text
stringlengths 0
15.3k
|
---|
def process_results(doc, results): |
(loglikelihood,) = results |
_words = len(re.split('\\s+', doc['paragraph'])) |
_bytes = len(doc['paragraph'].encode('utf-8')) |
return {'word_perplexity': (loglikelihood, _words), 'byte_perplexity': (loglikelihood, _bytes), 'bits_per_byte': (loglikelihood, _bytes)} |
# File: lm-evaluation-harness-main/lm_eval/tasks/french_bench/utils.py |
import collections |
import re |
import string |
import datasets |
import evaluate |
def normalize_answer(s): |
def remove_articles(text): |
regex = re.compile('\\b(un|une|des|le|la|les)\\b', re.UNICODE) |
return re.sub(regex, ' ', text) |
def white_space_fix(text): |
return ' '.join(text.split()) |
def remove_punc(text): |
exclude = set(string.punctuation) |
return ''.join((ch for ch in text if ch not in exclude)) |
def lower(text): |
return text.lower() |
return white_space_fix(remove_articles(remove_punc(lower(s)))) |
def get_tokens(s): |
if not s: |
return [] |
return normalize_answer(s).split() |
def exact(predictions, references): |
return int(normalize_answer(references[0]) == normalize_answer(predictions[0])) |
def f1(predictions, references): |
gold_toks = get_tokens(references[0]) |
pred_toks = get_tokens(predictions[0]) |
common = collections.Counter(gold_toks) & collections.Counter(pred_toks) |
num_same = sum(common.values()) |
if len(gold_toks) == 0 or len(pred_toks) == 0: |
return int(gold_toks == pred_toks) |
if num_same == 0: |
return 0 |
precision = 1.0 * num_same / len(pred_toks) |
recall = 1.0 * num_same / len(gold_toks) |
f1 = 2 * precision * recall / (precision + recall) |
return f1 |
def rouge1(items): |
return items |
def rouge1_agg(items): |
refs = list(zip(*items))[0] |
preds = list(zip(*items))[1] |
rouge_scorer = evaluate.load('rouge') |
return rouge_scorer.compute(predictions=preds, references=refs)['rouge1'] |
def is_included(items): |
if items[0] in items[1]: |
return True |
return False |
def preprocess(text): |
text = text.strip() |
text = text.replace(' [title]', '. ') |
text = re.sub('\\[.*?\\]', '', text) |
text = text.replace(' ', ' ') |
return text |
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: |
def _process_doc(doc): |
ctx = doc['ctx_a'] + ' ' + doc['ctx_b'].capitalize() |
out_doc = {'query': preprocess(doc['activity_label'] + ': ' + ctx), 'choices': [preprocess(ending) for ending in doc['endings']], 'gold': int(doc['label'])} |
return out_doc |
return dataset.map(_process_doc) |
# File: lm-evaluation-harness-main/lm_eval/tasks/glianorex/preprocess_glianorex.py |
import datasets |
def doc_to_text(doc) -> str: |
option_choices = doc['options'] |
answers = ''.join((f'{k}. {v}\n' for (k, v) in option_choices.items())) |
return f"Question: {doc['question']}\n{answers}Answer:" |
def doc_to_target(doc) -> int: |
return doc['answer_idx'] |
def filter_dataset(dataset: datasets.Dataset, lang: str) -> datasets.Dataset: |
return dataset.filter(lambda example: example['language'].startswith(lang)) |
def filter_french(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'fr') |
def filter_english(dataset: datasets.Dataset) -> datasets.Dataset: |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.