text
stringlengths 0
15.3k
|
---|
task_name = f'mgsm_native_cot_{lang}' |
filter_list = add_regex_pattern(REGEX) |
DELIMITER = '' if lang in ['zh', 'ja'] else None |
elif mode == 'en-cot': |
ANSWER = LANGUAGES['en']['ANSWER'] |
REGEX = LANGUAGES['en']['REGEX'] |
task_name = f'mgsm_en_cot_{lang}' |
file_name = f'{task_name}.yaml' |
ANSWER_TO_SKIP = len(LANGUAGES[lang]['ANSWER']) + 1 |
with open(f'{output_dir}/{file_name}', 'w' if overwrite else 'x', encoding='utf8') as f: |
f.write('# Generated by utils.py\n') |
yaml.dump({'include': yaml_template, 'dataset_name': lang, 'task': f'{task_name}', 'doc_to_text': f'{{% if answer is not none %}}{{{{question+"\\n{ANSWER}"}}}}{{% else %}}{{{{"{QUESTION} "+question+"\\n{ANSWER}"}}}}{{% endif %}}', 'doc_to_target': f'{{% if answer is not none %}}{{{{answer[{ANSWER_TO_SKIP}:]}}}}{{% else %}}{{{{answer_number|string}}}}{{% endif %}}', **filter_list, 'generation_kwargs': {'until': [QUESTION, '</s>', '<|im_end|>'], 'do_sample': False}, **({'target_delimiter': DELIMITER} if DELIMITER else {})}, f, allow_unicode=True, width=float('inf')) |
except FileExistsError: |
err.append(file_name) |
if len(err) > 0: |
raise FileExistsError(f"Files were not created because they already exist (use --overwrite flag): {', '.join(err)}") |
def main() -> None: |
parser = argparse.ArgumentParser() |
parser.add_argument('--overwrite', default=False, action='store_true', help='Overwrite files if they already exist') |
parser.add_argument('--output-dir', default='.', help='Directory to write yaml files to') |
parser.add_argument('--mode', default='native-cot', choices=['direct', 'native-cot', 'en-cot'], help='Mode of chain-of-thought') |
args = parser.parse_args() |
gen_lang_yamls(output_dir=args.output_dir, overwrite=args.overwrite, mode=args.mode) |
if __name__ == '__main__': |
main() |
# File: lm-evaluation-harness-main/lm_eval/tasks/minerva_math/utils.py |
import re |
import signal |
from typing import Dict, List, Optional |
import datasets |
from lm_eval.utils import eval_logger |
try: |
import sympy |
from sympy.parsing.latex import parse_latex |
except ModuleNotFoundError: |
raise ModuleNotFoundError('`sympy` is required for generating translation task prompt templates. please install sympy via pip install lm-eval[math] or pip install -e .[math]') |
def doc_to_text(doc: dict) -> str: |
return 'Problem:' + '\n' + doc['problem'] + '\n\n' + 'Solution:' |
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: |
def _process_doc(doc: dict) -> dict: |
out_doc = {'problem': doc['problem'], 'solution': doc['solution'], 'answer': normalize_final_answer(remove_boxed(last_boxed_only_string(doc['solution'])))} |
if getattr(doc, 'few_shot', None) is not None: |
out_doc['few_shot'] = True |
return out_doc |
return dataset.map(_process_doc) |
def list_fewshot_samples() -> list[dict]: |
return [{'problem': 'Find the domain of the expression $\\frac{\\sqrt{x-2}}{\\sqrt{5-x}}$.}', 'solution': 'The expressions inside each square root must be non-negative. Therefore, $x-2 \\ge 0$, so $x\\ge2$, and $5 - x \\ge 0$, so $x \\le 5$. Also, the denominator cannot be equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of the expression is $\\boxed{[2,5)}$.\nFinal Answer: The final answer is $[2,5)$. I hope it is correct.', 'few_shot': '1'}, {'problem': 'If $\\det \\mathbf{A} = 2$ and $\\det \\mathbf{B} = 12,$ then find $\\det (\\mathbf{A} \\mathbf{B}).$', 'solution': 'We have that $\\det (\\mathbf{A} \\mathbf{B}) = (\\det \\mathbf{A})(\\det \\mathbf{B}) = (2)(12) = \\boxed{24}.$\nFinal Answer: The final answer is $24$. I hope it is correct.', 'few_shot': '1'}, {'problem': 'Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how many times must Terrell lift them in order to lift the same total weight?', 'solution': 'If Terrell lifts two 20-pound weights 12 times, he lifts a total of $2\\cdot 12\\cdot20=480$ pounds of weight. If he lifts two 15-pound weights instead for $n$ times, he will lift a total of $2\\cdot15\\cdot n=30n$ pounds of weight. Equating this to 480 pounds, we can solve for $n$:\n\\begin{align*}\n30n&=480\\\n\\Rightarrow\\qquad n&=480/30=\\boxed{16}\n\\end{align*}\nFinal Answer: The final answer is $16$. I hope it is correct.', 'few_shot': '1'}, {'problem': 'If the system of equations\n\n\\begin{align*}\n6x-4y&=a,\\\n6y-9x &=b.\n\\end{align*}has a solution $(x, y)$ where $x$ and $y$ are both nonzero,\nfind $\\frac{a}{b},$ assuming $b$ is nonzero.', 'solution': 'If we multiply the first equation by $-\\frac{3}{2}$, we obtain\n\n$$6y-9x=-\\frac{3}{2}a.$$Since we also know that $6y-9x=b$, we have\n\n$$-\\frac{3}{2}a=b\\Rightarrow\\frac{a}{b}=\\boxed{-\\frac{2}{3}}.$$\nFinal Answer: The final answer is $-\\frac{2}{3}$. I hope it is correct.', 'few_shot': '1'}] |
def process_results(doc: dict, results: List[str]) -> Dict[str, int]: |
candidates = results[0] |
unnormalized_answer = get_unnormalized_answer(candidates) |
answer = normalize_final_answer(unnormalized_answer) |
if is_equiv(answer, doc['answer']): |
retval = 1 |
else: |
retval = 0 |
results = {'exact_match': retval} |
return results |
def last_boxed_only_string(string: str) -> Optional[str]: |
idx = string.rfind('\\boxed') |
if '\\boxed ' in string: |
return '\\boxed ' + string.split('\\boxed ')[-1].split('$')[0] |
if idx < 0: |
idx = string.rfind('\\fbox') |
if idx < 0: |
return None |
i = idx |
right_brace_idx = None |
num_left_braces_open = 0 |
while i < len(string): |
if string[i] == '{': |
num_left_braces_open += 1 |
if string[i] == '}': |
num_left_braces_open -= 1 |
if num_left_braces_open == 0: |
right_brace_idx = i |
break |
i += 1 |
if right_brace_idx is None: |
retval = None |
else: |
retval = string[idx:right_brace_idx + 1] |
return retval |
def remove_boxed(s: str) -> str: |
if '\\boxed ' in s: |
left = '\\boxed ' |
assert s[:len(left)] == left |
return s[len(left):] |
left = '\\boxed{' |
assert s[:len(left)] == left |
assert s[-1] == '}' |
return s[len(left):-1] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.