id
stringlengths
53
86
api_name
stringlengths
2
76
api_description
stringlengths
1
500
api_score
float64
0
10
endpoint_name
stringlengths
1
190
endpoint_description
stringlengths
0
500
response_status_code
int64
100
505
response_summary
stringlengths
1
68
response_json
stringlengths
6
50k
response_json_schema
stringlengths
14
150k
3ee2a970-f40e-48fc-87ef-d63f71db912f/36582679-07fc-4dbd-b6cf-d34709854d83/0/0
Cuttime
Music data APIs by Cuttime Inc. allow you to find event by GEO location, receive event list by specific venue, get historical information about events to do analysis, get information about variety of artists, artist events, top tracks, artist-brands, affinity.
6
/events/search
200
null
{"distance": "79.4", "name": "", "description": "", "start_date": "2009-09-27T00:00:00.000Z", "end_date": "2009-09-27T00:00:00.000Z", "venue": {"name": "59:1", "url": "http://www.59to1.net", "city": "Munich", "country": "Germany", "region": "", "street_address": "Sonnenstr. 27", "postal_code": "80336", "latitude": "48.13506", "longitude": "11.56593"}, "performer": [{"name": "Blue October", "id": ""}]}
{"type": "object", "properties": {"distance": {"type": "number", "format": "decimal", "description": "Distance between point (lat, lng) and event that shows in miles"}, "name": {"type": "string"}, "description": {"type": "string"}, "start_date": {"type": "string", "format": "datetime"}, "end_date": {"type": "string", "format": "date"}, "venue": {"type": "object", "properties": {"name": {"type": "string"}, "url": {"type": "string"}, "city": {"type": "string"}, "country": {"type": "string"}, "region": {"type": "string"}, "street_address": {"type": "string"}, "postal_code": {"type": "string"}, "latitude": {"type": "string"}, "longitude": {"type": "string"}}}, "performer": {"type": "array", "items": {"properties": {"name": {"type": "string"}, "id": {"type": "string", "format": "uuid"}}}}}}
448ddcad-7f4b-477a-a688-590899a99ada/630510bf-c171-431c-8d1a-018f6dbdb06f/0/0
AWS Sentiment
Use the AWS Machine Learning Comprehend Service to understand the sentiment of text.
6.6
Sentiment
Uses the AWS Machine Learning Comprehend Service to understand the sentiment of text.
200
New Example
{"data": {"Sentiment": "POSITIVE", "SentimentScore": {"Mixed": 0.00018522649770602584, "Negative": 0.001645226264372468, "Neutral": 0.0005604489124380052, "Positive": 0.9976091384887695}}, "error": null}
{"type": "object", "properties": {"data": {"type": "object", "properties": {"Sentiment": {"type": "string"}, "SentimentScore": {"type": "object", "properties": {"Mixed": {"type": "number"}, "Negative": {"type": "number"}, "Neutral": {"type": "number"}, "Positive": {"type": "number"}}}}}, "error": {"type": "null"}}}
ec856a81-fa36-4c62-8e80-a27b38123a73/9895f6f6-399e-4099-ae62-0060b7889dd5/0/0
Mad GPT 4.0 8K API
Supercharge your AI-powered applications with our optimized proxy API, leveraging the cutting-edge power of GPT 4.0 with an impressive token limit of 8000. Our feature-rich API provides an array of advanced capabilities, including rate limiting, caching, error handling, analytics integration, extensive language support, flexible preprocessing options, customizable settings, and highly insightful outputs. With our API, you'll unlock the true potential of GPT 4.0, enabling seamless integration ...
5.1
Chat Completion with GPT-4.0 at 8K
Performs chat completion using OpenAI GPT-4.0 with up to 8K tokens based on user input messages
400
Example
{"error": ""}
{"type": "object", "properties": {"error": {"type": "string"}}}
ec856a81-fa36-4c62-8e80-a27b38123a73/9895f6f6-399e-4099-ae62-0060b7889dd5/1/0
Mad GPT 4.0 8K API
Supercharge your AI-powered applications with our optimized proxy API, leveraging the cutting-edge power of GPT 4.0 with an impressive token limit of 8000. Our feature-rich API provides an array of advanced capabilities, including rate limiting, caching, error handling, analytics integration, extensive language support, flexible preprocessing options, customizable settings, and highly insightful outputs. With our API, you'll unlock the true potential of GPT 4.0, enabling seamless integration ...
5.1
Chat Completion with GPT-4.0 at 8K
Performs chat completion using OpenAI GPT-4.0 with up to 8K tokens based on user input messages
200
Example
{"messages": [{"role": "", "content": ""}]}
{"type": "object", "properties": {"messages": {"type": "array", "items": {"type": "object", "properties": {"role": {"type": "string"}, "content": {"type": "string"}}, "required": ["role", "content"]}}}}
95bd99d4-b849-4f93-af70-35c855aa346d/1741b585-9a82-4026-a8bd-a7b03319b9c1/0/0
Object Detection
Detect all things present in the photo, with their bounding box include 600 category, up to 100 objects per photo depending on the repetition of the object in the photo & the min score you would like
null
Detect
Detect objects present in the photo, if there is 10 of thing X, the X thing will repeat 10 times in the result, each X has their bounding box(4 coordinations), the photo param is your jpg photo base64 encoded, the minscore is the minimum score you would like to get, it is between 0 & 1, the maximum number of detections is 100
200
Response
{"0": {"labelname": "Miniskirt", "score": 0.7243802547454834, "bbox": {"ymin": 0.11779293417930603, "xmin": 0.2582061290740967, "ymax": 0.8682694435119629, "xmax": 0.734973669052124}}, "1": {"labelname": "Bow and arrow", "score": 0.278759241104126, "bbox": {"ymin": 0.0037848353385925293, "xmin": 0, "ymax": 0.9952834844589233, "xmax": 0.548520565032959}}, "2": {"labelname": "Printer", "score": 0.2011457085609436, "bbox": {"ymin": 0.4764356017112732, "xmin": 0.3275483250617981, "ymax": 0.6529645323753357, "xmax": 0.640164315700531}}, "3": {"labelname": "Printer", "score": 0.1971246749162674, "bbox": {"ymin": 0.48977142572402954, "xmin": 0.26207029819488525, "ymax": 0.7706177830696106, "xmax": 0.6575753688812256}}, "4": {"labelname": "Bow and arrow", "score": 0.17001211643218994, "bbox": {"ymin": 0.06349894404411316, "xmin": 0.11289596557617188, "ymax": 0.9978872537612915, "xmax": 0.7251394987106323}}, "5": {"labelname": "Human arm", "score": 0.16784584522247314, "bbox": {"ymin": 0.02512262761592865, "xmin": 1.5810132026672363e-05, "ymax": 0.44985252618789673, "xmax": 0.2933303117752075}}, "6": {"labelname": "Skunk", "score": 0.1265033781528473, "bbox": {"ymin": 0.5212045311927795, "xmin": 0.19293126463890076, "ymax": 0.7793782353401184, "xmax": 0.4113368093967438}}, "7": {"labelname": "Human arm", "score": 0.12162252515554428, "bbox": {"ymin": 0.14199970662593842, "xmin": 0.01550353318452835, "ymax": 0.4340449571609497, "xmax": 0.18284624814987183}}, "8": {"labelname": "Miniskirt", "score": 0.12112719565629959, "bbox": {"ymin": 0.1521996557712555, "xmin": 0.3186575472354889, "ymax": 0.7331775426864624, "xmax": 0.684227466583252}}, "9": {"labelname": "Footwear", "score": 0.1209561675786972, "bbox": {"ymin": 0.7385721802711487, "xmin": 0.001470029354095459, "ymax": 1, "xmax": 0.5622215867042542}}, "10": {"labelname": "Skunk", "score": 0.12019827961921692, "bbox": {"ymin": 0.5789028406143188, "xmin": 0.43772053718566895, "ymax": 0.9109064340591431, "xmax": 0.6051182746887207}}, "11": {"labelname": "Printer", "score": 0.10639245063066483, "bbox": {"ymin": 0.47997230291366577, "xmin": 0.29873135685920715, "ymax": 0.6561306118965149, "xmax": 0.5249496698379517}}, "12": {"labelname": "Miniskirt", "score": 0.09992494434118271, "bbox": {"ymin": 0.1285170316696167, "xmin": 0.1871040314435959, "ymax": 0.6718946695327759, "xmax": 0.6200093626976013}}, "13": {"labelname": "Human arm", "score": 0.09522520005702972, "bbox": {"ymin": 0.20142094790935516, "xmin": 0.00748065859079361, "ymax": 0.5013794302940369, "xmax": 0.16361570358276367}}, "14": {"labelname": "Human arm", "score": 0.09502151608467102, "bbox": {"ymin": 0.017870455980300903, "xmin": 0, "ymax": 0.720154881477356, "xmax": 0.3037036955356598}}, "15": {"labelname": "Vegetable", "score": 0.09452947974205017, "bbox": {"ymin": 0.5888863801956177, "xmin": 0.2489956021308899, "ymax": 0.9965120553970337, "xmax": 0.6340584754943848}}, "16": {"labelname": "Printer", "score": 0.09117356687784195, "bbox": {"ymin": 0.512161910533905, "xmin": 0.3271898627281189, "ymax": 0.7006562352180481, "xmax": 0.6637284159660339}}, "17": {"labelname": "Miniskirt", "score": 0.08557354658842087, "bbox": {"ymin": 0.15478721261024475, "xmin": 0.21070122718811035, "ymax": 0.6981887817382812, "xmax": 0.4879257082939148}}, "18": {"labelname": "Human arm", "score": 0.0818915143609047, "bbox": {"ymin": 0.043861716985702515, "xmin": 0.002499409019947052, "ymax": 0.5868693590164185, "xmax": 0.19281736016273499}}, "19": {"labelname": "Skunk", "score": 0.07978968322277069, "bbox": {"ymin": 0.5634791851043701, "xmin": 0.4457564055919647, "ymax": 0.7874438762664795, "xmax": 0.6236510872840881}}, "20": {"labelname": "Printer", "score": 0.07867798954248428, "bbox": {"ymin": 0.5752142667770386, "xmin": 0.4316052198410034, "ymax": 0.7541557550430298, "xmax": 0.6750894784927368}}, "21": {"labelname": "Footwear", "score": 0.07709038257598877, "bbox": {"ymin": 0.573758602142334, "xmin": 0, "ymax": 0.9905380010604858, "xmax": 0.6360453963279724}}, "22": {"labelname": "Human arm", "score": 0.07110462337732315, "bbox": {"ymin": 0.12096533179283142, "xmin": 0.11377731710672379, "ymax": 0.43943414092063904, "xmax": 0.2752703130245209}}, "23": {"labelname": "Human arm", "score": 0.07042574882507324, "bbox": {"ymin": 0.030167393386363983, "xmin": 0.17370346188545227, "ymax": 0.27223536372184753, "xmax": 0.3161793351173401}}, "24": {"labelname": "Footwear", "score": 0.06772208213806152, "bbox": {"ymin": 0.9517691731452942, "xmin": 0.9473168253898621, "ymax": 0.9954085946083069, "xmax": 0.9962207674980164}}, "25": {"labelname": "Skunk", "score": 0.06675004214048386, "bbox": {"ymin": 0.501758873462677, "xmin": 0.21142032742500305, "ymax": 0.7047554850578308, "xmax": 0.38655170798301697}}, "26": {"labelname": "Vegetable", "score": 0.06597337126731873, "bbox": {"ymin": 0.5908958911895752, "xmin": 0.4035688638687134, "ymax": 1, "xmax": 0.6612942218780518}}, "27": {"labelname": "Miniskirt", "score": 0.0658554658293724, "bbox": {"ymin": 0.2767154276371002, "xmin": 0.19367948174476624, "ymax": 0.7105458974838257, "xmax": 0.8465046882629395}}, "28": {"labelname": "Miniskirt", "score": 0.06391683220863342, "bbox": {"ymin": 0.19345971941947937, "xmin": 0.19963011145591736, "ymax": 0.5234705209732056, "xmax": 0.5880483388900757}}, "29": {"labelname": "Vegetable", "score": 0.06360408663749695, "bbox": {"ymin": 0.5314661264419556, "xmin": 0.1531001329421997, "ymax": 0.9590497016906738, "xmax": 0.5497730374336243}}, "30": {"labelname": "Bow and arrow", "score": 0.06307113170623779, "bbox": {"ymin": 0.5204786062240601, "xmin": 0.027215957641601562, "ymax": 0.9962900876998901, "xmax": 0.6504126191139221}}, "31": {"labelname": "Printer", "score": 0.0627242773771286, "bbox": {"ymin": 0.3789493441581726, "xmin": 0.2808048129081726, "ymax": 0.8051212430000305, "xmax": 0.700994610786438}}, "32": {"labelname": "Printer", "score": 0.06252911686897278, "bbox": {"ymin": 0.49804937839508057, "xmin": 0.3524898588657379, "ymax": 0.7224743366241455, "xmax": 0.5321017503738403}}, "33": {"labelname": "Footwear", "score": 0.06231572479009628, "bbox": {"ymin": 0.7693827748298645, "xmin": 0, "ymax": 1, "xmax": 0.36103272438049316}}, "34": {"labelname": "Cosmetics", "score": 0.06228826940059662, "bbox": {"ymin": 0.25253885984420776, "xmin": 0.10703311860561371, "ymax": 0.327620267868042, "xmax": 0.15187574923038483}}, "35": {"labelname": "Tableware", "score": 0.06183481216430664, "bbox": {"ymin": 0.014162063598632812, "xmin": 0.594440221786499, "ymax": 0.51532381772995, "xmax": 1}}, "36": {"labelname": "Human arm", "score": 0.06179465726017952, "bbox": {"ymin": 0.04364043474197388, "xmin": 0.16205662488937378, "ymax": 0.3806016147136688, "xmax": 0.31397736072540283}}, "37": {"labelname": "Miniskirt", "score": 0.061111535876989365, "bbox": {"ymin": 0.25755810737609863, "xmin": 0.39496058225631714, "ymax": 0.8082534074783325, "xmax": 0.6592082381248474}}, "38": {"labelname": "Vegetable", "score": 0.06062991917133331, "bbox": {"ymin": 0.6327321529388428, "xmin": 0.34040379524230957, "ymax": 1, "xmax": 0.560637354850769}}, "39": {"labelname": "Harbor seal", "score": 0.060588907450437546, "bbox": {"ymin": 0.5924407839775085, "xmin": 0.7125679850578308, "ymax": 0.799441397190094, "xmax": 0.8826282620429993}}, "40": {"labelname": "Baked goods", "score": 0.06033635884523392, "bbox": {"ymin": 0.7250962853431702, "xmin": 0.6236428618431091, "ymax": 0.9649246335029602, "xmax": 0.7931734919548035}}, "41": {"labelname": "Skunk", "score": 0.06017293781042099, "bbox": {"ymin": 0.49531447887420654, "xmin": 0.18889698386192322, "ymax": 0.8222068548202515, "xmax": 0.4964166581630707}}, "42": {"labelname": "Skunk", "score": 0.05877764895558357, "bbox": {"ymin": 0.6265039443969727, "xmin": 0.381148099899292, "ymax": 0.8380335569381714, "xmax": 0.6096636056900024}}, "43": {"labelname": "Skunk", "score": 0.05750467628240585, "bbox": {"ymin": 0.28276827931404114, "xmin": 0.14637026190757751, "ymax": 0.7978451251983643, "xmax": 0.41279229521751404}}, "44": {"labelname": "Footwear", "score": 0.05739041045308113, "bbox": {"ymin": 0.4380115568637848, "xmin": 0.006511583924293518, "ymax": 0.9707999229431152, "xmax": 0.3143792748451233}}, "45": {"labelname": "Skunk", "score": 0.05718214809894562, "bbox": {"ymin": 0.4786994159221649, "xmin": 0.1413629800081253, "ymax": 0.8636212348937988, "xmax": 0.41728878021240234}}, "46": {"labelname": "Tableware", "score": 0.05616231635212898, "bbox": {"ymin": 0.8360379934310913, "xmin": 0.3317207098007202, "ymax": 0.9980520009994507, "xmax": 0.9605166912078857}}, "47": {"labelname": "Human arm", "score": 0.05610981583595276, "bbox": {"ymin": 0.01516629010438919, "xmin": 0.20068594813346863, "ymax": 0.2396538257598877, "xmax": 0.3358311951160431}}, "48": {"labelname": "Human arm", "score": 0.05548364669084549, "bbox": {"ymin": 0.055623769760131836, "xmin": 0.12285255640745163, "ymax": 0.6082658171653748, "xmax": 0.3654640018939972}}, "49": {"labelname": "Miniskirt", "score": 0.055468179285526276, "bbox": {"ymin": 0.2168903946876526, "xmin": 0.07659894227981567, "ymax": 0.9054017663002014, "xmax": 0.9824543595314026}}, "50": {"labelname": "Alarm clock", "score": 0.055070970207452774, "bbox": {"ymin": 0.5829885601997375, "xmin": 0.277949720621109, "ymax": 0.6314213871955872, "xmax": 0.3194740116596222}}, "51": {"labelname": "Footwear", "score": 0.05506666377186775, "bbox": {"ymin": 0.81010901927948, "xmin": 0.17854756116867065, "ymax": 1, "xmax": 0.6849396824836731}}, "52": {"labelname": "Human arm", "score": 0.0543099083006382, "bbox": {"ymin": 0.04540430009365082, "xmin": 0.030796565115451813, "ymax": 0.3654501438140869, "xmax": 0.21291226148605347}}, "53": {"labelname": "Closet", "score": 0.05414540693163872, "bbox": {"ymin": 0.07934229075908661, "xmin": 0.5624423027038574, "ymax": 0.28176915645599365, "xmax": 0.7320960760116577}}, "54": {"labelname": "Human arm", "score": 0.05375245213508606, "bbox": {"ymin": 0.03207510709762573, "xmin": 0, "ymax": 0.8145328164100647, "xmax": 0.14302365481853485}}, "55": {"labelname": "Footwear", "score": 0.05353621765971184, "bbox": {"ymin": 0.8306335210800171, "xmin": 0.005677357316017151, "ymax": 0.9982720613479614, "xmax": 0.4741111993789673}}, "56": {"labelname": "Bow and arrow", "score": 0.05317438766360283, "bbox": {"ymin": 0.5314661264419556, "xmin": 0.1531001329421997, "ymax": 0.9590497016906738, "xmax": 0.5497730374336243}}, "57": {"labelname": "Footwear", "score": 0.05262657254934311, "bbox": {"ymin": 0.17243951559066772, "xmin": 0.0008297711610794067, "ymax": 0.9352468848228455, "xmax": 0.2575411796569824}}, "58": {"labelname": "Alarm clock", "score": 0.052163612097501755, "bbox": {"ymin": 0.6942272782325745, "xmin": 0.5692744255065918, "ymax": 0.7306258082389832, "xmax": 0.5870949029922485}}, "59": {"labelname": "Alarm clock", "score": 0.051846545189619064, "bbox": {"ymin": 0.6071112751960754, "xmin": 0.473360538482666, "ymax": 0.6917992234230042, "xmax": 0.511078953742981}}, "60": {"labelname": "Printer", "score": 0.05149245262145996, "bbox": {"ymin": 0.5306903719902039, "xmin": 0.31393861770629883, "ymax": 0.7714908719062805, "xmax": 0.7793573141098022}}, "61": {"labelname": "Skunk", "score": 0.0513034388422966, "bbox": {"ymin": 0.612741231918335, "xmin": 0.46606677770614624, "ymax": 1, "xmax": 0.622934877872467}}, "62": {"labelname": "Miniskirt", "score": 0.05054197832942009, "bbox": {"ymin": 0.11198906600475311, "xmin": 0.19274169206619263, "ymax": 0.5425277352333069, "xmax": 0.829396665096283}}, "63": {"labelname": "Tableware", "score": 0.05033639818429947, "bbox": {"ymin": 0, "xmin": 0.3957478702068329, "ymax": 0.3463771939277649, "xmax": 0.9991544485092163}}, "64": {"labelname": "Vegetable", "score": 0.049951713532209396, "bbox": {"ymin": 0.6435791254043579, "xmin": 0.4403085708618164, "ymax": 0.9940073490142822, "xmax": 0.6081180572509766}}, "65": {"labelname": "Alarm clock", "score": 0.04994766041636467, "bbox": {"ymin": 0.6685817837715149, "xmin": 0.4744057357311249, "ymax": 0.7343047261238098, "xmax": 0.5085157752037048}}, "66": {"labelname": "Tomato", "score": 0.04946634918451309, "bbox": {"ymin": 0.4502127468585968, "xmin": 0.9689849615097046, "ymax": 1, "xmax": 0.9925025701522827}}, "67": {"labelname": "Skunk", "score": 0.04931703954935074, "bbox": {"ymin": 0.6043689846992493, "xmin": 0.3736914396286011, "ymax": 0.8822968602180481, "xmax": 0.5270346999168396}}, "68": {"labelname": "Alarm clock", "score": 0.049281105399131775, "bbox": {"ymin": 0.6178250908851624, "xmin": 0.353868305683136, "ymax": 0.6657102704048157, "xmax": 0.3778136968612671}}, "69": {"labelname": "Human arm", "score": 0.049068473279476166, "bbox": {"ymin": 0.035689160227775574, "xmin": 0.09591153264045715, "ymax": 0.4511786103248596, "xmax": 0.34312379360198975}}, "70": {"labelname": "Footwear", "score": 0.048944782465696335, "bbox": {"ymin": 0.7370627522468567, "xmin": 0.18313047289848328, "ymax": 1, "xmax": 0.39532122015953064}}, "71": {"labelname": "Vegetable", "score": 0.04890042915940285, "bbox": {"ymin": 0.5375274419784546, "xmin": 0.05114872753620148, "ymax": 0.978255033493042, "xmax": 0.45981061458587646}}, "72": {"labelname": "Human arm", "score": 0.04820489510893822, "bbox": {"ymin": 0.28461629152297974, "xmin": 0.03940087556838989, "ymax": 0.608190655708313, "xmax": 0.1925278604030609}}, "73": {"labelname": "Cat", "score": 0.048014238476753235, "bbox": {"ymin": 0.4162612557411194, "xmin": 0.13464802503585815, "ymax": 0.9924532771110535, "xmax": 0.9725790619850159}}, "74": {"labelname": "Human arm", "score": 0.047146547585725784, "bbox": {"ymin": 0.026886045932769775, "xmin": 0.03227947652339935, "ymax": 0.6052818298339844, "xmax": 0.42486685514450073}}, "75": {"labelname": "Closet", "score": 0.0466001033782959, "bbox": {"ymin": 0.09717848896980286, "xmin": 0.5701723694801331, "ymax": 0.40157175064086914, "xmax": 0.7313957810401917}}, "76": {"labelname": "Human arm", "score": 0.04557206481695175, "bbox": {"ymin": 0.15477097034454346, "xmin": 0.1613312065601349, "ymax": 0.47260981798171997, "xmax": 0.295442670583725}}, "77": {"labelname": "Alarm clock", "score": 0.045486610382795334, "bbox": {"ymin": 0.6177957653999329, "xmin": 0.22085262835025787, "ymax": 0.6977985501289368, "xmax": 0.2744552791118622}}, "78": {"labelname": "Miniskirt", "score": 0.045485325157642365, "bbox": {"ymin": 0.24838493764400482, "xmin": 0.251603901386261, "ymax": 0.6364706158638, "xmax": 0.7021071910858154}}, "79": {"labelname": "Human arm", "score": 0.04522424936294556, "bbox": {"ymin": 0.04818779230117798, "xmin": 0.08685804158449173, "ymax": 0.35366299748420715, "xmax": 0.27988678216934204}}, "80": {"labelname": "Bow and arrow", "score": 0.045200277119874954, "bbox": {"ymin": 0, "xmin": 0, "ymax": 0.5466692447662354, "xmax": 0.5081550478935242}}, "81": {"labelname": "Alarm clock", "score": 0.04518502205610275, "bbox": {"ymin": 0.5924293994903564, "xmin": 0.3430141508579254, "ymax": 0.6450484991073608, "xmax": 0.37968209385871887}}, "82": {"labelname": "Vegetable", "score": 0.04428758844733238, "bbox": {"ymin": 0.7234208583831787, "xmin": 0.14820992946624756, "ymax": 0.9961731433868408, "xmax": 0.6734771728515625}}, "83": {"labelname": "Tomato", "score": 0.04426831752061844, "bbox": {"ymin": 0.5710639357566833, "xmin": 0.9931474328041077, "ymax": 0.8485072255134583, "xmax": 0.999176561832428}}, "84": {"labelname": "Pen", "score": 0.043960656970739365, "bbox": {"ymin": 0.16398638486862183, "xmin": 0.15470072627067566, "ymax": 0.3277391493320465, "xmax": 0.2080618143081665}}, "85": {"labelname": "Footwear", "score": 0.043933719396591187, "bbox": {"ymin": 0.708899736404419, "xmin": 0.10103754699230194, "ymax": 1, "xmax": 0.4061153531074524}}, "86": {"labelname": "Vegetable", "score": 0.04361368343234062, "bbox": {"ymin": 0.6873375177383423, "xmin": 0.5261901617050171, "ymax": 0.994342565536499, "xmax": 0.6793054342269897}}, "87": {"labelname": "Skunk", "score": 0.04360387846827507, "bbox": {"ymin": 0.5242812037467957, "xmin": 0.2773154377937317, "ymax": 0.7726368308067322, "xmax": 0.45788002014160156}}, "88": {"labelname": "Broccoli", "score": 0.04359585791826248, "bbox": {"ymin": 0.6000275611877441, "xmin": 0.739035964012146, "ymax": 0.7359081506729126, "xmax": 0.8616836071014404}}, "89": {"labelname": "Broccoli", "score": 0.04352391138672829, "bbox": {"ymin": 0.5924407839775085, "xmin": 0.7125679850578308, "ymax": 0.799441397190094, "xmax": 0.8826282620429993}}, "90": {"labelname": "Footwear", "score": 0.04296935349702835, "bbox": {"ymin": 0.7628492712974548, "xmin": 0.1449759304523468, "ymax": 0.9845719933509827, "xmax": 0.47369250655174255}}, "91": {"labelname": "Vegetable", "score": 0.042955148965120316, "bbox": {"ymin": 0.46500226855278015, "xmin": 0.12458275258541107, "ymax": 0.9400724172592163, "xmax": 0.4131627678871155}}, "92": {"labelname": "Vegetable", "score": 0.04256826639175415, "bbox": {"ymin": 0.833899974822998, "xmin": 0.3121376037597656, "ymax": 1, "xmax": 0.4764432907104492}}, "93": {"labelname": "Skunk", "score": 0.04218050464987755, "bbox": {"ymin": 0.7021968364715576, "xmin": 0.42973074316978455, "ymax": 0.9086294174194336, "xmax": 0.6616016626358032}}, "94": {"labelname": "Bow and arrow", "score": 0.04188063368201256, "bbox": {"ymin": 0.03305533528327942, "xmin": 0.0024819672107696533, "ymax": 0.9532979726791382, "xmax": 0.30125120282173157}}, "95": {"labelname": "Closet", "score": 0.041417837142944336, "bbox": {"ymin": 0.07464656233787537, "xmin": 0.5383395552635193, "ymax": 0.21809858083724976, "xmax": 0.7370088696479797}}, "96": {"labelname": "Skunk", "score": 0.041015736758708954, "bbox": {"ymin": 0.5588752031326294, "xmin": 0.36748313903808594, "ymax": 0.7341257333755493, "xmax": 0.6186389923095703}}, "97": {"labelname": "Human arm", "score": 0.04076504334807396, "bbox": {"ymin": 0.21778887510299683, "xmin": 0.010826222598552704, "ymax": 0.4293513298034668, "xmax": 0.24627715349197388}}, "98": {"labelname": "Closet", "score": 0.04075163975358009, "bbox": {"ymin": 0.0945320874452591, "xmin": 0.6464847922325134, "ymax": 0.21326179802417755, "xmax": 0.7346286177635193}}, "99": {"labelname": "Vegetable", "score": 0.04070352017879486, "bbox": {"ymin": 0.6028322577476501, "xmin": 0.43912845849990845, "ymax": 0.9878244996070862, "xmax": 0.8079590201377869}}, "_imageDims": {"_width": 3008, "_height": 2177}}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"0": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "1": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "integer"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "2": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "3": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "4": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "5": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "6": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "7": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "8": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "9": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "10": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "11": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "12": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "13": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "14": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "integer"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "15": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "16": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "17": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "18": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "19": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "20": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "21": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "integer"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "22": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "23": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "24": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "25": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "26": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "27": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "28": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "29": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "30": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "31": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "32": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "33": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "integer"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "34": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "35": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "integer"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "36": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "37": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "38": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "39": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "40": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "41": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "42": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "43": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "44": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "45": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "46": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "47": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "48": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "49": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "50": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "51": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "52": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "53": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "54": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "integer"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "55": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "56": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "57": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "58": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "59": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "60": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "61": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "62": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "63": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "integer"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "64": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "65": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "66": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "67": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "68": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "69": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "70": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "71": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "72": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "73": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "74": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "75": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "76": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "77": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "78": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "79": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "80": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "integer"}, "xmin": {"type": "integer"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "81": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "82": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "83": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "84": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "85": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "86": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "87": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "88": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "89": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "90": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "91": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "92": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "integer"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "93": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "94": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "95": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "96": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "97": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "98": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "99": {"type": "object", "properties": {"labelname": {"type": "string"}, "score": {"type": "number"}, "bbox": {"type": "object", "properties": {"ymin": {"type": "number"}, "xmin": {"type": "number"}, "ymax": {"type": "number"}, "xmax": {"type": "number"}}, "required": ["xmax", "xmin", "ymax", "ymin"]}}, "required": ["bbox", "labelname", "score"]}, "_imageDims": {"type": "object", "properties": {"_width": {"type": "integer"}, "_height": {"type": "integer"}}, "required": ["_height", "_width"]}}, "required": ["0", "1", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "_imageDims"]}
4235ed21-1c67-4890-904b-c7197ba01635/889af14e-2230-4f83-99f8-561775822f60/4/0
AI Joke Generator
Introducing the "AI Joke Generator API," your ultimate source of laughter! The AI Joke Generator API is a powerful tool that taps into the capabilities of artificial intelligence to provide you with an endless supply of jokes. Whether you're building a comedy app, enhancing a chatbot, or simply in need of a good chuckle, this API has got you covered. With its advanced natural language processing algorithms, the AI Joke Generator API crafts hilarious one-liners, clever puns, and witty punchlin...
7.2
/make_joke
Authentication: not required
200
null
{"result": ""}
{"type": "object", "properties": {"result": {"type": "string"}}}
cc667907-91c9-4ae3-99f5-dcb91ecd1e2e/542469f7-e23d-442f-a5d8-c946807d09a3/0/0
AI Query
Looking for the most cost-effective solution to supercharge your AI-powered SQL queries? Look no further!
7.6
Optimize a SQL Query
Optimize a SQL Query
422
Example_1
{"detail": [{"loc": [], "msg": "", "type": ""}]}
{"properties": {"detail": {"items": {"properties": {"loc": {"items": {"anyOf": [{"type": "string"}, {"type": "integer"}]}, "type": "array", "title": "Location"}, "msg": {"type": "string", "title": "Message"}, "type": {"type": "string", "title": "Error Type"}}, "type": "object", "required": ["loc", "msg", "type"], "title": "ValidationError"}, "type": "array", "title": "Detail"}}, "type": "object", "title": "HTTPValidationError"}
cc667907-91c9-4ae3-99f5-dcb91ecd1e2e/542469f7-e23d-442f-a5d8-c946807d09a3/1/0
AI Query
Looking for the most cost-effective solution to supercharge your AI-powered SQL queries? Look no further!
7.6
Optimize a SQL Query
Optimize a SQL Query
200
Optimize a SQL Query Example
{"response": "SELECT c.customer_id, c.first_name, c.last_name, r.rental_id, r.rental_date, r.return_date, p.amount \nFROM customer c\nJOIN rental r ON c.customer_id = r.customer_id\nJOIN payment p ON r.rental_id = p.rental_id\nWHERE p.amount > 100 \nAND r.rental_date > DATE_SUB(NOW(), INTERVAL 6 MONTH);"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"response": {"type": "string"}}, "required": ["response"]}
cc667907-91c9-4ae3-99f5-dcb91ecd1e2e/46deff60-c520-4752-b853-dc398273ecdc/0/0
AI Query
Looking for the most cost-effective solution to supercharge your AI-powered SQL queries? Look no further!
7.6
Generate a SQL Query
Generate a SQL Query
200
Generate a SQL Query Example
{"response": "SELECT c.customer_id, c.first_name, c.last_name, r.rental_id, r.rental_date, r.return_date, p.amount FROM customer c JOIN rental r ON c.customer_id = r.customer_id JOIN payment p ON r.rental_id = p.rental_id WHERE p.amount > 100 AND r.rental_date > NOW() - INTERVAL 6 MONTH;"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"response": {"type": "string"}}, "required": ["response"]}
cc667907-91c9-4ae3-99f5-dcb91ecd1e2e/46deff60-c520-4752-b853-dc398273ecdc/1/0
AI Query
Looking for the most cost-effective solution to supercharge your AI-powered SQL queries? Look no further!
7.6
Generate a SQL Query
Generate a SQL Query
422
Example_1
{"detail": [{"loc": [], "msg": "", "type": ""}]}
{"properties": {"detail": {"items": {"properties": {"loc": {"items": {"anyOf": [{"type": "string"}, {"type": "integer"}]}, "type": "array", "title": "Location"}, "msg": {"type": "string", "title": "Message"}, "type": {"type": "string", "title": "Error Type"}}, "type": "object", "required": ["loc", "msg", "type"], "title": "ValidationError"}, "type": "array", "title": "Detail"}}, "type": "object", "title": "HTTPValidationError"}
cc667907-91c9-4ae3-99f5-dcb91ecd1e2e/f4bb671f-414f-483a-8b59-899da849b7fd/0/0
AI Query
Looking for the most cost-effective solution to supercharge your AI-powered SQL queries? Look no further!
7.6
Suggest Indexes for a SQL Query
Suggest Indexes for a SQL Query
200
Suggest Indexes for a SQL Query Example
{"response": "CREATE INDEX idx_customer_id ON customer (customer_id);\nCREATE INDEX idx_rental_customer_id ON rental (customer_id);\nCREATE INDEX idx_rental_rental_date ON rental (rental_date);\nCREATE INDEX idx_payment_rental_id ON payment (rental_id);\nCREATE INDEX idx_payment_amount ON payment (amount);"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"response": {"type": "string"}}, "required": ["response"]}
cc667907-91c9-4ae3-99f5-dcb91ecd1e2e/f4bb671f-414f-483a-8b59-899da849b7fd/1/0
AI Query
Looking for the most cost-effective solution to supercharge your AI-powered SQL queries? Look no further!
7.6
Suggest Indexes for a SQL Query
Suggest Indexes for a SQL Query
422
Example_1
{"detail": [{"loc": [], "msg": "", "type": ""}]}
{"properties": {"detail": {"items": {"properties": {"loc": {"items": {"anyOf": [{"type": "string"}, {"type": "integer"}]}, "type": "array", "title": "Location"}, "msg": {"type": "string", "title": "Message"}, "type": {"type": "string", "title": "Error Type"}}, "type": "object", "required": ["loc", "msg", "type"], "title": "ValidationError"}, "type": "array", "title": "Detail"}}, "type": "object", "title": "HTTPValidationError"}
cc667907-91c9-4ae3-99f5-dcb91ecd1e2e/7ac701d7-a9ec-44b7-97ea-302eec8b3801/0/0
AI Query
Looking for the most cost-effective solution to supercharge your AI-powered SQL queries? Look no further!
7.6
Explain a SQL Query
Explain a SQL Query
200
Explain a SQL Query Example
{"response": "1. Retrieve the customer ID, first name, and last name from the customer table.\n2. Retrieve the rental ID, rental date, and return date from the rental table.\n3. Retrieve the amount from the payment table.\n4. Join the customer table with the rental table using the customer ID as the common field.\n5. Join the rental table with the payment table using the rental ID as the common field.\n6. Filter the results to only include rows where the payment amount is greater than 100.\n7. Filter the results to only include rows where the rental date is within the last 6 months.\n8. Return the customer ID, first name, last name, rental ID, rental date, return date, and payment amount for the matching rows."}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"response": {"type": "string"}}, "required": ["response"]}
cc667907-91c9-4ae3-99f5-dcb91ecd1e2e/7ac701d7-a9ec-44b7-97ea-302eec8b3801/1/0
AI Query
Looking for the most cost-effective solution to supercharge your AI-powered SQL queries? Look no further!
7.6
Explain a SQL Query
Explain a SQL Query
422
Example_1
{"detail": [{"loc": [], "msg": "", "type": ""}]}
{"properties": {"detail": {"items": {"properties": {"loc": {"items": {"anyOf": [{"type": "string"}, {"type": "integer"}]}, "type": "array", "title": "Location"}, "msg": {"type": "string", "title": "Message"}, "type": {"type": "string", "title": "Error Type"}}, "type": "object", "required": ["loc", "msg", "type"], "title": "ValidationError"}, "type": "array", "title": "Detail"}}, "type": "object", "title": "HTTPValidationError"}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/d3b2919c-be5c-4b9c-9c7a-223e7086a3a3/0/0
SemaDB
No fuss vector database for AI
7.7
SearchPoint
Perform similarity search on points in a collection. The search is performed using a vector, which is a mathematical representation of the point. The vector must have the same number of dimensions as the vectors in the collection. The search returns the most similar points to the vector, along with the distance between the vector and the points.
200
null
{"points": [{"id": "3fa85f64-5717-4562-b3fc-2c963f66afa6", "distance": 4.2, "metadata": {"externalId": 42}}, {"id": "3fa85f64-5717-4562-b3fc-2c963f66afa7", "distance": 4.3, "metadata": null}]}
{"type": "object", "properties": {"points": {"type": "array", "items": {"type": "object", "properties": {"id": {"type": "string", "format": "uuid"}, "distance": {"type": "number", "description": "Distance between the vector and the point", "examples": [4.2]}, "metadata": {"type": "object", "description": "JSON serialisable point metadata", "examples": [{"externalId": 42}]}}}}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/8cb1f553-073b-4590-9489-eb4cd5dafe9a/0/0
SemaDB
No fuss vector database for AI
7.7
UpdatePoint
This endpoint allows updating point vectors and metadata. It does not allow updating the point id. If you want to update the id, you must delete the point and insert a new point. The points are required to exist before you can update them. You can check the failedPoints to see which points failed to update and potentially why.
200
null
{"message": "success", "failedPoints": []}
{"type": "object", "properties": {"message": {"type": "string", "examples": ["partial success"]}, "failedPoints": {"type": "array", "items": {"type": "object", "properties": {"id": {"type": "string", "format": "uuid"}, "error": {"type": "string"}}}}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/8cb1f553-073b-4590-9489-eb4cd5dafe9a/0/1
SemaDB
No fuss vector database for AI
7.7
UpdatePoint
This endpoint allows updating point vectors and metadata. It does not allow updating the point id. If you want to update the id, you must delete the point and insert a new point. The points are required to exist before you can update them. You can check the failedPoints to see which points failed to update and potentially why.
200
null
{"message": "partial success", "failedPoints": [{"id": "3fa85f64-5717-4562-b3fc-2c963f66afa6", "error": "not found"}]}
{"type": "object", "properties": {"message": {"type": "string", "examples": ["partial success"]}, "failedPoints": {"type": "array", "items": {"type": "object", "properties": {"id": {"type": "string", "format": "uuid"}, "error": {"type": "string"}}}}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/0d8f1f75-1762-47c8-ab74-1c5d28fbda55/0/0
SemaDB
No fuss vector database for AI
7.7
InsertPoint
This endpoint assumes all points to be inserted are new points and does not check for duplication. It is important to ensure consistency of the database you do not insert duplicate points. If you are unsure if a point exists, you can leave the id field blank and the database will assign a new id. For cosine distance, you must normalise the vectors prior to inserting them.
503
null
{"error": "Something went wrong"}
{"type": "object", "required": ["error"], "properties": {"error": {"type": "string", "description": "An error message hopefully describing the problem"}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/0d8f1f75-1762-47c8-ab74-1c5d28fbda55/1/0
SemaDB
No fuss vector database for AI
7.7
InsertPoint
This endpoint assumes all points to be inserted are new points and does not check for duplication. It is important to ensure consistency of the database you do not insert duplicate points. If you are unsure if a point exists, you can leave the id field blank and the database will assign a new id. For cosine distance, you must normalise the vectors prior to inserting them.
200
null
{"message": "success", "failedRanges": []}
{"type": "object", "properties": {"message": {"type": "string", "examples": ["partial success"]}, "failedRanges": {"type": "array", "description": "A list of ranges of points that failed to insert. Each range has a start and an end index. The end index is exclusive. For example, if the range is [0, 2], the first two points failed to insert.", "items": {"type": "object", "properties": {"shardId": {"type": "string", "format": "uuid"}, "start": {"type": "integer"}, "end": {"type": "integer"}, "error": {"type": "string"}}}}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/0d8f1f75-1762-47c8-ab74-1c5d28fbda55/1/1
SemaDB
No fuss vector database for AI
7.7
InsertPoint
This endpoint assumes all points to be inserted are new points and does not check for duplication. It is important to ensure consistency of the database you do not insert duplicate points. If you are unsure if a point exists, you can leave the id field blank and the database will assign a new id. For cosine distance, you must normalise the vectors prior to inserting them.
200
null
{"message": "partial success", "failedRanges": [{"shardId": "fff3a226-b9f8-4375-8dbd-1a240e000705", "start": 0, "end": 2, "error": "point already exists"}]}
{"type": "object", "properties": {"message": {"type": "string", "examples": ["partial success"]}, "failedRanges": {"type": "array", "description": "A list of ranges of points that failed to insert. Each range has a start and an end index. The end index is exclusive. For example, if the range is [0, 2], the first two points failed to insert.", "items": {"type": "object", "properties": {"shardId": {"type": "string", "format": "uuid"}, "start": {"type": "integer"}, "end": {"type": "integer"}, "error": {"type": "string"}}}}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/0d8f1f75-1762-47c8-ab74-1c5d28fbda55/2/0
SemaDB
No fuss vector database for AI
7.7
InsertPoint
This endpoint assumes all points to be inserted are new points and does not check for duplication. It is important to ensure consistency of the database you do not insert duplicate points. If you are unsure if a point exists, you can leave the id field blank and the database will assign a new id. For cosine distance, you must normalise the vectors prior to inserting them.
403
null
{"error": "Something went wrong"}
{"type": "object", "required": ["error"], "properties": {"error": {"type": "string", "description": "An error message hopefully describing the problem"}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/b8f4b9da-8341-42d0-8b72-0e1916e9a856/0/0
SemaDB
No fuss vector database for AI
7.7
DeletePoint
Bulk delete points based on id. This endpoint does not check if the points exist. If you attempt to delete a point that does not exist, it will be ignored and included in the failedPoints list.
200
null
{"message": "success", "failedPoints": []}
{"type": "object", "properties": {"message": {"type": "string", "examples": ["partial success"]}, "failedPoints": {"type": "array", "items": {"type": "object", "properties": {"id": {"type": "string", "format": "uuid"}, "error": {"type": "string"}}}}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/b8f4b9da-8341-42d0-8b72-0e1916e9a856/0/1
SemaDB
No fuss vector database for AI
7.7
DeletePoint
Bulk delete points based on id. This endpoint does not check if the points exist. If you attempt to delete a point that does not exist, it will be ignored and included in the failedPoints list.
200
null
{"message": "partial success", "failedPoints": [{"id": "3fa85f64-5717-4562-b3fc-2c963f66afa6", "error": "not found"}]}
{"type": "object", "properties": {"message": {"type": "string", "examples": ["partial success"]}, "failedPoints": {"type": "array", "items": {"type": "object", "properties": {"id": {"type": "string", "format": "uuid"}, "error": {"type": "string"}}}}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/24f98e91-1415-487b-8e84-1b283646aec3/0/0
SemaDB
No fuss vector database for AI
7.7
ListCollection
Returns a list of all collections for the current user. The list is not sorted by any value and the order may change between requests.
200
null
{"collections": [{"id": "mycollection", "vectorSize": 2, "distanceMetric": "euclidean"}]}
{"type": "object", "properties": {"collections": {"type": "array", "items": {"type": "object", "properties": {"id": {"type": "string", "title": "Collection Id", "description": "The unique identifier of the collection", "pattern": "^[a-z0-9]{3,16}$", "examples": ["mycollection", "abc"]}, "vectorSize": {"type": "number", "description": "The size of the vectors in the collection", "minimum": 1, "maximum": 2000, "examples": [2]}, "distanceMetric": {"type": "string", "enum": ["euclidean", "cosine", "dot"]}}}}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/8b405d16-a269-4891-b733-3fbfe91ecbce/0/0
SemaDB
No fuss vector database for AI
7.7
GetCollection
This endpoint attempts to also list the shards currently available in the collection. Some shards may be temporarily unavailable. In that case, you can retry at a future time.
503
null
{"error": "Something went wrong"}
{"type": "object", "required": ["error"], "properties": {"error": {"type": "string", "description": "An error message hopefully describing the problem"}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/8b405d16-a269-4891-b733-3fbfe91ecbce/1/0
SemaDB
No fuss vector database for AI
7.7
GetCollection
This endpoint attempts to also list the shards currently available in the collection. Some shards may be temporarily unavailable. In that case, you can retry at a future time.
200
null
{"id": "mycollection", "vectorSize": 2, "distanceMetric": "euclidean", "shards": [{"id": "fff3a226-b9f8-4375-8dbd-1a240e000705", "pointCount": 1000}]}
{"type": "object", "properties": {"id": {"type": "string", "title": "Collection Id", "description": "The unique identifier of the collection", "pattern": "^[a-z0-9]{3,16}$", "examples": ["mycollection", "abc"]}, "vectorSize": {"type": "number", "description": "The size of the vectors in the collection", "minimum": 1, "maximum": 2000, "examples": [2]}, "distanceMetric": {"type": "string", "enum": ["euclidean", "cosine", "dot"]}, "shards": {"type": "array", "items": {"type": "object", "properties": {"id": {"type": "string", "format": "uuid"}, "pointCount": {"type": "integer"}}}}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/df8c3ab0-64cc-43fd-b16c-d2c43405bbd3/0/0
SemaDB
No fuss vector database for AI
7.7
DeleteCollection
Deletes a collection and all of its points. This operation is irreversible. If you want to delete only some points, use the bulk delete endpoint. If some shards are temporarily unavailable, the operation will still succeed, but some of the data will be deleted in the future.
202
null
{"message": "success"}
{"type": "object", "required": ["message"], "properties": {"message": {"type": "string", "description": "A message indicating the result of the operation"}}, "examples": [{"message": "Operation successful"}]}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/df8c3ab0-64cc-43fd-b16c-d2c43405bbd3/1/0
SemaDB
No fuss vector database for AI
7.7
DeleteCollection
Deletes a collection and all of its points. This operation is irreversible. If you want to delete only some points, use the bulk delete endpoint. If some shards are temporarily unavailable, the operation will still succeed, but some of the data will be deleted in the future.
200
null
{"message": "success"}
{"type": "object", "required": ["message"], "properties": {"message": {"type": "string", "description": "A message indicating the result of the operation"}}, "examples": [{"message": "Operation successful"}]}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/b406befc-7241-4bf7-b9b6-b224959db644/0/0
SemaDB
No fuss vector database for AI
7.7
CreateCollection
Creates a new collection if it does not already exist. The maximum number of collections per user is restricted based on the plan. Before you can insert and search points, you must create a collection.
403
null
{"error": "Something went wrong"}
{"type": "object", "required": ["error"], "properties": {"error": {"type": "string", "description": "An error message hopefully describing the problem"}}}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/b406befc-7241-4bf7-b9b6-b224959db644/1/0
SemaDB
No fuss vector database for AI
7.7
CreateCollection
Creates a new collection if it does not already exist. The maximum number of collections per user is restricted based on the plan. Before you can insert and search points, you must create a collection.
200
null
{"message": "success"}
{"type": "object", "required": ["message"], "properties": {"message": {"type": "string", "description": "A message indicating the result of the operation"}}, "examples": [{"message": "Operation successful"}]}
2e9ad348-2ce8-4b4f-a2d7-71293b7a6f9d/b406befc-7241-4bf7-b9b6-b224959db644/2/0
SemaDB
No fuss vector database for AI
7.7
CreateCollection
Creates a new collection if it does not already exist. The maximum number of collections per user is restricted based on the plan. Before you can insert and search points, you must create a collection.
409
null
{"error": "Something went wrong"}
{"type": "object", "required": ["error"], "properties": {"error": {"type": "string", "description": "An error message hopefully describing the problem"}}}
2edb7c29-51e1-41dc-9738-96eace74d035/6b4ae597-6571-4e53-8cd0-fe8ba27dbd3e/0/0
EdgeGPT API
API for ChatGPT-4 Integration (using Bing AI) This API allows seamless integration of ChatGPT-4 into your application using Bing AI technology. It leverages the latest GPT-4 engine, which is updated for 2023, and provides advanced features such as web search and source retrieval capabilities. To access this API, you need to have a Microsoft whitelisted account that enables you to use the Bing AI Chat feature. The API is intended for personal research projects, and the pricing structure only...
7.2
bingchat
Please add a string representing your Bing _U cookie to the bing_u_cookie JSON parameter. You can obtain your _U cookie by accessing the Developer Console and searching for the _U cookie name. Please follow this link for guidance: https://i.ibb.co/94YWpQD/1676391128.png
200
New Example
{"response": {"source_urls": [[1, "https://www.searchenginejournal.com/google-vs-microsoft-bing/400855/"], [2, "https://www.webceo.com/blog/google-vs-microsoft-bing-in-2023-comparing-search-giant-and-underdog/"], [3, "https://www.maketecheasier.com/bing-better-than-google/"], [4, "https://www.kompasiana.com/hilyanm/640747374addee74a96c71c2/bing-vs-google-mana-yang-lebih-cocok-untuk-anda"], [5, "https://www.androidauthority.com/google-vs-bing-3295482/"]], "text": "Bing and Google are two of the most popular search engines in the world. According to Statista, as of February 2021, Google accounted for **86.6%** of the global search market, while Bing accounted for **6.7%** [^1^]. While Google is the most popular search engine, Bing has a user base that shouldn't be ignored. In fact, one-third of online queries in the U.S. are powered by Microsoft properties when you factor in Yahoo and voice searches [^1^]. \n\nIt's difficult to predict whether Bing will overtake Google in the future. However, it's worth noting that both search engines have their own strengths and weaknesses. For instance, while Google has a larger market share and more core features than Bing, Microsoft Bing provides good conversions and has a user base that shouldn't be ignored [^1^]. \n\nIn conclusion, both search engines have their own unique features and user bases. It's up to users to decide which search engine best suits their needs."}, "success": true}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"response": {"type": "object", "properties": {"source_urls": {"type": "array", "items": {"type": "array", "items": {"type": ["integer", "string"]}}}, "text": {"type": "string"}}, "required": ["source_urls", "text"]}, "success": {"type": "boolean"}}, "required": ["response", "success"]}
5abd54b6-c0c5-4e4f-9f36-180645bd0666/c39d42fb-eac1-43fb-a828-d189eece6d9e/0/0
AI 1001FX Functions
Introducing our AI-powered API for automating human thinking, which offers a wide range of functions to analyze and process text, images, and more. Utilize features like mood detection, object recognition in pictures, OCR text extraction from images, language translation, image generation, content summarization, contact information extraction, content policy checking, language detection, and entity recognition. Empower your applications with cutting-edge AI capabilities and enhance user exper...
7.7
RecognizeObjectsonPicture
The "RecognizeObjectsonPicture" AI REST endpoint is an API that uses machine learning algorithms to recognize objects in an image. To use this endpoint, users must provide an image URL as an input. The endpoint then analyzes the image and returns a list of recognized labels as output. This endpoint is useful for various applications, such as image tagging, object recognition, and visual search.
200
Response
{"recognizedLabels": ["Tire", "Bicycle", "Wheel", "Automotive lighting", "Infrastructure", "Building", "Vehicle", "Mode of transport", "Bicycle wheel", "Electricity"]}
{"type": "object", "properties": {"recognizedLabels": {"type": "array", "items": {"type": "string"}}}}
5abd54b6-c0c5-4e4f-9f36-180645bd0666/f841edfe-d7ef-4b05-9083-4abc8b8b079b/0/0
AI 1001FX Functions
Introducing our AI-powered API for automating human thinking, which offers a wide range of functions to analyze and process text, images, and more. Utilize features like mood detection, object recognition in pictures, OCR text extraction from images, language translation, image generation, content summarization, contact information extraction, content policy checking, language detection, and entity recognition. Empower your applications with cutting-edge AI capabilities and enhance user exper...
7.7
DetectMood
This endpoint takes a string in the text attribute to return an analysis of its mood determining the emotional state of the human who produced the text.
200
Response
{"moodOverall": "mixed", "moodScore": {"positive": 0.49, "neutral": 0, "negative": 0.5}, "moodPerSentence": [{"mood": "negative", "text": "THIS IS A VERY NEGATIVE TEXT. "}, {"mood": "positive", "text": "Good things are happening around the world."}]}
{"type": "object", "properties": {"moodOverall": {"type": "string"}, "moodScore": {"type": "object", "properties": {"positive": {"type": "number"}, "neutral": {"type": "integer"}, "negative": {"type": "number"}}}, "moodPerSentence": {"type": "array", "items": {"type": "object", "properties": {"mood": {"type": "string"}, "text": {"type": "string"}}}}}}
5abd54b6-c0c5-4e4f-9f36-180645bd0666/65688465-861f-4340-984d-2cd796657bf5/0/0
AI 1001FX Functions
Introducing our AI-powered API for automating human thinking, which offers a wide range of functions to analyze and process text, images, and more. Utilize features like mood detection, object recognition in pictures, OCR text extraction from images, language translation, image generation, content summarization, contact information extraction, content policy checking, language detection, and entity recognition. Empower your applications with cutting-edge AI capabilities and enhance user exper...
7.7
DetectLanguage
The "DetectLanguage AI" REST endpoint is an API that can automatically detect the language of text input using advanced natural language processing techniques. To use this endpoint, users provide a text string as input. The endpoint then analyzes the text and identifies the language in which it is written. The output includes the name of the language, its ISO 639-1 code, and a confidence score indicating the likelihood that the detection is accurate.
200
Response
{"name": "English", "iso6391Name": "en", "confidenceScore": 0.85}
{"type": "object", "properties": {"name": {"type": "string"}, "iso6391Name": {"type": "string"}, "confidenceScore": {"type": "number"}}}
5abd54b6-c0c5-4e4f-9f36-180645bd0666/ee691bd0-6d47-451e-8ea8-d77fd9bb879e/0/0
AI 1001FX Functions
Introducing our AI-powered API for automating human thinking, which offers a wide range of functions to analyze and process text, images, and more. Utilize features like mood detection, object recognition in pictures, OCR text extraction from images, language translation, image generation, content summarization, contact information extraction, content policy checking, language detection, and entity recognition. Empower your applications with cutting-edge AI capabilities and enhance user exper...
7.7
DetectTextinPicutre
An image URL can be send to this endpoint. An OCR (optical character recognition) algorithm will scan the image and return the text recognized in the picture in the response as a list of strings. This is the image used in the example request:
200
Response
{"recognizedTexts": ["How do functions break up?", " h They stop calling each other!"]}
{"type": "object", "properties": {"recognizedTexts": {"type": "array", "items": {"type": "string"}}}}
5abd54b6-c0c5-4e4f-9f36-180645bd0666/26435a85-364c-49b7-87a2-7ec3fe62446b/0/0
AI 1001FX Functions
Introducing our AI-powered API for automating human thinking, which offers a wide range of functions to analyze and process text, images, and more. Utilize features like mood detection, object recognition in pictures, OCR text extraction from images, language translation, image generation, content summarization, contact information extraction, content policy checking, language detection, and entity recognition. Empower your applications with cutting-edge AI capabilities and enhance user exper...
7.7
tldr-WrapUp
The "toolongtoread AI" REST endpoint is an API that summarizes long texts into shorter, easier to read paragraphs using natural language processing (NLP) techniques. To use this endpoint, users must provide the text they want to summarize as a prompt input. The endpoint then processes the text using NLP algorithms to extract the most important information and returns a summarized version as output.
200
Example_1
{"id": "chatcmpl-6xyV7AyMxRh8xt7bbXRGky9DESECu", "text": "A young girl full of dreams and aspirations sets off on a journey to explore the world, meet new people, learn new things, and experience life in all its glory. She travels to exotic places, meets people from all walks of life, and discovers her own path and true purpose in life."}
{"type": "object", "properties": {"id": {"type": "string"}, "text": {"type": "string"}}}
5abd54b6-c0c5-4e4f-9f36-180645bd0666/f5874282-7df5-4cf0-8c06-7e17845fce22/0/0
AI 1001FX Functions
Introducing our AI-powered API for automating human thinking, which offers a wide range of functions to analyze and process text, images, and more. Utilize features like mood detection, object recognition in pictures, OCR text extraction from images, language translation, image generation, content summarization, contact information extraction, content policy checking, language detection, and entity recognition. Empower your applications with cutting-edge AI capabilities and enhance user exper...
7.7
TranslateText
The function takes the text to be translated as a string by the attribute text. And the code of the language to be translated to under the attribute resultLang. A list of all language codes can be found here.
200
Response
{"translation": "Dette er teksten"}
{"type": "object", "properties": {"translation": {"type": "string"}}}
5abd54b6-c0c5-4e4f-9f36-180645bd0666/9e12ec8d-d915-4439-88c2-45a4720074d1/0/0
AI 1001FX Functions
Introducing our AI-powered API for automating human thinking, which offers a wide range of functions to analyze and process text, images, and more. Utilize features like mood detection, object recognition in pictures, OCR text extraction from images, language translation, image generation, content summarization, contact information extraction, content policy checking, language detection, and entity recognition. Empower your applications with cutting-edge AI capabilities and enhance user exper...
7.7
ExtractContactInformation
The "ExtractContactInformation" AI REST endpoint is an API that uses machine learning algorithms to extract contact information from natural language text. To use this endpoint, users must provide a prompt containing contact information as input. The endpoint then analyzes the text to extract relevant information, such as addresses and names, and returns the extracted data as output.
200
Response
{"id": "cmpl-6xyOwOw5OWssFgZZOVO1qtonHVgyl", "text": "\n`{\n \"name\": \"Maya\",\n \"address\": \"2111 Ash Lane, Crestview CA 92002\"\n}`"}
{"type": "object", "properties": {"prompt": {"type": "string"}}}
ec37d3c3-c293-4a0f-8ced-76d7f635527d/6080a46c-5ba3-4557-8e9a-4dd2995fb585/0/0
OOPSpam Spam Filter
A privacy-friendly, new generation, highly accurate anti-spam filter for contact forms, comment systems, blogs, live chat- the limit is your creativity!
9.5
Spam detection
The main endpoint that returns detailed information about a given content.
200
Example_1
{"Details": {"isContentSpam": "spam", "isIPBlocked": true, "isEmailBlocked": true, "numberOfSpamWords": 1}, "Score": 6}
{"type": "object", "properties": {"Details": {"type": "object", "properties": {"isContentSpam": {"type": "string"}, "isIPBlocked": {"type": "boolean"}, "isEmailBlocked": {"type": "boolean"}, "numberOfSpamWords": {"type": "integer"}}}, "Score": {"type": "integer"}}}
1ce2f2e6-bef6-4e5a-98f0-95a487c5173a/de53c5d0-9fd8-42c7-aa39-7658b35a22d6/0/0
Image upsclaer
This API can upscale images. Also provides an image server.
0.1
POST IMAGE FILE
This endpoint receives image file and returns upscaled image file
200
New Example
{"filename": "upload_test001.jpeg", "upscaled_url": "https://srapi.vrof.co.kr/upscaled_images/upload_test001.jpeg"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"filename": {"type": "string"}, "upscaled_url": {"type": "string"}}, "required": ["filename", "upscaled_url"]}
1ce2f2e6-bef6-4e5a-98f0-95a487c5173a/bedb5f7e-d9b8-4913-8347-9bd1f35b7efc/0/0
Image upsclaer
This API can upscale images. Also provides an image server.
0.1
POST IMAGE URL
This endpoint will return upscaled image url
200
New Example
{"filename": "upload_test001.jpeg", "upscaled_url": "https://srapi.vrof.co.kr/upscaled_images/upload_test001.jpeg"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"filename": {"type": "string"}, "upscaled_url": {"type": "string"}}, "required": ["filename", "upscaled_url"]}
6cce2ead-eda5-47b1-b9e2-68c48a784c62/3f651cbc-afdf-4a81-ab97-8fba9287059e/0/0
[unofficial] OpenAI GPT-4 Tokenizer
Takes a prompt of any length and returns the number of tokens
6.9
Tokenize
Returns a number of tokens for the received prompt
200
Example_1
{"tokens": 0}
{"type": "object", "properties": {"tokens": {"type": "integer", "description": "Number of tokens in the response"}}, "required": ["tokens"]}
391fd25b-e39e-4fce-b1db-c1acd4c43c4d/f23510f6-a901-4f45-a584-56f8fb49fae9/0/0
ClevrEye
ClevrEye provides powerful cloud-based image recognition and analysis through Google's industry-leading Computer Vision technology. Our API enables your applications to extract insights from images through state-of-the-art machine-learning models.
7.2
Detect Labels
Identifies categories, objects and activities within images.
200
New Example
{"labels": []}
{"labels": []}
391fd25b-e39e-4fce-b1db-c1acd4c43c4d/0a84d8d0-88b2-4a50-b7bb-590934b999eb/0/0
ClevrEye
ClevrEye provides powerful cloud-based image recognition and analysis through Google's industry-leading Computer Vision technology. Our API enables your applications to extract insights from images through state-of-the-art machine-learning models.
7.2
Detect Landmark
Identifies well-known landmarks within images.
200
New Example
{"landmarks": []}
{"landmarks": []}
391fd25b-e39e-4fce-b1db-c1acd4c43c4d/3bca5546-af0e-4a1e-86b3-83ac2dd630d2/0/0
ClevrEye
ClevrEye provides powerful cloud-based image recognition and analysis through Google's industry-leading Computer Vision technology. Our API enables your applications to extract insights from images through state-of-the-art machine-learning models.
7.2
Detect Objects
Detects multiple objects within an image including positioning information.
200
New Example
{"objects": []}
{"objects": []}
391fd25b-e39e-4fce-b1db-c1acd4c43c4d/9236e30a-332a-410f-bece-7ab1e6b6dad4/0/0
ClevrEye
ClevrEye provides powerful cloud-based image recognition and analysis through Google's industry-leading Computer Vision technology. Our API enables your applications to extract insights from images through state-of-the-art machine-learning models.
7.2
Extract Text from Image
Analyzes images and extracts any detected text content as a string.
200
New Example
{"text": "string", "locale": "string"}
{"text": "string", "locale": "string"}
d7b4f512-b874-4367-ad90-a4c8bdcd2dd3/113f3ebc-0c22-4b54-97e8-953e5291c926/0/0
Ahrefs Keyword Tool
Find relevant keywords from our database of over 2 billion queries. Just enter up to ten words or phrases and choose from one of six keyword ideas reports.
8.2
Keyword Overview
the largest keyword research database on the market and analyze everything you need to know about a Keyword Overview.
200
Response
[{"Keyword Overview": {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "Informational", "Keyword": "pincode of gomti nagar lucknow", "Keyword Difficulty": "29", "Number of Results": "76", "SERP Features": "\"Featured snippet, Indented, Video, People also ask, Related searches\"", "Trend": "\"1.00,1.00,0.81,0.81,1.00,0.81,0.81,0.81,0.81,0.81,0.81,0.81\"", "Updated": "September 04, 2023", "Volume": "390"}}, {"Keword Trending History On Google(Data)": [{"Month_Date_Year": null, "Search_Count": null}, {"Month_Date_Year": "Jan 1, 2004", "Search_Count": 0}, {"Month_Date_Year": "Feb 1, 2004", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2004", "Search_Count": 0}, {"Month_Date_Year": "Apr 1, 2004", "Search_Count": 100}, {"Month_Date_Year": "May 1, 2004", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2004", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2004", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2004", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2004", "Search_Count": 39}, {"Month_Date_Year": "Oct 1, 2004", "Search_Count": 0}, {"Month_Date_Year": "Nov 1, 2004", "Search_Count": 50}, {"Month_Date_Year": "Dec 1, 2004", "Search_Count": 0}, {"Month_Date_Year": "Jan 1, 2005", "Search_Count": 86}, {"Month_Date_Year": "Feb 1, 2005", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2005", "Search_Count": 0}, {"Month_Date_Year": "Apr 1, 2005", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2005", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2005", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2005", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2005", "Search_Count": 24}, {"Month_Date_Year": "Sep 1, 2005", "Search_Count": 0}, {"Month_Date_Year": "Oct 1, 2005", "Search_Count": 0}, {"Month_Date_Year": "Nov 1, 2005", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2005", "Search_Count": 34}, {"Month_Date_Year": "Jan 1, 2006", "Search_Count": 0}, {"Month_Date_Year": "Feb 1, 2006", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2006", "Search_Count": 0}, {"Month_Date_Year": "Apr 1, 2006", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2006", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2006", "Search_Count": 51}, {"Month_Date_Year": "Jul 1, 2006", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2006", "Search_Count": 41}, {"Month_Date_Year": "Sep 1, 2006", "Search_Count": 0}, {"Month_Date_Year": "Oct 1, 2006", "Search_Count": 0}, {"Month_Date_Year": "Nov 1, 2006", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2006", "Search_Count": 21}, {"Month_Date_Year": "Jan 1, 2007", "Search_Count": 14}, {"Month_Date_Year": "Feb 1, 2007", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2007", "Search_Count": 26}, {"Month_Date_Year": "Apr 1, 2007", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2007", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2007", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2007", "Search_Count": 14}, {"Month_Date_Year": "Aug 1, 2007", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2007", "Search_Count": 0}, {"Month_Date_Year": "Oct 1, 2007", "Search_Count": 14}, {"Month_Date_Year": "Nov 1, 2007", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2007", "Search_Count": 0}, {"Month_Date_Year": "Jan 1, 2008", "Search_Count": 8}, {"Month_Date_Year": "Feb 1, 2008", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2008", "Search_Count": 8}, {"Month_Date_Year": "Apr 1, 2008", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2008", "Search_Count": 10}, {"Month_Date_Year": "Jun 1, 2008", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2008", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2008", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2008", "Search_Count": 0}, {"Month_Date_Year": "Oct 1, 2008", "Search_Count": 0}, {"Month_Date_Year": "Nov 1, 2008", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2008", "Search_Count": 0}, {"Month_Date_Year": "Jan 1, 2009", "Search_Count": 0}, {"Month_Date_Year": "Feb 1, 2009", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2009", "Search_Count": 0}, {"Month_Date_Year": "Apr 1, 2009", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2009", "Search_Count": 5}, {"Month_Date_Year": "Jun 1, 2009", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2009", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2009", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2009", "Search_Count": 11}, {"Month_Date_Year": "Oct 1, 2009", "Search_Count": 0}, {"Month_Date_Year": "Nov 1, 2009", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2009", "Search_Count": 5}, {"Month_Date_Year": "Jan 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Feb 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Apr 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Oct 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Nov 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2010", "Search_Count": 0}, {"Month_Date_Year": "Jan 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Feb 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Apr 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2011", "Search_Count": 9}, {"Month_Date_Year": "Oct 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Nov 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2011", "Search_Count": 0}, {"Month_Date_Year": "Jan 1, 2012", "Search_Count": 0}, {"Month_Date_Year": "Feb 1, 2012", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2012", "Search_Count": 3}, {"Month_Date_Year": "Apr 1, 2012", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2012", "Search_Count": 8}, {"Month_Date_Year": "Jun 1, 2012", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2012", "Search_Count": 2}, {"Month_Date_Year": "Aug 1, 2012", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2012", "Search_Count": 0}, {"Month_Date_Year": "Oct 1, 2012", "Search_Count": 7}, {"Month_Date_Year": "Nov 1, 2012", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2012", "Search_Count": 2}, {"Month_Date_Year": "Jan 1, 2013", "Search_Count": 4}, {"Month_Date_Year": "Feb 1, 2013", "Search_Count": 4}, {"Month_Date_Year": "Mar 1, 2013", "Search_Count": 4}, {"Month_Date_Year": "Apr 1, 2013", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2013", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2013", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2013", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2013", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2013", "Search_Count": 2}, {"Month_Date_Year": "Oct 1, 2013", "Search_Count": 7}, {"Month_Date_Year": "Nov 1, 2013", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2013", "Search_Count": 0}, {"Month_Date_Year": "Jan 1, 2014", "Search_Count": 2}, {"Month_Date_Year": "Feb 1, 2014", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2014", "Search_Count": 0}, {"Month_Date_Year": "Apr 1, 2014", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2014", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2014", "Search_Count": 3}, {"Month_Date_Year": "Jul 1, 2014", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2014", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2014", "Search_Count": 2}, {"Month_Date_Year": "Oct 1, 2014", "Search_Count": 0}, {"Month_Date_Year": "Nov 1, 2014", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2014", "Search_Count": 0}, {"Month_Date_Year": "Jan 1, 2015", "Search_Count": 0}, {"Month_Date_Year": "Feb 1, 2015", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2015", "Search_Count": 1}, {"Month_Date_Year": "Apr 1, 2015", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2015", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2015", "Search_Count": 1}, {"Month_Date_Year": "Jul 1, 2015", "Search_Count": 5}, {"Month_Date_Year": "Aug 1, 2015", "Search_Count": 3}, {"Month_Date_Year": "Sep 1, 2015", "Search_Count": 2}, {"Month_Date_Year": "Oct 1, 2015", "Search_Count": 2}, {"Month_Date_Year": "Nov 1, 2015", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2015", "Search_Count": 2}, {"Month_Date_Year": "Jan 1, 2016", "Search_Count": 0}, {"Month_Date_Year": "Feb 1, 2016", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2016", "Search_Count": 3}, {"Month_Date_Year": "Apr 1, 2016", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2016", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2016", "Search_Count": 3}, {"Month_Date_Year": "Jul 1, 2016", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2016", "Search_Count": 1}, {"Month_Date_Year": "Sep 1, 2016", "Search_Count": 4}, {"Month_Date_Year": "Oct 1, 2016", "Search_Count": 0}, {"Month_Date_Year": "Nov 1, 2016", "Search_Count": 1}, {"Month_Date_Year": "Dec 1, 2016", "Search_Count": 2}, {"Month_Date_Year": "Jan 1, 2017", "Search_Count": 0}, {"Month_Date_Year": "Feb 1, 2017", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2017", "Search_Count": 0}, {"Month_Date_Year": "Apr 1, 2017", "Search_Count": 3}, {"Month_Date_Year": "May 1, 2017", "Search_Count": 3}, {"Month_Date_Year": "Jun 1, 2017", "Search_Count": 0}, {"Month_Date_Year": "Jul 1, 2017", "Search_Count": 4}, {"Month_Date_Year": "Aug 1, 2017", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2017", "Search_Count": 3}, {"Month_Date_Year": "Oct 1, 2017", "Search_Count": 3}, {"Month_Date_Year": "Nov 1, 2017", "Search_Count": 2}, {"Month_Date_Year": "Dec 1, 2017", "Search_Count": 3}, {"Month_Date_Year": "Jan 1, 2018", "Search_Count": 3}, {"Month_Date_Year": "Feb 1, 2018", "Search_Count": 1}, {"Month_Date_Year": "Mar 1, 2018", "Search_Count": 2}, {"Month_Date_Year": "Apr 1, 2018", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2018", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2018", "Search_Count": 4}, {"Month_Date_Year": "Jul 1, 2018", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2018", "Search_Count": 1}, {"Month_Date_Year": "Sep 1, 2018", "Search_Count": 0}, {"Month_Date_Year": "Oct 1, 2018", "Search_Count": 4}, {"Month_Date_Year": "Nov 1, 2018", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2018", "Search_Count": 4}, {"Month_Date_Year": "Jan 1, 2019", "Search_Count": 4}, {"Month_Date_Year": "Feb 1, 2019", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2019", "Search_Count": 3}, {"Month_Date_Year": "Apr 1, 2019", "Search_Count": 2}, {"Month_Date_Year": "May 1, 2019", "Search_Count": 2}, {"Month_Date_Year": "Jun 1, 2019", "Search_Count": 3}, {"Month_Date_Year": "Jul 1, 2019", "Search_Count": 9}, {"Month_Date_Year": "Aug 1, 2019", "Search_Count": 4}, {"Month_Date_Year": "Sep 1, 2019", "Search_Count": 4}, {"Month_Date_Year": "Oct 1, 2019", "Search_Count": 5}, {"Month_Date_Year": "Nov 1, 2019", "Search_Count": 3}, {"Month_Date_Year": "Dec 1, 2019", "Search_Count": 2}, {"Month_Date_Year": "Jan 1, 2020", "Search_Count": 2}, {"Month_Date_Year": "Feb 1, 2020", "Search_Count": 2}, {"Month_Date_Year": "Mar 1, 2020", "Search_Count": 0}, {"Month_Date_Year": "Apr 1, 2020", "Search_Count": 3}, {"Month_Date_Year": "May 1, 2020", "Search_Count": 1}, {"Month_Date_Year": "Jun 1, 2020", "Search_Count": 2}, {"Month_Date_Year": "Jul 1, 2020", "Search_Count": 2}, {"Month_Date_Year": "Aug 1, 2020", "Search_Count": 2}, {"Month_Date_Year": "Sep 1, 2020", "Search_Count": 0}, {"Month_Date_Year": "Oct 1, 2020", "Search_Count": 2}, {"Month_Date_Year": "Nov 1, 2020", "Search_Count": 0}, {"Month_Date_Year": "Dec 1, 2020", "Search_Count": 2}, {"Month_Date_Year": "Jan 1, 2021", "Search_Count": 1}, {"Month_Date_Year": "Feb 1, 2021", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2021", "Search_Count": 2}, {"Month_Date_Year": "Apr 1, 2021", "Search_Count": 1}, {"Month_Date_Year": "May 1, 2021", "Search_Count": 0}, {"Month_Date_Year": "Jun 1, 2021", "Search_Count": 1}, {"Month_Date_Year": "Jul 1, 2021", "Search_Count": 2}, {"Month_Date_Year": "Aug 1, 2021", "Search_Count": 2}, {"Month_Date_Year": "Sep 1, 2021", "Search_Count": 4}, {"Month_Date_Year": "Oct 1, 2021", "Search_Count": 2}, {"Month_Date_Year": "Nov 1, 2021", "Search_Count": 1}, {"Month_Date_Year": "Dec 1, 2021", "Search_Count": 0}, {"Month_Date_Year": "Jan 1, 2022", "Search_Count": 5}, {"Month_Date_Year": "Feb 1, 2022", "Search_Count": 0}, {"Month_Date_Year": "Mar 1, 2022", "Search_Count": 2}, {"Month_Date_Year": "Apr 1, 2022", "Search_Count": 4}, {"Month_Date_Year": "May 1, 2022", "Search_Count": 3}, {"Month_Date_Year": "Jun 1, 2022", "Search_Count": 3}, {"Month_Date_Year": "Jul 1, 2022", "Search_Count": 2}, {"Month_Date_Year": "Aug 1, 2022", "Search_Count": 3}, {"Month_Date_Year": "Sep 1, 2022", "Search_Count": 2}, {"Month_Date_Year": "Oct 1, 2022", "Search_Count": 2}, {"Month_Date_Year": "Nov 1, 2022", "Search_Count": 1}, {"Month_Date_Year": "Dec 1, 2022", "Search_Count": 3}, {"Month_Date_Year": "Jan 1, 2023", "Search_Count": 2}, {"Month_Date_Year": "Feb 1, 2023", "Search_Count": 4}, {"Month_Date_Year": "Mar 1, 2023", "Search_Count": 2}, {"Month_Date_Year": "Apr 1, 2023", "Search_Count": 0}, {"Month_Date_Year": "May 1, 2023", "Search_Count": 2}, {"Month_Date_Year": "Jun 1, 2023", "Search_Count": 4}, {"Month_Date_Year": "Jul 1, 2023", "Search_Count": 0}, {"Month_Date_Year": "Aug 1, 2023", "Search_Count": 0}, {"Month_Date_Year": "Sep 1, 2023", "Search_Count": 9}]}, {"SERP Analysis": {"error": "list index out of range"}}, {"Related Keywords": [{"Total Related Keywords": 16}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "Informational", "Keyword": "pincode of gomti nagar lucknow", "Keyword Difficulty": "29", "Number of Results": "76", "SERP Features": "\"Featured snippet, Indented, Video, People also ask, Related searches\"", "Trend": "\"1.00,1.00,0.81,0.81,1.00,0.81,0.81,0.81,0.81,0.81,0.81,0.81\"", "Updated": "September 04, 2023", "Volume": "390"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "Informational", "Keyword": "pincode of indira nagar lucknow", "Keyword Difficulty": "31", "Number of Results": "435000", "SERP Features": "\"Featured snippet, FAQ, Indented, Image pack, People also ask, Related searches\"", "Trend": "\"0.81,0.66,0.81,0.81,1.00,1.00,1.00,0.81,0.81,0.81,0.66,0.66\"", "Updated": "September 04, 2023", "Volume": "260"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of keshav nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"1.00,0.20,0.40,0.40,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.40\"", "Updated": "September 04, 2023", "Volume": "50"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of triveni nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"0.56,1.00,0.22,0.11,0.33,0.11,0.44,0.11,0.11,0.11,0.11,1.00\"", "Updated": "September 04, 2023", "Volume": "20"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of sarojini nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"0.11,0.11,0.11,0.56,0.11,1.00,0.11,1.00,0.11,0.11,0.11,0.11\"", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of transport nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"0.14,0.14,0.14,1.00,0.29,0.14,0.29,0.14,0.29,0.57,0.14,0.14\"", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of vikas nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"1.00,0.19,0.04,0.04,0.04,1.00,0.19,0.04,0.04,0.12,0.08,0.04\"", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode no of sarojini nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00\"", "Updated": "September 04, 2023", "Volume": "0"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "Informational", "Keyword": "pincode of gomti nagar lucknow", "Keyword Difficulty": "29", "Number of Results": "76", "SERP Features": "\"Featured snippet, Indented, Video, People also ask, Related searches\"", "Trend": "\"1.00,1.00,0.81,0.81,1.00,0.81,0.81,0.81,0.81,0.81,0.81,0.81\"", "Updated": "September 04, 2023", "Volume": "390"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "Informational", "Keyword": "pincode of indira nagar lucknow", "Keyword Difficulty": "31", "Number of Results": "435000", "SERP Features": "\"Featured snippet, FAQ, Indented, Image pack, People also ask, Related searches\"", "Trend": "\"0.81,0.66,0.81,0.81,1.00,1.00,1.00,0.81,0.81,0.81,0.66,0.66\"", "Updated": "September 04, 2023", "Volume": "260"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of keshav nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"1.00,0.20,0.40,0.40,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.40\"", "Updated": "September 04, 2023", "Volume": "50"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of triveni nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"0.56,1.00,0.22,0.11,0.33,0.11,0.44,0.11,0.11,0.11,0.11,1.00\"", "Updated": "September 04, 2023", "Volume": "20"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of sarojini nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"0.11,0.11,0.11,0.56,0.11,1.00,0.11,1.00,0.11,0.11,0.11,0.11\"", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of transport nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"0.14,0.14,0.14,1.00,0.29,0.14,0.29,0.14,0.29,0.57,0.14,0.14\"", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode of vikas nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"1.00,0.19,0.04,0.04,0.04,1.00,0.19,0.04,0.04,0.12,0.08,0.04\"", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Competitive Density": "0", "Group": "nagar", "Intent": "", "Keyword": "pincode no of sarojini nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "SERP Features": "", "Trend": "\"0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00\"", "Updated": "September 04, 2023", "Volume": "0"}]}]
{"$schema": "http://json-schema.org/schema#", "type": "array", "items": {"type": "object", "properties": {"Keyword Overview": {"type": "object", "properties": {"CPC (USD)": {"type": "string"}, "Competitive Density": {"type": "string"}, "Group": {"type": "string"}, "Intent": {"type": "string"}, "Keyword": {"type": "string"}, "Keyword Difficulty": {"type": "string"}, "Number of Results": {"type": "string"}, "SERP Features": {"type": "string"}, "Trend": {"type": "string"}, "Updated": {"type": "string"}, "Volume": {"type": "string"}}, "required": ["CPC (USD)", "Competitive Density", "Group", "Intent", "Keyword", "Keyword Difficulty", "Number of Results", "SERP Features", "Trend", "Updated", "Volume"]}, "Keword Trending History On Google(Data)": {"type": "array", "items": {"type": "object", "properties": {"Month_Date_Year": {"type": ["null", "string"]}, "Search_Count": {"type": ["integer", "null"]}}, "required": ["Month_Date_Year", "Search_Count"]}}, "SERP Analysis": {"type": "object", "properties": {"error": {"type": "string"}}, "required": ["error"]}, "Related Keywords": {"type": "array", "items": {"type": "object", "properties": {"Total Related Keywords": {"type": "integer"}, "CPC (USD)": {"type": "string"}, "Competitive Density": {"type": "string"}, "Group": {"type": "string"}, "Intent": {"type": "string"}, "Keyword": {"type": "string"}, "Keyword Difficulty": {"type": "string"}, "Number of Results": {"type": "string"}, "SERP Features": {"type": "string"}, "Trend": {"type": "string"}, "Updated": {"type": "string"}, "Volume": {"type": "string"}}}}}}}
d7b4f512-b874-4367-ad90-a4c8bdcd2dd3/41837595-832b-46ec-a2c0-5373cea6c727/0/0
Ahrefs Keyword Tool
Find relevant keywords from our database of over 2 billion queries. Just enter up to ten words or phrases and choose from one of six keyword ideas reports.
8.2
Discover keyword ideas
Find relevant keywords from our database of over 2 billion queries. Just enter up to ten words or phrases and choose from one of six keyword ideas reports. Fill your content calendar for weeks, months, or even years in minutes.
200
Response
[{"Related Keywords": [{"Total Related Keywords": 16}, {"CPC (USD)": "0", "Keyword": "pincode of gomti nagar lucknow", "Keyword Difficulty": "29", "Number of Results": "76", "Updated": "September 04, 2023", "Volume": "390"}, {"CPC (USD)": "0", "Keyword": "pincode of indira nagar lucknow", "Keyword Difficulty": "31", "Number of Results": "435000", "Updated": "September 04, 2023", "Volume": "260"}, {"CPC (USD)": "0", "Keyword": "pincode of keshav nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "50"}, {"CPC (USD)": "0", "Keyword": "pincode of triveni nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "20"}, {"CPC (USD)": "0", "Keyword": "pincode of sarojini nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Keyword": "pincode of transport nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Keyword": "pincode of vikas nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Keyword": "pincode no of sarojini nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "0"}, {"CPC (USD)": "0", "Keyword": "pincode of gomti nagar lucknow", "Keyword Difficulty": "29", "Number of Results": "76", "Updated": "September 04, 2023", "Volume": "390"}, {"CPC (USD)": "0", "Keyword": "pincode of indira nagar lucknow", "Keyword Difficulty": "31", "Number of Results": "435000", "Updated": "September 04, 2023", "Volume": "260"}, {"CPC (USD)": "0", "Keyword": "pincode of keshav nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "50"}, {"CPC (USD)": "0", "Keyword": "pincode of triveni nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "20"}, {"CPC (USD)": "0", "Keyword": "pincode of sarojini nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Keyword": "pincode of transport nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Keyword": "pincode of vikas nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "10"}, {"CPC (USD)": "0", "Keyword": "pincode no of sarojini nagar lucknow", "Keyword Difficulty": "", "Number of Results": "", "Updated": "September 04, 2023", "Volume": "0"}]}]
{"$schema": "http://json-schema.org/schema#", "type": "array", "items": {"type": "object", "properties": {"Related Keywords": {"type": "array", "items": {"type": "object", "properties": {"Total Related Keywords": {"type": "integer"}, "CPC (USD)": {"type": "string"}, "Keyword": {"type": "string"}, "Keyword Difficulty": {"type": "string"}, "Number of Results": {"type": "string"}, "Updated": {"type": "string"}, "Volume": {"type": "string"}}}}}, "required": ["Related Keywords"]}}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/6d13c91f-d607-4861-8507-115ffbb297b8/0/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/account
Retrieve account information
401
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/6d13c91f-d607-4861-8507-115ffbb297b8/1/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/account
Retrieve account information
200
null
{"email": "", "created": "", "name": "", "verified": "", "sub": ""}
{"type": "object", "properties": {"email": {"type": "string"}, "created": {"type": "string"}, "name": {"type": "string"}, "verified": {"type": "string"}, "sub": {"type": "string"}}, "additionalProperties": false, "required": ["email", "created", "name", "verified", "sub"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/afc2d9dc-98e9-40fe-a961-48836d377008/0/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/describe
Submit the Midjourney /describe command
429
null
{"error": "", "executingJobs": [], "code": 429}
{"type": "object", "properties": {"error": {"type": "string"}, "executingJobs": {"type": "array", "items": {"type": "string"}}, "code": {"type": "integer", "enum": [429]}}, "additionalProperties": false, "required": ["error", "executingJobs", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/afc2d9dc-98e9-40fe-a961-48836d377008/1/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/describe
Submit the Midjourney /describe command
422
null
{"error": "", "jobid": "", "status": "moderated", "code": 422}
{"type": "object", "properties": {"error": {"type": "string"}, "jobid": {"type": "string"}, "status": {"type": "string", "enum": ["moderated"]}, "code": {"type": "integer", "enum": [422]}}, "additionalProperties": false, "required": ["error", "jobid", "status", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/afc2d9dc-98e9-40fe-a961-48836d377008/2/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/describe
Submit the Midjourney /describe command
413
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/afc2d9dc-98e9-40fe-a961-48836d377008/3/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/describe
Submit the Midjourney /describe command
412
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/afc2d9dc-98e9-40fe-a961-48836d377008/4/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/describe
Submit the Midjourney /describe command
200
null
{"jobid": "", "verb": "describe", "status": "started", "created": "", "updated": "", "describeUrl": "", "channel": "", "server": "", "maxJobs": 0, "messageId": "", "content": "", "embeds": [{"type": "", "description": "", "image": {"url": "", "proxy_url": "", "width": 0, "height": 0}}], "timestamp": "", "code": 200}
{"type": "object", "properties": {"jobid": {"description": "Use returned jobid value to retrieve job status and results", "type": "string"}, "verb": {"type": "string", "enum": ["describe"]}, "status": {"type": "string", "enum": ["started", "completed"]}, "created": {"type": "string"}, "updated": {"type": "string"}, "describeUrl": {"type": "string"}, "channel": {"type": "string"}, "server": {"type": "string"}, "maxJobs": {"type": "integer"}, "messageId": {"type": "string"}, "content": {"description": "Contains message generated by Midjourney reflecting current generation parameters and progress", "type": "string"}, "embeds": {"description": "Contains additional information", "type": "array", "items": {"type": "object", "properties": {"type": {"type": "string"}, "description": {"type": "string"}, "image": {"type": "object", "properties": {"url": {"type": "string"}, "proxy_url": {"type": "string"}, "width": {"type": "number"}, "height": {"type": "number"}}}}}}, "timestamp": {"type": "string"}, "code": {"type": "integer", "enum": [200]}}, "additionalProperties": false, "required": ["jobid", "verb", "status", "created", "updated", "describeUrl", "channel", "server", "maxJobs", "messageId", "content", "timestamp", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/afc2d9dc-98e9-40fe-a961-48836d377008/5/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/describe
Submit the Midjourney /describe command
401
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/2e5806db-9a27-4ddd-ac9f-7f120313f718/1/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs
Get list of currently executing jobs
401
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/125231ab-506d-4a33-818a-c95b0b114300/0/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/
Retrieve status and results of jobs/imagine, jobs/button, jobs/blend or jobs/describe
404
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/125231ab-506d-4a33-818a-c95b0b114300/1/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/
Retrieve status and results of jobs/imagine, jobs/button, jobs/blend or jobs/describe
400
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/125231ab-506d-4a33-818a-c95b0b114300/2/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/
Retrieve status and results of jobs/imagine, jobs/button, jobs/blend or jobs/describe
401
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/125231ab-506d-4a33-818a-c95b0b114300/3/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/
Retrieve status and results of jobs/imagine, jobs/button, jobs/blend or jobs/describe
200
null
{"jobid": "", "parentJobId": "", "verb": "imagine", "status": "created", "created": "", "updated": "", "prompt": "", "blendUrls": [], "blendDimensions": "Portrait", "describeUrl": "", "button": "U1", "children": [{"button": "U1", "jobid": "", "messageId": ""}], "buttons": ["U1"], "channel": "", "server": "", "maxJobs": 0, "messageId": "", "content": "", "timestamp": "", "attachments": [{"proxy_url": "", "size": 0, "url": "", "width": 0, "content_type": "", "filename": "", "height": 0, "id": ""}], "embeds": [{"type": "", "description": "", "image": {"url": "", "proxy_url": "", "width": 0, "height": 0}}], "code": 200}
{"type": "object", "properties": {"jobid": {"type": "string"}, "parentJobId": {"type": "string"}, "verb": {"type": "string", "enum": ["imagine", "button", "blend", "describe"]}, "status": {"description": "If value is created, started or progress wait in a loop for at least 10..30 seconds and retry again", "type": "string", "enum": ["created", "started", "moderated", "progress", "completed", "failed", "cancelled"]}, "created": {"type": "string"}, "updated": {"type": "string"}, "prompt": {"type": "string"}, "blendUrls": {"type": "array", "items": {"type": "string"}}, "blendDimensions": {"type": "string", "enum": ["Portrait", "Square", "Landscape"]}, "describeUrl": {"type": "string"}, "button": {"type": "string", "enum": ["U1", "U2", "U3", "U4", "V1", "V2", "V3", "V4", "\u2b05\ufe0f", "\u27a1\ufe0f", "\u2b06\ufe0f", "\u2b07\ufe0f", "\ud83d\udd04", "Vary (Strong)", "Vary (Subtle)", "Zoom Out 1.5x", "Zoom Out 2x", "Upscale (2x)", "Upscale (4x)", "Redo Upscale (2x)", "Redo Upscale (4x)", "Make Square", "Make Variations", "Remaster"]}, "children": {"type": "array", "items": {"type": "object", "properties": {"button": {"type": "string", "enum": ["U1", "U2", "U3", "U4", "V1", "V2", "V3", "V4", "\u2b05\ufe0f", "\u27a1\ufe0f", "\u2b06\ufe0f", "\u2b07\ufe0f", "\ud83d\udd04", "Vary (Strong)", "Vary (Subtle)", "Zoom Out 1.5x", "Zoom Out 2x", "Upscale (2x)", "Upscale (4x)", "Redo Upscale (2x)", "Redo Upscale (4x)", "Make Square", "Make Variations", "Remaster"]}, "jobid": {"type": "string"}, "messageId": {"type": "string"}}, "required": ["messageId", "button", "jobid"]}}, "buttons": {"type": "array", "items": {"type": "string", "enum": ["U1", "U2", "U3", "U4", "V1", "V2", "V3", "V4", "\u2b05\ufe0f", "\u27a1\ufe0f", "\u2b06\ufe0f", "\u2b07\ufe0f", "\ud83d\udd04", "Vary (Strong)", "Vary (Subtle)", "Zoom Out 1.5x", "Zoom Out 2x", "Upscale (2x)", "Upscale (4x)", "Redo Upscale (2x)", "Redo Upscale (4x)", "Make Square", "Make Variations", "Remaster"]}}, "channel": {"type": "string"}, "server": {"type": "string"}, "maxJobs": {"type": "integer"}, "messageId": {"type": "string"}, "content": {"type": "string", "description": "Message generated by Midjourney reflecting current generation parameters and progress"}, "timestamp": {"type": "string"}, "attachments": {"type": "array", "items": {"type": "object", "properties": {"proxy_url": {"type": "string"}, "size": {"type": "integer"}, "url": {"type": "string"}, "width": {"type": "integer"}, "content_type": {"type": "string"}, "filename": {"type": "string"}, "height": {"type": "integer"}, "id": {"type": "string"}}}}, "embeds": {"description": "Contains additional information", "type": "array", "items": {"type": "object", "properties": {"type": {"type": "string"}, "description": {"type": "string"}, "image": {"type": "object", "properties": {"url": {"type": "string"}, "proxy_url": {"type": "string"}, "width": {"type": "number"}, "height": {"type": "number"}}}}}}, "code": {"type": "integer", "enum": [200]}}, "additionalProperties": false, "required": ["jobid", "verb", "status", "created", "channel", "server", "maxJobs", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/df85d049-1720-4bb6-851f-cad8afcc31e4/0/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/button
Midjourney upscale or create variations and enhance or modify buttons
400
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/df85d049-1720-4bb6-851f-cad8afcc31e4/1/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/button
Midjourney upscale or create variations and enhance or modify buttons
409
null
{"error": "", "button": "U1", "jobid": "", "code": 409}
{"type": "object", "properties": {"error": {"type": "string"}, "button": {"type": "string", "enum": ["U1", "U2", "U3", "U4"]}, "jobid": {"type": "string"}, "code": {"type": "integer", "enum": [409]}}, "additionalProperties": false, "required": ["error", "button", "jobid", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/df85d049-1720-4bb6-851f-cad8afcc31e4/2/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/button
Midjourney upscale or create variations and enhance or modify buttons
412
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/df85d049-1720-4bb6-851f-cad8afcc31e4/3/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/button
Midjourney upscale or create variations and enhance or modify buttons
401
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/df85d049-1720-4bb6-851f-cad8afcc31e4/4/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/button
Midjourney upscale or create variations and enhance or modify buttons
404
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/df85d049-1720-4bb6-851f-cad8afcc31e4/5/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/button
Midjourney upscale or create variations and enhance or modify buttons
413
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/df85d049-1720-4bb6-851f-cad8afcc31e4/6/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/button
Midjourney upscale or create variations and enhance or modify buttons
200
null
{"jobid": "", "verb": "button", "status": "started", "created": "", "updated": "", "button": "U1", "parentJobId": "", "channel": "", "server": "", "maxJobs": 0, "code": 200}
{"type": "object", "properties": {"jobid": {"description": "Use returned jobid value to retrieve job status and results", "type": "string"}, "verb": {"type": "string", "enum": ["button"]}, "status": {"type": "string", "enum": ["started", "completed"]}, "created": {"type": "string"}, "updated": {"type": "string"}, "button": {"type": "string", "enum": ["U1", "U2", "U3", "U4", "V1", "V2", "V3", "V4", "\u2b05\ufe0f", "\u27a1\ufe0f", "\u2b06\ufe0f", "\u2b07\ufe0f", "\ud83d\udd04", "Vary (Strong)", "Vary (Subtle)", "Zoom Out 1.5x", "Zoom Out 2x", "Upscale (2x)", "Upscale (4x)", "Redo Upscale (2x)", "Redo Upscale (4x)", "Make Square", "Make Variations", "Remaster"]}, "parentJobId": {"type": "string"}, "channel": {"type": "string"}, "server": {"type": "string"}, "maxJobs": {"type": "integer"}, "code": {"type": "integer", "enum": [200]}}, "additionalProperties": false, "required": ["jobid", "verb", "status", "created", "updated", "button", "parentJobId", "channel", "server", "maxJobs", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/df85d049-1720-4bb6-851f-cad8afcc31e4/7/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/button
Midjourney upscale or create variations and enhance or modify buttons
429
null
{"error": "", "executingJobs": [], "code": 429}
{"type": "object", "properties": {"error": {"type": "string"}, "executingJobs": {"type": "array", "items": {"type": "string"}}, "code": {"type": "integer", "enum": [429]}}, "additionalProperties": false, "required": ["error", "executingJobs", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/e9ad45f4-39cd-463e-b158-802122032023/0/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/cancel/
Cancel execution of job created by jobs/imagine, jobs/button, jobs/blend or jobs/describe
400
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/e9ad45f4-39cd-463e-b158-802122032023/1/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/cancel/
Cancel execution of job created by jobs/imagine, jobs/button, jobs/blend or jobs/describe
200
null
{"jobid": "", "status": "created", "code": 200}
{"type": "object", "properties": {"jobid": {"type": "string"}, "status": {"type": "string", "enum": ["created", "started", "moderated", "progress", "completed", "failed", "cancelled"]}, "code": {"type": "integer", "enum": [200]}}, "additionalProperties": false, "required": ["jobid", "status", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/e9ad45f4-39cd-463e-b158-802122032023/2/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/cancel/
Cancel execution of job created by jobs/imagine, jobs/button, jobs/blend or jobs/describe
401
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/e9ad45f4-39cd-463e-b158-802122032023/3/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/cancel/
Cancel execution of job created by jobs/imagine, jobs/button, jobs/blend or jobs/describe
404
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/fe5925bb-e7b6-453b-97da-d56853ae9a4e/0/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/blend
Submit the Midjourney /blend command
412
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/fe5925bb-e7b6-453b-97da-d56853ae9a4e/1/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/blend
Submit the Midjourney /blend command
200
null
{"jobid": "", "verb": "blend", "status": "started", "created": "", "updated": "", "blendUrls": [], "blendDimensions": "Portrait", "channel": "", "server": "", "maxJobs": 0, "messageId": "", "content": "", "timestamp": "", "code": 200}
{"type": "object", "properties": {"jobid": {"description": "Use returned jobid value to retrieve job status and results", "type": "string"}, "verb": {"type": "string", "enum": ["blend"]}, "status": {"type": "string", "enum": ["started"]}, "created": {"type": "string"}, "updated": {"type": "string"}, "blendUrls": {"type": "array", "items": {"type": "string"}}, "blendDimensions": {"type": "string", "enum": ["Portrait", "Square", "Landscape"]}, "channel": {"type": "string"}, "server": {"type": "string"}, "maxJobs": {"type": "integer"}, "messageId": {"type": "string"}, "content": {"description": "Contains message generated by Midjourney reflecting current generation parameters and progress", "type": "string"}, "timestamp": {"type": "string"}, "code": {"type": "integer", "enum": [200]}}, "additionalProperties": false, "required": ["jobid", "verb", "status", "created", "updated", "blendUrls", "channel", "server", "maxJobs", "messageId", "content", "timestamp", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/fe5925bb-e7b6-453b-97da-d56853ae9a4e/2/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/blend
Submit the Midjourney /blend command
429
null
{"error": "", "executingJobs": [], "code": 429}
{"type": "object", "properties": {"error": {"type": "string"}, "executingJobs": {"type": "array", "items": {"type": "string"}}, "code": {"type": "integer", "enum": [429]}}, "additionalProperties": false, "required": ["error", "executingJobs", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/fe5925bb-e7b6-453b-97da-d56853ae9a4e/3/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/blend
Submit the Midjourney /blend command
401
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/fe5925bb-e7b6-453b-97da-d56853ae9a4e/4/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/blend
Submit the Midjourney /blend command
422
null
{"error": "", "jobid": "", "status": "moderated", "code": 422}
{"type": "object", "properties": {"error": {"type": "string"}, "jobid": {"type": "string"}, "status": {"type": "string", "enum": ["moderated"]}, "code": {"type": "integer", "enum": [422]}}, "additionalProperties": false, "required": ["error", "jobid", "status", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/fe5925bb-e7b6-453b-97da-d56853ae9a4e/5/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/blend
Submit the Midjourney /blend command
413
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/f1a6bc42-f6e9-4f3f-897a-78d1b2b54027/0/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/imagine
Submit the Midjourney /imagine command
413
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/f1a6bc42-f6e9-4f3f-897a-78d1b2b54027/1/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/imagine
Submit the Midjourney /imagine command
429
null
{"error": "", "executingJobs": [], "code": 429}
{"type": "object", "properties": {"error": {"type": "string"}, "executingJobs": {"type": "array", "items": {"type": "string"}}, "code": {"type": "integer", "enum": [429]}}, "additionalProperties": false, "required": ["error", "executingJobs", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/f1a6bc42-f6e9-4f3f-897a-78d1b2b54027/2/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/imagine
Submit the Midjourney /imagine command
401
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/f1a6bc42-f6e9-4f3f-897a-78d1b2b54027/3/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/imagine
Submit the Midjourney /imagine command
412
null
{"error": "", "code": 400}
{"type": "object", "properties": {"error": {"type": "string"}, "code": {"type": "integer", "enum": [400, 401, 404, 412, 413]}}, "additionalProperties": false, "required": ["error", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/f1a6bc42-f6e9-4f3f-897a-78d1b2b54027/4/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/imagine
Submit the Midjourney /imagine command
422
null
{"error": "", "jobid": "", "status": "moderated", "code": 422}
{"type": "object", "properties": {"error": {"type": "string"}, "jobid": {"type": "string"}, "status": {"type": "string", "enum": ["moderated"]}, "code": {"type": "integer", "enum": [422]}}, "additionalProperties": false, "required": ["error", "jobid", "status", "code"]}
d9fdf1ab-156d-425c-8f6d-e878955d8bdf/f1a6bc42-f6e9-4f3f-897a-78d1b2b54027/5/0
Midjourney API
Connect your Midjourney Discord account to our API and start using it immediately in your production environment.
0.1
/jobs/imagine
Submit the Midjourney /imagine command
200
null
{"jobid": "", "verb": "imagine", "status": "started", "created": "", "updated": "", "prompt": "", "channel": "", "server": "", "maxJobs": 0, "messageId": "", "content": "", "timestamp": "", "code": 200}
{"type": "object", "properties": {"jobid": {"description": "Use returned jobid value to retrieve job status and results", "type": "string"}, "verb": {"type": "string", "enum": ["imagine"]}, "status": {"type": "string", "enum": ["started"]}, "created": {"type": "string"}, "updated": {"type": "string"}, "prompt": {"type": "string"}, "channel": {"type": "string"}, "server": {"type": "string"}, "maxJobs": {"type": "integer"}, "messageId": {"type": "string"}, "content": {"description": "Contains message generated by Midjourney reflecting current generation parameters and progress", "type": "string"}, "timestamp": {"type": "string"}, "code": {"type": "integer", "enum": [200]}}, "additionalProperties": false, "required": ["jobid", "verb", "status", "created", "updated", "prompt", "channel", "server", "maxJobs", "messageId", "content", "timestamp", "code"]}
7620fe23-08fb-4dce-aafc-5731a8c4546e/73f10b78-96a5-4b6a-b36e-6df775b7b77c/0/0
Ebook AI
null
null
gerarEbook
This API point generate a new ebook using AI.
200
New Example
{"key1": "value", "key2": "value"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"key1": {"type": "string"}, "key2": {"type": "string"}}, "required": ["key1", "key2"]}
1904cc7d-9aed-4ffd-a466-bce8e078f6e6/4a6606f2-7739-41b3-8f6e-40078e50f1c6/0/0
iamAI
An intelligent chatbot that can answer any type of question! - Take a taste here: https://iamai.page/ -- Full docs here: https://iamai.page/#/docs
null
/ask
This is the main endpoint. You send your questions here and you get a reply back.
200
Resonse payload
{"confidence": "0.9996061", "hint": null, "intent": "greetings", "message": {"text": "Hey, what can I do for you?", "url": ""}, "status": 200, "success": true}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"confidence": {"type": "string"}, "hint": {"type": "null"}, "intent": {"type": "string"}, "message": {"type": "object", "properties": {"text": {"type": "string"}, "url": {"type": "string"}}, "required": ["text", "url"]}, "status": {"type": "integer"}, "success": {"type": "boolean"}}, "required": ["confidence", "hint", "intent", "message", "status", "success"]}
97fa88cb-e4f8-4357-9552-c6ec15818148/86cdbf08-db62-4800-a606-037cd1591ec5/0/0
TextMiner
Text mining and analytics - sentiment analysis, entity recognizer and more
null
Sentiment Analyzer
Detect the sentiment of a short text
200
Response
{"sentiment_score": "0.75", "positive_sentiment_percentage": "100", "negative_sentiment_percentage": "0", "positive_aspects": " ", "negative_aspects": " ", "aspect_keywords_detected": " "}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"sentiment_score": {"type": "string"}, "positive_sentiment_percentage": {"type": "string"}, "negative_sentiment_percentage": {"type": "string"}, "positive_aspects": {"type": "string"}, "negative_aspects": {"type": "string"}, "aspect_keywords_detected": {"type": "string"}}, "required": ["aspect_keywords_detected", "negative_aspects", "negative_sentiment_percentage", "positive_aspects", "positive_sentiment_percentage", "sentiment_score"]}
c6b5117c-650d-4c6b-a103-c51ea160b6dc/dd0b1426-48d7-44c6-bd5a-c3244cd159c0/0/0
AnimImagine AI
Feel Power of 134 Cutting-Edge Models for Exceptional Text-to-Image and Animation Generation with Best Quality.
9.1
GenerateImage&Animation
Generate image or animation
200
Example_1
{"imageUrl": "https://cdn.mage.space/generate/61824a4ee00945af9cebc46f93ac902c.png", "message": "Image generated successfully"}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"imageUrl": {"type": "string"}, "message": {"type": "string"}}, "required": ["imageUrl", "message"]}
f6f51317-5695-4672-8b1d-e72e8f089886/ce9b753d-aee6-4775-8804-69b3ed079b3a/0/0
Cloudlabs Text To Speech
Convert text to audio quickly, supports over 100 languages ​​and 300+ speakers
9.6
voices
This endpoint is used to get a list of available speakers
200
Response
{"status": "success", "voices": [{"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-1", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-2", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-3", "voice_gender": "Male"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-4", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-5", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-6", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-7", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-8", "voice_gender": "Male"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-9", "voice_gender": "Male"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-10", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-11", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-12", "voice_gender": "Male"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-13", "voice_gender": "Male"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-14", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-15", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Neural", "voice_code": "en-US-16", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Standard", "voice_code": "en-US-17", "voice_gender": "Female"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Standard", "voice_code": "en-US-18", "voice_gender": "Male"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Standard", "voice_code": "en-US-19", "voice_gender": "Male"}, {"language_code": "en-US", "language_name": "English (United States)", "voice_type": "Standard", "voice_code": "en-US-20", "voice_gender": "Female"}]}
{"type": "object", "properties": {"status": {"type": "string"}, "voices": {"type": "array", "items": {"type": "object", "properties": {"language_code": {"type": "string"}, "language_name": {"type": "string"}, "voice_type": {"type": "string"}, "voice_code": {"type": "string"}, "voice_gender": {"type": "string"}}}}}}
f6f51317-5695-4672-8b1d-e72e8f089886/4ca9a03c-74ec-421d-b957-e6cc12deb57a/0/0
Cloudlabs Text To Speech
Convert text to audio quickly, supports over 100 languages ​​and 300+ speakers
9.6
languages
This endpoint is used to get a list of available languages
200
Response
{"status": "success", "languages": [{"language_code": "af-ZA", "language_name": "Afrikaans (South Africa)"}, {"language_code": "am-ET", "language_name": "Amharic (Ethiopia)"}, {"language_code": "ar-AE", "language_name": "Arabic (United Arab Emirates)"}, {"language_code": "ar-BH", "language_name": "Arabic (Bahrain)"}, {"language_code": "ar-DZ", "language_name": "Arabic (Algeria)"}, {"language_code": "ar-EG", "language_name": "Arabic (Egypt)"}, {"language_code": "ar-IQ", "language_name": "Arabic (Iraq)"}, {"language_code": "ar-JO", "language_name": "Arabic (Jordan)"}, {"language_code": "ar-KW", "language_name": "Arabic (Kuwait)"}, {"language_code": "ar-LY", "language_name": "Arabic (Libya)"}, {"language_code": "ar-MA", "language_name": "Arabic (Morocco)"}, {"language_code": "ar-QA", "language_name": "Arabic (Qatar)"}, {"language_code": "ar-SA", "language_name": "Arabic (Saudi Arabia)"}, {"language_code": "ar-SY", "language_name": "Arabic (Syria)"}, {"language_code": "ar-TN", "language_name": "Arabic (Tunisia)"}, {"language_code": "ar-YE", "language_name": "Arabic (Yemen)"}, {"language_code": "bg-BG", "language_name": "Bulgarian (Bulgaria)"}, {"language_code": "bn-BD", "language_name": "Bangla (Bangladesh)"}, {"language_code": "ca-ES", "language_name": "Catalan (Spain)"}, {"language_code": "cs-CZ", "language_name": "Czech (Czech)"}, {"language_code": "cy-GB", "language_name": "Welsh (United Kingdom)"}, {"language_code": "da-DK", "language_name": "Danish (Denmark)"}, {"language_code": "de-AT", "language_name": "German (Austria)"}, {"language_code": "de-CH", "language_name": "German (Switzerland)"}, {"language_code": "de-DE", "language_name": "German (Germany)"}, {"language_code": "el-GR", "language_name": "Greek (Greece)"}, {"language_code": "en-AU", "language_name": "English (Australia)"}, {"language_code": "en-CA", "language_name": "English (Canada)"}, {"language_code": "en-GB", "language_name": "English (United Kingdom)"}, {"language_code": "en-HK", "language_name": "English (Hongkong)"}, {"language_code": "en-IE", "language_name": "English (Ireland)"}, {"language_code": "en-IN", "language_name": "English (India)"}, {"language_code": "en-KE", "language_name": "English (Kenya)"}, {"language_code": "en-NG", "language_name": "English (Nigeria)"}, {"language_code": "en-NZ", "language_name": "English (New Zealand)"}, {"language_code": "en-PH", "language_name": "English (Philippines)"}, {"language_code": "en-SG", "language_name": "English (Singapore)"}, {"language_code": "en-TZ", "language_name": "English (Tanzania)"}, {"language_code": "en-US", "language_name": "English (United States)"}, {"language_code": "en-ZA", "language_name": "English (South Africa)"}, {"language_code": "es-AR", "language_name": "Spanish (Argentina)"}, {"language_code": "es-BO", "language_name": "Spanish (Bolivia)"}, {"language_code": "es-CL", "language_name": "Spanish (Chile)"}, {"language_code": "es-CO", "language_name": "Spanish (Colombia)"}, {"language_code": "es-CR", "language_name": "Spanish (Costa Rica)"}, {"language_code": "es-CU", "language_name": "Spanish (Cuba)"}, {"language_code": "es-DO", "language_name": "Spanish (Dominican Republic)"}, {"language_code": "es-EC", "language_name": "Spanish (Ecuador)"}, {"language_code": "es-ES", "language_name": "Spanish (Spain)"}, {"language_code": "es-GQ", "language_name": "Spanish (Equatorial Guinea)"}, {"language_code": "es-GT", "language_name": "Spanish (Guatemala)"}, {"language_code": "es-HN", "language_name": "Spanish (Honduras)"}, {"language_code": "es-MX", "language_name": "Spanish (Mexico)"}, {"language_code": "es-NI", "language_name": "Spanish (Nicaragua)"}, {"language_code": "es-PA", "language_name": "Spanish (Panama)"}, {"language_code": "es-PE", "language_name": "Spanish (Peru)"}, {"language_code": "es-PR", "language_name": "Spanish (Puerto Rico)"}, {"language_code": "es-PY", "language_name": "Spanish (Paraguay)"}, {"language_code": "es-SV", "language_name": "Spanish (El Salvador)"}, {"language_code": "es-US", "language_name": "Spanish (United States)"}, {"language_code": "es-UY", "language_name": "Spanish (Uruguay)"}, {"language_code": "es-VE", "language_name": "Spanish (Venezuela)"}, {"language_code": "et-EE", "language_name": "Estonian (Estonia)"}, {"language_code": "fa-IR", "language_name": "Persian (Iran)"}, {"language_code": "fi-FI", "language_name": "Finnish (Finland)"}, {"language_code": "fil-PH", "language_name": "Filipino (Philippines)"}, {"language_code": "fr-BE", "language_name": "French (Belgium)"}, {"language_code": "fr-CA", "language_name": "French (Canada)"}, {"language_code": "fr-CH", "language_name": "French (Switzerland)"}, {"language_code": "fr-FR", "language_name": "French (France)"}, {"language_code": "ga-IE", "language_name": "Irish (Ireland)"}, {"language_code": "gl-ES", "language_name": "Galician (Spain)"}, {"language_code": "gu-IN", "language_name": "Gujarati (India)"}, {"language_code": "he-IL", "language_name": "Hebrew (Israel)"}, {"language_code": "hi-IN", "language_name": "Hindi (India)"}, {"language_code": "hr-HR", "language_name": "Croatian (Croatia)"}, {"language_code": "hu-HU", "language_name": "Hungarian (Hungary)"}, {"language_code": "id-ID", "language_name": "Indonesian (Indonesia)"}, {"language_code": "it-IT", "language_name": "Italian (Italy)"}, {"language_code": "ja-JP", "language_name": "Japanese (Japan)"}, {"language_code": "jv-ID", "language_name": "Javanese (Indonesia)"}, {"language_code": "km-KH", "language_name": "Khmer (Cambodia)"}, {"language_code": "ko-KR", "language_name": "Korean (Korea)"}, {"language_code": "lt-LT", "language_name": "Lithuanian (Lithuania)"}, {"language_code": "lv-LV", "language_name": "Latvian (Latvia)"}, {"language_code": "mr-IN", "language_name": "Marathi (India)"}, {"language_code": "ms-MY", "language_name": "Malay (Malaysia)"}, {"language_code": "mt-MT", "language_name": "Maltese (Malta)"}, {"language_code": "my-MM", "language_name": "Burmese (Myanmar)"}, {"language_code": "nb-NO", "language_name": "Norwegian (Bokm\u00e5l, Norway)"}, {"language_code": "nl-BE", "language_name": "Dutch (Belgium)"}, {"language_code": "nl-NL", "language_name": "Dutch (Netherlands)"}, {"language_code": "pl-PL", "language_name": "Polish (Poland)"}, {"language_code": "pt-BR", "language_name": "Portuguese (Brazil)"}, {"language_code": "pt-PT", "language_name": "Portuguese (Portugal)"}, {"language_code": "ro-RO", "language_name": "Romanian (Romania)"}, {"language_code": "ru-RU", "language_name": "Russian (Russia)"}, {"language_code": "sk-SK", "language_name": "Slovak (Slovakia)"}, {"language_code": "sl-SI", "language_name": "Slovenian (Slovenia)"}, {"language_code": "so-SO", "language_name": "Somali (Somalia)"}, {"language_code": "su-ID", "language_name": "Sundanese (Indonesia)"}, {"language_code": "sv-SE", "language_name": "Swedish (Sweden)"}, {"language_code": "sw-KE", "language_name": "Swahili (Kenya)"}, {"language_code": "sw-TZ", "language_name": "Swahili (Tanzania)"}, {"language_code": "ta-IN", "language_name": "Tamil (India)"}, {"language_code": "ta-LK", "language_name": "Tamil (Sri Lanka)"}, {"language_code": "ta-SG", "language_name": "Tamil (Singapore)"}, {"language_code": "te-IN", "language_name": "Telugu (India)"}, {"language_code": "th-TH", "language_name": "Thai (Thailand)"}, {"language_code": "tr-TR", "language_name": "Turkish (Turkey)"}, {"language_code": "uk-UA", "language_name": "Ukrainian (Ukraine)"}, {"language_code": "ur-IN", "language_name": "Urdu (India)"}, {"language_code": "ur-PK", "language_name": "Urdu (Pakistan)"}, {"language_code": "uz-UZ", "language_name": "Uzbek (Uzbekistan)"}, {"language_code": "vi-VN", "language_name": "Vietnamese (Vietnam)"}, {"language_code": "zh-CN", "language_name": "Chinese (Mandarin, Simplified)"}, {"language_code": "zh-HK", "language_name": "Chinese (Cantonese, Traditional)"}, {"language_code": "zh-TW", "language_name": "Chinese (Taiwanese Mandarin)"}, {"language_code": "zu-ZA", "language_name": "Zulu (South Africa)"}]}
{"type": "object", "properties": {"status": {"type": "string"}, "languages": {"type": "array", "items": {"type": "object", "properties": {"language_code": {"type": "string"}, "language_name": {"type": "string"}}}}}}
7f6ff014-a2e7-4790-87c5-22ea3f6d2629/19abab6d-aab7-4b5d-82f2-fe65acf8ab92/0/0
Dodogeny Receipt OCR
Dodogeny Receipt OCR performs receipt image transcription by using ==OCR and machine learning==. Provided with a ==photo of a receipt==, Dodogeny Receipt OCR ==recognizes and extracts== key information like total amount, tax amount, date of purchase, merchant information, and line item amounts. ==Leverage== our optimized OCR technology to parse receipts in your application in real-time.
8.2
APIHealthCheck
performs health check for Receipt API. Returns status code '200' is service is running.
200
Sample Response
{"$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": {"responseCode": {"type": "integer"}, "responseMessage": {"type": "string"}}, "required": ["responseCode", "responseMessage"]}
{"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"$schema": {"type": "string"}, "type": {"type": "string"}, "properties": {"type": "object", "properties": {"responseCode": {"type": "object", "properties": {"type": {"type": "string"}}, "required": ["type"]}, "responseMessage": {"type": "object", "properties": {"type": {"type": "string"}}, "required": ["type"]}}, "required": ["responseCode", "responseMessage"]}, "required": {"type": "array", "items": {"type": "string"}}}, "required": ["$schema", "properties", "required", "type"]}
7f6ff014-a2e7-4790-87c5-22ea3f6d2629/e441d90c-ee21-4c65-96f2-5fe581616c6e/0/0
Dodogeny Receipt OCR
Dodogeny Receipt OCR performs receipt image transcription by using ==OCR and machine learning==. Provided with a ==photo of a receipt==, Dodogeny Receipt OCR ==recognizes and extracts== key information like total amount, tax amount, date of purchase, merchant information, and line item amounts. ==Leverage== our optimized OCR technology to parse receipts in your application in real-time.
8.2
ParseFileImageReceiptByML
Description: transcribe a receipt by providing an image file and return detailed result
200
Response Sample
{"responseCode": 200, "responseMessage": "Successfully transcribed receipt image.", "predictions": [{"invoice_number": null, "invoice_total": 65, "invoice_subtotal": null, "barcodes": [], "category": null, "date": "2022-10-18 18:12:00", "due_date": null, "time": null, "customer_information": {"customer_name": null}, "merchant_information": {"merchant_name": "GOURMEND", "merchant_address": "royal road st pierre pick buy ltd", "merchant_phone": null, "merchant_url": null, "merchant_siret": null, "merchant_siren": null, "merchant_vat_number": null, "merchant_gst_number": null, "merchant_abn_number": null}, "payment_information": {"card_type": null, "card_number": null, "cash": null, "tip": null, "discount": null, "change": null}, "locale": {"currency": "GBP", "language": "fr", "country": "GB"}, "taxes": [{"taxes": 8.48, "rate": 15}], "receipt_infos": {}, "item_lines": [{"description": "1> DONUT FOURRE CARAMEL", "quantity": 1, "amount": 65, "unit_price": null}]}]}
{"type": "object", "properties": {"responseCode": {"type": "integer"}, "responseMessage": {"type": "string"}, "predictions": {"type": "array", "items": {"type": "object", "properties": {"invoice_number": {"type": "null"}, "invoice_total": {"type": "integer"}, "invoice_subtotal": {"type": "null"}, "barcodes": {"type": "array"}, "category": {"type": "null"}, "date": {"type": "string"}, "due_date": {"type": "null"}, "time": {"type": "null"}, "customer_information": {"type": "object", "properties": {"customer_name": {"type": "null"}}}, "merchant_information": {"type": "object", "properties": {"merchant_name": {"type": "string"}, "merchant_address": {"type": "string"}, "merchant_phone": {"type": "null"}, "merchant_url": {"type": "null"}, "merchant_siret": {"type": "null"}, "merchant_siren": {"type": "null"}, "merchant_vat_number": {"type": "null"}, "merchant_gst_number": {"type": "null"}, "merchant_abn_number": {"type": "null"}}}, "payment_information": {"type": "object", "properties": {"card_type": {"type": "null"}, "card_number": {"type": "null"}, "cash": {"type": "null"}, "tip": {"type": "null"}, "discount": {"type": "null"}, "change": {"type": "null"}}}, "locale": {"type": "object", "properties": {"currency": {"type": "string"}, "language": {"type": "string"}, "country": {"type": "string"}}}, "taxes": {"type": "array", "items": {"type": "object", "properties": {"taxes": {"type": "number"}, "rate": {"type": "integer"}}}}, "receipt_infos": {"type": "object"}, "item_lines": {"type": "array", "items": {"type": "object", "properties": {"description": {"type": "string"}, "quantity": {"type": "integer"}, "amount": {"type": "integer"}, "unit_price": {"type": "null"}}}}}}}}}
7f6ff014-a2e7-4790-87c5-22ea3f6d2629/b1500470-fcce-404b-9968-00c0b0f13316/0/0
Dodogeny Receipt OCR
Dodogeny Receipt OCR performs receipt image transcription by using ==OCR and machine learning==. Provided with a ==photo of a receipt==, Dodogeny Receipt OCR ==recognizes and extracts== key information like total amount, tax amount, date of purchase, merchant information, and line item amounts. ==Leverage== our optimized OCR technology to parse receipts in your application in real-time.
8.2
ParseEncodedImageReceiptByML
transcribe a receipt by providing an image file in base64 format and return detailed result
200
Sample Response
{"responseCode": 200, "responseMessage": "Successfully transcribed receipt image.", "predictions": [{"invoice_number": null, "invoice_total": 65, "invoice_subtotal": null, "barcodes": [], "category": null, "date": "2022-10-18 18:12:00", "due_date": null, "time": null, "customer_information": {"customer_name": null}, "merchant_information": {"merchant_name": "GOURMEND", "merchant_address": "royal road st pierre pick buy ltd", "merchant_phone": null, "merchant_url": null, "merchant_siret": null, "merchant_siren": null, "merchant_vat_number": null, "merchant_gst_number": null, "merchant_abn_number": null}, "payment_information": {"card_type": null, "card_number": null, "cash": null, "tip": null, "discount": null, "change": null}, "locale": {"currency": "GBP", "language": "fr", "country": "GB"}, "taxes": [{"taxes": 8.48, "rate": 15}], "receipt_infos": {}, "item_lines": [{"description": "DONUT FOURRE CARAMEL", "quantity": 1, "amount": 65, "unit_price": null}]}]}
{"type": "object", "properties": {"responseCode": {"type": "integer"}, "responseMessage": {"type": "string"}, "predictions": {"type": "array", "items": {"type": "object", "properties": {"invoice_number": {"type": "null"}, "invoice_total": {"type": "integer"}, "invoice_subtotal": {"type": "null"}, "barcodes": {"type": "array"}, "category": {"type": "null"}, "date": {"type": "string"}, "due_date": {"type": "null"}, "time": {"type": "null"}, "customer_information": {"type": "object", "properties": {"customer_name": {"type": "null"}}}, "merchant_information": {"type": "object", "properties": {"merchant_name": {"type": "string"}, "merchant_address": {"type": "string"}, "merchant_phone": {"type": "null"}, "merchant_url": {"type": "null"}, "merchant_siret": {"type": "null"}, "merchant_siren": {"type": "null"}, "merchant_vat_number": {"type": "null"}, "merchant_gst_number": {"type": "null"}, "merchant_abn_number": {"type": "null"}}}, "payment_information": {"type": "object", "properties": {"card_type": {"type": "null"}, "card_number": {"type": "null"}, "cash": {"type": "null"}, "tip": {"type": "null"}, "discount": {"type": "null"}, "change": {"type": "null"}}}, "locale": {"type": "object", "properties": {"currency": {"type": "string"}, "language": {"type": "string"}, "country": {"type": "string"}}}, "taxes": {"type": "array", "items": {"type": "object", "properties": {"taxes": {"type": "number"}, "rate": {"type": "integer"}}}}, "receipt_infos": {"type": "object"}, "item_lines": {"type": "array", "items": {"type": "object", "properties": {"description": {"type": "string"}, "quantity": {"type": "integer"}, "amount": {"type": "integer"}, "unit_price": {"type": "null"}}}}}}}}}
6c92a92f-0590-424e-a034-c97753b9ed85/607992f3-967a-4873-8e15-18e7c2f8b9d6/1/0
ResumeParser
The Resume Parser API is a powerful tool designed to effortlessly extract essential information from resumes. With cutting-edge LLMs, it accurately parses resumes in various formats (like PDF, DOC, DOCX and TXT), swiftly extracting key details such as Name, Email, Contact, Location, Website and Social Media URLs, Years of Experience, Work Experience Details, Certifications and Education Details, Soft and Operational Skills, Languages Spoken and more. The API integrates seamlessly into your ap...
6.3
parse
This endpoint will parse the given resume file and return the components in a JSON structure
422
Example_1
{"detail": [{"loc": [], "msg": "", "type": ""}]}
{"title": "HTTPValidationError", "type": "object", "properties": {"detail": {"title": "Detail", "type": "array", "items": {"title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": {"loc": {"title": "Location", "type": "array", "items": {"anyOf": [{"type": "string"}, {"type": "integer"}]}}, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}}}}}}
29c5756d-5efd-48af-9266-b4a36f3d3e73/2d27f25c-94c6-432d-881f-7425f95500be/0/0
Text Detection by Copyseeker
Text Detection identifies and extracts text from visuals, supporting various fonts and orientations. Use it to enhance visual searches, catalog video content, or detect license plates in public safety applications.
null
Scan image
200
null
[{"text": "", "confidence": 0}]
{"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string"}, "confidence": {"format": "float", "type": "number", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}}}}
eb9ae04b-8323-4805-8fe1-c570d3fe3103/b422c5ac-489e-4ac8-9902-c4cf1950c77a/0/0
Mad GPT Api
Enhance your AI-powered applications with a feature-rich proxy API powered by the latest GPT 3.5, offering rate limiting, caching, error handling, analytics, language support, preprocessing options, customization, and insightful outputs.
5.5
Translations
Translates text into the specified target language
500
Example_1
{"error": ""}
{"type": "object", "properties": {"error": {"type": "string"}}}
eb9ae04b-8323-4805-8fe1-c570d3fe3103/b422c5ac-489e-4ac8-9902-c4cf1950c77a/1/0
Mad GPT Api
Enhance your AI-powered applications with a feature-rich proxy API powered by the latest GPT 3.5, offering rate limiting, caching, error handling, analytics, language support, preprocessing options, customization, and insightful outputs.
5.5
Translations
Translates text into the specified target language
400
Example_1
{"error": ""}
{"type": "object", "properties": {"error": {"type": "string"}}}
eb9ae04b-8323-4805-8fe1-c570d3fe3103/b422c5ac-489e-4ac8-9902-c4cf1950c77a/2/0
Mad GPT Api
Enhance your AI-powered applications with a feature-rich proxy API powered by the latest GPT 3.5, offering rate limiting, caching, error handling, analytics, language support, preprocessing options, customization, and insightful outputs.
5.5
Translations
Translates text into the specified target language
200
Example_1
{"response": ""}
{"type": "object", "properties": {"response": {"type": "string"}}}