id
int64
-30,985
55.9k
text
stringlengths
5
437k
-11,852
5.824 \times 0.01 = 0.058\;24
5,823
X^2\times X^2\times X^2 = X^6 = X^3\times X^3
45,998
1 = \frac{1}{(\pi \cdot 2)^{\frac{1}{2}}}\int\limits_{-∞}^∞ exp(\left((-1) x^2\right)/2)\,\mathrm{d}x rightarrow \int_{-∞}^∞ exp(\frac{1}{2}((-1) x^2))\,\mathrm{d}x = \pi^{1 / 2}
13,326
k^2 - 3/4 = \frac14\cdot (3\cdot (-1) + k^2\cdot 4)
1,957
6!/(2!*2!*2!) = \binom{4}{2}*\binom{6}{2}*\binom{2}{2}
-7,247
\frac{1}{5} 5 / 9 = 1/9
8,106
\frac12 = \frac{1}{3} + \dfrac{1}{6}
23,184
5/6*Z + \frac89*3*Z = \dfrac{5}{6}*Z + 16/6*Z = \frac{1}{2*Z}*7
8,949
(\sqrt{-2} - 1)*\left(-\sqrt{-2} + 1\right) = 1 + \sqrt{-2}*2
-15,843
-5\cdot \frac{9}{10} + 5/10 = -40/10
-1,242
\frac23*(-5/4) = (\frac14*\left(-5\right))/(3*1/2)
20,521
\frac{1}{1 + x} = \frac{1}{1 + x}\left(1 + x - x - x^2 + x \cdot x + x^2 \cdot x - x^3\right) = 1 - x + x^2 - \frac{x \cdot x \cdot x}{1 + x}
3,076
\frac{1}{132} \cdot (42 + 20) = \dfrac{31}{66}
52,716
0 \leq \dfrac{\sin^2{z}}{z^2} = \dfrac{1}{z^2}\cdot (1 - \cos{z})\cdot (1 + \cos{z}) \leq (1 + \cos{z})/2
3,028
0.333338 = (10^6 + 14)\cdot \frac{1}{3}/1000000 = \frac{1}{3}\cdot \left(1 + 14/1000000\right)
38,607
\dfrac{1}{1 - y} = 1 + y + y^2 + y^3 + y^4 + ...
6,066
\sin{x} = \frac{15}{17} \Rightarrow \frac{8}{17} = \cos{x}
1,130
95284 = \tfrac{84!}{3!*(84 + 3*(-1))!}
2,867
\frac{1}{2} = \frac{5 \cdot 1/32}{\frac{5}{32} + \dfrac{5}{32}}
-16,816
-7 = -7 (-2 t) - -56 = 14 t + 56 = 14 t + 56
22,333
\cos\left(y \cdot 2\right) = -\sin^2(y) \cdot 2 + 1
-14,249
8 + 4 \cdot 10 - 5 \cdot 9 = 8 + 40 - 5 \cdot 9 = 48 - 5 \cdot 9 = 48 + 45 \cdot \left(-1\right) = 3
33,974
\frac{11}{40} = \frac{275}{1000}
-25,843
h^5 = \frac{h}{h}\cdot h\cdot h\cdot h\cdot h\cdot h
6,048
(z + x)^2 = x^2 + x\cdot z\cdot 2 + z \cdot z
32,158
\frac{\left(j!\right)!}{((-1) + j!)!} = j!
16,160
\frac{a}{x} = c \implies a = x\cdot c = 0\cdot c = 0
-2,852
-\sqrt{6} + \sqrt{4\cdot 6} + \sqrt{9\cdot 6} = -\sqrt{6} + \sqrt{24} + \sqrt{54}
-20,092
-\frac{12}{28\cdot t + 4} = 4/4\cdot (-\frac{3}{7\cdot t + 1})
8,743
0 = A * A\Longrightarrow 0 = A
12,557
\frac{1}{\left(l + 1\right)!} \cdot l! = \frac{1}{(l + 1) \cdot l!} \cdot l! = \frac{1}{l + 1}
10,937
p^{(-1) + p} \cdot 2 = p^{p + \left(-1\right)} + p^{p + (-1)}
573
\left(\dfrac{1}{x} \cdot y = w \Rightarrow x \cdot w = y\right) \Rightarrow x \cdot \frac{\text{d}w}{\text{d}x} + w = \frac{\text{d}y}{\text{d}x}
-20,972
(2 - 9\cdot p)/10\cdot 7/7 = \frac{1}{70}\cdot (14 - 63\cdot p)
-15,337
\frac{x^{15}}{x^5*\frac{1}{q^4}} = \frac{x^{15}*\frac{1}{x^5}}{\frac{1}{q^4}} = x^{15 + 5*\left(-1\right)}*q^4 = x^{10}*q^4
-27,373
6*(-1) + 56 = 50
6,896
\left(m \cdot m = x \cdot x \Rightarrow 0 = m^2 - x^2\right) \Rightarrow 0 = (m + x) \cdot (m - x)
22,847
gcg = gcg = gc g
17,490
20 - s^2\cdot 16 + s\cdot 32 = -16\cdot \left(s^2 - s\cdot 2 - \dfrac14\cdot 5\right)
28,068
0 = e^{\sin(x y)} + x^2 - 2 y + (-1) \approx x y + x^2 - 2 y
-20,228
-\frac{18}{2 + 2\cdot z} = -\frac{9}{1 + z}\cdot \tfrac22
7,641
45/100 = (1 - \frac{10}{100})/2
19,728
x^2 = x^2 + 2 \cdot 0 + 0^2
-16,457
28^{1/2} \times 7 = 7 \times (4 \times 7)^{1/2}
3,199
x \cdot y \cdot \varepsilon = x \cdot \varepsilon = \varepsilon = x \cdot y \cdot \varepsilon
11,533
(1 - \frac{3}{100}) \frac{3}{100} = 0.0291
-3,918
\frac{66\cdot q^5}{q \cdot q\cdot 24} = \frac{1}{q^2}\cdot q^5\cdot \tfrac{66}{24}
22,457
f^2 = 4 \cdot f^2 - f \cdot f \cdot 3
258
\binom{k + x + (-1)}{x} = \binom{x + k + (-1)}{x}
19,667
\mathbb{E}\left(V*X\right) = \mathbb{E}\left(V\right)*\mathbb{E}\left(X\right)
32,504
\dfrac{1}{5}109 = \frac{218}{10}
27,684
\frac13(1 + 2) = 10 + 9(-1)
-13,694
6 + 8 \cdot 7 - 5 \cdot 2 = 6 + 56 - 5 \cdot 2 = 62 - 5 \cdot 2 = 62 + 10 \cdot \left(-1\right) = 52
24,212
x = \sqrt{2} + 2^{1/3}\Longrightarrow 2 = (-\sqrt{2} + x)^3
14,561
\dfrac{j}{j * j} = 1/j
19,347
-11\cdot 3 + 2\cdot 17 = 1
53,580
\sec^2(x)/\tan(x) = \frac{1}{\tan(x)}*(1 + \tan^2\left(x\right)) = 1/\tan(x) + \tan(x) = \cot(x) + \tan\left(x\right)
19,935
\dfrac{1}{24} \cdot (27 + 24 \cdot \left(-1\right)) = \frac{3}{24} = \frac{1}{8} = 12.5
32,862
0 = N * N - N + x\Longrightarrow (N - x)*N + x = 0
8,088
(x^4 + (-1)) \left(x^4 + 1\right) = x^8 + \left(-1\right)
39,704
(x + (-1))*(x^2 + x + 1) = x^3 + (-1)
26,959
\tfrac{1}{(n + 1)\cdot 2}\cdot (2 + n) = \frac{1 + n + 1}{2\cdot (n + 1)}
16,334
4\times k^2 = (2\times k)^2
-445
Ο€ \cdot \dfrac{5}{3} = 17/3 \cdot Ο€ - 4 \cdot Ο€
-8,886
6^2 = 6*6
-18,011
6 = 92 + 86 \left(-1\right)
4,164
3\cdot \sqrt{3} = \left(\sqrt{3}\right)^3
-3,058
25^{1/2}\cdot 7^{1/2} - 7^{1/2}\cdot 4^{1/2} = 5\cdot 7^{1/2} - 2\cdot 7^{1/2}
27,988
-(n + \left(-1\right))^3 + n^3 = 3\cdot n \cdot n - n\cdot 3 + 1
31,477
(m \cdot 2 + 4)^2 + (2 \cdot m) \cdot (2 \cdot m) + (2 \cdot m + 2)^2 = 4 \cdot (5 + 3 \cdot m^2 + 6 \cdot m)
4,391
151200 = 7*6*5*10*9*8
-10,349
-9 = -s + 8 + 35\cdot (-1) = -s + 27\cdot \left(-1\right)
20,543
(p + 1)\cdot 2\cdot ((-1) + p)/2 = (-1) + p \cdot p
15,583
\frac{6\cdot 1/10}{\dfrac38 + \dfrac{6}{10}} = 8/13
11,351
\frac12 \cdot (m + 1) - m/2 = \dfrac12 = \dfrac{m}{2} - (m + (-1))/2
42,881
0.125 = \left(-1\right) \times 0.875 + 1
29,302
\frac{1}{5 + 4}4 = 4/9
-2,172
\pi - \pi*2/3 = \pi/3
-20,096
\frac{7}{6 \cdot (-1) + a} \cdot \dfrac17 = \dfrac{1}{42 \cdot (-1) + a \cdot 7} \cdot 7
-2,908
\sqrt{13}\cdot \sqrt{4} - \sqrt{13} = -\sqrt{13} + 2\cdot \sqrt{13}
18,963
5^l \gt 4^l = 2^{2*l} > 2^{l + 1} + 1
437
\left(h + g\right)\cdot (h + g) = h \cdot h + g\cdot h + g\cdot h + g^2
29,890
\dfrac{1}{\left(-1\right) + z} = \frac{(-1) + z}{\left(z + \left(-1\right)\right)^2}
19,589
2 \cdot (c_1 + c_2) = c_2 + c_1
-549
e^{6\times \frac{19}{12}\times i\times \pi} = (e^{19\times \pi\times i/12})^6
23,265
3 (-1) + 3 = 0
-12,250
17/18 = \frac{t}{6 \cdot \pi} \cdot 6 \cdot \pi = t
26,451
h\cdot f\cdot a + (h + a)\cdot (f + a)\cdot (f + h) = (a\cdot f + a\cdot h + h\cdot f)\cdot (f + a + h)
54,430
sin(a-\frac {3\pi}{2})=sin(-(\frac {3\pi}{2}-a))=-sin(\frac {3\pi}{2}-a)=-(-cos a)=cos a
3,131
-x^3 + x^4 = x^3\cdot (x + (-1))
13,467
2\cdot y^2 + 6\cdot y + 35 = 2\cdot \left(y^2 + 3\cdot y\right) + 35 = 2\cdot (y + \frac32)^2 + \frac{61}{2}
15,552
5 \times (z + 2) + 13 \times (-1) = z + 3 \times \left(-1\right) + 4 \times z
3,993
0 \leq Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2
-5,857
\frac{2}{20 \cdot (-1) + 2 \cdot x} = \tfrac{1}{(10 \cdot \left(-1\right) + x) \cdot 2} \cdot 2
-19,385
\frac38 \cdot 3/5 = \frac{3 \cdot \frac{1}{8}}{5 \cdot 1/3}
21,277
2 = (\sqrt{3} + 1) \cdot (\sqrt{3} - 1)
5,788
1995^2 + 1995\cdot f = 1995\cdot (f + 1995)
-12,752
10 = 7*(-1) + 17
2,340
(m + 1)^3 = 1 + m^3 + 3\cdot m \cdot m + 3\cdot m
15,663
\sin(-y + \dfrac{1}{2}\cdot \pi)\cdot \sin(y) = \cos(y)\cdot \sin\left(y\right)