text
stringlengths 0
15.3k
|
---|
if check_integrity: |
run_task_tests(task_list=tasks) |
if evaluation_tracker is not None: |
evaluation_tracker.general_config_tracker.log_experiment_args(model_source=model, model_args=model_args, system_instruction=system_instruction, chat_template=lm.chat_template if apply_chat_template else None, fewshot_as_multiturn=fewshot_as_multiturn) |
results = evaluate(lm=lm, task_dict=task_dict, limit=limit, cache_requests=cache_requests, rewrite_requests_cache=rewrite_requests_cache, bootstrap_iters=bootstrap_iters, write_out=write_out, log_samples=True if predict_only else log_samples, system_instruction=system_instruction, apply_chat_template=apply_chat_template, fewshot_as_multiturn=fewshot_as_multiturn, verbosity=verbosity) |
if lm.rank == 0: |
if isinstance(model, str): |
model_name = model |
elif hasattr(model, 'config') and hasattr(model.config, '_name_or_path'): |
model_name = model.config._name_or_path |
else: |
model_name = type(model).__name__ |
results['config'] = {'model': model_name, 'model_args': model_args} |
if isinstance(lm, lm_eval.models.huggingface.HFLM): |
results['config'].update(lm.get_model_info()) |
results['config'].update({'batch_size': batch_size, 'batch_sizes': list(lm.batch_sizes.values()) if hasattr(lm, 'batch_sizes') else [], 'device': device, 'use_cache': use_cache, 'limit': limit, 'bootstrap_iters': bootstrap_iters, 'gen_kwargs': gen_kwargs, 'random_seed': random_seed, 'numpy_seed': numpy_random_seed, 'torch_seed': torch_random_seed, 'fewshot_seed': fewshot_random_seed}) |
results['git_hash'] = get_git_commit_hash() |
results['date'] = start_date |
add_env_info(results) |
add_tokenizer_info(results, lm) |
return results |
else: |
return None |
@positional_deprecated |
def evaluate(lm: 'LM', task_dict, limit: Optional[int]=None, cache_requests: bool=False, rewrite_requests_cache: bool=False, bootstrap_iters: Optional[int]=100000, write_out: bool=False, log_samples: bool=True, system_instruction: Optional[str]=None, apply_chat_template: bool=False, fewshot_as_multiturn: bool=False, verbosity: str='INFO'): |
eval_logger.setLevel(getattr(logging, f'{verbosity}')) |
requests = defaultdict(list) |
padding_requests = defaultdict(int) |
eval_tasks = get_task_list(task_dict) |
if not log_samples: |
if not all(('bypass' not in getattr(task_output.task, '_metric_fn_list', {}).keys() for task_output in eval_tasks)): |
raise ValueError("log_samples must be True for 'bypass' metric-only tasks") |
for task_output in eval_tasks: |
task: Task = task_output.task |
limit = get_sample_size(task, limit) |
task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size, cache_requests=cache_requests, rewrite_requests_cache=rewrite_requests_cache, system_instruction=system_instruction, apply_chat_template=apply_chat_template, fewshot_as_multiturn=fewshot_as_multiturn, chat_template=getattr(lm, 'apply_chat_template') if apply_chat_template else None, tokenizer_name=getattr(lm, 'tokenizer_name', '') if apply_chat_template else '') |
eval_logger.debug(f'Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}') |
if write_out: |
print_writeout(task) |
for instance in task.instances: |
reqtype = instance.request_type |
requests[reqtype].append(instance) |
if lm.world_size > 1: |
instances_rnk = torch.tensor(len(task._instances), device=lm.device) |
gathered_item = lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist() |
reqtype = 'loglikelihood' if task.OUTPUT_TYPE == 'multiple_choice' else task.OUTPUT_TYPE |
numpad = max(gathered_item) - gathered_item[lm.rank] |
padding_requests[reqtype] += numpad |
for (reqtype, reqs) in requests.items(): |
eval_logger.info(f'Running {reqtype} requests') |
cloned_reqs = [] |
for req in reqs: |
cloned_reqs.extend([req] * req.repeats) |
if lm.world_size > 1 and padding_requests[reqtype] > 0: |
for _ in range(padding_requests[reqtype]): |
cloned_reqs.extend([req] * req.repeats) |
resps = getattr(lm, reqtype)(cloned_reqs) |
for (x, req) in zip(resps, cloned_reqs): |
req.resps.append(x) |
if lm.world_size > 1: |
lm.accelerator.wait_for_everyone() |
RANK = lm.rank |
WORLD_SIZE = lm.world_size |
for task_output in eval_tasks: |
task = task_output.task |
task.apply_filters() |
instances_by_doc_id = defaultdict(list) |
for instance in task.instances: |
instances_by_doc_id[instance.doc_id].append(instance) |
for instances in instances_by_doc_id.values(): |
instances.sort(key=lambda x: x.idx) |
for filter_key in task.instances[0].filtered_resps.keys(): |
doc_iterator = task.doc_iterator(rank=RANK, limit=limit, world_size=WORLD_SIZE) |
for (doc_id, doc) in doc_iterator: |
requests = instances_by_doc_id[doc_id] |
metrics = task.process_results(doc, [req.filtered_resps[filter_key] for req in requests]) |
if log_samples: |
target = task.doc_to_target(doc) |
example = {'doc_id': doc_id, 'doc': doc, 'target': target, 'arguments': [req.args for req in requests], 'resps': [req.resps for req in requests], 'filtered_resps': [req.filtered_resps[filter_key] for req in requests], 'doc_hash': hash_string(json.dumps(requests[0].doc, indent=2, default=handle_non_serializable, ensure_ascii=False)), 'prompt_hash': hash_string(requests[0].arguments[0]), 'target_hash': hash_string(str(target))} |
example.update(metrics) |
task_output.logged_samples.append(example) |
for (metric, value) in metrics.items(): |
task_output.sample_metrics[metric, filter_key].append(value) |
if WORLD_SIZE > 1: |
for task_output in eval_tasks: |
if log_samples: |
full_samples = [None] * WORLD_SIZE if RANK == 0 else None |
torch.distributed.gather_object(obj=task_output.logged_samples, object_gather_list=full_samples, dst=0) |
if RANK == 0: |
task_output.logged_samples = list(itertools.chain.from_iterable(full_samples)) |
for metrics in task_output.sample_metrics: |
metric_list = [None] * WORLD_SIZE if RANK == 0 else None |
torch.distributed.gather_object(obj=task_output.sample_metrics[metrics], object_gather_list=metric_list, dst=0) |
if RANK == 0: |
task_output.sample_metrics[metrics] = list(itertools.chain.from_iterable(metric_list)) |
if RANK == 0: |
for task_output in eval_tasks: |
task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters) |
(results, samples, configs, versions, num_fewshot, higher_is_better) = consolidate_results(eval_tasks) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.