Datasets:
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license: cdla-permissive-2.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- unconditional-image-generation
task_ids: []
pretty_name: crello
tags:
- graphic design
- design templates
dataset_info:
features:
- name: id
dtype: string
- name: length
dtype: int64
- name: group
dtype:
class_label:
names:
'0': SM
'1': HC
'2': MM
'3': SMA
'4': EO
'5': BG
- name: format
dtype:
class_label:
names:
'0': Instagram Story
'1': Instagram
'2': Facebook
'3': Facebook cover
'4': Twitter
'5': Facebook AD
'6': Poster
'7': Instagram AD
'8': Tumblr
'9': Image
'10': Pinterest
'11': Flayer
'12': FB event cover
'13': Postcard
'14': Invitation
'15': Youtube
'16': Email header
'17': Medium Rectangle
'18': Graphic
'19': Large Rectangle
'20': Poster US
'21': Card
'22': Logo
'23': Title
'24': Skyscraper
'25': Leaderboard
'26': Presentation
'27': Gift Certificate
'28': VK Universal Post
'29': Youtube Thumbnail
'30': Business card
'31': Book Cover
'32': Presentation Wide
'33': VK Community Cover
'34': Certificate
'35': Zoom Background
'36': VK Post with Button
'37': T-Shirt
'38': Instagram Highlight Cover
'39': Coupon
'40': Letterhead
'41': IGTV Cover
'42': Album Cover
'43': LinkedIn Cover
'44': Storyboard
'45': Schedule Planner
'46': Invoice
'47': Resume
'48': Recipe Card
'49': Menu
'50': Mood Board
'51': Mind Map
'52': Label
'53': Newsletter
'54': Brochure
'55': Ticket
'56': Proposal
'57': Snapchat Geofilter
'58': Snapchat Moment Filter
'59': Twitch Offline Banner
'60': Twitch Profile Banner
'61': Infographic
'62': Photo Book
'63': Mobile Presentation
'64': Web Banner
'65': Gallery Image
'66': Calendar
- name: canvas_width
dtype: int64
- name: canvas_height
dtype: int64
- name: category
dtype:
class_label:
names:
'0': holidaysCelebration
'1': foodDrinks
'2': fashionStyle
'3': businessFinance
'4': homeStuff
'5': handcraftArt
'6': beauty
'7': leisureEntertainment
'8': natureWildlife
'9': educationScience
'10': technology
'11': medical
'12': socialActivityCharity
'13': sportExtreme
'14': realEstateBuilding
'15': travelsVacations
'16': pets
'17': religions
'18': citiesPlaces
'19': industry
'20': transportation
'21': kidsParents
'22': all
- name: title
dtype: string
- name: suitability
sequence:
class_label:
names:
'0': mobile
- name: keywords
sequence: string
- name: industries
sequence:
class_label:
names:
'0': marketingAds
'1': entertainmentLeisure
'2': services
'3': retail
'4': businessFinance
'5': educationTraining
'6': foodBeverages
'7': artCrafts
'8': fashionStyle
'9': healthWellness
'10': ecologyNature
'11': nonProfitCharity
'12': beautyCosmetics
'13': techGadgets
'14': homeLiving
'15': familyKids
'16': travelTourism
'17': sportFitness
'18': corporate
'19': petsAnimals
'20': realEstateConstruction
'21': transportDelivery
'22': religionFaith
'23': hrRecruitment
- name: preview
dtype: image
- name: type
sequence:
class_label:
names:
'0': SvgElement
'1': TextElement
'2': ImageElement
'3': ColoredBackground
'4': SvgMaskElement
- name: left
sequence: float32
- name: top
sequence: float32
- name: width
sequence: float32
- name: height
sequence: float32
- name: angle
sequence: float32
- name: opacity
sequence: float32
- name: color
sequence:
sequence: string
- name: image
sequence: image
- name: text
sequence: string
- name: font
sequence:
class_label:
names:
'0': ''
'1': Montserrat
'2': Bebas Neue
'3': Raleway
'4': Josefin Sans
'5': Cantarell
'6': Playfair Display
'7': Oswald
'8': Blogger Sans
'9': Abril Fatface
'10': Prompt
'11': Comfortaa
'12': Rubik
'13': Open Sans
'14': Roboto
'15': Libre Baskerville
'16': Quicksand
'17': Dosis
'18': Podkova
'19': Lato
'20': Cormorant Infant
'21': Amatic Sc
'22': Fjalla One
'23': Playlist Script
'24': Arapey
'25': Baloo Tamma
'26': Graduate
'27': Titillium Web
'28': Kreon
'29': Nunito
'30': Rammetto One
'31': Anton
'32': Poiret One
'33': Alfa Slab One
'34': Play
'35': Righteous
'36': Space Mono
'37': Frank Ruhl Libre
'38': Yanone Kaffeesatz
'39': Pacifico
'40': Bangers
'41': Yellowtail
'42': Droid Serif
'43': Merriweather
'44': Racing Sans One
'45': Miriam Libre
'46': Crete Round
'47': Rubik One
'48': Bungee
'49': Sansita One
'50': Economica
'51': Patua One
'52': Caveat
'53': Philosopher
'54': Limelight
'55': Breathe
'56': Rokkitt
'57': Russo One
'58': Tinos
'59': Josefin Slab
'60': Oleo Script
'61': Arima Madurai
'62': Noticia Text
'63': Kalam
'64': Old Standard Tt
'65': Playball
'66': Bad Script
'67': Six Caps
'68': Patrick Hand
'69': Orbitron
'70': Contrail One
'71': Selima Script
'72': El Messiri
'73': Bubbler One
'74': Gravitas One
'75': Italiana
'76': Pompiere
'77': Lemon Tuesday
'78': Vast Shadow
'79': Sunday
'80': Cookie
'81': Exo 2
'82': Barrio
'83': Brusher Free Font
'84': Radley
'85': Mrs Sheppards
'86': Grand Hotel
'87': Great Vibes
'88': Maven Pro
'89': Knewave
'90': Damion
'91': Tulpen One
'92': Parisienne
'93': Superclarendon
'94': Nixie One
'95': Permanent Marker
'96': Medula One
'97': Oxygen
'98': Vollkorn
'99': Cabin Sketch
'100': Yeseva One
'101': Montserrat Alternates
'102': Satisfy
'103': Sacramento
'104': Carter One
'105': Glass Antiqua
'106': Mr Dafoe
'107': Lauren
'108': Oranienbaum
'109': Scope One
'110': Mr De Haviland
'111': Pirou
'112': Rise
'113': Sensei
'114': Yesteryear
'115': Delius
'116': Copse
'117': Sue Ellen Francisco
'118': Monda
'119': Pattaya
'120': Dancing Script
'121': Reem Kufi
'122': Playlist
'123': Kaushan Script
'124': Beacon
'125': Reenie Beanie
'126': Overlock
'127': Mrs Saint Delafield
'128': Open Sans Condensed
'129': Covered By Your Grace
'130': Varela Round
'131': Allura
'132': Buda
'133': Brusher
'134': Nothing You Could Do
'135': Fredericka The Great
'136': Arkana
'137': Rochester
'138': Port Lligat Slab
'139': Arimo
'140': Dawning Of A New Day
'141': Aldrich
'142': Mikodacs
'143': Neucha
'144': Heebo
'145': Source Serif Pro
'146': Shadows Into Two
'147': Armata
'148': Cutive Mono
'149': Merienda One
'150': Rissatypeface
'151': Stalemate
'152': Assistant
'153': Pathway Gothic One
'154': Breathe Press
'155': Suez One
'156': Berkshire Swash
'157': Rakkas
'158': Pinyon Script
'159': Pt Sans
'160': Delius Swash Caps
'161': Offside
'162': Clicker Script
'163': Mate
'164': Kurale
'165': Rye
'166': Julius Sans One
'167': Lalezar
'168': Quattrocento
'169': Vt323
'170': Bentham
'171': Finger Paint
'172': La Belle Aurore
'173': Press Start 2P
'174': Junge
'175': Iceberg
'176': Inconsolata
'177': Kelly Slab
'178': Handlee
'179': Rosario
'180': Gaegu
'181': Homemade Apple
'182': Londrina Shadow
'183': Meddon
'184': Gluk Foglihtenno06
'185': Elsie Swash Caps
'186': Share Tech Mono
'187': Black Ops One
'188': Fauna One
'189': Alice
'190': Arizonia
'191': Text Me One
'192': Nova Square
'193': Bungee Shade
'194': Just Me Again Down Here
'195': Jacques Francois Shadow
'196': Cousine
'197': Forum
'198': Architects Daughter
'199': Cedarville Cursive
'200': Elsie
'201': Sirin Stencil
'202': Vampiro One
'203': Im Fell Dw Pica Sc
'204': Dorsa
'205': Marcellus Sc
'206': Kumar One
'207': Allerta Stencil
'208': Courgette
'209': Rationale
'210': Stint Ultra Expanded
'211': Happy Monkey
'212': Rock Salt
'213': Faster One
'214': Bellefair
'215': Wire One
'216': Geo
'217': Farsan
'218': Chathura
'219': Euphoria Script
'220': Zeyada
'221': Jura
'222': Loved By The King
'223': League Script
'224': Give You Glory
'225': Znikomitno24
'226': Alegreya Sans
'227': Kristi
'228': Knewave Outline
'229': Pangolin
'230': Okolaks
'231': Seymour One
'232': Didact Gothic
'233': Kavivanar
'234': Underdog
'235': Alef
'236': Italianno
'237': Londrina Sketch
'238': Katibeh
'239': Caesar Dressing
'240': Lovers Quarrel
'241': Iceland
'242': Secular One
'243': Waiting For The Sunrise
'244': David Libre
'245': Marck Script
'246': Kumar One Outline
'247': Znikomit
'248': Monsieur La Doulaise
'249': Gruppo
'250': Monofett
'251': Gfs Didot
'252': Petit Formal Script
'253': Dukomdesign Constantine
'254': Eb Garamond
'255': Ewert
'256': Bilbo
'257': Raleway Dots
'258': Gabriela
'259': Ruslan Display
- name: font_size
sequence: float32
- name: font_bold
sequence:
sequence: bool
- name: font_italic
sequence:
sequence: bool
- name: text_line
sequence:
sequence: int64
- name: text_color
sequence:
sequence: string
- name: text_align
sequence:
class_label:
names:
'0': ''
'1': left
'2': center
'3': right
- name: capitalize
sequence: bool
- name: line_height
sequence: float32
- name: letter_spacing
sequence: float32
- name: cluster_index
dtype: int64
splits:
- name: train
num_bytes: 6698496299.66
num_examples: 19372
- name: validation
num_bytes: 628849228.936
num_examples: 1823
- name: test
num_bytes: 722501993.506
num_examples: 2107
download_size: 7951859344
dataset_size: 8049847522.101999
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
Dataset Card for Crello
Table of Contents
- Dataset Card for Crello
Dataset Description
- Homepage: CanvasVAE github
- Repository:
- Paper: CanvasVAE: Learning to Generate Vector Graphic Documents
- Leaderboard:
- Point of Contact: Kota Yamaguchi
Dataset Summary
The Crello dataset is compiled for the study of vector graphic documents. The dataset contains document meta-data such as canvas size and pre-rendered elements such as images or text boxes. The original templates were collected from crello.com (now create.vista.com) and converted to a low-resolution format suitable for machine learning analysis.
Usage
import datasets
dataset = datasets.load_dataset("cyberagent/crello", revision="5.0.0")
Supported Tasks and Leaderboards
CanvasVAE studies unsupervised document generation.
Languages
Almost all design templates use English.
Dataset Structure
Data Instances
Each instance has scalar attributes (canvas) and sequence attributes (elements).
Categorical values are stored as integer values. Check ClassLabel
features of the dataset for the list of categorical labels.
To get a label for categorical values, use the int2str
method:
data = dataset['train'] # obtain the train set
key = "font"
example = data[0] # obtain the first sample in train set
data.features[key].feature.int2str(example[key]) # obtain the text equivalent of the encoded values
Data Fields
In the following, categorical fields are shown as categorical
type, but the actual storage is int64
.
Canvas attributes
Field | Type | Shape | Description |
---|---|---|---|
id | string | () | Template ID from create.vista.com |
group | categorical | () | Broad design groups, such as social media posts or blog headers |
format | categorical | () | Detailed design formats, such as Instagram post or postcard |
category | categorical | () | Topic category of the design, such as holiday celebration |
canvas_width | int64 | () | Canvas pixel width |
canvas_height | int64 | () | Canvas pixel height |
length | int64 | () | Length of elements |
suitability | categorical | (None,) | List of display tags, only mobile tag exists |
keywords | string | (None,) | List of keywords associated to this template |
industries | categorical | (None,) | List of industry tags like marketingAds |
preview | image | () | Preview image of the template for convenience |
cluster_index | int64 | () | Cluster index used to split the dataset; only for debugging |
Element attributes
Field | Type | Shape | Description |
---|---|---|---|
type | categorical | (None,) | Element type, such as vector shape, image, or text |
left | float32 | (None,) | Element left position |
top | float32 | (None,) | Element top position |
width | float32 | (None,) | Element width |
height | float32 | (None,) | Element height |
color | string | (None, None) | RGB color palette of the vector graphic element |
opacity | float32 | (None,) | Opacity in [0, 1] range |
image | image | (None,) | Pre-rendered preview of the element encoded in PNG format |
text | string | (None,) | Text content in UTF-8 encoding for text element |
font | categorical | (None,) | Font family name for text element |
font_size | float32 | (None,) | Font size (height) in pixels |
text_align | categorical | (None,) | Horizontal text alignment, left, center, right for text element |
angle | float32 | (None,) | Element rotation angle (degree) w.r.t. the center of the element |
font_bold | boolean | (None, None) | Character-wise flag to indicate bold font |
font_italic | boolean | (None, None) | Character-wise flag to indicate italic font |
text_color | string | (None, None) | Character-wise rgba color |
text_line | int64 | (None, None) | Character-wise index of line number |
capitalize | boolean | (None,) | Binary flag to capitalize letters |
line_height | float32 | (None,) | Scaling parameter to line height, default is 1.0 |
letter_spacing | float32 | (None,) | Adjustment parameter for letter spacing, default is 0.0 |
left
and top
can be negative because elements can be bigger than the canvas size.
text_line
indicates the index of the text line.
For example, the following indicates that Be
is in the first line and the rest in the next line.
The newline character \n
if present is ignored in rendering.
{
"text": "Be\nambitious!",
"text_line": [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
}
Note that the color and pre-rendered images do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available.
https://create.vista.com/artboard/?template=<template_id>
Data Splits
The Crello dataset has 3 splits: train, validation, and test. The current split is generated based on appearance-based clustering.
Visualization
Each example can be visualized in the following approach using cr-renderer
.
https://github.com/CyberAgentAILab/cr-renderer
Note the renderer does not guarantee a similar appearance to the original template. Currently, the quality of text rendering is far from perfect.
Dataset Creation
Curation Rationale
The Crello dataset is compiled for the general study of vector graphic documents, with the goal of producing a dataset that offers complete vector graphic information suitable for neural methodologies.
Source Data
Initial Data Collection and Normalization
The dataset is initially scraped from the former crello.com
and pre-processed to the above format.
Who are the source language producers?
While create.vista.com owns those templates, the templates seem to be originally created by a specific group of design studios.
Personal and Sensitive Information
The dataset does not contain any personal information about the creator but may contain a picture of people in the design template.
Considerations for Using the Data
Social Impact of Dataset
This dataset was developed for advancing the general study of vector graphic documents, especially for generative systems of graphic design. Successful utilization might enable the automation of creative workflow that human designers get involved in.
Discussion of Biases
The templates contained in the dataset reflect the biases appearing in the source data, which could present gender biases in specific design categories.
Other Known Limitations
Due to the unknown data specification of the source data, the color and pre-rendered images do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available.
https://create.vista.com/artboard/?template=<template_id>
Additional Information
Dataset Curators
The Crello dataset was developed by Kota Yamaguchi.
Licensing Information
The origin of the dataset is create.vista.com (formally, crello.com
).
The distributor ("We") do not own the copyrights of the original design templates.
By using the Crello dataset, the user of this dataset ("You") must agree to the
VistaCreate License Agreements.
The dataset is distributed under CDLA-Permissive-2.0 license.
Note
We do not re-distribute the original files as we are not allowed by terms.
Citation Information
@article{yamaguchi2021canvasvae,
title={CanvasVAE: Learning to Generate Vector Graphic Documents},
author={Yamaguchi, Kota},
journal={ICCV},
year={2021}
}
Releases
5.0.0: v5 release (Sep 18, 2024)
- Element positions and sizes are not normalized by canvas size
- Angle is in degrees instead of radians.
- New rich-text attributes (font_bold, font_italic, font_color, text_line) that specify character-level styling
- Pre-rendered layer images are now resized to fit the longer side in 512px
- Significantly improved pre-rendering quality for each layer
- Color attribute now only contains palette when the original data has
- There are now five element types
- Dataset split is updated, no compatibility with v4.
4.0.0: v4 release (Dec 5, 2023)
- Change the dataset split based on the template appearance to avoid near-duplicates: no compatibility with v3.
- Class labels have been reordered: no compabilitity with v3.
- Small improvement to font rendering.
3.1: bugfix release (Feb 16, 2023)
- Fix a bug that ignores newline characters in some of the texts.
3.0: v3 release (Feb 13, 2023)
- Migrate to Hugging Face Hub.
- Fix various text rendering bugs.
- Change split generation criteria for avoiding near-duplicates: no compatibility with v2 splits.
- Incorporate a motion picture thumbnail in templates.
- Add
title
,keywords
,suitability
, andindustries
canvas attributes. - Add
capitalize
,line_height
, andletter_spacing
element attributes.
2.0: v2 release (May 26, 2022)
- Add
text
,font
,font_size
,text_align
, andangle
element attributes. - Include rendered text element in
image_bytes
.
1.0: v1 release (Aug 24, 2021)
Contributions
Thanks to @kyamagu for adding this dataset.