File size: 6,571 Bytes
9e37f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0f767c
 
 
9e37f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CSMD: a dataset for assessing meaning preservation between sentences"""

import csv

import datasets
from datasets import load_dataset

_CITATION = """\
@ARTICLE{10.3389/frai.2023.1223924,
AUTHOR={Beauchemin, David and Saggion, Horacio and Khoury, Richard},   
TITLE={{MeaningBERT: Assessing Meaning Preservation Between Sentences}},      
JOURNAL={Frontiers in Artificial Intelligence},      
VOLUME={6},           
YEAR={2023},      
URL={https://www.frontiersin.org/articles/10.3389/frai.2023.1223924},       
DOI={10.3389/frai.2023.1223924},      	
ISSN={2624-8212},   
}
"""

_DESCRIPTION = """\
Continuous Scale Meaning Dataset (CSMD) is a dataset for assessing meaning preservation between sentences.
"""

_HOMEPAGE = "https://github.com/GRAAL-Research/csmd"

_LICENSE = "Attribution 4.0 International (CC BY 4.0)"

_URL_LIST = [
    (
        "meaning.train",
        "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/train.tsv",
    ),
    (
        "meaning.dev",
        "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/dev.tsv",
    ),
    (
        "meaning.test",
        "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/test.tsv",
    ),
    (
        "meaning_with_data_augmentation.train",
        "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/train.tsv",
    ),
    (
        "meaning_with_data_augmentation.dev",
        "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/dev.tsv",
    ),
    (
        "meaning_with_data_augmentation.test",
        "https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/test.tsv",
    ),
    (
        "identical",
        "https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/identical.tsv",
    ),
    (
        "unrelated",
        "https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/unrelated.tsv",
    ),
]

_URLs = dict(_URL_LIST)


class CSMD(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("2.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="meaning",
            version=VERSION,
            description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, "
            "label).",
        ),
        datasets.BuilderConfig(
            name="meaning_with_data_augmentation",
            version=VERSION,
            description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, label) "
            "along with 1,355 data augmentation triplets (Document, Document, 1) and 1,355 data "
            "augmentation triplets (Document, Unrelated Document, 0) (See the sanity checks in our "
            "article).",
        ),
        datasets.BuilderConfig(
            name="meaning_holdout_identical",
            version=VERSION,
            description="An  instance consists of 359 meaning holdout preservation identical triplets (Document, "
            "Document, 1) based on the ASSET Simplification dataset.",
        ),
        datasets.BuilderConfig(
            name="meaning_holdout_unrelated",
            version=VERSION,
            description="An instance consists of 359 meaning holdout preservation unrelated triplets (Document, "
            "Unrelated Document, 0) based on the ASSET Simplification dataset.",
        ),
    ]

    DEFAULT_CONFIG_NAME = "meaning"

    def _info(self):
        features = datasets.Features(
            {
                "document": datasets.Value(dtype="string"),
                "simplification": datasets.Value(dtype="string"),
                "labels": datasets.Value(dtype="string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLs)
        if self.config.name in ("meaning", "meaning_with_data_augmentation"):
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepaths": data_dir,
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepaths": data_dir,
                        "split": "valid",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepaths": data_dir, "split": "test"},
                ),
            ]
        elif self.config.name in ("identical", "unrelated"):
            return [
                datasets.SplitGenerator(
                    name=f"{self.config.name}_{datasets.Split.TEST}",
                    gen_kwargs={
                        "filepaths": data_dir,
                        "split": "test",
                    },
                ),
            ]

    def _generate_examples(self, filepaths, split):
        with open(filepaths[split], encoding="utf-8") as f:
            reader = csv.reader(f, delimiter="\t")
            for id_, row in enumerate(reader):
                if id_ == 0:
                    # Columns header
                    keys = row[:]
                else:
                    res = dict([(k, v) for k, v in zip(keys, row)])
                    for k in ["document", "simplification", "labels"]:
                        res[k] = int(res[k])
                    yield (
                        id_ - 1
                    ), res  # Minus 1, since first idx is the columns header