|
""" |
|
A simple CLI to updates descriptive statistics on all datasets. |
|
|
|
Example use: |
|
|
|
python update_descriptive_statistics.py --dataset wikisource |
|
|
|
""" |
|
|
|
import argparse |
|
import json |
|
import logging |
|
import multiprocessing |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from textwrap import dedent |
|
from typing import Self, cast |
|
|
|
import pandas as pd |
|
import plotnine as pn |
|
from datasets import Dataset, load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from git_utilities import check_is_ancestor, get_current_revision, get_latest_revision |
|
from tests.readme_parsing import get_tag_content, read_frontmatter_and_body, replace_tag |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
repo_path = Path(__file__).parent.parent |
|
|
|
tokenizer_name = "AI-Sweden-Models/Llama-3-8B-instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True) |
|
|
|
|
|
def human_readable_large_int(value: int) -> str: |
|
thresholds = [ |
|
(1_000_000_000, "B"), |
|
(1_000_000, "M"), |
|
(1_000, "K"), |
|
] |
|
for threshold, label in thresholds: |
|
if value > threshold: |
|
return f"{value/threshold:.2f}{label}" |
|
|
|
return str(value) |
|
|
|
|
|
def calculate_average_document_length( |
|
dataset: Dataset, text_column: str = "text" |
|
) -> float: |
|
texts = sum(len(t) for t in dataset[text_column]) |
|
return texts / len(dataset) |
|
|
|
|
|
def _count_tokens(batch): |
|
return { |
|
"token_count": [ |
|
len(tokens) |
|
for tokens in tokenizer(batch["text"], padding=False)["input_ids"] |
|
] |
|
} |
|
|
|
|
|
def calculate_number_of_tokens( |
|
dataset: Dataset, |
|
text_column: str = "text", |
|
) -> int: |
|
token_counts = dataset.map( |
|
_count_tokens, |
|
batched=True, |
|
batch_size=1000, |
|
num_proc=multiprocessing.cpu_count(), |
|
) |
|
return sum(token_counts["token_count"]) |
|
|
|
|
|
@dataclass() |
|
class DescriptiveStatsOverview: |
|
number_of_samples: int |
|
average_document_length: float |
|
number_of_tokens: int |
|
language: str = "dan, dansk, Danish" |
|
|
|
@classmethod |
|
def from_dataset(cls, dataset: Dataset) -> Self: |
|
return cls( |
|
number_of_samples=len(dataset), |
|
average_document_length=calculate_average_document_length(dataset), |
|
number_of_tokens=calculate_number_of_tokens(dataset), |
|
) |
|
|
|
def to_markdown(self) -> str: |
|
format = dedent(f""" |
|
|
|
- **Language**: {self.language} |
|
- **Number of samples**: {human_readable_large_int(self.number_of_samples)} |
|
- **Number of tokens (Llama 3)**: {human_readable_large_int(self.number_of_tokens)} |
|
- **Average document length (characters)**: {self.average_document_length:.2f} |
|
|
|
""") |
|
return format |
|
|
|
def add_to_markdown(self, markdown: str | Path) -> str: |
|
return replace_tag( |
|
markdown=markdown, package=self.to_markdown(), tag="DESC-STATS" |
|
) |
|
|
|
def to_disk( |
|
self, path: Path |
|
): |
|
data = self.__dict__ |
|
data["revision"] = get_current_revision() |
|
with path.with_suffix(".json").open("w") as f: |
|
json.dump(self.__dict__, f, indent=2) |
|
|
|
@classmethod |
|
def from_disk(cls, path: Path): |
|
with path.open("r") as f: |
|
data = json.load(f) |
|
if "revision" in data: |
|
data.pop("revision") |
|
obj = cls(**data) |
|
return obj |
|
|
|
|
|
sample_template = """ |
|
```py |
|
{sample} |
|
``` |
|
|
|
### Data Fields |
|
|
|
An entry in the dataset consists of the following fields: |
|
|
|
- `text`(`str`): The content of the document. |
|
- `source` (`str`): The source of the document (see [Source Data](#source-data)). |
|
- `id` (`str`): An unique identifier for each document. |
|
- `added` (`str`): An date for when the document was added to this collection. |
|
- `created` (`str`): An date range for when the document was originally created. |
|
- `license` (`str`): The license of the document. The licenses vary according to the source. |
|
- `domain` (`str`): The domain of the source |
|
- `metadata/source-pretty` (`str`): The long form version of the short-form source name |
|
- `metadata/*`: Potentially additional metadata |
|
|
|
""" |
|
|
|
|
|
def add_sample(markdown_path: Path, dataset: Dataset, max_str_len: int = 100): |
|
logger.info("Adding dataset sample to readme") |
|
sample = dataset[0] |
|
for k in sample: |
|
if isinstance(k, str) and len(sample[k]) > max_str_len: |
|
sample[k] = sample[k][:max_str_len] + "[...]" |
|
|
|
json_sample = json.dumps(sample, indent=2, ensure_ascii=False) |
|
sample_str = sample_template.format(sample=json_sample) |
|
|
|
replace_tag(markdown=markdown_path, package=sample_str, tag="SAMPLE") |
|
|
|
|
|
DATASET_PLOTS_template = """ |
|
<img src="./images/dist_document_length.png" width="600" style="margin-right: 10px;" /> |
|
<img> |
|
""" |
|
|
|
|
|
def add_descriptive_statistics_plots( |
|
markdown_path: Path, |
|
dataset: Dataset, |
|
): |
|
logger.info("Adding descriptive statistics plot to readme.") |
|
lengths = [len(s) for s in dataset["text"]] |
|
df = pd.DataFrame({"lengths": lengths, "Source": dataset["source"]}) |
|
|
|
plot = ( |
|
pn.ggplot(df, pn.aes(x="lengths", y=pn.after_stat("count"))) |
|
+ pn.geom_histogram(bins=100) |
|
+ pn.labs( |
|
x="Document Length (Characters)", |
|
y="Count", |
|
title="Distribution of Document Lengths", |
|
) |
|
+ pn.theme_minimal() |
|
+ pn.facet_wrap("Source", scales="free", ncol=3) |
|
) |
|
|
|
img_path = markdown_path.parent / "images" |
|
img_path.mkdir(parents=False, exist_ok=True) |
|
pn.ggsave( |
|
plot, |
|
img_path / "dist_document_length.png", |
|
dpi=500, |
|
width=10, |
|
height=10, |
|
units="in", |
|
verbose=False, |
|
) |
|
|
|
replace_tag( |
|
markdown=markdown_path, package=DATASET_PLOTS_template, tag="DATASET PLOTS" |
|
) |
|
|
|
|
|
def add_desc_statitics( |
|
markdown_path: Path, |
|
dataset: Dataset, |
|
desc_stats_path: Path, |
|
) -> None: |
|
logger.info("Adding descriptive statistics to readme.") |
|
desc_stats = DescriptiveStatsOverview.from_dataset(dataset) |
|
desc_stats.to_disk(desc_stats_path) |
|
desc_stats.add_to_markdown(markdown_path) |
|
|
|
|
|
def update_dataset( |
|
dataset_path: Path, |
|
name: str, |
|
readme_name: None | str = None, |
|
force: bool = False, |
|
) -> None: |
|
rev = get_latest_revision(dataset_path) |
|
desc_stats_path = dataset_path / "descriptive_stats.json" |
|
|
|
if desc_stats_path.exists() and force is False: |
|
with desc_stats_path.open("r") as f: |
|
last_update = json.load(f).get("revision", None) |
|
|
|
if last_update is None: |
|
logger.warning(f"revision is not defined in {desc_stats_path}.") |
|
elif check_is_ancestor(ancestor_rev=last_update, rev=rev): |
|
logger.info( |
|
f"descriptive statistics for '{name}' is already up to date, skipping." |
|
) |
|
return |
|
|
|
readme_name = f"{name}.md" if readme_name is None else readme_name |
|
markdown_path = dataset_path / readme_name |
|
|
|
logger.info(f"Updating dataset: {name}") |
|
|
|
ds = load_dataset(str(repo_path), name, split="train") |
|
ds = cast(Dataset, ds) |
|
|
|
add_desc_statitics(markdown_path, ds, desc_stats_path) |
|
add_sample(markdown_path, ds) |
|
add_descriptive_statistics_plots(markdown_path, ds) |
|
|
|
|
|
def create_parser(): |
|
parser = argparse.ArgumentParser( |
|
description="Calculated descriptive statistics of the datasets in tha data folder" |
|
) |
|
parser.add_argument( |
|
"--dataset", |
|
default=None, |
|
type=str, |
|
help="Use to specify if you only want to compute the statistics from a singular dataset.", |
|
) |
|
parser.add_argument( |
|
"--logging_level", |
|
default=20, |
|
type=int, |
|
help="Sets the logging level. Default to 20 (INFO), other reasonable levels are 10 (DEBUG) and 30 (WARNING).", |
|
) |
|
parser.add_argument( |
|
"--force", |
|
type=bool, |
|
default=False, |
|
action=argparse.BooleanOptionalAction, |
|
help="Should the statistics be forcefully recomputed. By default it checks the difference in commit ids.", |
|
) |
|
parser.add_argument( |
|
"--repo_path", |
|
default=str(repo_path), |
|
type=str, |
|
help="The repository where to calculate the descriptive statistics from", |
|
) |
|
return parser |
|
|
|
|
|
def create_main_table(repo_path: Path = repo_path) -> tuple[pd.DataFrame, str, str]: |
|
frontmatter, _ = read_frontmatter_and_body(repo_path / "README.md") |
|
datasets = [ |
|
cfg["config_name"] |
|
for cfg in frontmatter["configs"] |
|
if cfg["config_name"] != "default" |
|
] |
|
|
|
table = { |
|
"Source": [], |
|
"Description": [], |
|
|
|
"N. Tokens": [], |
|
"License": [], |
|
} |
|
readme_references = "" |
|
license_references = ( |
|
"[CC-0]: https://creativecommons.org/publicdomain/zero/1.0/legalcode.en\n" |
|
+ "[CC-BY-SA 4.0]: https://creativecommons.org/licenses/by-sa/4.0/deed.en\n" |
|
) |
|
|
|
for dataset in datasets: |
|
dataset_path = repo_path / "data" / dataset |
|
readme_path = dataset_path / f"{dataset_path.name}.md" |
|
frontmatter, body = read_frontmatter_and_body(readme_path) |
|
desc_stats = DescriptiveStatsOverview.from_disk( |
|
dataset_path / "descriptive_stats.json" |
|
) |
|
|
|
short_description = get_tag_content(body, tag="SHORT DESCRIPTION").strip()[ |
|
:-1 |
|
] |
|
license, license_name = frontmatter["license"], frontmatter["license_name"] |
|
|
|
table["Source"] += [f"[{dataset_path.name}]"] |
|
readme_references += ( |
|
f"[{dataset_path.name}]: data/{dataset_path.name}/{dataset_path.name}.md\n" |
|
) |
|
|
|
table["License"] += [f"[{license_name}]"] |
|
if license == "other": |
|
license_references += f"[{license_name}]: ./data/{dataset_path.name}/{dataset_path.name}.md#license-information\n" |
|
table["Description"] += [short_description] |
|
table["N. Tokens"] += [desc_stats.number_of_tokens] |
|
|
|
|
|
table["Source"] += ["**Total**"] |
|
|
|
table["License"] += [""] |
|
table["Description"] += [""] |
|
table["N. Tokens"] += [sum(table["N. Tokens"])] |
|
|
|
df = pd.DataFrame.from_dict(table) |
|
df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int) |
|
return df, readme_references, license_references |
|
|
|
|
|
def update_main_table(repo_path: Path = repo_path) -> None: |
|
logger.info("Updating MAIN TABLE") |
|
main_table, readme_references, license_references = create_main_table(repo_path) |
|
readme_path = repo_path / "README.md" |
|
with readme_path.open("r") as f: |
|
markdown = f.read() |
|
package = f"{main_table.to_markdown(index=False)}\n\n{readme_references}\n\n{license_references}\n\n" |
|
markdown = replace_tag(markdown, package=package, tag="MAIN TABLE") |
|
with readme_path.open("w") as f: |
|
f.write(markdown) |
|
|
|
|
|
def main( |
|
dataset: str | None = None, |
|
logging_level: int = 20, |
|
force: bool = False, |
|
repo_path: Path = repo_path, |
|
) -> None: |
|
logging.basicConfig(level=logging_level) |
|
|
|
if dataset and dataset != "default": |
|
dataset_path = repo_path / "data" / dataset |
|
update_dataset(dataset_path, dataset_path.name, force=force) |
|
return |
|
|
|
if dataset is None: |
|
datasets = (repo_path / "data").glob("*") |
|
for dataset_path in datasets: |
|
update_dataset(dataset_path, dataset_path.name, force=force) |
|
|
|
if dataset is None or dataset == "default": |
|
update_dataset(repo_path, "default", "README.md", force=force) |
|
update_main_table(repo_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = create_parser() |
|
args = parser.parse_args() |
|
|
|
main( |
|
args.dataset, |
|
logging_level=args.logging_level, |
|
force=args.force, |
|
repo_path=Path(args.repo_path), |
|
) |
|
|