text
stringlengths 0
15.3k
|
---|
target_delimiter = self.config.target_delimiter |
if apply_chat_template: |
target_delimiter = '' |
if self.multiple_input: |
cont = self.doc_to_target(doc) |
arguments = [(ctx + choice, f'{target_delimiter}{cont}') for choice in choices] |
else: |
arguments = [(ctx, f'{target_delimiter}{cont}') for cont in choices] |
request_list = [Instance(request_type='loglikelihood', doc=doc, arguments=arg, idx=i, **kwargs) for (i, arg) in enumerate(arguments)] |
if 'acc_mutual_info' in self._metric_fn_list.keys(): |
request_list.extend([Instance(request_type='loglikelihood', doc=doc, arguments=('', '{}'.format(choice)), idx=i, **kwargs) for (i, choice) in enumerate(choices)]) |
return request_list |
elif self.OUTPUT_TYPE == 'generate_until': |
arguments = (ctx, deepcopy(self.config.generation_kwargs)) |
return Instance(request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs) |
def process_results(self, doc, results): |
if callable(self.config.process_results): |
return self.config.process_results(doc, results) |
result_dict = {} |
use_metric = list(self._metric_fn_list.keys()) |
if self.OUTPUT_TYPE == 'loglikelihood': |
results = results[0] |
(ll, is_greedy) = results |
return {**({'perplexity': ll} if 'perplexity' in use_metric else {}), **({'acc': int(is_greedy)} if 'acc' in use_metric else {})} |
elif self.OUTPUT_TYPE == 'loglikelihood_rolling': |
(loglikelihood,) = results |
_words = self.count_words(self.doc_to_target(doc)) |
_bytes = self.count_bytes(self.doc_to_target(doc)) |
return {**({'word_perplexity': (loglikelihood, _words)} if 'word_perplexity' in use_metric else {}), **({'byte_perplexity': (loglikelihood, _bytes)} if 'byte_perplexity' in use_metric else {}), **({'bits_per_byte': (loglikelihood, _bytes)} if 'bits_per_byte' in use_metric else {})} |
elif self.OUTPUT_TYPE == 'multiple_choice': |
(lls, is_greedy) = zip(*results) |
choices = self.doc_to_choice(doc) |
completion_len = np.array([float(len(i)) for i in choices]) |
if 2 * len(choices) == len(lls) and 'acc_mutual_info' in self._metric_fn_list.keys(): |
lls_unconditional = lls[1::2] |
if len(lls_unconditional) != len(choices): |
raise ValueError |
lls = lls[::2] |
pred = np.argmax(lls) |
pred_norm = np.argmax(lls / completion_len) |
if self.multiple_input: |
gold = self.doc_to_text(doc) |
else: |
gold = self.doc_to_target(doc) |
gold_index_error = False |
if isinstance(gold, list): |
gold = [i if i < len(choices) else -100 for i in gold] |
if -100 in gold: |
gold_index_error = True |
else: |
if isinstance(gold, int): |
gold = gold if gold < len(choices) else -100 |
elif isinstance(gold, str): |
gold = choices.index(gold) if gold in choices else -100 |
if gold == -100: |
gold_index_error = True |
if gold_index_error: |
eval_logger.warning(f'Label index was not in within range of available choices,Sample:\n\n{doc}\n\n') |
if self.multiple_target: |
acc = 1.0 if pred in gold else 0.0 |
acc_norm = 1.0 if pred_norm in gold else 0.0 |
exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold])) |
else: |
acc = 1.0 if pred == gold else 0.0 |
acc_norm = 1.0 if pred_norm == gold else 0.0 |
exact_match = int(is_greedy[gold]) if gold != -100 else 0 |
prob_norm = utils.softmax(lls) |
result_dict = {**({'acc': acc} if 'acc' in use_metric else {}), **({'f1': (gold, pred)} if 'f1' in use_metric else {}), **({'mcc': (gold, pred)} if 'mcc' in use_metric else {}), **({'acc_norm': acc_norm} if 'acc_norm' in use_metric else {}), **({'exact_match': exact_match} if 'exact_match' in use_metric else {}), **({'brier_score': (gold, prob_norm)} if 'brier_score' in use_metric else {})} |
if 'acc_mutual_info' in use_metric: |
lls_mutual_info = [ll_c - ll_u for (ll_c, ll_u) in zip(lls, lls_unconditional)] |
acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0 |
result_dict['acc_mutual_info'] = acc_mutual_info |
elif self.OUTPUT_TYPE == 'generate_until': |
gold = self.doc_to_target(doc) |
result = results[0] |
if self.config.doc_to_choice is not None: |
choices = self.doc_to_choice(doc) |
gold = choices[gold] |
elif self.multiple_target: |
gold = list(gold) |
elif type(gold) != type(result): |
gold = type(result)(gold) |
for metric in self._metric_fn_list.keys(): |
if self.multiple_target: |
scores = [] |
if not isinstance(gold, list): |
gold = [gold] |
if metric == 'exact_match': |
result = [result for _ in range(len(gold))] |
scores = self._metric_fn_list[metric](references=gold, predictions=result, **self._metric_fn_kwargs[metric])[metric] |
result_score = 1.0 if scores > 0.0 else 0.0 |
else: |
for gold_option in gold: |
try: |
result_score = self._metric_fn_list[metric](references=[gold_option], predictions=[result], **self._metric_fn_kwargs[metric]) |
except TypeError: |
result_score = self._metric_fn_list[metric]([gold_option, result]) |
if isinstance(result_score, dict): |
result_score = result_score[metric] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.