|
|
|
|
|
|
|
import pathlib |
|
import torch |
|
import yaml |
|
import sys |
|
import os |
|
|
|
from math import pi |
|
from PIL import Image |
|
from munch import Munch |
|
from argparse import ArgumentParser as AP |
|
from torchvision.transforms import ToPILImage, ToTensor |
|
|
|
p_mod = str(pathlib.Path('.').absolute()) |
|
sys.path.append(p_mod.replace("/scripts", "")) |
|
|
|
from data.base_dataset import get_transform |
|
from networks import create_model |
|
|
|
device='cuda' if torch.cuda.is_available() else 'cpu' |
|
def printProgressBar(i, max, postText): |
|
n_bar = 20 |
|
j = i / max |
|
sys.stdout.write('\r') |
|
sys.stdout.write(f"[{'=' * int(n_bar * j):{n_bar}s}] {int(100 * j)}% {postText}") |
|
sys.stdout.flush() |
|
|
|
def inference(model, opt, A_path, phi): |
|
t_phi = torch.tensor(phi) |
|
A_img = Image.open(A_path).convert('RGB') |
|
A = get_transform(opt, convert=False)(A_img) |
|
img_real = (((ToTensor()(A)) * 2) - 1).unsqueeze(0) |
|
img_fake = model.forward(img_real.to(device), t_phi.to(device)) |
|
|
|
return ToPILImage()((img_fake[0].cpu() + 1) / 2) |
|
|
|
def main(cmdline): |
|
if cmdline.checkpoint is None: |
|
|
|
p = pathlib.Path('./logs') |
|
list_run_id = [x.name for x in p.iterdir() if x.is_dir()] |
|
|
|
RUN_ID = list_run_id[0] |
|
root_dir = os.path.join('logs', RUN_ID, 'tensorboard', 'default', 'version_0') |
|
p = pathlib.Path(root_dir + '/checkpoints') |
|
|
|
list_checkpoint = [x.name for x in p.iterdir() if 'iter' in x.name] |
|
list_checkpoint.sort(reverse=True, key=lambda x: int(x.split('_')[1].split('.pth')[0])) |
|
|
|
CHECKPOINT = list_checkpoint[0] |
|
else: |
|
RUN_ID = os.path.basename(cmdline.checkpoint.split("/tensorboard")[0]) |
|
root_dir = os.path.dirname(cmdline.checkpoint.split("/checkpoints")[0]) |
|
CHECKPOINT = os.path.basename(cmdline.checkpoint.split('checkpoints/')[1]) |
|
|
|
print(f"Load checkpoint {CHECKPOINT} from {RUN_ID}") |
|
|
|
|
|
with open(os.path.join(root_dir, 'hparams.yaml')) as cfg_file: |
|
opt = Munch(yaml.safe_load(cfg_file)) |
|
|
|
opt.no_flip = True |
|
|
|
model = create_model(opt) |
|
model = model.load_from_checkpoint(os.path.join(root_dir, 'checkpoints', CHECKPOINT)) |
|
|
|
model.to(device) |
|
|
|
|
|
p = pathlib.Path(cmdline.load_path) |
|
dataset_paths = [str(x.relative_to(cmdline.load_path)) for x in p.iterdir()] |
|
dataset_paths.sort() |
|
|
|
|
|
sequence_name = [] |
|
if cmdline.sequence is not None: |
|
for file in dataset_paths: |
|
if cmdline.sequence in file: |
|
sequence_name.append(file) |
|
else: |
|
sequence_name = dataset_paths |
|
|
|
|
|
os.makedirs(cmdline.save_path, exist_ok=True) |
|
|
|
i = 0 |
|
for path_img in sequence_name: |
|
printProgressBar(i, len(sequence_name), path_img) |
|
|
|
for phi in torch.arange(0, 2 * pi, 0.2): |
|
|
|
out_img = inference(model, opt, os.path.join(cmdline.load_path, path_img), phi) |
|
|
|
save_path = os.path.join(cmdline.save_path, f"{os.path.splitext(os.path.basename(path_img))[0]}_phi_{phi:.1f}.png") |
|
out_img.save(save_path) |
|
i += 1 |
|
|
|
if __name__ == '__main__': |
|
ap = AP() |
|
ap.add_argument('--load_path', default='/datasets/waymo_comogan/val/sunny/Day/', type=str, help='Set a path to load the dataset to translate') |
|
ap.add_argument('--save_path', default='/CoMoGan/images/', type=str, help='Set a path to save the dataset') |
|
ap.add_argument('--sequence', default=None, type=str, help='Set a sequence, will only use the image that contained the string specified') |
|
ap.add_argument('--checkpoint', default=None, type=str, help='Set a path to the checkpoint that you want to use') |
|
ap.add_argument('--phi', default=0.0, type=float, help='Choose the angle of the sun π between [0,2π], which maps to a sun elevation β [+30β¦,β40β¦]') |
|
main(ap.parse_args()) |
|
print("\n") |
|
|