text
stringlengths 0
15.3k
|
---|
except Exception as e: |
eval_logger.warning('Could not gate the repository') |
eval_logger.info(repr(e)) |
self.api.upload_folder(repo_id=repo_id, folder_path=str(path), path_in_repo=self.general_config_tracker.model_name_sanitized, repo_type='dataset', commit_message=f'Adding samples results for {task_name} to {self.general_config_tracker.model_name}') |
eval_logger.info(f'Successfully pushed sample results for task: {task_name} to the Hugging Face Hub. You can find them at: {repo_id}') |
except Exception as e: |
eval_logger.warning('Could not save sample results') |
eval_logger.info(repr(e)) |
else: |
eval_logger.info('Output path not provided, skipping saving sample results') |
def recreate_metadata_card(self) -> None: |
eval_logger.info('Recreating metadata card') |
repo_id = self.details_repo if self.public_repo else self.details_repo_private |
files_in_repo = self.api.list_repo_files(repo_id=repo_id, repo_type='dataset') |
results_files = get_results_filenames(files_in_repo) |
sample_files = get_sample_results_filenames(files_in_repo) |
latest_task_results_datetime = defaultdict(lambda : datetime.min.isoformat()) |
for file_path in sample_files: |
file_path = Path(file_path) |
filename = file_path.name |
model_name = file_path.parent |
task_name = get_file_task_name(filename) |
results_datetime = get_file_datetime(filename) |
task_name_sanitized = sanitize_task_name(task_name) |
samples_key = f'{model_name}__{task_name_sanitized}' |
results_key = f'{model_name}__results' |
latest_datetime = max(latest_task_results_datetime[samples_key], results_datetime) |
latest_task_results_datetime[samples_key] = latest_datetime |
latest_task_results_datetime[results_key] = max(latest_task_results_datetime[results_key], latest_datetime) |
card_metadata = MetadataConfigs() |
for file_path in results_files: |
file_path = Path(file_path) |
results_filename = file_path.name |
model_name = file_path.parent |
eval_date = get_file_datetime(results_filename) |
eval_date_sanitized = re.sub('[^\\w\\.]', '_', eval_date) |
results_filename = Path('**') / Path(results_filename).name |
config_name = f'{model_name}__results' |
sanitized_last_eval_date_results = re.sub('[^\\w\\.]', '_', latest_task_results_datetime[config_name]) |
if eval_date_sanitized == sanitized_last_eval_date_results: |
current_results = card_metadata.get(config_name, {'data_files': []}) |
current_results['data_files'].append({'split': eval_date_sanitized, 'path': [str(results_filename)]}) |
card_metadata[config_name] = current_results |
card_metadata[config_name]['data_files'].append({'split': 'latest', 'path': [str(results_filename)]}) |
for file_path in sample_files: |
file_path = Path(file_path) |
filename = file_path.name |
model_name = file_path.parent |
task_name = get_file_task_name(filename) |
eval_date = get_file_datetime(filename) |
task_name_sanitized = sanitize_task_name(task_name) |
eval_date_sanitized = re.sub('[^\\w\\.]', '_', eval_date) |
results_filename = Path('**') / Path(filename).name |
config_name = f'{model_name}__{task_name_sanitized}' |
sanitized_last_eval_date_results = re.sub('[^\\w\\.]', '_', latest_task_results_datetime[config_name]) |
if eval_date_sanitized == sanitized_last_eval_date_results: |
current_details_for_task = card_metadata.get(config_name, {'data_files': []}) |
current_details_for_task['data_files'].append({'split': eval_date_sanitized, 'path': [str(results_filename)]}) |
card_metadata[config_name] = current_details_for_task |
card_metadata[config_name]['data_files'].append({'split': 'latest', 'path': [str(results_filename)]}) |
latest_datetime = max(latest_task_results_datetime.values()) |
latest_model_name = max(latest_task_results_datetime, key=lambda k: latest_task_results_datetime[k]) |
last_results_file = [f for f in results_files if latest_datetime.replace(':', '-') in f][0] |
last_results_file_path = hf_hub_url(repo_id=repo_id, filename=last_results_file, repo_type='dataset') |
latest_results_file = load_dataset('json', data_files=last_results_file_path, split='train') |
results_dict = latest_results_file['results'][0] |
new_dictionary = {'all': results_dict} |
new_dictionary.update(results_dict) |
results_string = json.dumps(new_dictionary, indent=4) |
dataset_summary = 'Dataset automatically created during the evaluation run of model ' |
if self.general_config_tracker.model_source == 'hf': |
dataset_summary += f'[{self.general_config_tracker.model_name}](https://huggingface.co/{self.general_config_tracker.model_name})\n' |
else: |
dataset_summary += f'{self.general_config_tracker.model_name}\n' |
dataset_summary += f'The dataset is composed of {len(card_metadata) - 1} configuration(s), each one corresponding to one of the evaluated task.\n\nThe dataset has been created from {len(results_files)} run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.\n\nAn additional configuration "results" store all the aggregated results of the run.\n\nTo load the details from a run, you can for instance do the following:\n' |
if self.general_config_tracker.model_source == 'hf': |
dataset_summary += f'```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t"{repo_id}",\n\tname="{latest_model_name}",\n\tsplit="latest"\n)\n```\n\n' |
dataset_summary += f"""## Latest results\n\nThese are the [latest results from run {latest_datetime}]({last_results_file_path.replace('/resolve/', '/blob/')}) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):\n\n```python\n{results_string}\n```""" |
card_data = DatasetCardData(dataset_summary=dataset_summary, repo_url=f'https://huggingface.co/{self.general_config_tracker.model_name}', pretty_name=f'Evaluation run of {self.general_config_tracker.model_name}', leaderboard_url=self.leaderboard_url, point_of_contact=self.point_of_contact) |
card_metadata.to_dataset_card_data(card_data) |
card = DatasetCard.from_template(card_data, pretty_name=card_data.pretty_name) |
card.push_to_hub(repo_id, repo_type='dataset') |
# File: lm-evaluation-harness-main/lm_eval/loggers/utils.py |
import logging |
import os |
import re |
import subprocess |
from pathlib import Path |
from typing import Any, Dict, Optional, Tuple, Union |
import numpy as np |
from torch.utils.collect_env import get_pretty_env_info |
from transformers import __version__ as trans_version |
logger = logging.getLogger(__name__) |
def remove_none_pattern(input_string: str) -> Tuple[str, bool]: |
pattern = re.compile(',none$') |
result = re.sub(pattern, '', input_string) |
removed = result != input_string |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.