text
stringlengths 0
15.3k
|
---|
def get_train_overlap(docs_by_task_set: dict, ngrams_path: str, limit: int) -> dict: |
info_dict_path = os.path.join(ngrams_path, 'info.json') |
info_dict = json.load(open(info_dict_path, 'r', encoding='utf-8')) |
ngrams_n_size = info_dict['ngram_size'] |
janitor = Janitor() |
print('Building Lookups...') |
start = time.perf_counter() |
def get_overlaps_dump_path(task_name, task_set, ngrams_n_size, limit) -> str: |
return f'data/{task_name}/{task_set}_{ngrams_n_size}grams_limit{limit}.overlaps' |
lookups = {} |
duplicates = {} |
sets_to_decontaminate = len(docs_by_task_set.keys()) |
for ((task_name, task_set), docs) in docs_by_task_set.items(): |
if not os.path.exists(f'data/{task_name}'): |
os.mkdir(f'data/{task_name}') |
overlaps_dump_path = get_overlaps_dump_path(task_name, task_set, ngrams_n_size, limit) |
if os.path.exists(overlaps_dump_path): |
duplicates[task_name, task_set] = pickle.load(open(overlaps_dump_path, 'rb')) |
sets_to_decontaminate -= 1 |
continue |
else: |
duplicates[task_name, task_set] = set() |
task_set_lookup_path = f'data/{task_name}/{task_set}_{ngrams_n_size}grams_limit{limit}.lookup' |
if os.path.exists(task_set_lookup_path): |
print(f'{task_set_lookup_path} available, loading...') |
lookups[task_name, task_set] = pickle.load(open(task_set_lookup_path, 'rb')) |
else: |
print(f'{task_set_lookup_path} not available, building...') |
lookup = collections.defaultdict(set) |
for (doc_id, document) in enumerate(docs): |
ngrams = word_ngrams(janitor.normalize_string(document), ngrams_n_size) |
for ngram in ngrams: |
lookup[ngram].add(doc_id) |
pickle.dump(lookup, open(task_set_lookup_path, 'wb')) |
lookups[task_name, task_set] = lookup |
elapsed = time.perf_counter() - start |
print(f'Building lookups took {elapsed:0.5f} seconds.') |
matched_ngrams = [] |
if sets_to_decontaminate > 0: |
print('Merging lookups...') |
start = time.perf_counter() |
merged_lookup = collections.defaultdict(list) |
for ((task_name, task_set), lookup) in lookups.items(): |
for (ngram, doc_ids) in lookup.items(): |
merged_lookup[ngram].append((task_name, task_set, doc_ids)) |
elapsed = time.perf_counter() - start |
print(f'Merging lookups took {elapsed:0.5f} seconds.') |
print(f'{ngrams_n_size} grams files found in {ngrams_path}:') |
files = glob.glob(os.path.join(ngrams_path, '*.sorted.zst')) |
print(files) |
for file in files: |
start = time.perf_counter() |
print(f'Scanning {file}') |
reader = ZStdTextReader(file) |
total_ngrams = 0 |
unique_ngrams = 0 |
matching_unique = 0 |
non_matching_unique = 0 |
current_ngram = '' |
for line in reader.read_tqdm(): |
total_ngrams += 1 |
[ngram, document_id] = line.rsplit(' ', 1) |
if ngram != current_ngram: |
unique_ngrams += 1 |
current_ngram = ngram |
if ngram in merged_lookup: |
matched_ngrams.append(ngram) |
matching_unique += 1 |
for (task_name, task_set, doc_ids) in merged_lookup[ngram]: |
task_doc_set = duplicates[task_name, task_set] |
for doc_id in doc_ids: |
task_doc_set.add(doc_id) |
del merged_lookup[ngram] |
else: |
non_matching_unique += 1 |
print(f'Total Ngrams: {total_ngrams}') |
print(f'Unique Ngrams: {unique_ngrams}') |
print(f'Unique Matching: {matching_unique}') |
print(f'Unique Non Matching: {non_matching_unique}') |
print('Matched ngrams:') |
for ngram in matched_ngrams: |
print(ngram) |
elapsed = time.perf_counter() - start |
print(f'Read took {elapsed:0.5f} seconds.') |
print(f'Speed: {os.path.getsize(file) / 1000000.0 / elapsed}MB/second') |
print(duplicates) |
for ((task_name, task_set), doc_ids) in duplicates.items(): |
overlaps_dump_path = get_overlaps_dump_path(task_name, task_set, ngrams_n_size, limit) |
pickle.dump(doc_ids, open(overlaps_dump_path, 'wb')) |
return {task_name: doc_ids for ((task_name, task_set), doc_ids) in duplicates.items()} |
# File: lm-evaluation-harness-main/lm_eval/decontamination/janitor.py |
import pickle |
import re |
import string |
import traceback |
from typing import Iterator, List, Sequence, Tuple, TypeVar |
try: |
import janitor_util |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.