id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-11,852 | 5.824 \times 0.01 = 0.058\;24 |
5,823 | X^2\times X^2\times X^2 = X^6 = X^3\times X^3 |
45,998 | 1 = \frac{1}{(\pi \cdot 2)^{\frac{1}{2}}}\int\limits_{-β}^β exp(\left((-1) x^2\right)/2)\,\mathrm{d}x rightarrow \int_{-β}^β exp(\frac{1}{2}((-1) x^2))\,\mathrm{d}x = \pi^{1 / 2} |
13,326 | k^2 - 3/4 = \frac14\cdot (3\cdot (-1) + k^2\cdot 4) |
1,957 | 6!/(2!*2!*2!) = \binom{4}{2}*\binom{6}{2}*\binom{2}{2} |
-7,247 | \frac{1}{5} 5 / 9 = 1/9 |
8,106 | \frac12 = \frac{1}{3} + \dfrac{1}{6} |
23,184 | 5/6*Z + \frac89*3*Z = \dfrac{5}{6}*Z + 16/6*Z = \frac{1}{2*Z}*7 |
8,949 | (\sqrt{-2} - 1)*\left(-\sqrt{-2} + 1\right) = 1 + \sqrt{-2}*2 |
-15,843 | -5\cdot \frac{9}{10} + 5/10 = -40/10 |
-1,242 | \frac23*(-5/4) = (\frac14*\left(-5\right))/(3*1/2) |
20,521 | \frac{1}{1 + x} = \frac{1}{1 + x}\left(1 + x - x - x^2 + x \cdot x + x^2 \cdot x - x^3\right) = 1 - x + x^2 - \frac{x \cdot x \cdot x}{1 + x} |
3,076 | \frac{1}{132} \cdot (42 + 20) = \dfrac{31}{66} |
52,716 | 0 \leq \dfrac{\sin^2{z}}{z^2} = \dfrac{1}{z^2}\cdot (1 - \cos{z})\cdot (1 + \cos{z}) \leq (1 + \cos{z})/2 |
3,028 | 0.333338 = (10^6 + 14)\cdot \frac{1}{3}/1000000 = \frac{1}{3}\cdot \left(1 + 14/1000000\right) |
38,607 | \dfrac{1}{1 - y} = 1 + y + y^2 + y^3 + y^4 + ... |
6,066 | \sin{x} = \frac{15}{17} \Rightarrow \frac{8}{17} = \cos{x} |
1,130 | 95284 = \tfrac{84!}{3!*(84 + 3*(-1))!} |
2,867 | \frac{1}{2} = \frac{5 \cdot 1/32}{\frac{5}{32} + \dfrac{5}{32}} |
-16,816 | -7 = -7 (-2 t) - -56 = 14 t + 56 = 14 t + 56 |
22,333 | \cos\left(y \cdot 2\right) = -\sin^2(y) \cdot 2 + 1 |
-14,249 | 8 + 4 \cdot 10 - 5 \cdot 9 = 8 + 40 - 5 \cdot 9 = 48 - 5 \cdot 9 = 48 + 45 \cdot \left(-1\right) = 3 |
33,974 | \frac{11}{40} = \frac{275}{1000} |
-25,843 | h^5 = \frac{h}{h}\cdot h\cdot h\cdot h\cdot h\cdot h |
6,048 | (z + x)^2 = x^2 + x\cdot z\cdot 2 + z \cdot z |
32,158 | \frac{\left(j!\right)!}{((-1) + j!)!} = j! |
16,160 | \frac{a}{x} = c \implies a = x\cdot c = 0\cdot c = 0 |
-2,852 | -\sqrt{6} + \sqrt{4\cdot 6} + \sqrt{9\cdot 6} = -\sqrt{6} + \sqrt{24} + \sqrt{54} |
-20,092 | -\frac{12}{28\cdot t + 4} = 4/4\cdot (-\frac{3}{7\cdot t + 1}) |
8,743 | 0 = A * A\Longrightarrow 0 = A |
12,557 | \frac{1}{\left(l + 1\right)!} \cdot l! = \frac{1}{(l + 1) \cdot l!} \cdot l! = \frac{1}{l + 1} |
10,937 | p^{(-1) + p} \cdot 2 = p^{p + \left(-1\right)} + p^{p + (-1)} |
573 | \left(\dfrac{1}{x} \cdot y = w \Rightarrow x \cdot w = y\right) \Rightarrow x \cdot \frac{\text{d}w}{\text{d}x} + w = \frac{\text{d}y}{\text{d}x} |
-20,972 | (2 - 9\cdot p)/10\cdot 7/7 = \frac{1}{70}\cdot (14 - 63\cdot p) |
-15,337 | \frac{x^{15}}{x^5*\frac{1}{q^4}} = \frac{x^{15}*\frac{1}{x^5}}{\frac{1}{q^4}} = x^{15 + 5*\left(-1\right)}*q^4 = x^{10}*q^4 |
-27,373 | 6*(-1) + 56 = 50 |
6,896 | \left(m \cdot m = x \cdot x \Rightarrow 0 = m^2 - x^2\right) \Rightarrow 0 = (m + x) \cdot (m - x) |
22,847 | gcg = gcg = gc g |
17,490 | 20 - s^2\cdot 16 + s\cdot 32 = -16\cdot \left(s^2 - s\cdot 2 - \dfrac14\cdot 5\right) |
28,068 | 0 = e^{\sin(x y)} + x^2 - 2 y + (-1) \approx x y + x^2 - 2 y |
-20,228 | -\frac{18}{2 + 2\cdot z} = -\frac{9}{1 + z}\cdot \tfrac22 |
7,641 | 45/100 = (1 - \frac{10}{100})/2 |
19,728 | x^2 = x^2 + 2 \cdot 0 + 0^2 |
-16,457 | 28^{1/2} \times 7 = 7 \times (4 \times 7)^{1/2} |
3,199 | x \cdot y \cdot \varepsilon = x \cdot \varepsilon = \varepsilon = x \cdot y \cdot \varepsilon |
11,533 | (1 - \frac{3}{100}) \frac{3}{100} = 0.0291 |
-3,918 | \frac{66\cdot q^5}{q \cdot q\cdot 24} = \frac{1}{q^2}\cdot q^5\cdot \tfrac{66}{24} |
22,457 | f^2 = 4 \cdot f^2 - f \cdot f \cdot 3 |
258 | \binom{k + x + (-1)}{x} = \binom{x + k + (-1)}{x} |
19,667 | \mathbb{E}\left(V*X\right) = \mathbb{E}\left(V\right)*\mathbb{E}\left(X\right) |
32,504 | \dfrac{1}{5}109 = \frac{218}{10} |
27,684 | \frac13(1 + 2) = 10 + 9(-1) |
-13,694 | 6 + 8 \cdot 7 - 5 \cdot 2 = 6 + 56 - 5 \cdot 2 = 62 - 5 \cdot 2 = 62 + 10 \cdot \left(-1\right) = 52 |
24,212 | x = \sqrt{2} + 2^{1/3}\Longrightarrow 2 = (-\sqrt{2} + x)^3 |
14,561 | \dfrac{j}{j * j} = 1/j |
19,347 | -11\cdot 3 + 2\cdot 17 = 1 |
53,580 | \sec^2(x)/\tan(x) = \frac{1}{\tan(x)}*(1 + \tan^2\left(x\right)) = 1/\tan(x) + \tan(x) = \cot(x) + \tan\left(x\right) |
19,935 | \dfrac{1}{24} \cdot (27 + 24 \cdot \left(-1\right)) = \frac{3}{24} = \frac{1}{8} = 12.5 |
32,862 | 0 = N * N - N + x\Longrightarrow (N - x)*N + x = 0 |
8,088 | (x^4 + (-1)) \left(x^4 + 1\right) = x^8 + \left(-1\right) |
39,704 | (x + (-1))*(x^2 + x + 1) = x^3 + (-1) |
26,959 | \tfrac{1}{(n + 1)\cdot 2}\cdot (2 + n) = \frac{1 + n + 1}{2\cdot (n + 1)} |
16,334 | 4\times k^2 = (2\times k)^2 |
-445 | Ο \cdot \dfrac{5}{3} = 17/3 \cdot Ο - 4 \cdot Ο |
-8,886 | 6^2 = 6*6 |
-18,011 | 6 = 92 + 86 \left(-1\right) |
4,164 | 3\cdot \sqrt{3} = \left(\sqrt{3}\right)^3 |
-3,058 | 25^{1/2}\cdot 7^{1/2} - 7^{1/2}\cdot 4^{1/2} = 5\cdot 7^{1/2} - 2\cdot 7^{1/2} |
27,988 | -(n + \left(-1\right))^3 + n^3 = 3\cdot n \cdot n - n\cdot 3 + 1 |
31,477 | (m \cdot 2 + 4)^2 + (2 \cdot m) \cdot (2 \cdot m) + (2 \cdot m + 2)^2 = 4 \cdot (5 + 3 \cdot m^2 + 6 \cdot m) |
4,391 | 151200 = 7*6*5*10*9*8 |
-10,349 | -9 = -s + 8 + 35\cdot (-1) = -s + 27\cdot \left(-1\right) |
20,543 | (p + 1)\cdot 2\cdot ((-1) + p)/2 = (-1) + p \cdot p |
15,583 | \frac{6\cdot 1/10}{\dfrac38 + \dfrac{6}{10}} = 8/13 |
11,351 | \frac12 \cdot (m + 1) - m/2 = \dfrac12 = \dfrac{m}{2} - (m + (-1))/2 |
42,881 | 0.125 = \left(-1\right) \times 0.875 + 1 |
29,302 | \frac{1}{5 + 4}4 = 4/9 |
-2,172 | \pi - \pi*2/3 = \pi/3 |
-20,096 | \frac{7}{6 \cdot (-1) + a} \cdot \dfrac17 = \dfrac{1}{42 \cdot (-1) + a \cdot 7} \cdot 7 |
-2,908 | \sqrt{13}\cdot \sqrt{4} - \sqrt{13} = -\sqrt{13} + 2\cdot \sqrt{13} |
18,963 | 5^l \gt 4^l = 2^{2*l} > 2^{l + 1} + 1 |
437 | \left(h + g\right)\cdot (h + g) = h \cdot h + g\cdot h + g\cdot h + g^2 |
29,890 | \dfrac{1}{\left(-1\right) + z} = \frac{(-1) + z}{\left(z + \left(-1\right)\right)^2} |
19,589 | 2 \cdot (c_1 + c_2) = c_2 + c_1 |
-549 | e^{6\times \frac{19}{12}\times i\times \pi} = (e^{19\times \pi\times i/12})^6 |
23,265 | 3 (-1) + 3 = 0 |
-12,250 | 17/18 = \frac{t}{6 \cdot \pi} \cdot 6 \cdot \pi = t |
26,451 | h\cdot f\cdot a + (h + a)\cdot (f + a)\cdot (f + h) = (a\cdot f + a\cdot h + h\cdot f)\cdot (f + a + h) |
54,430 | sin(a-\frac {3\pi}{2})=sin(-(\frac {3\pi}{2}-a))=-sin(\frac {3\pi}{2}-a)=-(-cos a)=cos a |
3,131 | -x^3 + x^4 = x^3\cdot (x + (-1)) |
13,467 | 2\cdot y^2 + 6\cdot y + 35 = 2\cdot \left(y^2 + 3\cdot y\right) + 35 = 2\cdot (y + \frac32)^2 + \frac{61}{2} |
15,552 | 5 \times (z + 2) + 13 \times (-1) = z + 3 \times \left(-1\right) + 4 \times z |
3,993 | 0 \leq Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 |
-5,857 | \frac{2}{20 \cdot (-1) + 2 \cdot x} = \tfrac{1}{(10 \cdot \left(-1\right) + x) \cdot 2} \cdot 2 |
-19,385 | \frac38 \cdot 3/5 = \frac{3 \cdot \frac{1}{8}}{5 \cdot 1/3} |
21,277 | 2 = (\sqrt{3} + 1) \cdot (\sqrt{3} - 1) |
5,788 | 1995^2 + 1995\cdot f = 1995\cdot (f + 1995) |
-12,752 | 10 = 7*(-1) + 17 |
2,340 | (m + 1)^3 = 1 + m^3 + 3\cdot m \cdot m + 3\cdot m |
15,663 | \sin(-y + \dfrac{1}{2}\cdot \pi)\cdot \sin(y) = \cos(y)\cdot \sin\left(y\right) |
Subsets and Splits