text
stringlengths
0
15.3k
is_following_list = []
for (index, instruction_id) in enumerate(instruction_list):
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
instruction = instruction_cls(instruction_id)
kwargs = {k: v for (k, v) in inp.kwargs[index].items() if v}
instruction.build_description(**kwargs)
args = instruction.get_instruction_args()
if args and 'prompt' in args:
instruction.build_description(prompt=inp.prompt)
if response.strip() and instruction.check_following(response):
is_following_list.append(True)
else:
is_following_list.append(False)
return OutputExample(instruction_id_list=inp.instruction_id_list, prompt=inp.prompt, response=response, follow_all_instructions=all(is_following_list), follow_instruction_list=is_following_list)
def test_instruction_following_loose(inp, response):
r = response.split('\n')
response_remove_first = '\n'.join(r[1:]).strip()
response_remove_last = '\n'.join(r[:-1]).strip()
response_remove_both = '\n'.join(r[1:-1]).strip()
revised_response = response.replace('*', '')
revised_response_remove_first = response_remove_first.replace('*', '')
revised_response_remove_last = response_remove_last.replace('*', '')
revised_response_remove_both = response_remove_both.replace('*', '')
all_responses = [response, revised_response, response_remove_first, response_remove_last, response_remove_both, revised_response_remove_first, revised_response_remove_last, revised_response_remove_both]
instruction_list = inp.instruction_id_list
is_following_list = []
for (index, instruction_id) in enumerate(instruction_list):
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
instruction = instruction_cls(instruction_id)
kwargs = {k: v for (k, v) in inp.kwargs[index].items() if v}
instruction.build_description(**kwargs)
args = instruction.get_instruction_args()
if args and 'prompt' in args:
instruction.build_description(prompt=inp.prompt)
is_following = False
for r in all_responses:
if r.strip() and instruction.check_following(r):
is_following = True
break
is_following_list.append(is_following)
return OutputExample(instruction_id_list=inp.instruction_id_list, prompt=inp.prompt, response=response, follow_all_instructions=all(is_following_list), follow_instruction_list=is_following_list)
def process_results(doc, results):
eval_logger.warning('This task is meant for chat-finetuned models, and may not give meaningful results for models other than `openai` or `anthropic` if `doc_to_text` in its YAML is not wrapped in the appropriate chat template string. This warning will be removed when chat templating support is added natively to local models')
inp = InputExample(key=doc['key'], instruction_id_list=doc['instruction_id_list'], prompt=doc['prompt'], kwargs=doc['kwargs'])
response = results[0]
out_strict = test_instruction_following_strict(inp, response)
out_loose = test_instruction_following_loose(inp, response)
return {'prompt_level_strict_acc': out_strict.follow_all_instructions, 'inst_level_strict_acc': out_strict.follow_instruction_list, 'prompt_level_loose_acc': out_loose.follow_all_instructions, 'inst_level_loose_acc': out_loose.follow_instruction_list}
def agg_inst_level_acc(items):
flat_items = [item for sublist in items for item in sublist]
inst_level_acc = sum(flat_items) / len(flat_items)
return inst_level_acc
# File: lm-evaluation-harness-main/lm_eval/tasks/kobest/utils.py
from datasets import Dataset
from sklearn.metrics import f1_score
def copa_doc_to_text(doc: dict) -> str:
connector = {'์›์ธ': ' ์™œ๋ƒํ•˜๋ฉด', '๊ฒฐ๊ณผ': ' ๊ทธ๋ž˜์„œ'}[doc['question'].strip()]
return f"{doc['premise']} {connector}"
def copa_doc_to_target(doc: dict) -> str:
correct_choice = doc['alternative_1'] if doc['label'] == 0 else doc['alternative_2']
return f'{correct_choice}'
def copa_doc_to_choice(doc: dict) -> list:
return [f"{doc['alternative_1']}", f"{doc['alternative_2']}"]
def sentineg_doc_to_text(doc: dict):
return f"๋ฌธ์žฅ: {doc['sentence']} ๊ธ๋ถ€์ •:"
def wic_doc_to_text(doc: dict) -> str:
return f"๋ฌธ์žฅ1: {doc['context_1']} ๋ฌธ์žฅ2: {doc['context_2']} ๋‘ ๋ฌธ์žฅ์—์„œ {doc['word']}๊ฐ€ ๊ฐ™์€ ๋œป์œผ๋กœ ์“ฐ์˜€๋‚˜?"
def hellaswag_process_doc(doc: Dataset) -> Dataset:
def preprocessor(dataset):
return {'query': f"๋ฌธ์žฅ: {dataset['context']}", 'choices': [dataset['ending_1'], dataset['ending_2'], dataset['ending_3'], dataset['ending_4']], 'gold': int(dataset['label'])}
return doc.map(preprocessor)
def macro_f1_score(items):
unzipped_list = list(zip(*items))
golds = unzipped_list[0]
preds = unzipped_list[1]
fscore = f1_score(golds, preds, average='macro')
return fscore
# File: lm-evaluation-harness-main/lm_eval/tasks/leaderboard/gpqa/utils.py
import random
import re
import datasets
def preprocess(text):
if text is None:
return ' '
text = text.strip()
text = text.replace(' [title]', '. ')