text
stringlengths 0
15.3k
|
---|
return [] |
def check_following(self, value): |
assert isinstance(value, str) |
try: |
return value.islower() and langdetect.detect(value) == 'en' |
except langdetect.LangDetectException as e: |
logging.error('Unable to detect language for text %s due to %s', value, e) |
return True |
class CommaChecker(Instruction): |
def build_description(self): |
self._description_pattern = 'In your entire response, refrain from the use of any commas.' |
return self._description_pattern |
def get_instruction_args(self): |
return None |
def get_instruction_args_keys(self): |
return [] |
def check_following(self, value): |
return not re.search('\\,', value) |
class CapitalWordFrequencyChecker(Instruction): |
def build_description(self, capital_frequency=None, capital_relation=None): |
self._frequency = capital_frequency |
if self._frequency is None: |
self._frequency = random.randint(1, _ALL_CAPITAL_WORD_FREQUENCY) |
self._comparison_relation = capital_relation |
if capital_relation is None: |
self._comparison_relation = random.choice(_COMPARISON_RELATION) |
elif capital_relation not in _COMPARISON_RELATION: |
raise ValueError(f'The supported relation for comparison must be in {_COMPARISON_RELATION}, but {capital_relation} is given.') |
self._description_pattern = 'In your response, words with all capital letters should appear {relation} {frequency} times.' |
return self._description_pattern.format(frequency=self._frequency, relation=self._comparison_relation) |
def get_instruction_args(self): |
return {'capital_frequency': self._frequency, 'capital_relation': self._comparison_relation} |
def get_instruction_args_keys(self): |
return ['capital_frequency', 'capital_relation'] |
def check_following(self, value): |
words = instructions_util.nltk.word_tokenize(value) |
capital_words = [word for word in words if word.isupper()] |
capital_words = len(capital_words) |
if self._comparison_relation == _COMPARISON_RELATION[0]: |
return capital_words < self._frequency |
else: |
return capital_words >= self._frequency |
class QuotationChecker(Instruction): |
def build_description(self): |
self._description_pattern = 'Wrap your entire response with double quotation marks.' |
return self._description_pattern |
def get_instruction_args(self): |
return None |
def get_instruction_args_keys(self): |
return [] |
def check_following(self, value): |
value = value.strip() |
return len(value) > 1 and value[0] == '"' and (value[-1] == '"') |
# File: lm-evaluation-harness-main/lm_eval/tasks/leaderboard/ifeval/instructions_registry.py |
"""""" |
from lm_eval.tasks.ifeval import instructions |
_KEYWORD = 'keywords:' |
_LANGUAGE = 'language:' |
_LENGTH = 'length_constraints:' |
_CONTENT = 'detectable_content:' |
_FORMAT = 'detectable_format:' |
_MULTITURN = 'multi-turn:' |
_COMBINATION = 'combination:' |
_STARTEND = 'startend:' |
_CHANGE_CASES = 'change_case:' |
_PUNCTUATION = 'punctuation:' |
INSTRUCTION_DICT = {_KEYWORD + 'existence': instructions.KeywordChecker, _KEYWORD + 'frequency': instructions.KeywordFrequencyChecker, _KEYWORD + 'forbidden_words': instructions.ForbiddenWords, _KEYWORD + 'letter_frequency': instructions.LetterFrequencyChecker, _LANGUAGE + 'response_language': instructions.ResponseLanguageChecker, _LENGTH + 'number_sentences': instructions.NumberOfSentences, _LENGTH + 'number_paragraphs': instructions.ParagraphChecker, _LENGTH + 'number_words': instructions.NumberOfWords, _LENGTH + 'nth_paragraph_first_word': instructions.ParagraphFirstWordCheck, _CONTENT + 'number_placeholders': instructions.PlaceholderChecker, _CONTENT + 'postscript': instructions.PostscriptChecker, _FORMAT + 'number_bullet_lists': instructions.BulletListChecker, _FORMAT + 'constrained_response': instructions.ConstrainedResponseChecker, _FORMAT + 'number_highlighted_sections': instructions.HighlightSectionChecker, _FORMAT + 'multiple_sections': instructions.SectionChecker, _FORMAT + 'json_format': instructions.JsonFormat, _FORMAT + 'title': instructions.TitleChecker, _COMBINATION + 'two_responses': instructions.TwoResponsesChecker, _COMBINATION + 'repeat_prompt': instructions.RepeatPromptThenAnswer, _STARTEND + 'end_checker': instructions.EndChecker, _CHANGE_CASES + 'capital_word_frequency': instructions.CapitalWordFrequencyChecker, _CHANGE_CASES + 'english_capital': instructions.CapitalLettersEnglishChecker, _CHANGE_CASES + 'english_lowercase': instructions.LowercaseLettersEnglishChecker, _PUNCTUATION + 'no_comma': instructions.CommaChecker, _STARTEND + 'quotation': instructions.QuotationChecker} |
INSTRUCTION_CONFLICTS = {_KEYWORD + 'existence': {_KEYWORD + 'existence'}, _KEYWORD + 'frequency': {_KEYWORD + 'frequency'}, _KEYWORD + 'forbidden_words': {_KEYWORD + 'forbidden_words'}, _KEYWORD + 'letter_frequency': {_KEYWORD + 'letter_frequency'}, _LANGUAGE + 'response_language': {_LANGUAGE + 'response_language', _FORMAT + 'multiple_sections', _KEYWORD + 'existence', _KEYWORD + 'frequency', _KEYWORD + 'forbidden_words', _STARTEND + 'end_checker', _CHANGE_CASES + 'english_capital', _CHANGE_CASES + 'english_lowercase'}, _LENGTH + 'number_sentences': {_LENGTH + 'number_sentences'}, _LENGTH + 'number_paragraphs': {_LENGTH + 'number_paragraphs', _LENGTH + 'nth_paragraph_first_word', _LENGTH + 'number_sentences', _LENGTH + 'nth_paragraph_first_word'}, _LENGTH + 'number_words': {_LENGTH + 'number_words'}, _LENGTH + 'nth_paragraph_first_word': {_LENGTH + 'nth_paragraph_first_word', _LENGTH + 'number_paragraphs'}, _CONTENT + 'number_placeholders': {_CONTENT + 'number_placeholders'}, _CONTENT + 'postscript': {_CONTENT + 'postscript'}, _FORMAT + 'number_bullet_lists': {_FORMAT + 'number_bullet_lists'}, _FORMAT + 'constrained_response': set(INSTRUCTION_DICT.keys()), _FORMAT + 'number_highlighted_sections': {_FORMAT + 'number_highlighted_sections'}, _FORMAT + 'multiple_sections': {_FORMAT + 'multiple_sections', _LANGUAGE + 'response_language', _FORMAT + 'number_highlighted_sections'}, _FORMAT + 'json_format': set(INSTRUCTION_DICT.keys()).difference({_KEYWORD + 'forbidden_words', _KEYWORD + 'existence'}), _FORMAT + 'title': {_FORMAT + 'title'}, _COMBINATION + 'two_responses': set(INSTRUCTION_DICT.keys()).difference({_KEYWORD + 'forbidden_words', _KEYWORD + 'existence', _LANGUAGE + 'response_language', _FORMAT + 'title', _PUNCTUATION + 'no_comma'}), _COMBINATION + 'repeat_prompt': set(INSTRUCTION_DICT.keys()).difference({_KEYWORD + 'existence', _FORMAT + 'title', _PUNCTUATION + 'no_comma'}), _STARTEND + 'end_checker': {_STARTEND + 'end_checker'}, _CHANGE_CASES + 'capital_word_frequency': {_CHANGE_CASES + 'capital_word_frequency', _CHANGE_CASES + 'english_lowercase', _CHANGE_CASES + 'english_capital'}, _CHANGE_CASES + 'english_capital': {_CHANGE_CASES + 'english_capital'}, _CHANGE_CASES + 'english_lowercase': {_CHANGE_CASES + 'english_lowercase', _CHANGE_CASES + 'english_capital'}, _PUNCTUATION + 'no_comma': {_PUNCTUATION + 'no_comma'}, _STARTEND + 'quotation': {_STARTEND + 'quotation', _FORMAT + 'title'}} |
def conflict_make(conflicts): |
for key in conflicts: |
for k in conflicts[key]: |
conflicts[k].add(key) |
conflicts[key].add(key) |
return conflicts |
# File: lm-evaluation-harness-main/lm_eval/tasks/leaderboard/ifeval/instructions_util.py |
"""""" |
import functools |
import random |
import re |
import immutabledict |
import nltk |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.