |
|
'21': transportDelivery |
|
'22': religionFaith |
|
'23': hrRecruitment |
|
- name: preview |
|
dtype: image |
|
- name: type |
|
sequence: |
|
class_label: |
|
names: |
|
'0': SvgElement |
|
'1': TextElement |
|
'2': ImageElement |
|
'3': ColoredBackground |
|
'4': SvgMaskElement |
|
- name: left |
|
sequence: float32 |
|
- name: top |
|
sequence: float32 |
|
- name: width |
|
sequence: float32 |
|
- name: height |
|
sequence: float32 |
|
- name: angle |
|
sequence: float32 |
|
- name: opacity |
|
sequence: float32 |
|
- name: color |
|
sequence: |
|
sequence: string |
|
- name: image |
|
sequence: image |
|
- name: text |
|
sequence: string |
|
- name: font |
|
sequence: |
|
class_label: |
|
names: |
|
'0': '' |
|
'1': Montserrat |
|
'2': Bebas Neue |
|
'3': Raleway |
|
'4': Josefin Sans |
|
'5': Cantarell |
|
'6': Playfair Display |
|
'7': Oswald |
|
'8': Blogger Sans |
|
'9': Abril Fatface |
|
'10': Prompt |
|
'11': Comfortaa |
|
'12': Rubik |
|
'13': Open Sans |
|
'14': Roboto |
|
'15': Libre Baskerville |
|
'16': Quicksand |
|
'17': Dosis |
|
'18': Podkova |
|
'19': Lato |
|
'20': Cormorant Infant |
|
'21': Amatic Sc |
|
'22': Fjalla One |
|
'23': Playlist Script |
|
'24': Arapey |
|
'25': Baloo Tamma |
|
'26': Graduate |
|
'27': Titillium Web |
|
'28': Kreon |
|
'29': Nunito |
|
'30': Rammetto One |
|
'31': Anton |
|
'32': Poiret One |
|
'33': Alfa Slab One |
|
'34': Play |
|
'35': Righteous |
|
'36': Space Mono |
|
'37': Frank Ruhl Libre |
|
'38': Yanone Kaffeesatz |
|
'39': Pacifico |
|
'40': Bangers |
|
'41': Yellowtail |
|
'42': Droid Serif |
|
'43': Merriweather |
|
'44': Racing Sans One |
|
'45': Miriam Libre |
|
'46': Crete Round |
|
'47': Rubik One |
|
'48': Bungee |
|
'49': Sansita One |
|
'50': Economica |
|
'51': Patua One |
|
'52': Caveat |
|
'53': Philosopher |
|
'54': Limelight |
|
'55': Breathe |
|
'56': Rokkitt |
|
'57': Russo One |
|
'58': Tinos |
|
'59': Josefin Slab |
|
'60': Oleo Script |
|
'61': Arima Madurai |
|
'62': Noticia Text |
|
'63': Kalam |
|
'64': Old Standard Tt |
|
'65': Playball |
|
'66': Bad Script |
|
'67': Six Caps |
|
'68': Patrick Hand |
|
'69': Orbitron |
|
'70': Contrail One |
|
'71': Selima Script |
|
'72': El Messiri |
|
'73': Bubbler One |
|
'74': Gravitas One |
|
'75': Italiana |
|
'76': Pompiere |
|
'77': Lemon Tuesday |
|
'78': Vast Shadow |
|
'79': Sunday |
|
'80': Cookie |
|
'81': Exo 2 |
|
'82': Barrio |
|
'83': Brusher Free Font |
|
'84': Radley |
|
'85': Mrs Sheppards |
|
'86': Grand Hotel |
|
'87': Great Vibes |
|
'88': Maven Pro |
|
'89': Knewave |
|
'90': Damion |
|
'91': Tulpen One |
|
'92': Parisienne |
|
'93': Superclarendon |
|
'94': Nixie One |
|
'95': Permanent Marker |
|
'96': Medula One |
|
'97': Oxygen |
|
'98': Vollkorn |
|
'99': Cabin Sketch |
|
'100': Yeseva One |
|
'101': Montserrat Alternates |
|
'102': Satisfy |
|
'103': Sacramento |
|
'104': Carter One |
|
'105': Glass Antiqua |
|
'106': Mr Dafoe |
|
'107': Lauren |
|
'108': Oranienbaum |
|
'109': Scope One |
|
'110': Mr De Haviland |
|
'111': Pirou |
|
'112': Rise |
|
'113': Sensei |
|
'114': Yesteryear |
|
'115': Delius |
|
'116': Copse |
|
'117': Sue Ellen Francisco |
|
'118': Monda |
|
'119': Pattaya |
|
'120': Dancing Script |
|
'121': Reem Kufi |
|
'122': Playlist |
|
'123': Kaushan Script |
|
'124': Beacon |
|
'125': Reenie Beanie |
|
'126': Overlock |
|
'127': Mrs Saint Delafield |
|
'128': Open Sans Condensed |
|
'129': Covered By Your Grace |
|
'130': Varela Round |
|
'131': Allura |
|
'132': Buda |
|
'133': Brusher |
|
'134': Nothing You Could Do |
|
'135': Fredericka The Great |
|
'136': Arkana |
|
'137': Rochester |
|
'138': Port Lligat Slab |
|
'139': Arimo |
|
'140': Dawning Of A New Day |
|
'141': Aldrich |
|
'142': Mikodacs |
|
'143': Neucha |
|
'144': Heebo |
|
'145': Source Serif Pro |
|
'146': Shadows Into Two |
|
'147': Armata |
|
'148': Cutive Mono |
|
'149': Merienda One |
|
'150': Rissatypeface |
|
'151': Stalemate |
|
'152': Assistant |
|
'153': Pathway Gothic One |
|
'154': Breathe Press |
|
'155': Suez One |
|
'156': Berkshire Swash |
|
'157': Rakkas |
|
'158': Pinyon Script |
|
'159': Pt Sans |
|
'160': Delius Swash Caps |
|
'161': Offside |
|
'162': Clicker Script |
|
'163': Mate |
|
'164': Kurale |
|
'165': Rye |
|
'166': Julius Sans One |
|
'167': Lalezar |
|
'168': Quattrocento |
|
'169': Vt323 |
|
'170': Bentham |
|
'171': Finger Paint |
|
'172': La Belle Aurore |
|
'173': Press Start 2P |
|
'174': Junge |
|
'175': Iceberg |
|
'176': Inconsolata |
|
'177': Kelly Slab |
|
'178': Handlee |
|
'179': Rosario |
|
'180': Gaegu |
|
'181': Homemade Apple |
|
'182': Londrina Shadow |
|
'183': Meddon |
|
'184': Gluk Foglihtenno06 |
|
'185': Elsie Swash Caps |
|
'186': Share Tech Mono |
|
'187': Black Ops One |
|
'188': Fauna One |
|
'189': Alice |
|
'190': Arizonia |
|
'191': Text Me One |
|
'192': Nova Square |
|
'193': Bungee Shade |
|
'194': Just Me Again Down Here |
|
'195': Jacques Francois Shadow |
|
'196': Cousine |
|
'197': Forum |
|
'198': Architects Daughter |
|
'199': Cedarville Cursive |
|
'200': Elsie |
|
'201': Sirin Stencil |
|
'202': Vampiro One |
|
'203': Im Fell Dw Pica Sc |
|
'204': Dorsa |
|
'205': Marcellus Sc |
|
'206': Kumar One |
|
'207': Allerta Stencil |
|
'208': Courgette |
|
'209': Rationale |
|
'210': Stint Ultra Expanded |
|
'211': Happy Monkey |
|
'212': Rock Salt |
|
'213': Faster One |
|
'214': Bellefair |
|
'215': Wire One |
|
'216': Geo |
|
'217': Farsan |
|
'218': Chathura |
|
'219': Euphoria Script |
|
'220': Zeyada |
|
'221': Jura |
|
'222': Loved By The King |
|
'223': League Script |
|
'224': Give You Glory |
|
'225': Znikomitno24 |
|
'226': Alegreya Sans |
|
'227': Kristi |
|
'228': Knewave Outline |
|
'229': Pangolin |
|
'230': Okolaks |
|
'231': Seymour One |
|
'232': Didact Gothic |
|
'233': Kavivanar |
|
'234': Underdog |
|
'235': Alef |
|
'236': Italianno |
|
'237': Londrina Sketch |
|
'238': Katibeh |
|
'239': Caesar Dressing |
|
'240': Lovers Quarrel |
|
'241': Iceland |
|
'242': Secular One |
|
'243': Waiting For The Sunrise |
|
'244': David Libre |
|
'245': Marck Script |
|
'246': Kumar One Outline |
|
'247': Znikomit |
|
'248': Monsieur La Doulaise |
|
'249': Gruppo |
|
'250': Monofett |
|
'251': Gfs Didot |
|
'252': Petit Formal Script |
|
'253': Dukomdesign Constantine |
|
'254': Eb Garamond |
|
'255': Ewert |
|
'256': Bilbo |
|
'257': Raleway Dots |
|
'258': Gabriela |
|
'259': Ruslan Display |
|
- name: font_size |
|
sequence: float32 |
|
- name: font_bold |
|
sequence: |
|
sequence: bool |
|
- name: font_italic |
|
sequence: |
|
sequence: bool |
|
- name: text_line |
|
sequence: |
|
sequence: int64 |
|
- name: text_color |
|
sequence: |
|
sequence: string |
|
- name: text_align |
|
sequence: |
|
class_label: |
|
names: |
|
'0': '' |
|
'1': left |
|
'2': center |
|
'3': right |
|
- name: capitalize |
|
sequence: bool |
|
- name: line_height |
|
sequence: float32 |
|
- name: letter_spacing |
|
sequence: float32 |
|
- name: cluster_index |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 6693044714.972 |
|
num_examples: 19421 |
|
- name: validation |
|
num_bytes: 656609785.0 |
|
num_examples: 1875 |
|
- name: test |
|
num_bytes: 700038687.15 |
|
num_examples: 2006 |
|
download_size: 7948429066 |
|
dataset_size: 8049693187.122 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
# Dataset Card for Crello |
|
|
|
## Table of Contents |
|
- [Dataset Card for Crello](#dataset-card-for-crello) |
|
- [Table of Contents](#table-of-contents) |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization) |
|
- [Who are the source language producers?](#who-are-the-source-language-producers) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [CanvasVAE github](https://github.com/CyberAgentAILab/canvas-vae) |
|
- **Repository:** |
|
- **Paper:** [CanvasVAE: Learning to Generate Vector Graphic Documents](https://arxiv.org/abs/2108.01249) |
|
- **Leaderboard:** |
|
- **Point of Contact:** [Kota Yamaguchi](https://github.com/kyamagu) |
|
|
|
### Dataset Summary |
|
|
|
The Crello dataset is compiled for the study of vector graphic documents. The dataset contains document meta-data such as canvas size and pre-rendered elements such as images or text boxes. The original templates were collected from [crello.com](https://crello.com) (now [create.vista.com](https://create.vista.com/)) and converted to a low-resolution format suitable for machine learning analysis. |
|
|
|
### Usage |
|
|
|
```python |
|
import datasets |
|
|
|
dataset = datasets.load_dataset("cyberagent/crello") |
|
``` |
|
|
|
Old revision is available via `revision` option. |
|
|
|
```python |
|
import datasets |
|
|
|
dataset = datasets.load_dataset("cyberagent/crello", revision="3.1") |
|
``` |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
[CanvasVAE](https://arxiv.org/abs/2108.01249) studies unsupervised document generation. |
|
|
|
### Languages |
|
|
|
Almost all design templates use English. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
Each instance has scalar attributes (canvas) and sequence attributes (elements). Categorical values are stored as integer values. Check `ClassLabel` features of the dataset for the list of categorical labels. |
|
|
|
``` |
|
{'id': '592d6c2c95a7a863ddcda140', |
|
'length': 8, |
|
'group': 4, |
|
'format': 20, |
|
'canvas_width': 3, |
|
'canvas_height': 1, |
|
'category': 0, |
|
'title': 'Beauty Blog Ad Woman with Unusual Hairstyle', |
|
'type': [1, 3, 3, 3, 3, 4, 4, 4], |
|
'left': [0.0, |
|
-0.0009259259095415473, |
|
0.24444444477558136, |
|
0.5712962746620178, |
|
0.2657407522201538, |
|
0.369228333234787, |
|
0.2739444375038147, |
|
0.44776931405067444], |
|
'top': [0.0, |
|
-0.0009259259095415473, |
|
0.37037035822868347, |
|
0.41296297311782837, |
|
0.41296297311782837, |
|
0.8946287035942078, |
|
0.4549448788166046, |
|
0.40591198205947876], |
|
'width': [1.0, |
|
1.0018517971038818, |
|
0.510185182094574, |
|
0.16296295821666718, |
|
0.16296295821666718, |
|
0.30000001192092896, |
|
0.4990740716457367, |
|
0.11388888955116272], |
|
'height': [1.0, |
|
1.0018517971038818, |
|
0.25833332538604736, |
|
0.004629629664123058, |
|
0.004629629664123058, |
|
0.016611294820904732, |
|
0.12458471953868866, |
|
0.02657807245850563], |
|
'opacity': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
'text': ['', '', '', '', '', 'STAY WITH US', 'FOLLOW', 'PRESS'], |
|
'font': [0, 0, 0, 0, 0, 152, 172, 152], |
|
'font_size': [0.0, 0.0, 0.0, 0.0, 0.0, 18.0, 135.0, 30.0], |
|
'text_align': [0, 0, 0, 0, 0, 2, 2, 2], |
|
'angle': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], |
|
'capitalize': [0, 0, 0, 0, 0, 0, 0, 0], |
|
'line_height': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
'letter_spacing': [0.0, 0.0, 0.0, 0.0, 0.0, 14.0, 12.55813980102539, 3.0], |
|
'suitability': [0], |
|
'keywords': ['beautiful', |
|
'beauty', |
|
'blog', |
|
'blogging', |
|
'caucasian', |
|
'cute', |
|
'elegance', |
|
'elegant', |
|
'fashion', |
|
'fashionable', |
|
'femininity', |
|
'glamour', |
|
'hairstyle', |
|
'luxury', |
|
'model', |
|
'stylish', |
|
'vogue', |
|
'website', |
|
'woman', |
|
'post', |
|
'instagram', |
|
'ig', |
|
'insta', |
|
'fashion', |
|
'purple'], |
|
'industries': [1, 8, 13], |
|
'color': [[153.0, 118.0, 96.0], |
|
[34.0, 23.0, 61.0], |
|
[34.0, 23.0, 61.0], |
|
[255.0, 255.0, 255.0], |
|
[255.0, 255.0, 255.0], |
|
[255.0, 255.0, 255.0], |
|
[255.0, 255.0, 255.0], |
|
[255.0, 255.0, 255.0]], |
|
'image': [<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>, |
|
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>, |
|
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>, |
|
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>, |
|
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>, |
|
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>, |
|
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>, |
|
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>]} |
|
``` |
|
|
|
To get a label for categorical values, use the `int2str` method: |
|
|
|
```python |
|
data = dataset['train'] # obtain the train set |
|
key = "font" |
|
example = data[0] # obtain first sample in train set |
|
|
|
data.features[key].feature.int2str(example[key]) # obtain the text equivalent of the encoded values |
|
``` |
|
|
|
### Data Fields |
|
|
|
In the following, categorical fields are shown as `categorical` type, but the actual storage is `int64`. |
|
|
|
**Canvas attributes** |
|
|
|
| Field | Type | Shape | Description | |
|
| ------------- | ----------- | ------- | ----------------------------------------------------------------- | |
|
| id | string | () | Template ID from crello.com | |
|
| group | categorical | () | Broad design groups, such as social media posts or blog headers | |
|
| format | categorical | () | Detailed design formats, such as Instagram post or postcard | |
|
| category | categorical | () | Topic category of the design, such as holiday celebration | |
|
| canvas_width | categorical | () | Canvas pixel width | |
|
| canvas_height | categorical | () | Canvas pixel height | |
|
| length | int64 | () | Length of elements | |
|
| suitability | categorical | (None,) | List of display tags, only `mobile` tag exists | |
|
| keywords | string | (None,) | List of keywords associated to this template | |
|
| industries | categorical | (None,) | List of industry tags like `marketingAds` | |
|
| preview | image | () | Preview image of the template for convenience; only for debugging | |
|
| cluster_index | int64 | () | Cluster index used to split the dataset; only for debugging | |
|
|
|
**Element attributes** |
|
|
|
| Field | Type | Shape | Description | |
|
| -------------- | ----------- | --------- | -------------------------------------------------------------------- | |
|
| type | categorical | (None,) | Element type, such as vector shape, image, or text | |
|
| left | float32 | (None,) | Element left position normalized to [0, 1] range w.r.t. canvas_width | |
|
| top | float32 | (None,) | Element top position normalized to [0, 1] range w.r.t. canvas_height | |
|
| width | float32 | (None,) | Element width normalized to [0, 1] range w.r.t. canvas_width | |
|
| height | float32 | (None,) | Element height normalized to [0, 1] range w.r.t. canvas_height | |
|
| color | int64 | (None, 3) | Extracted main RGB color of the element | |
|
| opacity | float32 | (None,) | Opacity in [0, 1] range | |
|
| image | image | (None,) | Pre-rendered 256x256 preview of the element encoded in PNG format | |
|
| text | string | (None,) | Text content in UTF-8 encoding for text element | |
|
| font | categorical | (None,) | Font family name for text element | |
|
| font_size | float32 | (None,) | Font size (height) in pixels | |
|
| text_align | categorical | (None,) | Horizontal text alignment, left, center, right for text element | |
|
| angle | float32 | (None,) | Element rotation angle (radian) w.r.t. the center of the element | |
|
| capitalize | categorical | (None,) | Binary flag to capitalize letters | |
|
| line_height | float32 | (None,) | Scaling parameter to line height, default is 1.0 | |
|
| letter_spacing | float32 | (None,) | Adjustment parameter for letter spacing, default is 0.0 | |
|
|
|
Note that the color and pre-rendered images do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available. |
|
|
|
``` |
|
https://create.vista.com/artboard/?template=<template_id> |
|
``` |
|
|
|
`left` and `top` can be negative because elements can be bigger than the canvas size. |
|
|
|
### Data Splits |
|
|
|
The Crello dataset has 3 splits: train, validation, and test. The current split is generated based on appearance-based clustering. |
|
|
|
| Split | Count | |
|
| --------- | ----- | |
|
| train | 19095 | |
|
| validaton | 1951 | |
|
| test | 2375 | |
|
|
|
|
|
### Visualization |
|
|
|
Each example can be visualized in the following approach using [`skia-python`](https://kyamagu.github.io/skia-python/). Note the following does not guarantee a similar appearance to the original template. Currently, the quality of text rendering is far from perfect. |
|
|
|
```python |
|
import io |
|
from typing import Any, Dict |
|
|
|
import numpy as np |
|
import skia |
|
|
|
|
|
def render(features: datasets.Features, example: Dict[str, Any], max_size: float=512.) -> bytes: |
|
"""Render parsed sequence example onto an image and return as PNG bytes.""" |
|
canvas_width = int(features["canvas_width"].int2str(example["canvas_width"])) |
|
canvas_height = int(features["canvas_height"].int2str(example["canvas_height"])) |
|
|
|
scale = min(1.0, max_size / canvas_width, max_size / canvas_height) |
|
|
|
surface = skia.Surface(int(scale * canvas_width), int(scale * canvas_height)) |
|
with surface as canvas: |
|
canvas.scale(scale, scale) |
|
for index in range(example["length"]): |
|
pil_image = example["image"][index] |
|
image = skia.Image.frombytes( |
|
pil_image.convert('RGBA').tobytes(), |
|
pil_image.size, |
|
skia.kRGBA_8888_ColorType) |
|
left = example["left"][index] * canvas_width |
|
top = example["top"][index] * canvas_height |
|
width = example["width"][index] * canvas_width |
|
height = example["height"][index] * canvas_height |
|
rect = skia.Rect.MakeXYWH(left, top, width, height) |
|
paint = skia.Paint(Alphaf=example["opacity"][index], AntiAlias=True) |
|
|
|
angle = example["angle"][index] |
|
with skia.AutoCanvasRestore(canvas): |
|
if angle != 0: |
|
degree = 180. * angle / np.pi |
|
canvas.rotate(degree, left + width / 2., top + height / 2.) |
|
canvas.drawImageRect(image, rect, paint=paint) |
|
|
|
image = surface.makeImageSnapshot() |
|
with io.BytesIO() as f: |
|
image.save(f, skia.kPNG) |
|
return f.getvalue() |
|
``` |
|
|
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
The Crello dataset is compiled for the general study of vector graphic documents, with the goal of producing a dataset that offers complete vector graphic information suitable for neural methodologies. |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
The dataset is initially scraped from the former `crello.com` and pre-processed to the above format. |
|
|
|
#### Who are the source language producers? |
|
|
|
While [create.vista.com](https://create.vista.com/) owns those templates, the templates seem to be originally created by a specific group of design studios. |
|
|
|
### Personal and Sensitive Information |
|
|
|
The dataset does not contain any personal information about the creator but may contain a picture of people in the design template. |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
This dataset was developed for advancing the general study of vector graphic documents, especially for generative systems of graphic design. Successful utilization might enable the automation of creative workflow that human designers get involved in. |
|
|
|
### Discussion of Biases |
|
|
|
The templates contained in the dataset reflect the biases appearing in the source data, which could present gender biases in specific design categories. |
|
|
|
### Other Known Limitations |
|
|
|
Due to the unknown data specification of the source data, the color and pre-rendered images do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available. |
|
|
|
https://create.vista.com/artboard/?template=<template_id> |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
The Crello dataset was developed by [Kota Yamaguchi](https://github.com/kyamagu). |
|
|
|
### Licensing Information |
|
|
|
The origin of the dataset is [create.vista.com](https://create.vista.com) (formally, `crello.com`). |
|
The distributor ("We") do not own the copyrights of the original design templates. |
|
By using the Crello dataset, the user of this dataset ("You") must agree to the |
|
[VistaCreate License Agreements](https://create.vista.com/faq/legal/licensing/license_agreements/). |
|
|
|
The dataset is distributed under [CDLA-Permissive-2.0 license](https://cdla.dev/permissive-2-0/). |
|
|
|
**Note** |
|
|
|
We do not re-distribute the original files as we are not allowed by terms. |
|
|
|
### Citation Information |
|
|
|
@article{yamaguchi2021canvasvae, |
|
title={CanvasVAE: Learning to Generate Vector Graphic Documents}, |
|
author={Yamaguchi, Kota}, |
|
journal={ICCV}, |
|
year={2021} |
|
} |
|
|
|
### Releases |
|
|
|
4.0.0: v4 release (Dec 5, 2023) |
|
|
|
- Change the dataset split based on the template appearance to avoid near-duplicates: no compatibility with v3. |
|
- Class labels have been reordered: no compabilitity with v3. |
|
- Small improvement to font rendering. |
|
|
|
3.1: bugfix release (Feb 16, 2023) |
|
|
|
- Fix a bug that ignores newline characters in some of the texts. |
|
|
|
3.0: v3 release (Feb 13, 2023) |
|
|
|
- Migrate to Hugging Face Hub. |
|
- Fix various text rendering bugs. |
|
- Change split generation criteria for avoiding near-duplicates: no compatibility with v2 splits. |
|
- Incorporate a motion picture thumbnail in templates. |
|
- Add `title`, `keywords`, `suitability`, and `industries` canvas attributes. |
|
- Add `capitalize`, `line_height`, and `letter_spacing` element attributes. |
|
|
|
2.0: v2 release (May 26, 2022) |
|
|
|
- Add `text`, `font`, `font_size`, `text_align`, and `angle` element attributes. |
|
- Include rendered text element in `image_bytes`. |
|
|
|
1.0: v1 release (Aug 24, 2021) |
|
|
|
|
|
### Contributions |
|
|
|
Thanks to [@kyamagu](https://github.com/kyamagu) for adding this dataset. |