|
import re |
|
import importlib |
|
import torch |
|
from argparse import Namespace |
|
import numpy as np |
|
from PIL import Image |
|
import os |
|
import argparse |
|
import dill as pickle |
|
import util.coco |
|
|
|
|
|
def save_obj(obj, name): |
|
with open(name, 'wb') as f: |
|
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) |
|
|
|
|
|
def load_obj(name): |
|
with open(name, 'rb') as f: |
|
return pickle.load(f) |
|
|
|
|
|
|
|
|
|
|
|
def copyconf(default_opt, **kwargs): |
|
conf = argparse.Namespace(**vars(default_opt)) |
|
for key in kwargs: |
|
print(key, kwargs[key]) |
|
setattr(conf, key, kwargs[key]) |
|
return conf |
|
|
|
|
|
def tile_images(imgs, picturesPerRow=4): |
|
""" Code borrowed from |
|
https://stackoverflow.com/questions/26521365/cleanly-tile-numpy-array-of-images-stored-in-a-flattened-1d-format/26521997 |
|
""" |
|
|
|
|
|
if imgs.shape[0] % picturesPerRow == 0: |
|
rowPadding = 0 |
|
else: |
|
rowPadding = picturesPerRow - imgs.shape[0] % picturesPerRow |
|
if rowPadding > 0: |
|
imgs = np.concatenate([imgs, np.zeros((rowPadding, *imgs.shape[1:]), dtype=imgs.dtype)], axis=0) |
|
|
|
|
|
tiled = [] |
|
for i in range(0, imgs.shape[0], picturesPerRow): |
|
tiled.append(np.concatenate([imgs[j] for j in range(i, i + picturesPerRow)], axis=1)) |
|
|
|
tiled = np.concatenate(tiled, axis=0) |
|
return tiled |
|
|
|
|
|
|
|
|
|
def tensor2im(image_tensor, imtype=np.uint8, normalize=True, tile=False): |
|
if isinstance(image_tensor, list): |
|
image_numpy = [] |
|
for i in range(len(image_tensor)): |
|
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) |
|
return image_numpy |
|
|
|
if image_tensor.dim() == 4: |
|
|
|
images_np = [] |
|
for b in range(image_tensor.size(0)): |
|
one_image = image_tensor[b] |
|
one_image_np = tensor2im(one_image) |
|
images_np.append(one_image_np.reshape(1, *one_image_np.shape)) |
|
images_np = np.concatenate(images_np, axis=0) |
|
if tile: |
|
images_tiled = tile_images(images_np) |
|
return images_tiled |
|
else: |
|
return images_np |
|
|
|
if image_tensor.dim() == 2: |
|
image_tensor = image_tensor.unsqueeze(0) |
|
image_numpy = image_tensor.detach().cpu().float().numpy() |
|
if normalize: |
|
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 |
|
else: |
|
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 |
|
image_numpy = np.clip(image_numpy, 0, 255) |
|
if image_numpy.shape[2] == 1: |
|
image_numpy = image_numpy[:, :, 0] |
|
return image_numpy.astype(imtype) |
|
|
|
|
|
|
|
def tensor2label(label_tensor, n_label, imtype=np.uint8, tile=False): |
|
if label_tensor.dim() == 4: |
|
|
|
images_np = [] |
|
for b in range(label_tensor.size(0)): |
|
one_image = label_tensor[b] |
|
one_image_np = tensor2label(one_image, n_label, imtype) |
|
images_np.append(one_image_np.reshape(1, *one_image_np.shape)) |
|
images_np = np.concatenate(images_np, axis=0) |
|
if tile: |
|
images_tiled = tile_images(images_np) |
|
return images_tiled |
|
else: |
|
images_np = images_np[0] |
|
return images_np |
|
|
|
if label_tensor.dim() == 1: |
|
return np.zeros((64, 64, 3), dtype=np.uint8) |
|
if n_label == 0: |
|
return tensor2im(label_tensor, imtype) |
|
label_tensor = label_tensor.cpu().float() |
|
if label_tensor.size()[0] > 1: |
|
label_tensor = label_tensor.max(0, keepdim=True)[1] |
|
label_tensor = Colorize(n_label)(label_tensor) |
|
label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0)) |
|
result = label_numpy.astype(imtype) |
|
return result |
|
|
|
|
|
def save_image(image_numpy, image_path, create_dir=False): |
|
if create_dir: |
|
os.makedirs(os.path.dirname(image_path), exist_ok=True) |
|
if len(image_numpy.shape) == 2: |
|
image_numpy = np.expand_dims(image_numpy, axis=2) |
|
if image_numpy.shape[2] == 1: |
|
image_numpy = np.repeat(image_numpy, 3, 2) |
|
image_pil = Image.fromarray(image_numpy) |
|
|
|
|
|
image_pil.save(image_path.replace('.jpg', '.png')) |
|
|
|
|
|
def mkdirs(paths): |
|
if isinstance(paths, list) and not isinstance(paths, str): |
|
for path in paths: |
|
mkdir(path) |
|
else: |
|
mkdir(paths) |
|
|
|
|
|
def mkdir(path): |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
|
|
def atoi(text): |
|
return int(text) if text.isdigit() else text |
|
|
|
|
|
def natural_keys(text): |
|
''' |
|
alist.sort(key=natural_keys) sorts in human order |
|
http://nedbatchelder.com/blog/200712/human_sorting.html |
|
(See Toothy's implementation in the comments) |
|
''' |
|
return [atoi(c) for c in re.split('(\d+)', text)] |
|
|
|
|
|
def natural_sort(items): |
|
items.sort(key=natural_keys) |
|
|
|
|
|
def str2bool(v): |
|
if v.lower() in ('yes', 'true', 't', 'y', '1'): |
|
return True |
|
elif v.lower() in ('no', 'false', 'f', 'n', '0'): |
|
return False |
|
else: |
|
raise argparse.ArgumentTypeError('Boolean value expected.') |
|
|
|
|
|
def find_class_in_module(target_cls_name, module): |
|
target_cls_name = target_cls_name.replace('_', '').lower() |
|
clslib = importlib.import_module(module) |
|
cls = None |
|
for name, clsobj in clslib.__dict__.items(): |
|
if name.lower() == target_cls_name: |
|
cls = clsobj |
|
|
|
if cls is None: |
|
print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name)) |
|
exit(0) |
|
|
|
return cls |
|
|
|
|
|
def save_network(net, label, epoch, opt): |
|
save_filename = '%s_net_%s.pth' % (epoch, label) |
|
save_path = os.path.join(opt.checkpoints_dir, opt.name, save_filename) |
|
torch.save(net.cpu().state_dict(), save_path) |
|
if len(opt.gpu_ids) and torch.cuda.is_available(): |
|
net.cuda() |
|
|
|
def save_generator_by_iter(net, label, epoch,iters, opt): |
|
gen_path = os.path.join(opt.checkpoints_dir, opt.name, "generators_by_iters") |
|
os.makedirs(gen_path,exist_ok=True) |
|
save_filename = '%s_iters_%s_net_%s.pth' % (epoch, iters, label) |
|
save_path = os.path.join(gen_path, save_filename) |
|
torch.save(net.cpu().state_dict(), save_path) |
|
if len(opt.gpu_ids) and torch.cuda.is_available(): |
|
net.cuda() |
|
|
|
def load_network(net, label, epoch, opt): |
|
save_filename = '%s_net_%s.pth' % (epoch, label) |
|
save_dir = os.path.join(opt.checkpoints_dir, opt.name) |
|
save_path = os.path.join(save_dir, save_filename) |
|
weights = torch.load(save_path) |
|
net.load_state_dict(weights) |
|
return net |
|
|
|
def load_genrator_network(model,checkpoint_path): |
|
print("======> Loading Checkpoint ====================>") |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
|
|
model.TransEncoder.load_state_dict(checkpoint['encoder1']) |
|
model.HeTransEncoder.load_state_dict(checkpoint['encoder2']) |
|
model.CNNdecoder.load_state_dict(checkpoint['decoder']) |
|
model.transModule.load_state_dict(checkpoint['transModule']) |
|
loss_count_interval = checkpoint['loss_count_interval'] |
|
print('======> loading finished') |
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def uint82bin(n, count=8): |
|
"""returns the binary of integer n, count refers to amount of bits""" |
|
return ''.join([str((n >> y) & 1) for y in range(count - 1, -1, -1)]) |
|
|
|
|
|
def labelcolormap(N): |
|
if N == 35: |
|
cmap = np.array([(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (111, 74, 0), (81, 0, 81), |
|
(128, 64, 128), (244, 35, 232), (250, 170, 160), (230, 150, 140), (70, 70, 70), (102, 102, 156), (190, 153, 153), |
|
(180, 165, 180), (150, 100, 100), (150, 120, 90), (153, 153, 153), (153, 153, 153), (250, 170, 30), (220, 220, 0), |
|
(107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70), |
|
(0, 60, 100), (0, 0, 90), (0, 0, 110), (0, 80, 100), (0, 0, 230), (119, 11, 32), (0, 0, 142)], |
|
dtype=np.uint8) |
|
else: |
|
cmap = np.zeros((N, 3), dtype=np.uint8) |
|
for i in range(N): |
|
r, g, b = 0, 0, 0 |
|
id = i + 1 |
|
for j in range(7): |
|
str_id = uint82bin(id) |
|
r = r ^ (np.uint8(str_id[-1]) << (7 - j)) |
|
g = g ^ (np.uint8(str_id[-2]) << (7 - j)) |
|
b = b ^ (np.uint8(str_id[-3]) << (7 - j)) |
|
id = id >> 3 |
|
cmap[i, 0] = r |
|
cmap[i, 1] = g |
|
cmap[i, 2] = b |
|
|
|
if N == 182: |
|
important_colors = { |
|
'sea': (54, 62, 167), |
|
'sky-other': (95, 219, 255), |
|
'tree': (140, 104, 47), |
|
'clouds': (170, 170, 170), |
|
'grass': (29, 195, 49) |
|
} |
|
for i in range(N): |
|
name = util.coco.id2label(i) |
|
if name in important_colors: |
|
color = important_colors[name] |
|
cmap[i] = np.array(list(color)) |
|
|
|
return cmap |
|
|
|
|
|
class Colorize(object): |
|
def __init__(self, n=35): |
|
self.cmap = labelcolormap(n) |
|
self.cmap = torch.from_numpy(self.cmap[:n]) |
|
|
|
def __call__(self, gray_image): |
|
size = gray_image.size() |
|
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0) |
|
|
|
for label in range(0, len(self.cmap)): |
|
mask = (label == gray_image[0]).cpu() |
|
color_image[0][mask] = self.cmap[label][0] |
|
color_image[1][mask] = self.cmap[label][1] |
|
color_image[2][mask] = self.cmap[label][2] |
|
|
|
return color_image |
|
|