text
stringlengths 0
15.3k
|
---|
else: |
self._filters = [build_filter_ensemble('none', [['take_first', None]])] |
if self.config.use_prompt is not None: |
eval_logger.info(f'loading prompt {self.config.use_prompt}') |
self.prompt = get_prompt(self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME) |
else: |
self.prompt = None |
if self.fewshot_docs() is not None: |
self.fewshot_rnd = random.Random() |
config_sampler: Union[str, Callable] = self.config.fewshot_config.get('sampler', 'default') if self.config.fewshot_config else 'default' |
if isinstance(config_sampler, str): |
self.sampler = samplers.get_sampler(config_sampler)(list(self.fewshot_docs()), self, rnd=self.fewshot_rnd) |
elif callable(config_sampler) and issubclass(config_sampler, samplers.ContextSampler): |
self.sampler = config_sampler(docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd) |
else: |
raise TypeError(f'fewshot_config.sampler should be a string or callable of ContextSampler type, not {type(config_sampler)}') |
self.task_docs = self.eval_docs |
self.features = list(self.task_docs.features.keys()) |
self.multiple_input = 0 |
self.multiple_target = 0 |
test_doc = self.task_docs[0] |
test_text = self.doc_to_text(test_doc) |
test_target = self.doc_to_target(test_doc) |
if self.config.doc_to_choice is not None: |
test_choice = self.doc_to_choice(test_doc) |
if not isinstance(test_choice, list): |
eval_logger.error('doc_to_choice must return list') |
else: |
num_choice = len(test_choice) |
if isinstance(test_text, int): |
self.multiple_input = num_choice |
else: |
test_choice = None |
if isinstance(test_target, list): |
self.multiple_target = len(test_target) |
elif isinstance(test_target, int) and test_choice is not None: |
test_target = test_choice[test_target] |
else: |
test_target = str(test_target) |
if test_choice is not None: |
check_choices = test_choice |
else: |
check_choices = [test_target] |
if self.config.doc_to_choice is not None: |
for choice in check_choices: |
choice_has_whitespace = True if choice[0].isspace() else False |
delimiter_has_whitespace = True if self.config.target_delimiter.rstrip() != self.config.target_delimiter else False |
if delimiter_has_whitespace and choice_has_whitespace: |
eval_logger.debug(f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace') |
elif not delimiter_has_whitespace and (not choice_has_whitespace): |
eval_logger.debug(f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace') |
def download(self, dataset_kwargs: Optional[Dict[str, Any]]=None) -> None: |
self.dataset = datasets.load_dataset(path=self.DATASET_PATH, name=self.DATASET_NAME, **dataset_kwargs if dataset_kwargs is not None else {}) |
def has_training_docs(self) -> bool: |
if self.config.training_split is not None: |
return True |
else: |
return False |
def has_validation_docs(self) -> bool: |
if self.config.validation_split is not None: |
return True |
else: |
return False |
def has_test_docs(self) -> bool: |
if self.config.test_split is not None: |
return True |
else: |
return False |
def training_docs(self) -> datasets.Dataset: |
if self.has_training_docs(): |
if self.config.process_docs is not None: |
return self.config.process_docs(self.dataset[self.config.training_split]) |
return self.dataset[self.config.training_split] |
def validation_docs(self) -> datasets.Dataset: |
if self.has_validation_docs(): |
if self.config.process_docs is not None: |
return self.config.process_docs(self.dataset[self.config.validation_split]) |
return self.dataset[self.config.validation_split] |
def test_docs(self) -> datasets.Dataset: |
if self.has_test_docs(): |
if self.config.process_docs is not None: |
return self.config.process_docs(self.dataset[self.config.test_split]) |
return self.dataset[self.config.test_split] |
def fewshot_docs(self): |
if self.config.fewshot_split is not None: |
if self.config.process_docs is not None: |
return self.config.process_docs(self.dataset[self.config.fewshot_split]) |
return self.dataset[self.config.fewshot_split] |
elif self.config.fewshot_config is not None and self.config.fewshot_config.get('samples', None) is not None: |
if isinstance(self.config.fewshot_config['samples'], list): |
return self.config.fewshot_config['samples'] |
elif callable(self.config.fewshot_config['samples']): |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.