|
import os |
|
import ntpath |
|
import time |
|
from . import util |
|
from . import html |
|
import numpy as np |
|
import scipy.misc |
|
try: |
|
from StringIO import StringIO |
|
except ImportError: |
|
from io import BytesIO |
|
|
|
|
|
class Visualizer(): |
|
def __init__(self, opt): |
|
self.opt = opt |
|
self.tf_log = opt.isTrain and opt.tf_log |
|
self.use_html = opt.isTrain and not opt.no_html |
|
self.win_size = opt.display_winsize |
|
self.name = opt.name |
|
if self.tf_log: |
|
import tensorflow as tf |
|
self.tf = tf |
|
self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, 'logs') |
|
self.writer = tf.summary.FileWriter(self.log_dir) |
|
|
|
if self.use_html: |
|
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') |
|
self.img_dir = os.path.join(self.web_dir, 'images') |
|
print('create web directory %s...' % self.web_dir) |
|
util.mkdirs([self.web_dir, self.img_dir]) |
|
if opt.isTrain: |
|
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') |
|
with open(self.log_name, "a") as log_file: |
|
now = time.strftime("%c") |
|
log_file.write('================ Training Loss (%s) ================\n' % now) |
|
|
|
|
|
def display_current_results(self, visuals, epoch, step): |
|
|
|
|
|
visuals = self.convert_visuals_to_numpy(visuals) |
|
|
|
if self.tf_log: |
|
img_summaries = [] |
|
for label, image_numpy in visuals.items(): |
|
|
|
try: |
|
s = StringIO() |
|
except: |
|
s = BytesIO() |
|
if len(image_numpy.shape) >= 4: |
|
image_numpy = image_numpy[0] |
|
scipy.misc.toimage(image_numpy).save(s, format="jpeg") |
|
|
|
img_sum = self.tf.Summary.Image(encoded_image_string=s.getvalue(), height=image_numpy.shape[0], width=image_numpy.shape[1]) |
|
|
|
img_summaries.append(self.tf.Summary.Value(tag=label, image=img_sum)) |
|
|
|
|
|
summary = self.tf.Summary(value=img_summaries) |
|
self.writer.add_summary(summary, step) |
|
|
|
if self.use_html: |
|
img_path = os.path.join(self.img_dir, 'epoch%.3d_iter%.7d.png' % (epoch, step)) |
|
visuals_lst = [] |
|
for label, image_numpy in visuals.items(): |
|
if len(image_numpy.shape) >= 4: |
|
image_numpy = image_numpy[0] |
|
visuals_lst.append(image_numpy) |
|
image_cath = np.concatenate(visuals_lst, axis=0) |
|
util.save_image(image_cath, img_path) |
|
|
|
|
|
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=5) |
|
for n in range(epoch, 0, -1): |
|
webpage.add_header('epoch [%d]' % n) |
|
ims = [] |
|
txts = [] |
|
links = [] |
|
|
|
for label, image_numpy in visuals.items(): |
|
if isinstance(image_numpy, list): |
|
for i in range(len(image_numpy)): |
|
img_path = 'epoch%.3d_iter%.3d_%s_%d.png' % (n, step, label, i) |
|
ims.append(img_path) |
|
txts.append(label+str(i)) |
|
links.append(img_path) |
|
else: |
|
img_path = 'epoch%.3d_iter%.3d_%s.png' % (n, step, label) |
|
ims.append(img_path) |
|
txts.append(label) |
|
links.append(img_path) |
|
if len(ims) < 10: |
|
webpage.add_images(ims, txts, links, width=self.win_size) |
|
else: |
|
num = int(round(len(ims)/2.0)) |
|
webpage.add_images(ims[:num], txts[:num], links[:num], width=self.win_size) |
|
webpage.add_images(ims[num:], txts[num:], links[num:], width=self.win_size) |
|
webpage.save() |
|
|
|
|
|
def plot_current_errors(self, errors, step): |
|
if self.tf_log: |
|
for tag, value in errors.items(): |
|
value = value.mean().float() |
|
summary = self.tf.Summary(value=[self.tf.Summary.Value(tag=tag, simple_value=value)]) |
|
self.writer.add_summary(summary, step) |
|
|
|
|
|
def print_current_errors(self, epoch, i, errors, t): |
|
message = '(epoch: %d, iters: %d, time: %.3f) ' % (epoch, i, t) |
|
for k, v in errors.items(): |
|
|
|
|
|
v = v.mean().float() |
|
message += '%s: %.3f ' % (k, v) |
|
|
|
print(message) |
|
with open(self.log_name, "a") as log_file: |
|
log_file.write('%s\n' % message) |
|
|
|
def convert_visuals_to_numpy(self, visuals): |
|
for key, t in visuals.items(): |
|
tile = self.opt.batchSize > 8 |
|
if 'input_label' == key: |
|
t = util.tensor2label(t, self.opt.label_nc, tile=tile) |
|
else: |
|
t = util.tensor2im(t, tile=tile) |
|
visuals[key] = t |
|
return visuals |
|
|
|
|
|
def save_images(self, webpage, visuals, image_path, alpha=1.0): |
|
visuals = self.convert_visuals_to_numpy(visuals) |
|
|
|
image_dir = webpage.get_image_dir() |
|
short_path = ntpath.basename(image_path[0]) |
|
name = os.path.splitext(short_path)[0] |
|
|
|
visuals_lst = [] |
|
|
|
|
|
image_name = '%s_%s.png' % (name, "{0:.3f}".format(alpha)) |
|
alpha = alpha.item() |
|
save_path = os.path.join(image_dir, str(alpha), image_name) |
|
for label, image_numpy in visuals.items(): |
|
visuals_lst.append(image_numpy) |
|
|
|
image_cath = np.concatenate(visuals_lst, axis=1) |
|
util.save_image(image_cath, save_path, create_dir=True) |
|
|