text
stringlengths 0
15.3k
|
---|
return text |
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: |
def _process_doc(doc): |
choices = [preprocess(doc['Incorrect Answer 1']), preprocess(doc['Incorrect Answer 2']), preprocess(doc['Incorrect Answer 3']), preprocess(doc['Correct Answer'])] |
random.shuffle(choices) |
correct_answer_index = choices.index(preprocess(doc['Correct Answer'])) |
out_doc = {'choice1': choices[0], 'choice2': choices[1], 'choice3': choices[2], 'choice4': choices[3], 'answer': f'({chr(65 + correct_answer_index)})'} |
return out_doc |
return dataset.map(_process_doc) |
# File: lm-evaluation-harness-main/lm_eval/tasks/hellaswag/utils.py |
import re |
import datasets |
def preprocess(text): |
text = text.strip() |
text = text.replace(' [title]', '. ') |
text = re.sub('\\[.*?\\]', '', text) |
text = text.replace(' ', ' ') |
return text |
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: |
def _process_doc(doc): |
ctx = doc['ctx_a'] + ' ' + doc['ctx_b'].capitalize() |
out_doc = {'query': preprocess(doc['activity_label'] + ': ' + ctx), 'choices': [preprocess(ending) for ending in doc['endings']], 'gold': int(doc['label'])} |
return out_doc |
return dataset.map(_process_doc) |
# File: lm-evaluation-harness-main/lm_eval/tasks/hendrycks_ethics/utils.py |
import random |
def _preproc_doc(doc): |
rnd = random.Random(doc['activity']) |
scenarios = [doc['activity'], doc['baseline']] |
ordering = [0, 1] |
rnd.shuffle(ordering) |
doc = {'scenarios': [scenarios[ordering[0]], scenarios[ordering[1]]], 'label': int(ordering.index(0) == 0)} |
return doc |
def doc_to_text(doc) -> str: |
doc = _preproc_doc(doc) |
return f"Scenario 1: {doc['scenarios'][0]}\nScenario 2: {doc['scenarios'][1]}\nQuestion: Is Scenario 1 preferable?\nAnswer:" |
def doc_to_target(doc): |
doc = _preproc_doc(doc) |
return doc['label'] |
# File: lm-evaluation-harness-main/lm_eval/tasks/hendrycks_math/utils.py |
from typing import Dict, List |
import datasets |
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: |
def _process_doc(doc: dict) -> dict: |
out_doc = {'problem': doc['problem'], 'solution': doc['solution'], 'answer': remove_boxed(last_boxed_only_string(doc['solution']))} |
return out_doc |
return dataset.map(_process_doc) |
def process_results(doc: dict, results: List[str]) -> Dict[str, int]: |
retval = 0 |
indices = [pos for (pos, char) in enumerate(results[0]) if char == '$'] |
if len(indices) <= 1: |
answer = results[0] |
else: |
answer = results[0][indices[0] + 1:indices[-1]] |
if is_equiv(answer, remove_boxed(last_boxed_only_string(doc['solution']))): |
retval = 1 |
results = {'exact_match': retval} |
return results |
def is_equiv(str1, str2, verbose=False): |
if str1 is None and str2 is None: |
print('WARNING: Both None') |
return True |
if str1 is None or str2 is None: |
return False |
try: |
ss1 = strip_string(str1) |
ss2 = strip_string(str2) |
if verbose: |
print(ss1, ss2) |
return ss1 == ss2 |
except Exception: |
return str1 == str2 |
def remove_boxed(s): |
if '\\boxed ' in s: |
left = '\\boxed ' |
assert s[:len(left)] == left |
return s[len(left):] |
left = '\\boxed{' |
assert s[:len(left)] == left |
assert s[-1] == '}' |
return s[len(left):-1] |
def last_boxed_only_string(string): |
idx = string.rfind('\\boxed') |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.