|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CSMD: a dataset for assessing meaning preservation between sentences""" |
|
|
|
import csv |
|
|
|
import datasets |
|
from datasets import load_dataset |
|
|
|
_CITATION = """\ |
|
@ARTICLE{10.3389/frai.2023.1223924, |
|
AUTHOR={Beauchemin, David and Saggion, Horacio and Khoury, Richard}, |
|
TITLE={{MeaningBERT: Assessing Meaning Preservation Between Sentences}}, |
|
JOURNAL={Frontiers in Artificial Intelligence}, |
|
VOLUME={6}, |
|
YEAR={2023}, |
|
URL={https://www.frontiersin.org/articles/10.3389/frai.2023.1223924}, |
|
DOI={10.3389/frai.2023.1223924}, |
|
ISSN={2624-8212}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Continuous Scale Meaning Dataset (CSMD) is a dataset for assessing meaning preservation between sentences. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/GRAAL-Research/csmd" |
|
|
|
_LICENSE = "Attribution 4.0 International (CC BY 4.0)" |
|
|
|
_URL_LIST = [ |
|
( |
|
"meaning.train", |
|
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/train.tsv", |
|
), |
|
( |
|
"meaning.dev", |
|
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/dev.tsv", |
|
), |
|
( |
|
"meaning.test", |
|
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning/test.tsv", |
|
), |
|
( |
|
"meaning_with_data_augmentation.train", |
|
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/train.tsv", |
|
), |
|
( |
|
"meaning_with_data_augmentation.dev", |
|
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/dev.tsv", |
|
), |
|
( |
|
"meaning_with_data_augmentation.test", |
|
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/meaning_with_data_augmentation/test.tsv", |
|
), |
|
( |
|
"identical", |
|
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/identical.tsv", |
|
), |
|
( |
|
"unrelated", |
|
"https://github.com/GRAAL-Research/csmd/blob/main/dataset/holdout/unrelated.tsv", |
|
), |
|
] |
|
|
|
_URLs = dict(_URL_LIST) |
|
|
|
|
|
class CSMD(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("2.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="meaning", |
|
version=VERSION, |
|
description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, " |
|
"label).", |
|
), |
|
datasets.BuilderConfig( |
|
name="meaning_with_data_augmentation", |
|
version=VERSION, |
|
description="An instance consists of 1,355 meaning preservation triplets (Document, simplification, label) " |
|
"along with 1,355 data augmentation triplets (Document, Document, 1) and 1,355 data " |
|
"augmentation triplets (Document, Unrelated Document, 0) (See the sanity checks in our " |
|
"article).", |
|
), |
|
datasets.BuilderConfig( |
|
name="meaning_holdout_identical", |
|
version=VERSION, |
|
description="An instance consists of 359 meaning holdout preservation identical triplets (Document, " |
|
"Document, 1) based on the ASSET Simplification dataset.", |
|
), |
|
datasets.BuilderConfig( |
|
name="meaning_holdout_unrelated", |
|
version=VERSION, |
|
description="An instance consists of 359 meaning holdout preservation unrelated triplets (Document, " |
|
"Unrelated Document, 0) based on the ASSET Simplification dataset.", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "meaning" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"document": datasets.Value(dtype="string"), |
|
"simplification": datasets.Value(dtype="string"), |
|
"labels": datasets.Value(dtype="string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
if self.config.name in ("meaning", "meaning_with_data_augmentation"): |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": data_dir, |
|
"split": "valid", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepaths": data_dir, "split": "test"}, |
|
), |
|
] |
|
elif self.config.name in ("identical", "unrelated"): |
|
return [ |
|
datasets.SplitGenerator( |
|
name=f"{self.config.name}_{datasets.Split.TEST}", |
|
gen_kwargs={ |
|
"filepaths": data_dir, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths, split): |
|
with open(filepaths[split], encoding="utf-8") as f: |
|
reader = csv.reader(f, delimiter="\t") |
|
for id_, row in enumerate(reader): |
|
if id_ == 0: |
|
|
|
keys = row[:] |
|
else: |
|
res = dict([(k, v) for k, v in zip(keys, row)]) |
|
for k in ["document", "simplification", "labels"]: |
|
res[k] = int(res[k]) |
|
yield ( |
|
id_ - 1 |
|
), res |
|
|