id
stringlengths 53
86
| api_name
stringlengths 2
76
| api_description
stringlengths 1
500
⌀ | api_score
float64 0
10
⌀ | endpoint_name
stringlengths 1
190
| endpoint_description
stringlengths 0
500
| response_status_code
int64 100
505
| response_summary
stringlengths 1
68
⌀ | response_json
stringlengths 6
50k
| response_json_schema
stringlengths 14
150k
|
---|---|---|---|---|---|---|---|---|---|
16f06d85-1d8a-4cf7-94a8-9853cb92a642/47ba9fea-9e5e-42c9-9842-27378f4f3beb/0/0 | OpenAI GPT Pricing Calculator | Calculate the price of your OpenAI API call. Counts tokens and returns the price for the given model. | null | Embedding | Calculates the usage price of the embedding models. | 200 | Example_1 | {"price": 0.00032, "token_count": 13} | {"type": "object", "properties": {"price": {"type": "number"}, "token_count": {"type": "integer"}}} |
16f06d85-1d8a-4cf7-94a8-9853cb92a642/a83fd319-d487-457a-a05b-a860e1701533/0/0 | OpenAI GPT Pricing Calculator | Calculate the price of your OpenAI API call. Counts tokens and returns the price for the given model. | null | Chat | This endpoint calculated the price estimation for the Chat models. | 200 | Example_1 | {"price": 3.2e-05, "token_count": 16} | {"type": "object", "properties": {"price": {"type": "number"}, "token_count": {"type": "integer"}}} |
16f06d85-1d8a-4cf7-94a8-9853cb92a642/971c850a-bdce-4957-901f-eddecc479a89/0/0 | OpenAI GPT Pricing Calculator | Calculate the price of your OpenAI API call. Counts tokens and returns the price for the given model. | null | GPT4 | This endpoint allows you to calculate the costs for the GPT4 models. | 200 | Example_1 | {"price": 0.00035, "token_count": 12} | {"type": "object", "properties": {"price": {"type": "number"}, "token_count": {"type": "integer"}}} |
16f06d85-1d8a-4cf7-94a8-9853cb92a642/f76b07e0-eb15-4073-a2a9-9855367b3597/0/0 | OpenAI GPT Pricing Calculator | Calculate the price of your OpenAI API call. Counts tokens and returns the price for the given model. | null | Tuning | Tuning token prices. | 200 | Example_1 | {"price": 0.00032, "token_count": 13} | {"type": "object", "properties": {"price": {"type": "number"}, "token_count": {"type": "integer"}}} |
16f06d85-1d8a-4cf7-94a8-9853cb92a642/85bad1e8-07ee-42b7-b7a4-ea354a67ce7c/0/0 | OpenAI GPT Pricing Calculator | Calculate the price of your OpenAI API call. Counts tokens and returns the price for the given model. | null | Instruct | Return the pricing for the instruct models. | 200 | Example_1 | {"price": 0.00032, "token_count": 13} | {"type": "object", "properties": {"price": {"type": "number"}, "token_count": {"type": "integer"}}} |
1df83346-5e57-45d8-a3c6-bd00e0404a5f/d41b7425-704a-487a-9993-b4794de02d6f/4/0 | Large Language Models Pricing API | Large Language Models Pricing Calculator by API Robots | 5.4 | getModelsPricing | Get LLM models pricing. Calculate the cost of generating text with LLM models. Use the parameters for calculating sessions and tokens per session. | 200 | null | [{"provider": "OpenAI", "name": "GPT-5", "variant": "32k context", "price_input": 0.06, "price_training": 0.05, "price_output": 0.12, "unit": "1K tokens", "description": "GPT-5 is a large language model.", "sessions": 10000, "tokens_per_session": 150, "cost_sessions": 67.5}] | {"type": "array", "items": {"description": "DTO for Large Language Model pricing.", "type": "object", "properties": {"provider": {"description": "Provider of the model.", "type": "string"}, "name": {"description": "Name of the model.", "type": "string"}, "variant": {"description": "Variant of the model.", "type": "string"}, "price_input": {"format": "double", "description": "Price for input.", "type": "number", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "price_training": {"format": "double", "description": "Price for training.", "type": "number", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "price_output": {"format": "double", "description": "Price for output.", "type": "number", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}, "unit": {"description": "Unit of the price.", "type": "string"}, "description": {"description": "Description of the model.", "type": "string"}, "sessions": {"format": "int32", "description": "Number of sessions.", "type": "integer", "minimum": -2147483648, "maximum": 2147483647}, "tokens_per_session": {"format": "int32", "description": "Number of tokens per session.", "type": "integer", "minimum": -2147483648, "maximum": 2147483647}, "cost_sessions": {"format": "double", "description": "Total cost of sessions in USD.", "type": "number", "minimum": -1.7976931348623157e+308, "maximum": 1.7976931348623157e+308}}}} |
2b22d27d-0e6b-4d97-bf67-38c1cf5f5212/fcb76ca7-c90c-4122-8667-1f5b49431d0e/0/0 | skin-shade-finder | AI skin recognition, analysis & matching with inclusive data sets for over 100 skin shades and undertones. | null | /api/skinshade | Predict the skin shade from an image based on skin tone and undertones | 200 | Example_1 | {"skinShade": "#8d5524", "toneRange": "Medium Dark - Deep Dark"} | {"type": "object", "properties": {"skinShade": {"type": "string"}, "toneRange": {"type": "string"}}} |
2b22d27d-0e6b-4d97-bf67-38c1cf5f5212/fcb76ca7-c90c-4122-8667-1f5b49431d0e/1/0 | skin-shade-finder | AI skin recognition, analysis & matching with inclusive data sets for over 100 skin shades and undertones. | null | /api/skinshade | Predict the skin shade from an image based on skin tone and undertones | 400 | Example_1 | {"message": "No file part"} | {"type": "object", "properties": {"message": {"type": "string"}}} |
2b22d27d-0e6b-4d97-bf67-38c1cf5f5212/fcb76ca7-c90c-4122-8667-1f5b49431d0e/2/0 | skin-shade-finder | AI skin recognition, analysis & matching with inclusive data sets for over 100 skin shades and undertones. | null | /api/skinshade | Predict the skin shade from an image based on skin tone and undertones | 403 | Example_1 | {"message": "Missing API key"} | {"type": "object", "properties": {"message": {"type": "string"}}} |
2b22d27d-0e6b-4d97-bf67-38c1cf5f5212/fcb76ca7-c90c-4122-8667-1f5b49431d0e/3/0 | skin-shade-finder | AI skin recognition, analysis & matching with inclusive data sets for over 100 skin shades and undertones. | null | /api/skinshade | Predict the skin shade from an image based on skin tone and undertones | 429 | Example_1 | {"message": "API key exceeded request limit"} | {"type": "object", "properties": {"message": {"type": "string"}}} |
2b22d27d-0e6b-4d97-bf67-38c1cf5f5212/31858aba-a049-4c59-b92e-3a1faa4a4010/0/0 | skin-shade-finder | AI skin recognition, analysis & matching with inclusive data sets for over 100 skin shades and undertones. | null | /api/health | Check the health status of the application | 503 | null | {"status": "unhealthy", "details": {"app": "App is not running", "model": "AI model is not loaded", "database": "Database is not connected"}} | {"type": "object", "properties": {"status": {"type": "string"}, "details": {"type": "object", "properties": {"app": {"type": "string"}, "model": {"type": "string"}, "database": {"type": "string"}}}}} |
2b22d27d-0e6b-4d97-bf67-38c1cf5f5212/31858aba-a049-4c59-b92e-3a1faa4a4010/1/0 | skin-shade-finder | AI skin recognition, analysis & matching with inclusive data sets for over 100 skin shades and undertones. | null | /api/health | Check the health status of the application | 200 | null | {"status": "healthy", "details": {"app": "App is running", "model": "AI model is loaded", "database": "Database is connected"}} | {"type": "object", "properties": {"status": {"type": "string"}, "details": {"type": "object", "properties": {"app": {"type": "string"}, "model": {"type": "string"}, "database": {"type": "string"}}}}} |
2b22d27d-0e6b-4d97-bf67-38c1cf5f5212/4223146a-745a-4ca6-b821-d5ce28dfde95/0/0 | skin-shade-finder | AI skin recognition, analysis & matching with inclusive data sets for over 100 skin shades and undertones. | null | /api/generatekey | Generate a new API key | 200 | null | {"roboKey": "example_key"} | {"type": "object", "properties": {"roboKey": {"type": "string"}}} |
fde59cb1-55ae-4e27-8a02-6ac57adb7d33/cebdf5a1-ed94-415b-802d-4803b1685949/0/0 | site2json | parses a given URL and returns a structured summary, including keywords, industry, location, contact details, product/services list, and more. It supports tasks like data enrichment, business intelligence, competitor analysis, and SEO, using advanced machine learning techniques to distill complex web content into usable data. | null | site2json | Send the url and get json | 200 | New Example | {"keywords": "BillHeap, invoice processing, automation tool, scan invoices, OCR, XML import files, accounting software", "industry": "Automation", "location": "Unknown", "contact_list": [{"phone": "", "name": "BillHeap", "position": "", "email": ""}], "long_summary": "BillHeap is an automation tool for invoice processing. They offer a solution to eliminate repetitive and manual tasks by automating the entry of invoices into accounting software like Saga or Mentor. Users can simply scan and upload invoices to the website, and receive XML import files for easy integration into their accounting system. BillHeap verifies the accuracy of OCR (optical character recognition) and extracted data, providing a reliable and efficient solution for invoice processing.", "category": "Technology", "services_and_product_list": [{"price": "", "name": "Automated Invoice Processing", "description": "BillHeap automates the entry of invoices into accounting software like Saga or Mentor. Users can scan and upload invoices, and receive XML import files for easy integration.", "target": "Businesses that need to process a large volume of invoices"}], "short_summary": "BillHeap automates invoice processing by scanning and uploading invoices to extract accurate data and provide XML import files for easy integration into accounting software."} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"keywords": {"type": "string"}, "industry": {"type": "string"}, "location": {"type": "string"}, "contact_list": {"type": "array", "items": {"type": "object", "properties": {"phone": {"type": "string"}, "name": {"type": "string"}, "position": {"type": "string"}, "email": {"type": "string"}}, "required": ["email", "name", "phone", "position"]}}, "long_summary": {"type": "string"}, "category": {"type": "string"}, "services_and_product_list": {"type": "array", "items": {"type": "object", "properties": {"price": {"type": "string"}, "name": {"type": "string"}, "description": {"type": "string"}, "target": {"type": "string"}}, "required": ["description", "name", "price", "target"]}}, "short_summary": {"type": "string"}}, "required": ["category", "contact_list", "industry", "keywords", "location", "long_summary", "services_and_product_list", "short_summary"]} |
6486cdec-fa7a-472b-8e57-8b6acaac5194/054aa3ac-0275-4187-99ce-ce61655b99e5/0/0 | Speaker Verification | PresentID Speaker verification API checks whether two voices belong to the same person or not. This capability is potentially useful in call centers. | 8.6 | Send voice with voice file | Speaker verification API checks whether two voices belong to one person or not
The voice must be between three seconds and one minute
The voices must not exceed 5 MB
Supported file types: wav, mp3, m4a, FLAC, aac, ogg | 200 | New Example | {"data": {"resultIndex": 0, "resultMessage": "The two voices don't belong to the same person."}, "hasError": false, "statusCode": 200, "statusMessage": "Login Successfull"} | {"properties": {"data": {"properties": {"resultIndex": {"type": "integer"}, "resultMessage": {"type": "string"}}, "type": "object"}, "hasError": {"type": "boolean"}, "statusCode": {"type": "integer"}, "statusMessage": {"type": "string"}}, "type": "object"} |
6486cdec-fa7a-472b-8e57-8b6acaac5194/054aa3ac-0275-4187-99ce-ce61655b99e5/1/0 | Speaker Verification | PresentID Speaker verification API checks whether two voices belong to the same person or not. This capability is potentially useful in call centers. | 8.6 | Send voice with voice file | Speaker verification API checks whether two voices belong to one person or not
The voice must be between three seconds and one minute
The voices must not exceed 5 MB
Supported file types: wav, mp3, m4a, FLAC, aac, ogg | 400 | New Example | {"data": null, "hasError": true, "statusCode": 455, "statusMessage": "First voice error: Unhandled Exception"} | {"properties": {"data": {"type": "null"}, "hasError": {"type": "boolean"}, "statusCode": {"type": "integer"}, "statusMessage": {"type": "string"}}, "type": "object"} |
e85fed23-7f4e-4f26-b6f7-14ca35cf6056/5572104e-5a58-4052-9237-81890af050c7/0/0 | 🔴 IMAGE CAPTCHA SOLVER 🔴 Daddy | Solve Image Captcha 90% Accuracy.
Fast and Easy to use API. Solve THOUSANDS of types of Image captcha
Overall API accuracy depends on how complicated your image. If it's difficult to read to human, it will be difficult to solve to the AI
Example captcha that can be solved https://ibb.co/rvMQf03 | null | Solve | Try to save the original captcha (making screenshot is slightly worse). Try to keep the size of the image small, good practice is to have the size in few Kb. POST your image, using "application/octet-stream"
* For unknown reason API doesn't work through web interface, please use it directly in your app | 200 | Example | {"solution": "12345"} | {"type": "object", "properties": {"solution": {"type": "string"}}} |
9ec2448f-9618-48bb-9c9e-2309185dd77c/0ea6e9b0-9e5e-43fd-a7de-9fa4231f596b/0/0 | OPENAI GPT4 API | Unlock the power of OpenAI's GPT-4 and Effortlessly integrate cutting-edge AI capabilities into your apps and websites. | 0.1 | ChatPost | Retrieves a chat completion powered by ChatGPT. | 200 | null | {"first_content": "", "id": "", "object": "", "created": 0, "choices": [{"index": 0, "message": {"role": "", "content": ""}, "finish_reason": ""}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"first_content": {"type": "string", "description": "The first content.", "title": "First Content"}, "id": {"type": "string", "description": "The identifier.", "title": "ID"}, "object": {"type": "string", "description": "The object.", "title": "Object"}, "created": {"type": "integer", "format": "int32", "description": "When created.", "title": "Created", "minimum": -2147483648, "maximum": 2147483647}, "choices": {"type": "array", "items": {"type": "object", "properties": {"index": {"type": "integer", "format": "int32", "description": "The index.", "title": "Index", "minimum": -2147483648, "maximum": 2147483647}, "message": {"type": "object", "properties": {"role": {"type": "string", "description": "The role.", "title": "Role"}, "content": {"type": "string", "description": "The content.", "title": "Content"}}, "title": "Message"}, "finish_reason": {"type": "string", "description": "The finish reason.", "title": "Finish Reason"}}}, "title": "Choices"}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "format": "int32", "description": "The prompt tokens.", "title": "Prompt Tokens", "minimum": -2147483648, "maximum": 2147483647}, "completion_tokens": {"type": "integer", "format": "int32", "description": "The completion tokens.", "title": "Completion Tokens", "minimum": -2147483648, "maximum": 2147483647}, "total_tokens": {"type": "integer", "format": "int32", "description": "The total tokens.", "title": "Total Tokens", "minimum": -2147483648, "maximum": 2147483647}}, "title": "Usage"}}} |
9ec2448f-9618-48bb-9c9e-2309185dd77c/34325d7b-3a18-4912-a337-9d157e4dddbd/0/0 | OPENAI GPT4 API | Unlock the power of OpenAI's GPT-4 and Effortlessly integrate cutting-edge AI capabilities into your apps and websites. | 0.1 | ModelsGet | Lists the currently available models, and provides basic information about each one such as the owner and availability. | 200 | null | {"object": "", "data": [{"id": "", "object": "", "created": 0, "owned_by": "", "permission": [{"id": "", "object": "", "created": 0, "allow_create_engine": true, "allow_sampling": true, "allow_logprobs": true, "allow_search_indices": true, "allow_view": true, "allow_fine_tuning": true, "organization": "", "group": "", "is_blocking": true}], "root": "", "parent": ""}]} | {"type": "object", "properties": {"object": {"type": "string", "description": "The object.", "title": "Object"}, "data": {"type": "array", "items": {"type": "object", "properties": {"id": {"type": "string", "description": "The identifier.", "title": "ID"}, "object": {"type": "string", "description": "The object.", "title": "Object"}, "created": {"type": "integer", "format": "int32", "description": "When created.", "title": "Created", "minimum": -2147483648, "maximum": 2147483647}, "owned_by": {"type": "string", "description": "The owned by.", "title": "Owned By"}, "permission": {"type": "array", "items": {"type": "object", "properties": {"id": {"type": "string", "description": "The identifier.", "title": "ID"}, "object": {"type": "string", "description": "The object.", "title": "Object"}, "created": {"type": "integer", "format": "int32", "description": "When created.", "title": "Created", "minimum": -2147483648, "maximum": 2147483647}, "allow_create_engine": {"type": "boolean", "description": "Whether to allow create engine.", "title": "Allow Create Engine"}, "allow_sampling": {"type": "boolean", "description": "Whether to allow sampling.", "title": "Allow Sampling"}, "allow_logprobs": {"type": "boolean", "description": "Whether to allow logprobs.", "title": "Allow Logprobs"}, "allow_search_indices": {"type": "boolean", "description": "Whether to allow search indices .", "title": "Allow Search Indices"}, "allow_view": {"type": "boolean", "description": "Whether to allow view.", "title": "Allow View"}, "allow_fine_tuning": {"type": "boolean", "description": "Whether to allow fine tuning.", "title": "Allow Fine Tuning"}, "organization": {"type": "string", "description": "The organization.", "title": "Organization"}, "group": {"type": "string", "description": "The group.", "title": "Group"}, "is_blocking": {"type": "boolean", "description": "Whether is blocked.", "title": "Is Blocking"}}}, "title": "Permission"}, "root": {"type": "string", "description": "The root.", "title": "Root"}, "parent": {"type": "string", "description": "The parent.", "title": "Parent"}}}, "title": "Data"}}} |
9ec2448f-9618-48bb-9c9e-2309185dd77c/9b3366ce-c383-48b7-b363-416a537d0a2e/0/0 | OPENAI GPT4 API | Unlock the power of OpenAI's GPT-4 and Effortlessly integrate cutting-edge AI capabilities into your apps and websites. | 0.1 | EditPost | Creates a new edit for the provided input, instruction, and parameters. | 200 | null | {"object": "", "created": 0, "choices": [{"text": "", "index": 0}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"object": {"description": "The object.", "title": "Object", "type": "string"}, "created": {"description": "When created.", "title": "Created", "type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "choices": {"description": "The choices.", "title": "Choices", "type": "array", "items": {"title": "Items", "type": "object", "properties": {"text": {"description": "The text.", "title": "Text", "type": "string"}, "index": {"description": "The index.", "title": "Index", "type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}}}, "usage": {"title": "Usage", "description": "usage", "type": "object", "properties": {"prompt_tokens": {"description": "The prompt tokens.", "title": "Prompt Tokens", "type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "completion_tokens": {"description": "The completion tokens.", "title": "Completion Tokens", "type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}, "total_tokens": {"description": "The total tokens.", "title": "Total Tokens", "type": "integer", "format": "int32", "minimum": -2147483648, "maximum": 2147483647}}}}} |
9ec2448f-9618-48bb-9c9e-2309185dd77c/271391fe-1fb4-4455-bc40-fadec84f5f3f/0/0 | OPENAI GPT4 API | Unlock the power of OpenAI's GPT-4 and Effortlessly integrate cutting-edge AI capabilities into your apps and websites. | 0.1 | CompletionPost | Creates a completion for the provided prompt and parameters. | 200 | null | {"first_completion": "", "result": {"id": "", "object": "", "created": 0, "model": "", "choices": [{"text": "", "index": 0, "logprobs": "", "finish_reason": ""}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}}} | {"type": "object", "properties": {"first_completion": {"type": "string", "description": "first_completion"}, "result": {"type": "object", "properties": {"id": {"type": "string", "description": "The identifier.", "title": "ID"}, "object": {"type": "string", "description": "The object.", "title": "Object"}, "created": {"type": "integer", "format": "int32", "description": "When created.", "title": "Created", "minimum": -2147483648, "maximum": 2147483647}, "model": {"type": "string", "description": "The model.", "title": "Model"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "The text.", "title": "Text"}, "index": {"type": "integer", "format": "int32", "description": "The index", "title": "Index", "minimum": -2147483648, "maximum": 2147483647}, "logprobs": {"type": "string", "description": "The log probs.", "title": "Log Probs"}, "finish_reason": {"type": "string", "description": "The finish reason", "title": "Finish Reason"}}}, "title": "Choices"}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "format": "int32", "description": "The prompt tokens.", "title": "Prompt Tokens", "minimum": -2147483648, "maximum": 2147483647}, "completion_tokens": {"type": "integer", "format": "int32", "description": "The completion tokens.", "title": "Completion Tokens", "minimum": -2147483648, "maximum": 2147483647}, "total_tokens": {"type": "integer", "format": "int32", "description": "The total tokens.", "title": "Total Tokens", "minimum": -2147483648, "maximum": 2147483647}}, "title": "Usage"}}, "title": "Result"}}} |
2c8cf7f7-07d2-4898-846b-a2906b7bc6ad/a24c0ffa-6878-44ce-944c-250fa6a87eb8/0/0 | Free Recognized PDF Content | Free Recognized PDF Content | null | /recognize-pdf | 200 | null | {"status": 1, "url": "http://vibktprfx-prod-prod-damo-eas-cn-shanghai.oss-cn-shanghai.aliyuncs.com/generative-cartoon/2023-09-09/1d73851a-7d53-416b-8606-01dc2f09db52/20230909_235408006889_dmbpxu56o3.jpg?Expires=1694276651&OSSAccessKeyId=LTAI4FoLmvQ9urWXgSRpDvh1&Signature=%2FcT4QU5F7%2FIR2J9Z9a3lvUnwdbI%3D"} | {"type": "object", "properties": {"status": {"type": "integer"}, "url": {"type": "string"}}, "required": ["status", "url"], "x-apifox-ignore-properties": [], "x-apifox-orders": ["status", "url"]} |
|
90f29260-d914-4dff-a205-58378bde0eb8/2a75187f-27e7-4318-b7a2-c97afe87f571/0/0 | Claude-2 | Claude-2 | 6.6 | Claude 2 | Clause-2 | 200 | Example_1 | {"inputs": {"human": "Hello", "assistant": "Who are you?"}} | {"type": "object", "properties": {"inputs": {"type": "object", "properties": {"human": {"type": "string"}, "assistant": {"type": "string"}}}}} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/25300c6d-5357-4e63-9028-36615bc604ef/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /segmentation/floor | Get a binary floor mask represented as an image encoded as a base64 string in the normal case. Or vectorized_mask as a list of (x, y) points if vectorized is set to true in the query options. These points describe a polygon around a binary mask from a regular query. Convenient if the server response size is painful for you. | 200 | null | {"mask": "", "vectorized_mask": {"contours": [], "hierarchy": []}} | {"properties": {"mask": {"format": "base64", "type": "string"}, "vectorized_mask": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/c0cc10c5-e480-4c2c-a20b-f22f01382871/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /analysis | Get analysis data that contains all the information that was extracted for the uploaded photo. Includes virtual camera settings and photo quality data. | 200 | null | {"camera": {"fov": 0, "height": 0, "pitch": 0, "roll": 0}, "image_info": {"bad_target_confidence": 0, "blurry_confidence": 0, "dark_confidence": 0, "noisy_confidence": 0}, "interior_type": "living room"} | {"properties": {"camera": {"properties": {"fov": {"default": 65.3, "type": "number"}, "height": {"default": 1.53, "type": "number"}, "pitch": {"default": -0.11, "type": "number"}, "roll": {"default": 0.03, "type": "number"}}, "type": "object"}, "image_info": {"properties": {"bad_target_confidence": {"default": 0.98, "type": "number"}, "blurry_confidence": {"default": 0.63, "type": "number"}, "dark_confidence": {"default": 0.92, "type": "number"}, "noisy_confidence": {"default": 0.78, "type": "number"}}, "type": "object"}, "interior_type": {"default": "living room", "type": "string"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/e6e5b587-b69d-47a9-9515-08da3f0519d2/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /segmentation/windows | Get a binary windows mask represented as an image encoded as a base64 string in the normal case. Or vectorized_mask as a list of (x, y) points if vectorized is set to true in the query options. These points describe a polygon around a binary mask from a regular query. Convenient if the server response size is painful for you. | 200 | null | {"mask": "", "vectorized_mask": {"contours": [], "hierarchy": []}} | {"properties": {"mask": {"format": "base64", "type": "string"}, "vectorized_mask": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/29dffaf2-872b-4818-916b-5d6444273fe8/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /segmentation/walls | Get a binary walls mask represented as an image encoded as a base64 string in the normal case. Or vectorized_mask as a list of (x, y) points if vectorized is set to true in the query options. These points describe a polygon around a binary mask from a regular query. Convenient if the server response size is painful for you. | 200 | null | {"mask": "", "vectorized_mask": {"contours": [], "hierarchy": []}} | {"properties": {"mask": {"format": "base64", "type": "string"}, "vectorized_mask": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/bce17229-f760-42c5-a5bc-bc0767870968/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /analysis/image-info | Get data about the quality characteristics of the uploaded photo. The data contains information about blur, noise, darkness, and whether the photo is an interior. The closer the value is to one, the more likely it is to belong to the specified category. | 200 | null | {"bad_target_confidence": 0, "blurry_confidence": 0, "dark_confidence": 0, "noisy_confidence": 0} | {"properties": {"bad_target_confidence": {"default": 0.98, "type": "number"}, "blurry_confidence": {"default": 0.63, "type": "number"}, "dark_confidence": {"default": 0.92, "type": "number"}, "noisy_confidence": {"default": 0.78, "type": "number"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/0329c2d0-11d7-426b-a894-290796ffb371/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /segmentation/ceiling | Get a binary ceiling mask represented as an image encoded as a base64 string in the normal case. Or vectorized_mask as a list of (x, y) points if vectorized is set to true in the query options. These points describe a polygon around a binary mask from a regular query. Convenient if the server response size is painful for you. | 200 | null | {"mask": "", "vectorized_mask": {"contours": [], "hierarchy": []}} | {"properties": {"mask": {"format": "base64", "type": "string"}, "vectorized_mask": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/f6eca3e8-6d88-428e-ad93-e4cd97409b73/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /analysis/camera | Get a set of camera parameters that correspond to the moment of shooting for the uploaded image. Fov, pitch and roll parameters are represented in radians, height in meters. | 200 | null | {"fov": 0, "height": 0, "pitch": 0, "roll": 0} | {"properties": {"fov": {"default": 65.3, "type": "number"}, "height": {"default": 1.53, "type": "number"}, "pitch": {"default": -0.11, "type": "number"}, "roll": {"default": 0.03, "type": "number"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/77abcf6f-9127-4c09-b98b-0fe176a2e515/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /segmentation | Get a semantic segmentation as an image in RGB format where all colors corresponds to some entities detected on uploaded image. Check this table to determine color/entity bindings. | 200 | null | {"mask": "", "vectorized_masks": {"ceiling": {"contours": [], "hierarchy": []}, "floor": {"contours": [], "hierarchy": []}, "walls": {"contours": [], "hierarchy": []}}} | {"properties": {"mask": {"format": "base64", "type": "string"}, "vectorized_masks": {"properties": {"ceiling": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}, "floor": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}, "walls": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}}, "type": "object"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/c181d4ff-77b3-497b-92c0-02f5f16f1e98/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /interior/walls | Get the full set of computer vision artifacts. Includes semantic segmentation, object detection, 3D reconstruction, and camera data for the walls from the uploaded photo. | 200 | null | {"analysis": {"camera": {"fov": 0, "height": 0, "pitch": 0, "roll": 0}, "image_info": {"bad_target_confidence": 0, "blurry_confidence": 0, "dark_confidence": 0, "noisy_confidence": 0}, "interior_type": "living room"}, "detection": {"walls": [{"cx": 0, "cy": 0, "points": [{"x": 0, "y": 0}], "wall_id": 0}]}, "reconstruction": {"walls": [{"area": 0, "height": 0, "points": [{"x": 0, "y": 0, "z": 0}], "wall_id": 0, "wall_normal": {"x": 0, "y": 0, "z": 0}, "width": 0}]}, "segmentation": {"mask": "", "vectorized_mask": {"contours": [], "hierarchy": []}}} | {"properties": {"analysis": {"properties": {"camera": {"properties": {"fov": {"default": 65.3, "type": "number"}, "height": {"default": 1.53, "type": "number"}, "pitch": {"default": -0.11, "type": "number"}, "roll": {"default": 0.03, "type": "number"}}, "type": "object"}, "image_info": {"properties": {"bad_target_confidence": {"default": 0.98, "type": "number"}, "blurry_confidence": {"default": 0.63, "type": "number"}, "dark_confidence": {"default": 0.92, "type": "number"}, "noisy_confidence": {"default": 0.78, "type": "number"}}, "type": "object"}, "interior_type": {"default": "living room", "type": "string"}}, "type": "object"}, "detection": {"properties": {"walls": {"items": {"properties": {"cx": {"default": 23.78, "type": "number"}, "cy": {"default": 35.2, "type": "number"}, "points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}, "wall_id": {"default": 1, "type": "integer"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "reconstruction": {"properties": {"walls": {"items": {"properties": {"area": {"default": 12, "type": "number"}, "height": {"default": 3, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}, "wall_id": {"default": 0, "type": "integer"}, "wall_normal": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "width": {"default": 4, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "segmentation": {"properties": {"mask": {"format": "base64", "type": "string"}, "vectorized_mask": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}}, "type": "object"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/642dd883-5b8f-410c-b322-bec797232b16/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /detection/floor | Get a dataset in the form of x, y coordinates describing the plane of the floor in the uploaded photo. The x, y values are presented as a percentage of the photo size with the origin in the upper left corner. To get the value in px, you need to convert as x * image_width for x axis and y * image_height for y axis. | 200 | null | {"points": [{"x": 0, "y": 0}]} | {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/cef8a377-f935-4426-9169-2764a7a20f54/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /interior | Get the full set of computer vision artifacts. Includes semantic segmentation, object detection, 3D reconstruction, and camera data for all recognizable objects from the uploaded photo. | 200 | null | {"analysis": {"camera": {"fov": 0, "height": 0, "pitch": 0, "roll": 0}, "image_info": {"bad_target_confidence": 0, "blurry_confidence": 0, "dark_confidence": 0, "noisy_confidence": 0}, "interior_type": "living room"}, "detection": {"ceiling": {"points": [{"x": 0, "y": 0}]}, "floor": {"points": [{"x": 0, "y": 0}]}, "walls": [{"cx": 0, "cy": 0, "points": [{"x": 0, "y": 0}], "wall_id": 0}], "windows": [{"points": [{"x": 0, "y": 0}]}]}, "reconstruction": {"ceiling": {"area": 0, "points": [{"x": 0, "y": 0, "z": 0}]}, "floor": {"area": 0, "points": [{"x": 0, "y": 0, "z": 0}]}, "walls": [{"area": 0, "height": 0, "points": [{"x": 0, "y": 0, "z": 0}], "wall_id": 0, "wall_normal": {"x": 0, "y": 0, "z": 0}, "width": 0}]}, "segmentation": {"mask": "", "vectorized_masks": {"ceiling": {"contours": [], "hierarchy": []}, "floor": {"contours": [], "hierarchy": []}, "walls": {"contours": [], "hierarchy": []}}}} | {"properties": {"analysis": {"properties": {"camera": {"properties": {"fov": {"default": 65.3, "type": "number"}, "height": {"default": 1.53, "type": "number"}, "pitch": {"default": -0.11, "type": "number"}, "roll": {"default": 0.03, "type": "number"}}, "type": "object"}, "image_info": {"properties": {"bad_target_confidence": {"default": 0.98, "type": "number"}, "blurry_confidence": {"default": 0.63, "type": "number"}, "dark_confidence": {"default": 0.92, "type": "number"}, "noisy_confidence": {"default": 0.78, "type": "number"}}, "type": "object"}, "interior_type": {"default": "living room", "type": "string"}}, "type": "object"}, "detection": {"properties": {"ceiling": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "floor": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "walls": {"items": {"properties": {"cx": {"default": 23.78, "type": "number"}, "cy": {"default": 35.2, "type": "number"}, "points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}, "wall_id": {"default": 1, "type": "integer"}}, "type": "object"}, "type": "array"}, "windows": {"items": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "reconstruction": {"properties": {"ceiling": {"properties": {"area": {"default": 8, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "floor": {"properties": {"area": {"default": 8, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "walls": {"items": {"properties": {"area": {"default": 12, "type": "number"}, "height": {"default": 3, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}, "wall_id": {"default": 0, "type": "integer"}, "wall_normal": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "width": {"default": 4, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "segmentation": {"properties": {"mask": {"format": "base64", "type": "string"}, "vectorized_masks": {"properties": {"ceiling": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}, "floor": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}, "walls": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}}, "type": "object"}}, "type": "object"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/014fdee6-ff7b-4098-a6e6-5ac0923a2b24/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /detection/walls | Get a set of wall objects. The points parameter of the wall object is a list of x, y coordinates describing the plane of the wall. The x, y values are presented as a percentage of the photo size with the origin in the upper left corner. To get the value in pixels you need to convert as x * image_width for the x axis and y * image_height for the y axis. Parameters cx, cy are used to describe the center of the detected wall. | 200 | null | {"walls": [{"cx": 0, "cy": 0, "points": [{"x": 0, "y": 0}], "wall_id": 0}]} | {"properties": {"walls": {"items": {"properties": {"cx": {"default": 23.78, "type": "number"}, "cy": {"default": 35.2, "type": "number"}, "points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}, "wall_id": {"default": 1, "type": "integer"}}, "type": "object"}, "type": "array"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/f2658029-168e-4e9e-ab7d-578920aaf72f/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /interior/windows | Get the full set of computer vision artifacts. Includes semantic segmentation, object detection, 3D reconstruction, and camera data for the windows from the uploaded photo. | 200 | null | {"analysis": {"camera": {"fov": 0, "height": 0, "pitch": 0, "roll": 0}, "image_info": {"bad_target_confidence": 0, "blurry_confidence": 0, "dark_confidence": 0, "noisy_confidence": 0}, "interior_type": "living room"}, "detection": {"windows": [{"points": [{"x": 0, "y": 0}]}]}, "segmentation": ""} | {"properties": {"analysis": {"properties": {"camera": {"properties": {"fov": {"default": 65.3, "type": "number"}, "height": {"default": 1.53, "type": "number"}, "pitch": {"default": -0.11, "type": "number"}, "roll": {"default": 0.03, "type": "number"}}, "type": "object"}, "image_info": {"properties": {"bad_target_confidence": {"default": 0.98, "type": "number"}, "blurry_confidence": {"default": 0.63, "type": "number"}, "dark_confidence": {"default": 0.92, "type": "number"}, "noisy_confidence": {"default": 0.78, "type": "number"}}, "type": "object"}, "interior_type": {"default": "living room", "type": "string"}}, "type": "object"}, "detection": {"properties": {"windows": {"items": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "segmentation": {"format": "base64", "type": "string"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/336d0bc0-374c-4790-bfe0-07879a1b3a27/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /detection/windows | Get a set of wall objects. The points parameter of the wall object is a list of x, y coordinates describing the plane of the wall. The x, y values are presented as a percentage of the photo size with the origin in the upper left corner. To get the value in pixels you need to convert as x * image_width for the x axis and y * image_height for the y axis. Parameters cx, cy are used to describe the center of the detected wall. | 200 | null | {"windows": [{"points": [{"x": 0, "y": 0}]}]} | {"properties": {"windows": {"items": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "type": "array"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/3aec3283-b491-407a-b0ea-d36eb752eed7/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /detection/ceiling | Get a dataset in the form of x, y coordinates describing the plane of the ceiling in the uploaded photo. The x, y values are presented as a percentage of the photo size with the origin in the upper left corner. To get the value in px, you need to convert as x * image_width for x axis and y * image_height for y axis. | 200 | null | {"points": [{"x": 0, "y": 0}]} | {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/6c2dc4e6-ef0a-4e0f-8a72-c782f675872b/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /detection | Get a set of detected interior surfaces such as floor, ceiling, walls. The response is presented in the right-handed coordinate system. | 200 | null | {"ceiling": {"points": [{"x": 0, "y": 0}]}, "floor": {"points": [{"x": 0, "y": 0}]}, "walls": [{"cx": 0, "cy": 0, "points": [{"x": 0, "y": 0}], "wall_id": 0}], "windows": [{"points": [{"x": 0, "y": 0}]}]} | {"properties": {"ceiling": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "floor": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "walls": {"items": {"properties": {"cx": {"default": 23.78, "type": "number"}, "cy": {"default": 35.2, "type": "number"}, "points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}, "wall_id": {"default": 1, "type": "integer"}}, "type": "object"}, "type": "array"}, "windows": {"items": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "type": "array"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/3e41c352-dcd6-41db-b1cd-86f59bf32b2b/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /interior/floor | Get the full set of computer vision artifacts. Includes semantic segmentation, object detection, 3D reconstruction, and camera data for the floor from the uploaded photo. | 200 | null | {"analysis": {"camera": {"fov": 0, "height": 0, "pitch": 0, "roll": 0}, "image_info": {"bad_target_confidence": 0, "blurry_confidence": 0, "dark_confidence": 0, "noisy_confidence": 0}, "interior_type": "living room"}, "detection": {"points": [{"x": 0, "y": 0}]}, "reconstruction": {"area": 0, "points": [{"x": 0, "y": 0, "z": 0}]}, "segmentation": {"mask": "", "vectorized_mask": {"contours": [], "hierarchy": []}}} | {"properties": {"analysis": {"properties": {"camera": {"properties": {"fov": {"default": 65.3, "type": "number"}, "height": {"default": 1.53, "type": "number"}, "pitch": {"default": -0.11, "type": "number"}, "roll": {"default": 0.03, "type": "number"}}, "type": "object"}, "image_info": {"properties": {"bad_target_confidence": {"default": 0.98, "type": "number"}, "blurry_confidence": {"default": 0.63, "type": "number"}, "dark_confidence": {"default": 0.92, "type": "number"}, "noisy_confidence": {"default": 0.78, "type": "number"}}, "type": "object"}, "interior_type": {"default": "living room", "type": "string"}}, "type": "object"}, "detection": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "reconstruction": {"properties": {"area": {"default": 8, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "segmentation": {"properties": {"mask": {"format": "base64", "type": "string"}, "vectorized_mask": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}}, "type": "object"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/64e389fe-eeb4-42d4-8cee-e7298b1329d8/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /interior/ceiling | Get the full set of computer vision artifacts. Includes semantic segmentation, object detection, 3D reconstruction, and camera data for the ceiling from the uploaded photo. | 200 | null | {"analysis": {"camera": {"fov": 0, "height": 0, "pitch": 0, "roll": 0}, "image_info": {"bad_target_confidence": 0, "blurry_confidence": 0, "dark_confidence": 0, "noisy_confidence": 0}, "interior_type": "living room"}, "detection": {"points": [{"x": 0, "y": 0}]}, "reconstruction": {"area": 0, "points": [{"x": 0, "y": 0, "z": 0}]}, "segmentation": {"mask": "", "vectorized_mask": {"contours": [], "hierarchy": []}}} | {"properties": {"analysis": {"properties": {"camera": {"properties": {"fov": {"default": 65.3, "type": "number"}, "height": {"default": 1.53, "type": "number"}, "pitch": {"default": -0.11, "type": "number"}, "roll": {"default": 0.03, "type": "number"}}, "type": "object"}, "image_info": {"properties": {"bad_target_confidence": {"default": 0.98, "type": "number"}, "blurry_confidence": {"default": 0.63, "type": "number"}, "dark_confidence": {"default": 0.92, "type": "number"}, "noisy_confidence": {"default": 0.78, "type": "number"}}, "type": "object"}, "interior_type": {"default": "living room", "type": "string"}}, "type": "object"}, "detection": {"properties": {"points": {"items": {"properties": {"x": {"default": 0.22, "type": "number"}, "y": {"default": 0.23, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "reconstruction": {"properties": {"area": {"default": 8, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "segmentation": {"properties": {"mask": {"format": "base64", "type": "string"}, "vectorized_mask": {"properties": {"contours": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}, "hierarchy": {"items": {"items": {"items": {"description": "**Omitted**"}, "type": "array"}, "type": "array"}, "type": "array"}}, "type": "object"}}, "type": "object"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/b491e41a-e965-4947-92ca-f740d6ddf03f/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /reconstruction/ceiling | Obtain a 3D reconstruction of the ceiling surface. The data includes an area property calculated in square meters and a list of 3D coordinates that characterize the surface of the ceiling. | 200 | null | {"area": 0, "points": [{"x": 0, "y": 0, "z": 0}]} | {"properties": {"area": {"default": 8, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/dd95112e-622e-4a0f-b6a2-39d1d1a66726/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /reconstruction/walls | Get a 3D reconstruction of the wall as a set of wall objects. The wall object includes width and height properties calculated in a meters. The wall normal vector, taking into account the origin of the coordinate system at the camera position. The 3d points list belonging to the wall, where the x, y, z coordinates are in meters. | 200 | null | {"walls": [{"area": 0, "height": 0, "points": [{"x": 0, "y": 0, "z": 0}], "wall_id": 0, "wall_normal": {"x": 0, "y": 0, "z": 0}, "width": 0}]} | {"properties": {"walls": {"items": {"properties": {"area": {"default": 12, "type": "number"}, "height": {"default": 3, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}, "wall_id": {"default": 0, "type": "integer"}, "wall_normal": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "width": {"default": 4, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/af1d24e8-e86d-4ee1-8b9e-dffd9cf775a0/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /reconstruction | Obtain a 3D reconstruction of all detected surfaces from uploaded photo. The response is presented in the right-handed coordinate system. | 200 | null | {"ceiling": {"area": 0, "points": [{"x": 0, "y": 0, "z": 0}]}, "floor": {"area": 0, "points": [{"x": 0, "y": 0, "z": 0}]}, "walls": [{"area": 0, "height": 0, "points": [{"x": 0, "y": 0, "z": 0}], "wall_id": 0, "wall_normal": {"x": 0, "y": 0, "z": 0}, "width": 0}]} | {"properties": {"ceiling": {"properties": {"area": {"default": 8, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "floor": {"properties": {"area": {"default": 8, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"}, "walls": {"items": {"properties": {"area": {"default": 12, "type": "number"}, "height": {"default": 3, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}, "wall_id": {"default": 0, "type": "integer"}, "wall_normal": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "width": {"default": 4, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"} |
19902e8f-ddd2-4e9e-9b55-4b31d209abe3/80150df3-e5bc-4924-8217-7bb70dac4c70/0/0 | Vision API | The Wizart Vision API offers powerful photo analysis capabilities for home interiors, providing comprehensive data for windows, doors, walls, ceiling, floor, and more. Access detailed information on individual surfaces or obtain a holistic overview of the entire interior in one request. | 8.6 | /reconstruction/floor | Obtain a 3D reconstruction of the floor surface. The data includes an area property calculated in square meters and a list of 3D coordinates that characterize the surface of the floor. | 200 | null | {"area": 0, "points": [{"x": 0, "y": 0, "z": 0}]} | {"properties": {"area": {"default": 8, "type": "number"}, "points": {"items": {"properties": {"x": {"default": -2.78, "type": "number"}, "y": {"default": -3.234432, "type": "number"}, "z": {"default": 1.46, "type": "number"}}, "type": "object"}, "type": "array"}}, "type": "object"} |
f6fd383a-4bff-4bf8-8d8a-84d41ac1811c/47cde89e-e49c-404d-8482-e4f0d1036dd0/0/0 | AudioGPT | AudioGPT : Converts your unstructured Audio into clear Text | null | transcribe | Transcribes input audio file and modifies it based on the input prompt | 200 | Example 1 | {"text": "<Output text result >"} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"text": {"type": "string"}}, "required": ["text"]} |
aeeca284-c3e5-4a66-b84e-9c82ce16e95f/af5c6c02-4a70-4423-a789-6db0ab6c27fc/0/0 | YouTube Summarization | Summarize any YouTube video in any language and get only the essential content delivered to your inbox. | 0.1 | videoMedium | medium: video duration between 0.5 - 2 hours
This endpoint is specifically designed for video summarization and utilizes callbacks due to the time-consuming nature of video processing. To facilitate testing, you can easily set up a callback server using Google Colab. For detailed instructions, please refer to the provided tutorial for more information. | 201 | Example_1 | {"status": "succeeded", "code": 201, "msg": "the processing of the video is running"} | {"type": "object"} |
aeeca284-c3e5-4a66-b84e-9c82ce16e95f/4ac569ba-0eba-448f-8a49-ada65c51f36d/0/0 | YouTube Summarization | Summarize any YouTube video in any language and get only the essential content delivered to your inbox. | 0.1 | videoShort | short: video duration below half an hour
This endpoint is specifically designed for video summarization and utilizes callbacks due to the time-consuming nature of video processing. To facilitate testing, you can easily set up a callback server using Google Colab. For detailed instructions, please refer to the provided tutorial for more information. | 201 | Example_1 | {"status": "succeeded", "code": 201, "msg": "the processing of the video is running"} | {"type": "object"} |
aeeca284-c3e5-4a66-b84e-9c82ce16e95f/0fda6563-03c7-4439-af74-7b16088896b5/0/0 | YouTube Summarization | Summarize any YouTube video in any language and get only the essential content delivered to your inbox. | 0.1 | videoLong | Long: video duration between 2 - 5 hours
This endpoint is specifically designed for video summarization and utilizes
callbacks due to the time-consuming nature of video processing. To facilitate testing, you can easily set up a callback server using Google Colab. For detailed instructions, please refer to the provided tutorial for more information. | 201 | Example_1 | {"status": "succeeded", "code": 201, "msg": "the processing of the video is running"} | {"type": "object"} |
aeeca284-c3e5-4a66-b84e-9c82ce16e95f/ba931484-bf21-4e70-b351-ca16c488a595/0/0 | YouTube Summarization | Summarize any YouTube video in any language and get only the essential content delivered to your inbox. | 0.1 | videoInfo | The objective here is to obtain the code for the video that will be used in a particular endpoint summarization. Additionally, it determines the category or length of the endpoint the user should aim for with this video, which could be categorized as 'short,' 'medium,' or 'long.' | 201 | Example_1 | {"video_code": "gAAAAABlJqyeQx_D-uYXMviru43nwv0lysoLZpqlJMuHMX81AD84PWSdtFEQ2IGOQ2lER-vkJpZa9WOwdb9yj6EvclbCLrR3iRaB6f-R_Svrg57zlxVZBgU9sTmH6Rn8PhW3W1xQmNX6XCZ-gWedWcNgyXeD-pgVFOyBFDRdY27-OTFfzVnz5GMq0blqiQDstg98ypIFmqNLH0tSh-SMVO-GYdiMtXtYxwYqZf66pznDULazR8zS1DorckHIBMjGfV4CaVKHYQ-l0PrxhnDMBuLrnuvDjMAsRquAxIVJ1WHzab7UtNi4rbXWtuafXWUcgvVPJtGgnMKWYagc2W07yv9DUsQJRRL3tCct4wOYoeXpKimyYl9hlXtc3gDAdTffgxF1vpV4ma-oXGDNe6NC2aOC2l9HfrLTpBINyVKku8GvRdP1Y5NSHahLNJShEs3jNRa9s3LUqJuYMOwBMNJLHTa6428BFOIbaH7YAzjj-7FgXQxwEzoIx6ooAggmZih17I3Bii0tfQjPl2R1zNpYGQKuaLTLDOdSDHm24-DEBlfRuL4rYZLbdC0xhzR2xPZxclA1U7g1VGI6sWxLJVF9ZSsYNvtPvZ1azqw4ygJUnqOc6q-84dSkXcwqrBnE2lVpvECjpRwGm6eZ3HHinWjbcES6-1H_T5OOfzgLaHBjTDX5a5plfDU5G_zcQE2JjdsogrAnjIAmXn2bNNwn3714BvWhWFa9KG8D6xeC7d1-ALZ2j3IeWAhT2b8fMAENRLmVnQhPBvn2YFXI10yDK9QZRvxmDJImXHDARNZxbo8TsitEot1dzMweN1L8kVkxGbghMwCdWcDXIH2LczgsWslxKZB3PBju5yU50fDOFqzJ3HR6qScQ41z1N1SNe5T5eFndA-09jB_p_Cn0Pf-l_LAXgOJgWy1C5wz2DsQObnrL3vWzLSOgGOENyRcmFa3ea1I48KuxmoCAlbcMqWF41q-Dyc7azgyYspS4otDnLOQFn9EP_cIV0G8IB0VQXVCxSwQpjNKm_n4vLAmqmFE6mkWWr9yoAwGK-Xg9kmzQkN9d0OFpqslDiOcHMZ9NrrAYALQ53nTJ5P4uGEmGyTedV7vRpmS_hlvYYcrdcoxmZxVtp5KIiifo2IKc-Ep8LcE8NkDkLvfF20_vtMvp97iu-90ZUzqmGlma3Bm4N_Fec2GYEO6SYZm7jDNQ8kZqYEoATmiPxp7WesoE83MA_RC9GL5KU5yFjPggkfJReLrxZWyWR7xi_PWHQngugmUS-EWPUS7ELJWW3ar-bT2U", "endpoint_type": "short", "msg": "You need to copy the video_code above to paste in the short end point"} | {"type": "object"} |
06669d3b-4353-439d-aae2-a98a91e45849/4d0fb3b0-e068-41b1-8c50-d8b38754f9c4/0/0 | HybridSearch | A keyword-aware semantic search engine | null | upload text files | Upload text file(s) (pdf, txt, docx) to the HybridSearch service. Note: max file size supported is 5 MB and max filename length is 100 characters including file extension | 200 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "message": "follow this link to check the status of your upload: https://hybridsearch.app/upload-status/123456"} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string"}, "message": {"type": "string"}}} |
06669d3b-4353-439d-aae2-a98a91e45849/4d0fb3b0-e068-41b1-8c50-d8b38754f9c4/1/0 | HybridSearch | A keyword-aware semantic search engine | null | upload text files | Upload text file(s) (pdf, txt, docx) to the HybridSearch service. Note: max file size supported is 5 MB and max filename length is 100 characters including file extension | 400 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "error": "error message"} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string"}, "error": {"type": "string"}}} |
06669d3b-4353-439d-aae2-a98a91e45849/d888bac4-bd42-484a-b070-9c4c1b98d12e/0/0 | HybridSearch | A keyword-aware semantic search engine | null | delete | Delete file(s), if exists, from the HybridSearch service | 500 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "error": "error message"} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string"}, "error": {"type": "string"}}} |
06669d3b-4353-439d-aae2-a98a91e45849/d888bac4-bd42-484a-b070-9c4c1b98d12e/1/0 | HybridSearch | A keyword-aware semantic search engine | null | delete | Delete file(s), if exists, from the HybridSearch service | 200 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "files": ["file1.pdf", "file2.txt"], "org": "YOUR_ORG_NAME"} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string"}, "files": {"type": "array", "items": {"type": "string"}}, "org": {"type": "string"}}} |
06669d3b-4353-439d-aae2-a98a91e45849/d888bac4-bd42-484a-b070-9c4c1b98d12e/2/0 | HybridSearch | A keyword-aware semantic search engine | null | delete | Delete file(s), if exists, from the HybridSearch service | 400 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "error": "error message"} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string"}, "error": {"type": "string"}}} |
06669d3b-4353-439d-aae2-a98a91e45849/eb70be13-998e-4ecc-93aa-afd77cd9a1f3/0/0 | HybridSearch | A keyword-aware semantic search engine | null | get-sources | List all data sources (text files, documents) in a given org | 500 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "error": "error message"} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string"}, "error": {"type": "string"}}} |
06669d3b-4353-439d-aae2-a98a91e45849/eb70be13-998e-4ecc-93aa-afd77cd9a1f3/1/0 | HybridSearch | A keyword-aware semantic search engine | null | get-sources | List all data sources (text files, documents) in a given org | 400 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "error": "error message"} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string"}, "error": {"type": "string"}}} |
06669d3b-4353-439d-aae2-a98a91e45849/eb70be13-998e-4ecc-93aa-afd77cd9a1f3/2/0 | HybridSearch | A keyword-aware semantic search engine | null | get-sources | List all data sources (text files, documents) in a given org | 200 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "files": ["file1.pdf", "file2.txt"], "org": "YOUR_ORG_NAME"} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string"}, "files": {"type": "array", "items": {"type": "string"}}, "org": {"type": "string"}}} |
06669d3b-4353-439d-aae2-a98a91e45849/3a454919-ca7d-412f-8a1c-d392fbf70cc5/0/0 | HybridSearch | A keyword-aware semantic search engine | null | query | Send a query to the hybridsearch service and retrieve semantic and/or keyword matches | 200 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "matches": [{"sample": "this is a sample text in a file", "source": "file.pdf", "score": 10.73}, {"sample": "this is another sample text in a file", "source": "file.txt", "score": 4.58}]} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string"}, "matches": {"type": "array", "items": {"type": "object", "properties": {"sample": {"type": "string"}, "source": {"type": "string"}, "score": {"type": "number"}}}}}} |
06669d3b-4353-439d-aae2-a98a91e45849/86d621fb-146d-4ff8-9d8f-2c58c193e0cf/0/0 | HybridSearch | A keyword-aware semantic search engine | null | upload-status | Get the current upload status for a particular taskId | 200 | null | {"HS-Request-ID": "62f7c42f-ce5f-429e-8aaf-93cb2fae6e5f", "HS-Task-ID": "0225221a8371132b961", "timestamp": "2023-01-02T15:04:05Z07:00", "message": "task finished"} | {"type": "object", "properties": {"HS-Request-ID": {"type": "string", "format": "uuid"}, "HS-Task-ID": {"type": "string"}, "timestamp": {"type": "string", "format": "date"}, "message": {"type": "string"}}} |
5cbcc4d9-9a2f-46ca-a123-df06d29d908e/436adebc-3403-43d9-88c3-c5ca8f80d0ef/0/0 | GPT-Generated Kenyan News API | The GPT-Generated Kenyan News API generates original news articles tailored specifically for the Kenyan context. | null | getArticleById | Get specific articles by their IDs | 401 | New Example | {"error": "401 Unauthorized"} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"error": {"type": "string"}}, "required": ["error"]} |
5cbcc4d9-9a2f-46ca-a123-df06d29d908e/436adebc-3403-43d9-88c3-c5ca8f80d0ef/1/0 | GPT-Generated Kenyan News API | The GPT-Generated Kenyan News API generates original news articles tailored specifically for the Kenyan context. | null | getArticleById | Get specific articles by their IDs | 200 | New Example | {"article": {"body": "President William Ruto, in recent days\nHas named new commanders to lead the way\nMajor General Kiugu now stands tall\nAt the East Africa Community Regional Force's call\n\nAnd in the Western Command, a change is made\nAs Nyagah steps down, his reasons laid\nIn a letter to the Secretary General, he said\nConstant harassment and smear campaigns led him to bed\n\nThe DRC made the calls\nFor rotational command every three months to install\nAnd Nyagah faced more than just that\nAs foreign military contractors came to his welcome mat\n\nMonitoring devices, drones, and physical surveillance too\nNyagah had no choice but to bid his residence adieu\nAnd on top of that, a negative media campaign\nTo tarnish his name and bring him to shame\n\nBut now with fresh leadership in place\nThe EACRF can continue to embrace\nTheir mission to protect and serve\nWith honor and courage they'll preserve.", "id": 354, "image_url": "https://lh3.googleusercontent.com/UYjy4jbM4xPvKlMPMD52FJjqUb7rZak_ICrL92DDE_R7BWe7XoWSj1FJBhT3q07n4Ap21UQ9Mp44eDfdMlCQnEQ7tLBzYRcMCeXf7Q", "slug": "a-call-to-command-major-general-kiugu-assumes-eacrf-leadership-under-ruto", "title": "\"A Call to Command: Major General Kiugu Assumes EACRF Leadership Under Ruto\""}} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"article": {"type": "object", "properties": {"body": {"type": "string"}, "id": {"type": "integer"}, "image_url": {"type": "string"}, "slug": {"type": "string"}, "title": {"type": "string"}}, "required": ["body", "id", "image_url", "slug", "title"]}}, "required": ["article"]} |
5cbcc4d9-9a2f-46ca-a123-df06d29d908e/76bce5c2-62dc-48dc-812d-06910882e8f3/0/0 | GPT-Generated Kenyan News API | The GPT-Generated Kenyan News API generates original news articles tailored specifically for the Kenyan context. | null | getArticleByCategory | Get articles of different categories Politics, Entertainment, Exclusive, News, Lifestyle | 200 | New Example | {"articles": [{"body": "African Heads of State, they go\nOn trips abroad, but face a blow\nPresident Ruto, he did claim\nThey're sometimes mistreated, it's a shame\n\nThe incident at Queen Elizabeth's funeral\nPut them on a bus, it was not ideal\nRuto said it's not right, it's true\nTo treat African Presidents, just like school\n\n54 leaders before one gentleman\nIt's not intelligent, they comprehend\nMistreated and loaded like a child\nIs not how Presidents should be styled\n\nIn September, they went to pay tribute\nTo Queen Elizabeth II, it's acute\nRuto sat at back left with his wife\nWhile other Presidents drive in strife\n\nUS President Biden, in the Beast he rode\nArmour-plated, it was his mode\nIt's clear that African Heads of State\nDeserve better treatment, it's not too late.", "category": "Politics", "date": "Sun, 30 Apr 2023 10:50:40 GMT", "id": 403, "image_url": "https://lh3.googleusercontent.com/0sTFxjCYnyS5xIwHIW-C8e1_8Z0Oz4jBjLEsVXjacysRgNIQEjqejBhregYypysudD0d11I301eXwyUlTS7BwHD2ri3flSn6LTtVGw", "slug": "the-pain-in-his-heart", "title": "\"The Pain in His Heart\""}, {"body": "Uhuru Kenyatta, retired and gone\nNo longer reachable, it's been shown\nMo Ibrahim tried for lunch to call\nBut his phone number had appalled\n\nIbrahim, a philanthropist and friend\nOf Kenyatta and Raila, did send\nAn invitation for a great lunch\nBut the confirmation is not a hunch\n\nDialogue is what Ibrahim seeks\nTo end the squabbles and the leaks\nOf unhealthy differences and strife\nThat cost the country and its life\n\nHe wants to hug and really talk\nFor all the hot air is just a shock\nHe knows that Kenyan issues may not be his\nBut as a friend, he still has Biz\n\nThe billionaire businessman came to Kenya\nFor the Governance Weekend, a great display\nOf global Africa, its challenges and its topics\nWith Hamdok, Okonjo-Iweala, and their optics\n\nAU chair, EU Council President, and UN secretary\nJoined them all, in search for clarity\nThe importance of the African Union, the head did call\nFor better management, not relying on Europeans at all\n\nIt's madness that 54 countries cannot manage\n$85 million to support Somalia, he did rage\nThe architecture needs to change, he stated\nFrom heads of state to a Commission Chairman who's rated\n\nSo, to Uhuru Kenyatta, if you hear this voice\nMo Ibrahim wants to chat, make a choice\nAnd to Raila Odinga, too, a great lunch awaits\nFor dialogue and friendship, it's worth the dates.", "category": "Politics", "date": "Sun, 30 Apr 2023 10:50:28 GMT", "id": 402, "image_url": "https://lh3.googleusercontent.com/TuTnrBvxFGSuXsTuvfp2CJtPx9OkNSN154Mn7MXTRAZzlcYmsNVM3paxVRjjH-7NvXCiwQquEiIPmdyzTe3yQuS6UC9QRmyHHDgE_w", "slug": "the-elusive-uhuru-lost-in-the-winds-of-change", "title": "\"The Elusive Uhuru: Lost in the Winds of Change\""}]} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"articles": {"type": "array", "items": {"type": "object", "properties": {"body": {"type": "string"}, "category": {"type": "string"}, "date": {"type": "string"}, "id": {"type": "integer"}, "image_url": {"type": "string"}, "slug": {"type": "string"}, "title": {"type": "string"}}, "required": ["body", "category", "date", "id", "image_url", "slug", "title"]}}}, "required": ["articles"]} |
5cbcc4d9-9a2f-46ca-a123-df06d29d908e/afb9dce5-ec8c-4979-9c26-ebf0b89db5eb/0/0 | GPT-Generated Kenyan News API | The GPT-Generated Kenyan News API generates original news articles tailored specifically for the Kenyan context. | null | getAllArticles | Retrieves all articles for all categories | 200 | New Example | {"articles": [{"body": "Musician Naseeb Abdul Juma, popularly known as Diamond Platinumz, has become a topic of discussion among his fans in the second season of the reality series Young Famous and African. A video clip of the series posted on Instagram shows some fans ridiculing his spoken English while others applaud him for attempting to speak the language.\n\nSeveral comments on the post criticized Diamond's pronunciation and grammar, while others suggested that he should speak in his native language Kiswahili and have an interpreter. However, some fans empathized with him, stating that his English has improved and encouraged him to keep practicing.\n\nRegardless of the opinions of his fans, Diamond Platinumz has made remarkable progress in his career since rising to fame in East Africa. His efforts to learn a new language are commendable, and his determination to improve his English pronunciation is worthy of applause.\n\nIn conclusion, while Diamond may face criticism for his English skills, it is essential to recognize his efforts to improve and take steps towards learning a new language. Learning a language can be challenging, but it opens up opportunities and helps bridge communication gaps between different cultures.", "category": "Entertainment", "date": "Thu, 25 May 2023 10:11:35 GMT", "id": 648, "image_url": "https://lh3.googleusercontent.com/xlqo5R7sv96o-Dl5Nqh73gehYE0m0Nh8yTV3jdRFeCxmnQqinXVXr9YDA5UuDcUdqAzUVZYQBupIzyK3PcNANmy3oVJWOh6U31GaxA", "slug": "unlocking-the-magic-of-pata-a-journey-of-cultural-exchange-with-diamond-and-young-african-and-famous", "title": "\"Unlocking the Magic of 'Pata': A Journey of Cultural Exchange with Diamond and 'Young, African and Famous'\""}, {"body": "Suzanna Owiyo, a talented musician and songwriter from Kenya, recently shared an insightful anecdote on her Twitter page about her personal experience of backsliding after her salvation journey was cut short. Owiyo had made the decision to join the Christian Union while in high school in Nyanza and had only been saved for a month when she found herself entrapped between her newfound faith and an exciting opportunity.\n\nOwiyo and her colleagues from the drama club had won a competition that granted them the chance to represent their school at the National level in Nairobi, and upon arrival, they had planned to head to the dining hall. However, when they arrived, they discovered that a disco was in full swing, and they decided to go in and share their good news with the other students.\n\nAs a born-again Christian, the idea of joining the disco conflicted with Owiyo's new faith, but she also wasn't inclined to attend the Christian Union session in a nearby classroom. She found herself caught in a dilemma, confused about her next steps.\n\nWhile contemplating what to do, one of her colleagues suggested she should attend the Christian Union meeting since she was born again. Owiyo's heart, however, was set on the disco, and within minutes, she had joined the rest of the students jumping and dancing to the music. \n\nDespite the warm welcome she received in the dining hall, Owiyo soon realized that she had made a mistake and had jeopardized her faith. Her story is one that many believers can relate to, as the temptation to conform to societal norms and peer pressure often leads us away from our values and principles.\n\nOwiyo's regretful experience highlights the importance of staying true to oneself and having the courage to stand for what we believe in, even in the face of opposition. Her story can serve as an inspiration to those who have also struggled with maintaining their faith in a challenging environment. By sharing her experience, Owiyo has shown that it is never too late to recommit to one's faith and to seek forgiveness when we fall short.", "category": "Entertainment", "date": "Thu, 25 May 2023 10:10:56 GMT", "id": 647, "image_url": "https://lh3.googleusercontent.com/4zcPfTGmtWWxLRmqHn8oH9vfcvOB7BuuafI0CydYIS2NMIKEynCXBI3_4tA6ksu7TwVf5AarmsJIgo7FamK4EkOqCjvR5onxwJd9EA", "slug": "the-untold-truth-suzanna-owiyo-s-candid-confession-on-her-backslide-journey", "title": "\"The Untold Truth: Suzanna Owiyo's Candid Confession on Her Backslide Journey\""}]} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"articles": {"type": "array", "items": {"type": "object", "properties": {"body": {"type": "string"}, "category": {"type": "string"}, "date": {"type": "string"}, "id": {"type": "integer"}, "image_url": {"type": "string"}, "slug": {"type": "string"}, "title": {"type": "string"}}, "required": ["body", "category", "date", "id", "image_url", "slug", "title"]}}}, "required": ["articles"]} |
a321f127-057b-4611-ab3c-aee960bc2ea7/749d7fde-05bd-4447-ba3c-05ee9ec35f16/0/0 | Voiceprint | Introducing VoicePrint API: a state-of-the-art, serverless, and scalable solution for comparing two voices and determining their percentage similarity. Harness the power of our cutting-edge voice recognition technology to unlock new possibilities in security, personalization, and content verification. Elevate your applications with VoicePrint API's unparalleled accuracy, seamless integration, and outstanding performance. Experience the future of voice analysis today and stay ahead of the comp... | null | compare_files_compare_post | 422 | null | {"detail": [{"loc": [], "msg": "", "type": ""}]} | {"title": "HTTPValidationError", "type": "object", "properties": {"detail": {"title": "Detail", "type": "array", "items": {"title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": {"loc": {"title": "Location", "type": "array", "items": {"anyOf": [{"type": "string"}, {"type": "integer"}]}}, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}}}}}} |
|
123ed22e-44ba-4b9e-8bf1-6983c325cf56/36c34eaf-5208-4f22-b9c7-582b07aeb970/0/0 | ChatGPT API | Cheapest chatgpt API in the market | 0.2 | Chat | Powered by gpt-3.5-turbo API | 200 | New Example | {"text": "Fetch chat message success", "code": 200, "data": [{"role": "user", "content": "Hello world"}, {"role": "assistant", "content": "Hello! How can I assist you today?"}]} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"text": {"type": "string"}, "code": {"type": "integer"}, "data": {"type": "array", "items": {"type": "object", "properties": {"role": {"type": "string"}, "content": {"type": "string"}}, "required": ["content", "role"]}}}, "required": ["code", "data", "text"]} |
fc291645-d036-409f-ac2d-47772bb333eb/af135d2a-e939-4f50-b785-37f8e7bbdc7d/0/0 | NSFW Moderation - Nude/ Porn/ Drug/ Violence/ Perturbing | Detect "Not Safe For Work" (NSFW) content in images in real time. Most complete topics. | null | NSFW image moderation | Check if an image is NSFW. Return a JSON with labels. | 400 | Example_1 | {"status_description": "'image_url' too short", "results_length": 0, "results": [], "status": "REQUEST_ERROR"} | {"type": "object", "properties": {"status_description": {"type": "string"}, "results_length": {"type": "integer", "format": "int64", "minimum": -9223372036854776000, "maximum": 9223372036854776000}, "results": {"type": "string"}, "status": {"type": "string"}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/e5bc19bd-902e-4564-84c5-e08253b62f2a/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | CreateCompletion | Given a prompt, the model will return one or more predicted completions, and can also return the probabilities of alternative tokens at each position. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/8a2f589b-7c70-47e6-a1c7-bef5033799f8/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | ListEngines | Lists the currently available (non-finetuned) models, and provides basic information about each one such as the owner and availability. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/de5ba0d3-0a32-4f2e-afbc-fc51bce9962a/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | CreateEdit | Creates a new edit for the provided input, instruction, and parameters. | 200 | Example_1 | {"object": "edit", "created": 1675840160, "choices": [{"text": "What day of the week is it?\n", "index": 0}], "usage": {"prompt_tokens": 25, "completion_tokens": 28, "total_tokens": 53}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/1e8412b0-51f6-4a14-9d72-1e4cd8198e7a/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | CreateImageVariation | Creates a variation of a given image. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/ba8ec721-4c46-476f-848f-0471513b9b8e/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | RetrieveModel | Retrieves a model instance, providing basic information about the model such as the owner and permissioning. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/ebd622ac-510a-4ec3-b451-956391c0dfc8/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | RetrieveEngine | Retrieves a model instance, providing basic information about it such as the owner and availability. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/e186db43-4af5-4ae5-8fa7-67cd5a9089df/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | CreateModeration | Classifies if text violates OpenAI's Content Policy. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/2da0ed9a-2536-4a1e-ad28-5d6c829f0f74/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | CreateImage | Creates an image given a prompt. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/26244f95-f63c-4d19-8af8-9535f87405b0/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | CreateImageEdit | Creates an edited or extended image given an original image and a prompt. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/25dfdaa3-4406-4239-b7e7-cddbd45ccc91/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | ListModels | Lists the currently available models, and provides basic information about each one such as the owner and availability. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
8d70a8d4-3c53-4a5b-911d-b4adaa99b11b/e35f9ecb-7e04-4d07-9a76-d02966cfaaf9/0/0 | ChatGPT | ChatGPT API which built based on the OpenAI API can be applied to virtually any task that involves understanding or generating natural language or code. | 5.6 | CreateEmbeddings | Creates an embedding vector representing the input text. | 200 | Example_1 | {"id": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf", "object": "text_completion", "created": 0, "model": "text-davinci-003", "choices": [{"text": "\n\nThis is indeed a test", "finish_reason": "length"}], "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}} | {"type": "object", "properties": {"id": {"type": "string", "description": "", "default": "cmpl-6hYfMnH5nNV2cP2HMeBGfAaa5hzZf"}, "object": {"type": "string", "description": "", "default": "text_completion"}, "created": {"type": "integer", "description": "", "default": 1675839380}, "model": {"type": "string", "description": "", "default": "text-davinci-003"}, "choices": {"type": "array", "items": {"type": "object", "properties": {"text": {"type": "string", "description": "", "default": "\n\nThis is indeed a test"}, "index": {}, "logprobs": {}, "finish_reason": {"type": "string", "description": "", "default": "length"}}}}, "usage": {"type": "object", "properties": {"prompt_tokens": {"type": "integer", "description": "", "default": 5}, "completion_tokens": {"type": "integer", "description": "", "default": 7}, "total_tokens": {"type": "integer", "description": "", "default": 12}}}}} |
67f2cbd9-751b-4a25-adc2-ed7645b99707/d6ea21ee-09cc-4ee9-b2d5-e6ec24be952f/0/0 | Google SEO Keyword Research AI | Google SEO Keyword Research AI | 8.1 | Google Seo keyword ideas | Google Seo keyword ideas | 200 | Response | [{"Related Keywords": [{"Total Related Keywords": 2}, {"Avg. monthly searches": "37200000", "Competition": "Low", "Competition (indexed value)": "17", "Keyword": "amazon", "Searches: Apr 2023": "37200000", "Searches: Aug 2023": "45500000", "Searches: Dec 2022": "37200000", "Searches: Feb 2023": "30400000", "Searches: Jan 2023": "37200000", "Searches: Jul 2023": "45500000", "Searches: Jun 2023": "37200000", "Searches: Mar 2023": "37200000", "Searches: May 2023": "37200000", "Searches: Nov 2022": "30400000", "Searches: Oct 2022": "45500000", "Searches: Sep 2022": "45500000", "Top of page bid (high range)": "5.23", "Top of page bid (low range)": "2.48", "Updated": "September 20, 2023"}, {"Avg. monthly searches": "1000000", "Competition": "Low", "Competition (indexed value)": "14", "Keyword": "amazon in", "Searches: Apr 2023": "1000000", "Searches: Aug 2023": "1220000", "Searches: Dec 2022": "1000000", "Searches: Feb 2023": "823000", "Searches: Jan 2023": "1000000", "Searches: Jul 2023": "1220000", "Searches: Jun 2023": "1000000", "Searches: Mar 2023": "1000000", "Searches: May 2023": "1220000", "Searches: Nov 2022": "1000000", "Searches: Oct 2022": "1220000", "Searches: Sep 2022": "1220000", "Top of page bid (high range)": "1.64", "Top of page bid (low range)": "1.62", "Updated": "September 20, 2023"}]}] | {"$schema": "http://json-schema.org/schema#", "type": "array", "items": {"type": "object", "properties": {"Related Keywords": {"type": "array", "items": {"type": "object", "properties": {"Total Related Keywords": {"type": "integer"}, "Avg. monthly searches": {"type": "string"}, "Competition": {"type": "string"}, "Competition (indexed value)": {"type": "string"}, "Keyword": {"type": "string"}, "Searches: Apr 2023": {"type": "string"}, "Searches: Aug 2023": {"type": "string"}, "Searches: Dec 2022": {"type": "string"}, "Searches: Feb 2023": {"type": "string"}, "Searches: Jan 2023": {"type": "string"}, "Searches: Jul 2023": {"type": "string"}, "Searches: Jun 2023": {"type": "string"}, "Searches: Mar 2023": {"type": "string"}, "Searches: May 2023": {"type": "string"}, "Searches: Nov 2022": {"type": "string"}, "Searches: Oct 2022": {"type": "string"}, "Searches: Sep 2022": {"type": "string"}, "Top of page bid (high range)": {"type": "string"}, "Top of page bid (low range)": {"type": "string"}, "Updated": {"type": "string"}}}}}, "required": ["Related Keywords"]}} |
67f2cbd9-751b-4a25-adc2-ed7645b99707/786bab86-471c-4856-b257-426dbbf33a40/0/0 | Google SEO Keyword Research AI | Google SEO Keyword Research AI | 8.1 | Comprehensive Keyword Analysis | Comprehensive Keyword Analysis | 200 | Response | [{"Comprehensive Keyword Analysis": "Keyword Overview full analysis with SERP Analysis, Keword Trending History, related Queries and keyword intrest by region On Google Trends, Related Keywords data."}, {"Keyword Overview": {"Avg. monthly searches": "37200000", "Competition": "Low", "Competition (indexed value)": "17", "Keyword": "amazon", "Searches: Apr 2023": "37200000", "Searches: Aug 2023": "45500000", "Searches: Dec 2022": "37200000", "Searches: Feb 2023": "30400000", "Searches: Jan 2023": "37200000", "Searches: Jul 2023": "45500000", "Searches: Jun 2023": "37200000", "Searches: Mar 2023": "37200000", "Searches: May 2023": "37200000", "Searches: Nov 2022": "30400000", "Searches: Oct 2022": "45500000", "Searches: Sep 2022": "45500000", "Top of page bid (high range)": "5.23", "Top of page bid (low range)": "2.48", "Updated": "September 20, 2023"}}, {"SERP Analysis": {"error": "list index out of range"}}, {"Your Targeted Keword Trending History On Google": {"error": "Expecting value: line 1 column 1 (char 0)"}}, {"Interest Google Trends Data": {"Interest Google Trends Data": [{"interest": 100, "region": "Andaman and Nicobar Islands"}, {"interest": 79, "region": "Andhra Pradesh"}, {"interest": 48, "region": "Arunachal Pradesh"}, {"interest": 50, "region": "Assam"}, {"interest": 44, "region": "Bihar"}, {"interest": 62, "region": "Chandigarh"}, {"interest": 56, "region": "Chhattisgarh"}, {"interest": 78, "region": "Dadra and Nagar Haveli"}, {"interest": 90, "region": "Daman and Diu"}, {"interest": 97, "region": "Delhi"}, {"interest": 81, "region": "Goa"}, {"interest": 67, "region": "Gujarat"}, {"interest": 75, "region": "Haryana"}, {"interest": 64, "region": "Himachal Pradesh"}, {"interest": 60, "region": "Jammu and Kashmir"}, {"interest": 60, "region": "Jharkhand"}, {"interest": 82, "region": "Karnataka"}, {"interest": 78, "region": "Kerala"}, {"interest": 0, "region": "Lakshadweep"}, {"interest": 44, "region": "Madhya Pradesh"}, {"interest": 77, "region": "Maharashtra"}, {"interest": 54, "region": "Manipur"}, {"interest": 70, "region": "Meghalaya"}, {"interest": 70, "region": "Mizoram"}, {"interest": 70, "region": "Nagaland"}, {"interest": 60, "region": "Odisha"}, {"interest": 94, "region": "Puducherry"}, {"interest": 59, "region": "Punjab"}, {"interest": 55, "region": "Rajasthan"}, {"interest": 79, "region": "Sikkim"}, {"interest": 92, "region": "Tamil Nadu"}, {"interest": 99, "region": "Telangana"}, {"interest": 62, "region": "Tripura"}, {"interest": 57, "region": "Uttar Pradesh"}, {"interest": 79, "region": "Uttarakhand"}, {"interest": 58, "region": "West Bengal"}]}}, {"Google Trends Data": [{"related keywords shown on Google Trends": {"amazon": {"rising": [{"keyword idea": "amazon pay icici credit card", "search value": 9350}, {"keyword idea": "amazon mini tv", "search value": 8700}, {"keyword idea": "amazon daily quiz", "search value": 5600}, {"keyword idea": "amazon outlet clearance", "search value": 3250}, {"keyword idea": "best movies on amazon prime", "search value": 1850}, {"keyword idea": "tesla share price", "search value": 1650}, {"keyword idea": "best series on amazon prime", "search value": 1400}, {"keyword idea": "amazon icici credit card", "search value": 1300}, {"keyword idea": "amazon outlet", "search value": 1100}, {"keyword idea": "amazon prime plans", "search value": 1050}, {"keyword idea": "amazon quiz answers today", "search value": 950}, {"keyword idea": "amazon great indian festival", "search value": 800}, {"keyword idea": "amazon prime subscription", "search value": 750}, {"keyword idea": "amazon quiz today", "search value": 700}, {"keyword idea": "amazon quiz answers", "search value": 600}, {"keyword idea": "amazon flex", "search value": 600}, {"keyword idea": "amazon tracking id", "search value": 550}, {"keyword idea": "microsoft share price", "search value": 500}, {"keyword idea": "amazon prime login", "search value": 450}, {"keyword idea": "amazon quiz", "search value": 400}, {"keyword idea": "apple share price", "search value": 400}, {"keyword idea": "amazon prime movies", "search value": 400}, {"keyword idea": "amazon pay", "search value": 200}, {"keyword idea": "amazon share price", "search value": 170}, {"keyword idea": "amazon prime", "search value": 170}], "top": [{"keyword idea": "amazon prime", "search value": 100}, {"keyword idea": "amazon india", "search value": 99}, {"keyword idea": "amazon in", "search value": 81}, {"keyword idea": "flipkart", "search value": 64}, {"keyword idea": "amazon video", "search value": 31}, {"keyword idea": "amazon prime video", "search value": 26}, {"keyword idea": "amazon online", "search value": 23}, {"keyword idea": "amazon quiz", "search value": 20}, {"keyword idea": "amazon shopping", "search value": 18}, {"keyword idea": "amazon sale", "search value": 15}, {"keyword idea": "amazon customer care", "search value": 14}, {"keyword idea": "amazon login", "search value": 14}, {"keyword idea": "seller amazon", "search value": 12}, {"keyword idea": "amazon mobile", "search value": 11}, {"keyword idea": "amazon pay", "search value": 11}, {"keyword idea": "amazon customer care number", "search value": 10}, {"keyword idea": "amazon prime movies", "search value": 9}, {"keyword idea": "amazon app", "search value": 8}, {"keyword idea": "amazon online shopping", "search value": 8}, {"keyword idea": "flipkart india", "search value": 7}, {"keyword idea": "amazon jobs", "search value": 7}, {"keyword idea": "amazon quiz answers", "search value": 7}, {"keyword idea": "amazon quiz today", "search value": 6}, {"keyword idea": "amazon share price", "search value": 5}, {"keyword idea": "seller central amazon", "search value": 5}]}}}]}, {"Related Keywords": [{"Total Related Keywords": 2}, {"Avg. monthly searches": "37200000", "Competition": "Low", "Competition (indexed value)": "17", "Keyword": "amazon", "Searches: Apr 2023": "37200000", "Searches: Aug 2023": "45500000", "Searches: Dec 2022": "37200000", "Searches: Feb 2023": "30400000", "Searches: Jan 2023": "37200000", "Searches: Jul 2023": "45500000", "Searches: Jun 2023": "37200000", "Searches: Mar 2023": "37200000", "Searches: May 2023": "37200000", "Searches: Nov 2022": "30400000", "Searches: Oct 2022": "45500000", "Searches: Sep 2022": "45500000", "Top of page bid (high range)": "5.23", "Top of page bid (low range)": "2.48", "Updated": "September 20, 2023"}, {"Avg. monthly searches": "1000000", "Competition": "Low", "Competition (indexed value)": "14", "Keyword": "amazon in", "Searches: Apr 2023": "1000000", "Searches: Aug 2023": "1220000", "Searches: Dec 2022": "1000000", "Searches: Feb 2023": "823000", "Searches: Jan 2023": "1000000", "Searches: Jul 2023": "1220000", "Searches: Jun 2023": "1000000", "Searches: Mar 2023": "1000000", "Searches: May 2023": "1220000", "Searches: Nov 2022": "1000000", "Searches: Oct 2022": "1220000", "Searches: Sep 2022": "1220000", "Top of page bid (high range)": "1.64", "Top of page bid (low range)": "1.62", "Updated": "September 20, 2023"}]}] | {"$schema": "http://json-schema.org/schema#", "type": "array", "items": {"type": "object", "properties": {"Comprehensive Keyword Analysis": {"type": "string"}, "Keyword Overview": {"type": "object", "properties": {"Avg. monthly searches": {"type": "string"}, "Competition": {"type": "string"}, "Competition (indexed value)": {"type": "string"}, "Keyword": {"type": "string"}, "Searches: Apr 2023": {"type": "string"}, "Searches: Aug 2023": {"type": "string"}, "Searches: Dec 2022": {"type": "string"}, "Searches: Feb 2023": {"type": "string"}, "Searches: Jan 2023": {"type": "string"}, "Searches: Jul 2023": {"type": "string"}, "Searches: Jun 2023": {"type": "string"}, "Searches: Mar 2023": {"type": "string"}, "Searches: May 2023": {"type": "string"}, "Searches: Nov 2022": {"type": "string"}, "Searches: Oct 2022": {"type": "string"}, "Searches: Sep 2022": {"type": "string"}, "Top of page bid (high range)": {"type": "string"}, "Top of page bid (low range)": {"type": "string"}, "Updated": {"type": "string"}}, "required": ["Avg. monthly searches", "Competition", "Competition (indexed value)", "Keyword", "Searches: Apr 2023", "Searches: Aug 2023", "Searches: Dec 2022", "Searches: Feb 2023", "Searches: Jan 2023", "Searches: Jul 2023", "Searches: Jun 2023", "Searches: Mar 2023", "Searches: May 2023", "Searches: Nov 2022", "Searches: Oct 2022", "Searches: Sep 2022", "Top of page bid (high range)", "Top of page bid (low range)", "Updated"]}, "SERP Analysis": {"type": "object", "properties": {"error": {"type": "string"}}, "required": ["error"]}, "Your Targeted Keword Trending History On Google": {"type": "object", "properties": {"error": {"type": "string"}}, "required": ["error"]}, "Interest Google Trends Data": {"type": "object", "properties": {"Interest Google Trends Data": {"type": "array", "items": {"type": "object", "properties": {"interest": {"type": "integer"}, "region": {"type": "string"}}, "required": ["interest", "region"]}}}, "required": ["Interest Google Trends Data"]}, "Google Trends Data": {"type": "array", "items": {"type": "object", "properties": {"related keywords shown on Google Trends": {"type": "object", "properties": {"amazon": {"type": "object", "properties": {"rising": {"type": "array", "items": {"type": "object", "properties": {"keyword idea": {"type": "string"}, "search value": {"type": "integer"}}, "required": ["keyword idea", "search value"]}}, "top": {"type": "array", "items": {"type": "object", "properties": {"keyword idea": {"type": "string"}, "search value": {"type": "integer"}}, "required": ["keyword idea", "search value"]}}}, "required": ["rising", "top"]}}, "required": ["amazon"]}}, "required": ["related keywords shown on Google Trends"]}}, "Related Keywords": {"type": "array", "items": {"type": "object", "properties": {"Total Related Keywords": {"type": "integer"}, "Avg. monthly searches": {"type": "string"}, "Competition": {"type": "string"}, "Competition (indexed value)": {"type": "string"}, "Keyword": {"type": "string"}, "Searches: Apr 2023": {"type": "string"}, "Searches: Aug 2023": {"type": "string"}, "Searches: Dec 2022": {"type": "string"}, "Searches: Feb 2023": {"type": "string"}, "Searches: Jan 2023": {"type": "string"}, "Searches: Jul 2023": {"type": "string"}, "Searches: Jun 2023": {"type": "string"}, "Searches: Mar 2023": {"type": "string"}, "Searches: May 2023": {"type": "string"}, "Searches: Nov 2022": {"type": "string"}, "Searches: Oct 2022": {"type": "string"}, "Searches: Sep 2022": {"type": "string"}, "Top of page bid (high range)": {"type": "string"}, "Top of page bid (low range)": {"type": "string"}, "Updated": {"type": "string"}}}}}}} |
36822578-a47c-4098-9db5-c2da9bb576d9/f6ddb383-c223-4af9-9386-28ab56a5aa5a/0/0 | Job and Candidate Matching | This API matches the candidate CV with the JD. The API responds the detailed matching score once the candidate CV matches with the JD. | null | One To One Match API | This API matches the candidate CV with the JD. The API responds the detailed matching score once the candidate CV matches with the JD. | 200 | New Example | {"ResumeJSON": "Resume Parsed Data in JSON Form", "JDJSON": "JD Parsed Data in JSON Form", "explainScore": [{"explaination": {"score": 54.93348, "maxScore": 100, "Match": {"score": 54.933481, "maxScore": 100, "detailScore": [{"score": 0, "maxScore": 50, "entity": "JobProfileTitle", "value": "Sr. Business Relations Manager"}, {"score": 0, "maxScore": 10.71, "entity": "QualificationsPreferred", "value": "Bachelors degree"}, {"score": 0, "maxScore": 10.71, "entity": "QualificationsPreferred", "value": "Bachelors degree in business administration"}, {"score": 0, "maxScore": 3.97, "entity": "RequiredSkillSet", "value": "Marketing"}, {"score": 0, "maxScore": 3.97, "entity": "RequiredSkillSet", "value": "Advertising"}, {"score": 0, "maxScore": 3.97, "entity": "RequiredSkillSet", "value": "Communication Skills"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Sales And Commercial"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Selling And Trading"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Sales"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Marketing And Communications"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Marketing"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Administration/Assistance"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Administration And Secretary Services"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Mechanical Engineering"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Civil Engineering"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "ICT"}, {"score": 0, "maxScore": 0.65, "entity": "Domains", "value": "Engineering"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Planning"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Tactics"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Implementation and Development"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Public Relations"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Packaging"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Distribution"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Marketing Materials"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Vendors"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Promote"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Communication"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Information Flow"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Development"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Product Promotion"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Presentations"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Business Plans"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Communications"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Business Communications"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Business Administration"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Marketing Communications"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Operating Systems"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Problem Management"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Interpersonal Skills"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Upper Management"}, {"score": 0, "maxScore": 0.4, "entity": "PerferredSkillSet", "value": "Ability to work independently"}]}}}]} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"ResumeJSON": {"type": "string"}, "JDJSON": {"type": "string"}, "explainScore": {"type": "array", "items": {"type": "object", "properties": {"explaination": {"type": "object", "properties": {"score": {"type": "number"}, "maxScore": {"type": "integer"}, "Match": {"type": "object", "properties": {"score": {"type": "number"}, "maxScore": {"type": "integer"}, "detailScore": {"type": "array", "items": {"type": "object", "properties": {"score": {"type": "integer"}, "maxScore": {"type": "number"}, "entity": {"type": "string"}, "value": {"type": "string"}}, "required": ["entity", "maxScore", "score", "value"]}}}, "required": ["detailScore", "maxScore", "score"]}}, "required": ["Match", "maxScore", "score"]}}, "required": ["explaination"]}}}, "required": ["JDJSON", "ResumeJSON", "explainScore"]} |
05680f88-3c2b-4290-8e84-ff6e1e8128b4/26ddaf38-e9b6-4607-a4c8-4b61c62c29ab/0/0 | OPEN AI25 | best way to make youre work more easier using SUPER AI | 0.1 | ask | 200 | null | {"translation_text": "\u0627\u0644\u062d\u0635\u0648\u0644 \u0639\u0644\u0649 \u0625\u0634\u0639\u0627\u0631 \u0639\u0646 \u0627\u0644\u062a\u0639\u0644\u064a\u0642\u0627\u062a \u0627\u0644\u062c\u062f\u064a\u062f\u0629\u060c \u0637\u0644\u0628\u0627\u062a \u0627\u0644\u0648\u0635\u0648\u0644 \u0648\u0627\u0644\u0645\u0644\u0641\u0627\u062a \u0627\u0644\u0645\u0634\u062a\u0631\u0643\u0629 \u0645\u0639\u0643. \u0627\u0644\u0625\u062c\u0627\u0628\u0629 \u0639\u0644\u0649 \u0627\u0644\u062a\u0639\u0644\u064a\u0642\u0627\u062a \u0648\u0625\u0639\u0637\u0627\u0621 \u0632\u0645\u0644\u0627\u0621 \u0627\u0644\u0641\u0631\u064a\u0642 \u0627\u0644\u0648\u0635\u0648\u0644 \u0625\u0644\u0649 \u0645\u0644\u0641\u0627\u062a Google Drive \u0645\u0646 Slack."} | {"type": "object"} |
|
920bc34c-d13d-4dea-ab35-82988907de29/0c740f6c-b481-4c66-b5b0-c915439aebcd/0/0 | Image Background Diffusion | Repaint high-quality image background with prompt. | null | Submit task | Start a image background diffusion task | 200 | Repaint sofa image | {"created_at": "2023-07-20T13:45:40.771247764Z", "status": "starting", "id": "wn6vuybbhsvzhn5qrjv73wmoi4", "logs": ""} | {"type": "object", "title": "PredictionResponse", "properties": {"id": {"type": "string", "title": "Id"}, "logs": {"type": "string", "title": "Logs", "default": ""}, "error": {"type": "string", "title": "Error"}, "output": {"type": "array", "items": {"type": "string", "format": "uri"}, "title": "Output"}, "status": {"enum": ["starting", "processing", "succeeded", "canceled", "failed"], "type": "string", "title": "Status", "description": "An enumeration."}, "created_at": {"type": "string", "title": "Created At", "format": "date-time"}, "started_at": {"type": "string", "title": "Started At", "format": "date-time"}, "completed_at": {"type": "string", "title": "Completed At", "format": "date-time"}}} |
920bc34c-d13d-4dea-ab35-82988907de29/0c740f6c-b481-4c66-b5b0-c915439aebcd/1/0 | Image Background Diffusion | Repaint high-quality image background with prompt. | null | Submit task | Start a image background diffusion task | 422 | Example_1 | {"detail": [{"loc": [], "msg": "", "type": ""}]} | {"type": "object", "title": "HTTPValidationError", "properties": {"detail": {"type": "array", "items": {"type": "object", "title": "ValidationError", "required": ["loc", "msg", "type"], "properties": {"loc": {"type": "array", "items": {"anyOf": [{"type": "string"}, {"type": "integer"}]}, "title": "Location"}, "msg": {"type": "string", "title": "Message"}, "type": {"type": "string", "title": "Error Type"}}}, "title": "Detail"}}} |
920bc34c-d13d-4dea-ab35-82988907de29/fc40e018-c752-4a09-bdfa-9462654d8243/0/0 | Image Background Diffusion | Repaint high-quality image background with prompt. | null | Query result | Query background diffusion task status | 200 | Example_1 | {"created_at": "2023-07-20T13:45:40.771247Z", "id": "wn6vuybbhsvzhn5qrjv73wmoi4", "status": "succeeded", "output": ["https://replicate.delivery/pbxt/hZevrFwNwpzQfUeR93MdRRXwffP53lmU9JfWmTKO21qFmsbUE/top.png", "https://replicate.delivery/pbxt/5BkUWF2SeORSXKL3Y7nfVdhtgajGdHGfucfTfb8UjfMfMZ3oIA/ad_inpaint_0.jpg", "https://replicate.delivery/pbxt/9QJcsN7lXkIcHZ31XyvORmaxsxzExnmGS2e3uEkOwYINZ3oIA/ad_inpaint_1.jpg", "https://replicate.delivery/pbxt/h1kLRHeEcIQwdi0ZTeCZXXfwdsz7SzGVcgfSrvtT71fUT2NKC/ad_inpaint_2.jpg", "https://replicate.delivery/pbxt/fqJ2LGZozGzxRyYjzNg8Myr6Tt5xkAm0B8R8iAVhEFyNZ3oIA/ad_inpaint_3.jpg"], "completed_at": "2023-07-20T13:46:04.280496Z", "logs": "...", "metrics": {"predict_time": 23.492135}, "started_at": "2023-07-20T13:45:40.788361Z"} | {"type": "object", "title": "PredictionResponse", "properties": {"id": {"type": "string", "title": "Id"}, "logs": {"type": "string", "title": "Logs", "default": ""}, "error": {"type": "string", "title": "Error"}, "output": {"type": "array", "items": {"type": "string", "format": "uri"}, "title": "Output"}, "status": {"enum": ["starting", "processing", "succeeded", "canceled", "failed"], "type": "string", "title": "Status", "description": "An enumeration."}, "metrics": {"type": "object", "title": "Metrics"}, "created_at": {"type": "string", "title": "Created At", "format": "date-time"}, "started_at": {"type": "string", "title": "Started At", "format": "date-time"}, "completed_at": {"type": "string", "title": "Completed At", "format": "date-time"}}} |
920bc34c-d13d-4dea-ab35-82988907de29/fc40e018-c752-4a09-bdfa-9462654d8243/1/0 | Image Background Diffusion | Repaint high-quality image background with prompt. | null | Query result | Query background diffusion task status | 422 | Example_1 | {"detail": [{"loc": [], "msg": "", "type": ""}]} | {"type": "object", "title": "HTTPValidationError", "properties": {"detail": {"type": "array", "items": {"type": "object", "title": "ValidationError", "required": ["loc", "msg", "type"], "properties": {"loc": {"type": "array", "items": {"anyOf": [{"type": "string"}, {"type": "integer"}]}, "title": "Location"}, "msg": {"type": "string", "title": "Message"}, "type": {"type": "string", "title": "Error Type"}}}, "title": "Detail"}}} |
46a29cac-0703-4098-bc3d-f3af34f2e5c6/1db9de4b-9930-424b-9e37-bb8d0540af70/0/0 | MRZ Scanner | Scan MRZ from documents (Passports, Visas and ID Cards) | 9.1 | Send image as Base64 | Send document image as a Base64 string | 200 | Response | {"statusCode": 200, "statusMessage": "MRZ information has extracted completely", "hasError": false, "data": {"header": {"type": "TD3", "type_label": "Passport", "text": "P<FRASPECIMEN<<NATACHA<<<<<<<<<<<<<<<<<<<<<<\n60RF197658FRA8407122F2007058<<<<<<<<<<<<<<06", "box": {"bottomLeftX": "24", "bottomLeftY": "350", "bottomRightX": "561", "bottomRightY": "396", "topLeftX": "24", "topLeftY": "350", "topRightX": "562", "topRightY": "351"}}, "fields": {"surname": "SPECIMEN", "name": "NATACHA", "country": "FRA", "country_english": "France", "country_native": "Fra\u00f1s", "country_2letters": "FR", "nationality": "FRA", "nationality_english": "France", "nationality_native": "Fra\u00f1s", "nationality_2letters": "FR", "birth_date": "840712", "expiry_date": "200705", "sex": "F", "sex_label": "Female", "document_type": "P", "document_number": "60RF19765", "optional_data": "", "birth_date_hash": "2", "expiry_date_hash": "8", "document_number_hash": "8", "optional_data_hash": "0", "optional_data_2": ""}}} | {"type": "object", "properties": {"statusCode": {"type": "integer"}, "statusMessage": {"type": "string"}, "hasError": {"type": "boolean"}, "data": {"type": "object", "properties": {"header": {"type": "object", "properties": {"type": {"type": "string"}, "type_label": {"type": "string"}, "text": {"type": "string"}, "box": {"type": "object", "properties": {"bottomLeftX": {"type": "string"}, "bottomLeftY": {"type": "string"}, "bottomRightX": {"type": "string"}, "bottomRightY": {"type": "string"}, "topLeftX": {"type": "string"}, "topLeftY": {"type": "string"}, "topRightX": {"type": "string"}, "topRightY": {"type": "string"}}}}}, "fields": {"type": "object", "properties": {"surname": {"type": "string"}, "name": {"type": "string"}, "country": {"type": "string"}, "country_english": {"type": "string"}, "country_native": {"type": "string"}, "country_2letters": {"type": "string"}, "nationality": {"type": "string"}, "nationality_english": {"type": "string"}, "nationality_native": {"type": "string"}, "nationality_2letters": {"type": "string"}, "birth_date": {"type": "string"}, "expiry_date": {"type": "string"}, "sex": {"type": "string"}, "sex_label": {"type": "string"}, "document_type": {"type": "string"}, "document_number": {"type": "string"}, "optional_data": {"type": "string"}, "birth_date_hash": {"type": "string"}, "expiry_date_hash": {"type": "string"}, "document_number_hash": {"type": "string"}, "optional_data_hash": {"type": "string"}, "optional_data_2": {"type": "string"}}}}}}} |
46a29cac-0703-4098-bc3d-f3af34f2e5c6/4ccbe646-e4d0-4a80-bcbf-46ab618a7f88/0/0 | MRZ Scanner | Scan MRZ from documents (Passports, Visas and ID Cards) | 9.1 | Send image with URL | Scan MRZ with public address. | 200 | Response | {"statusCode": 200, "statusMessage": "MRZ information has extracted completely", "hasError": false, "data": {"header": {"type": "TD3", "type_label": "Passport", "text": "P<FRASPECIMEN<<NATACHA<<<<<<<<<<<<<<<<<<<<<<\n60RF197658FRA8407122F2007058<<<<<<<<<<<<<<06", "box": {"bottomLeftX": "24", "bottomLeftY": "350", "bottomRightX": "561", "bottomRightY": "396", "topLeftX": "24", "topLeftY": "350", "topRightX": "562", "topRightY": "351"}}, "fields": {"surname": "SPECIMEN", "name": "NATACHA", "country": "FRA", "country_english": "France", "country_native": "Fra\u00f1s", "country_2letters": "FR", "nationality": "FRA", "nationality_english": "France", "nationality_native": "Fra\u00f1s", "nationality_2letters": "FR", "birth_date": "840712", "expiry_date": "200705", "sex": "F", "sex_label": "Female", "document_type": "P", "document_number": "60RF19765", "optional_data": "", "birth_date_hash": "2", "expiry_date_hash": "8", "document_number_hash": "8", "optional_data_hash": "0", "optional_data_2": ""}}} | {"type": "object", "properties": {"statusCode": {"type": "integer"}, "statusMessage": {"type": "string"}, "hasError": {"type": "boolean"}, "data": {"type": "object", "properties": {"header": {"type": "object", "properties": {"type": {"type": "string"}, "type_label": {"type": "string"}, "text": {"type": "string"}, "box": {"type": "object", "properties": {"bottomLeftX": {"type": "string"}, "bottomLeftY": {"type": "string"}, "bottomRightX": {"type": "string"}, "bottomRightY": {"type": "string"}, "topLeftX": {"type": "string"}, "topLeftY": {"type": "string"}, "topRightX": {"type": "string"}, "topRightY": {"type": "string"}}}}}, "fields": {"type": "object", "properties": {"surname": {"type": "string"}, "name": {"type": "string"}, "country": {"type": "string"}, "country_english": {"type": "string"}, "country_native": {"type": "string"}, "country_2letters": {"type": "string"}, "nationality": {"type": "string"}, "nationality_english": {"type": "string"}, "nationality_native": {"type": "string"}, "nationality_2letters": {"type": "string"}, "birth_date": {"type": "string"}, "expiry_date": {"type": "string"}, "sex": {"type": "string"}, "sex_label": {"type": "string"}, "document_type": {"type": "string"}, "document_number": {"type": "string"}, "optional_data": {"type": "string"}, "birth_date_hash": {"type": "string"}, "expiry_date_hash": {"type": "string"}, "document_number_hash": {"type": "string"}, "optional_data_hash": {"type": "string"}, "optional_data_2": {"type": "string"}}}}}}} |
46a29cac-0703-4098-bc3d-f3af34f2e5c6/5a8d9d76-27ab-421c-9bd7-aab634bf4a37/0/0 | MRZ Scanner | Scan MRZ from documents (Passports, Visas and ID Cards) | 9.1 | Send image by file (Multipart/FormData) | Send image as a file to API | 200 | Response | {"statusCode": 200, "statusMessage": "MRZ information has extracted completely", "hasError": false, "data": {"header": {"type": "TD3", "type_label": "Passport", "text": "P<FRASPECIMEN<<NATACHA<<<<<<<<<<<<<<<<<<<<<<\n60RF197658FRA8407122F2007058<<<<<<<<<<<<<<06", "box": {"bottomLeftX": "24", "bottomLeftY": "350", "bottomRightX": "561", "bottomRightY": "396", "topLeftX": "24", "topLeftY": "350", "topRightX": "562", "topRightY": "351"}}, "fields": {"surname": "SPECIMEN", "name": "NATACHA", "country": "FRA", "country_english": "France", "country_native": "Fra\u00f1s", "country_2letters": "FR", "nationality": "FRA", "nationality_english": "France", "nationality_native": "Fra\u00f1s", "nationality_2letters": "FR", "birth_date": "840712", "expiry_date": "200705", "sex": "F", "sex_label": "Female", "document_type": "P", "document_number": "60RF19765", "optional_data": "", "birth_date_hash": "2", "expiry_date_hash": "8", "document_number_hash": "8", "optional_data_hash": "0", "optional_data_2": ""}}} | {"type": "object", "properties": {"statusCode": {"type": "integer"}, "statusMessage": {"type": "string"}, "hasError": {"type": "boolean"}, "data": {"type": "object", "properties": {"header": {"type": "object", "properties": {"type": {"type": "string"}, "type_label": {"type": "string"}, "text": {"type": "string"}, "box": {"type": "object", "properties": {"bottomLeftX": {"type": "string"}, "bottomLeftY": {"type": "string"}, "bottomRightX": {"type": "string"}, "bottomRightY": {"type": "string"}, "topLeftX": {"type": "string"}, "topLeftY": {"type": "string"}, "topRightX": {"type": "string"}, "topRightY": {"type": "string"}}}}}, "fields": {"type": "object", "properties": {"surname": {"type": "string"}, "name": {"type": "string"}, "country": {"type": "string"}, "country_english": {"type": "string"}, "country_native": {"type": "string"}, "country_2letters": {"type": "string"}, "nationality": {"type": "string"}, "nationality_english": {"type": "string"}, "nationality_native": {"type": "string"}, "nationality_2letters": {"type": "string"}, "birth_date": {"type": "string"}, "expiry_date": {"type": "string"}, "sex": {"type": "string"}, "sex_label": {"type": "string"}, "document_type": {"type": "string"}, "document_number": {"type": "string"}, "optional_data": {"type": "string"}, "birth_date_hash": {"type": "string"}, "expiry_date_hash": {"type": "string"}, "document_number_hash": {"type": "string"}, "optional_data_hash": {"type": "string"}, "optional_data_2": {"type": "string"}}}}}}} |
a92d35e4-3f4d-4f7e-9ba2-5e7f40b5e5b0/e033dd94-a913-4e60-902c-196f704fd8c9/1/0 | Screening and Matching Resumes | For Recruters that want to go faster in their resumes screening process, and for recrutees that are interested in checking if their profile match a certain job offer | 0 | /ScreeningOffer | Endpoint to upload a file and compute cosine similarity with each file in the dataset | 200 | null | {"top_10_files": [], "matching_score": []} | {"type": "object", "properties": {"top_10_files": {"type": "array", "description": "A list of the top 10 similar files", "items": {"type": "string"}}, "matching_score": {"type": "array", "description": "A list of the the top 10 files and their matching scores with respect to the provided file", "items": {"type": "string"}}}} |
a92d35e4-3f4d-4f7e-9ba2-5e7f40b5e5b0/b634113b-6a71-4477-961d-de211758f265/0/0 | Screening and Matching Resumes | For Recruters that want to go faster in their resumes screening process, and for recrutees that are interested in checking if their profile match a certain job offer | 0 | /ResumeScreeningLink | 400 | null | {"error": ""} | {"type": "object", "properties": {"error": {"type": "string", "description": "The error message"}}} |
|
a92d35e4-3f4d-4f7e-9ba2-5e7f40b5e5b0/b634113b-6a71-4477-961d-de211758f265/1/0 | Screening and Matching Resumes | For Recruters that want to go faster in their resumes screening process, and for recrutees that are interested in checking if their profile match a certain job offer | 0 | /ResumeScreeningLink | 200 | null | {"resume_category_link": "", "matching_score_link": 0} | {"type": "object", "properties": {"resume_category_link": {"type": "string", "description": "category of the resume"}, "matching_score_link": {"type": "number", "description": "The matching score between file and given Link "}}} |
|
a92d35e4-3f4d-4f7e-9ba2-5e7f40b5e5b0/677c6794-4749-44e7-a48b-70db1112962c/0/0 | Screening and Matching Resumes | For Recruters that want to go faster in their resumes screening process, and for recrutees that are interested in checking if their profile match a certain job offer | 0 | /ScreeningOfferLink | Extract the job offer text from a given job offer link, and calculate the cosine similarity between the job offer text and the text of resumes stored in a CSV file. | 400 | null | {"error": ""} | {"type": "object", "properties": {"error": {"type": "string"}}} |
a92d35e4-3f4d-4f7e-9ba2-5e7f40b5e5b0/677c6794-4749-44e7-a48b-70db1112962c/1/0 | Screening and Matching Resumes | For Recruters that want to go faster in their resumes screening process, and for recrutees that are interested in checking if their profile match a certain job offer | 0 | /ScreeningOfferLink | Extract the job offer text from a given job offer link, and calculate the cosine similarity between the job offer text and the text of resumes stored in a CSV file. | 200 | null | {"top_matches_files": [{"filename": "", "similarity": 0}]} | {"type": "object", "properties": {"top_matches_files": {"type": "array", "items": {"type": "object", "properties": {"filename": {"type": "string"}, "similarity": {"type": "number", "format": "float", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}}}}}} |
a92d35e4-3f4d-4f7e-9ba2-5e7f40b5e5b0/cef46056-78bd-4543-8cfb-e60c55c1445f/0/0 | Screening and Matching Resumes | For Recruters that want to go faster in their resumes screening process, and for recrutees that are interested in checking if their profile match a certain job offer | 0 | /ResumeScreening | 400 | null | {"error": ""} | {"type": "object", "properties": {"error": {"type": "string", "description": "The error message"}}} |
|
a92d35e4-3f4d-4f7e-9ba2-5e7f40b5e5b0/cef46056-78bd-4543-8cfb-e60c55c1445f/1/0 | Screening and Matching Resumes | For Recruters that want to go faster in their resumes screening process, and for recrutees that are interested in checking if their profile match a certain job offer | 0 | /ResumeScreening | 200 | null | {"resume_category_file": "", "matching score_file": 0} | {"type": "object", "properties": {"resume_category_file": {"type": "string", "description": "The category of the uploaded resume"}, "matching score_file": {"type": "number", "description": "The cosine similarity between the uploaded resume and job offer"}}} |
|
23945157-b6f5-4d73-b41c-89fffd22416b/ac027ca0-fca2-4e13-a5ff-c2b5af34895a/0/0 | DeepAPI - The easiest object detector for images | DeepAPI is an object detection API that is known for being very fast, easy to use, and highly accurate. | null | /predict/detect | Get bounding boxes for common objects that are shown in a given image. You can pass the image file via form-data | 200 | null | [{"x1": 0, "y1": 0, "x2": 0, "y2": 0}] | {"type": "array", "items": {"type": "object", "properties": {"x1": {"type": "number", "format": "float", "description": "x-coordinate of the top left corner", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "y1": {"type": "number", "format": "float", "description": "y-coordinate of the top left corner", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "x2": {"type": "number", "format": "float", "description": "x-coordinate of the bottom right corner", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}, "y2": {"type": "number", "format": "float", "description": "y-coordinate of the bottom right corner", "minimum": -3.402823669209385e+38, "maximum": 3.402823669209385e+38}}}} |
4bcb8dfb-64f6-43df-93ba-bc66e31db1a1/c7437900-6d43-4dc1-826f-07fc2c277e96/0/0 | Voice Gender Recognition | PresentID Voice gender recognition API can recognize the gender of the speaker. | 8.8 | Send voice with voice file | Voice gender recognition API can recognize the gender of the speaker.
The voice file size must not exceed 5 MB
Also, the voice lenght must be between 3 socunds and 1 minute | 200 | New Example | {"data": {"genderIndex": 0, "genderTitle": "female"}, "hasError": false, "statusCode": 200, "statusMessage": "OK"} | {"properties": {"data": {"properties": {"genderIndex": {"type": "integer"}, "genderTitle": {"type": "string"}}, "type": "object"}, "hasError": {"type": "boolean"}, "statusCode": {"type": "integer"}, "statusMessage": {"type": "string"}}, "type": "object"} |
03f58187-5fdb-494c-b64a-bd490c355e6d/07a23603-b13c-49b3-bbf1-1e96800d1ea0/0/0 | Texts Magic - API | Unlock the power of GPT Turbo with these endpoints for a versatile range of applications: chatbot assistant AI, coding assistant, texts to emojis, and text translator. Enhance your applications with these highly useful tools. | 7.8 | /text-to-emoji | Give a text and get this translated to emojis. | 200 | New Example | {"output": "\ud83e\udd11\ud83d\ude4f"} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"output": {"type": "string"}}, "required": ["output"]} |
03f58187-5fdb-494c-b64a-bd490c355e6d/f555fe32-c172-4e8f-9b5b-8e74b056befd/0/0 | Texts Magic - API | Unlock the power of GPT Turbo with these endpoints for a versatile range of applications: chatbot assistant AI, coding assistant, texts to emojis, and text translator. Enhance your applications with these highly useful tools. | 7.8 | /translator | Give a text/phrase/word and the target language and receive the translate. Powered by GPT 3.5 Turbo. | 200 | New Example | {"output": {"role": "assistant", "content": "How to become a rich man?"}} | {"$schema": "http://json-schema.org/schema#", "type": "object", "properties": {"output": {"type": "object", "properties": {"role": {"type": "string"}, "content": {"type": "string"}}, "required": ["content", "role"]}}, "required": ["output"]} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.