Datasets:
Tasks:
Visual Question Answering
Modalities:
Image
Sub-tasks:
visual-question-answering
Languages:
English
ArXiv:
License:
metadata
annotations_creators:
- machine-generated
language:
- en
language_creators:
- machine-generated
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: CLEVR-Math - Compositional language, visual, and mathematical reasoning
size_categories: null
source_datasets:
- clevr
tags:
- reasoning
- neuro-symbolic
- multimodal
task_categories:
- visual-question-answering
task_ids:
- visual-question-answering
Dataset Card for CLEVR-Math
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage:
- **Repository:https://github.com/dali-does/clevr-math
- **Paper:https://arxiv.org/abs/2208.05358
- Leaderboard:
- **Point of Contact:[email protected]
Dataset Summary
Dataset for compositional multimodal mathematical reasoning based on CLEVR.
Loading the data, preprocessing text with CLIP
from transformers import CLIPPreprocessor
from datasets import load_dataset, DownloadConfig
dl_config = DownloadConfig(resume_download=True,
num_proc=8,
force_download=True)
# Load 'general' instance of dataset
dataset = load_dataset('dali-does/clevr-math', download_config=dl_config)
# Load version with only multihop in test data
dataset_multihop = load_dataset('dali-does/clevr-math', 'multihop',
download_config=dl_config)
model_path = "openai/clip-vit-base-patch32"
extractor = CLIPProcessor.from_pretrained(model_path)
def transform_tokenize(e):
e['image'] = [image.convert('RGB') for image in e['image']]
return extractor(text=e['question'],
images=e['image'],
padding=True)
dataset = dataset.map(transform_tokenize,
batched=True,
num_proc=8,
padding='max_length')
dataset_subtraction = dataset.filter(lambda e:
e['template'].startswith('subtraction'), num_proc=4)
Supported Tasks and Leaderboards
Leaderboard will be announced at a later date.
Languages
The dataset is currently only available in English. To extend the dataset to other languages, the CLEVR templates must be rewritten in the target language.
Dataset Structure
Data Instances
general
containing the default version with multihop questions in train and testmultihop
containing multihop questions only in test data to test generalisation of reasoning
Data Fields
features = datasets.Features(
{
"template": datasets.Value("string"),
"id": datasets.Value("string"),
"question": datasets.Value("string"),
"image": datasets.Image(),
"label": datasets.Value("int64")
}
)
Data Splits
train/val/test
Dataset Creation
Data is generated using code provided with the CLEVR-dataset, using blender and templates constructed by the dataset curators.
Considerations for Using the Data
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
Adam Dahlgren Lindström - [email protected]
Licensing Information
Licensed under Creative Commons Attribution Share Alike 4.0 International (CC-by 4.0).
Citation Information
[More Information Needed]
@misc{https://doi.org/10.48550/arxiv.2208.05358,
doi = {10.48550/ARXIV.2208.05358},
url = {https://arxiv.org/abs/2208.05358},
author = {Lindström, Adam Dahlgren and Abraham, Savitha Sam},
keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7; I.2.10; I.2.6; I.4.8; I.1.4},
title = {CLEVR-Math: A Dataset for Compositional Language, Visual, and Mathematical Reasoning},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution Share Alike 4.0 International}
}
Contributions
Thanks to @dali-does for adding this dataset.