id
int64
-30,985
55.9k
text
stringlengths
5
437k
-3,048
6\times \sqrt{11} = \left(1 + 5\right)\times \sqrt{11}
-16,427
2\cdot 176^{1/2} = 2\cdot (16\cdot 11)^{1/2}
19,174
2 \cdot (1 + \sqrt{10}) = 2 + \sqrt{10} \cdot 2
19,044
3 \cdot \tfrac{\pi \cdot 4}{9^{1 / 2}} \cdot 1 = 4 \cdot \pi
18,794
4 \cdot 4 + 7^2 = 1 \cdot 1 + 8^2
-6,129
\frac{1}{5\cdot \left(y + 4\right)}\cdot 2 = \frac{2}{20 + 5\cdot y}
15,864
1^3 = 10 \cdot C + 1 \Rightarrow 0 = C
-11,956
\dfrac{7}{10} = \frac{p}{8\pi}*8\pi = p
33,155
x^2 + 2\cdot x = \left(-1\right) + (\left(-1\right) + x) \cdot (\left(-1\right) + x) + x\cdot 4
13,220
\sqrt{17}>4\implies-1-\sqrt{17}<-5\implies\dfrac{-1-\sqrt{17}}4<-1
24,306
\left(1 = -1 \Rightarrow (-1)^2 = 1^2\right) \Rightarrow 1 = 1
13,152
\frac{1}{3} \cdot 2 = \sqrt{\frac{1}{9} \cdot 4}
34,621
\frac{1}{{80 \choose 20}} \cdot {71 \choose 11} = 17/23471690
-10,632
\frac{\dfrac{1}{3} \cdot 3}{x \cdot 5 + 20 \cdot (-1)} = \frac{3}{x \cdot 15 + 60 \cdot \left(-1\right)}
18,199
a - f = a - f = -f + a = -f + a
-579
(e^{\tfrac{5}{3} \cdot \pi \cdot i})^{16} = e^{\pi \cdot i \cdot 5/3 \cdot 16}
19,419
(-1) + \cos^2(A)\cdot 2 = \cos(2A)
11,874
1997 + 1997^l\cdot (1997 + (-1)) = 1996\cdot 1997^l + 1997
39,404
5(-1) + y^4 = (-\sqrt{5} + y \cdot y) \left(\sqrt{5} + y \cdot y\right)
53,866
2\pi\int_0^4(x)(x)^{3/2} dx = 2\pi\int_0^4x^{5/2} dx = 2\pi\left[\frac{2}{7}x^{7/2}\right]_0^4 = \frac{512\pi}{7}
9,886
10 \cdot x - x = 9 \cdot x = 9 \Rightarrow x = 1
-28,797
\dfrac{\pi*2}{\pi*2*\frac{1}{24}}1 = 24
21,809
\frac{1}{1 + \sin^2{x}}\times \sin^2{x} = 1 - \dfrac{1}{1 + \sin^2{x}} = 1 - \frac{\sec^2{x}}{2\times \tan^2{x} + 1}
-12,164
\frac19 = \dfrac{x}{18 \cdot \pi} \cdot 18 \cdot \pi = x
15,568
-i*N*M + i*M*N = -i*N*M + i*N*M
4,242
\left(x - b\right) (x + b) = -b^2 + x^2
22,302
105 = \frac{15}{2} \cdot 14
-20,596
8/8 \frac{5r}{-r + 5(-1)} = \frac{40 r}{-8r + 40 (-1)}
32,700
p = -(\dfrac12\cdot (p + (-1)))^2 + ((1 + p)/2)^2
14,480
A = X\cdot Y\Longrightarrow Y\cdot X = A
1,688
(z + 3 \cdot (-1)) \cdot (2 \cdot (-1) + z) \cdot (z + (-1)) = 6 \cdot (-1) + z^3 - 6 \cdot z^2 + z \cdot 11
30,219
\cos{z_1}\cdot \cos{z_2} - \sin{z_2}\cdot \sin{z_1} = \cos(z_1 + z_2)
8,054
\frac{29\cdot 28\cdot 27}{3}=7308
-18,966
\frac{7}{18} = A_p/(100 \pi)*100 \pi = A_p
-15,375
\frac{x^5 \cdot q^4}{x^{10} \cdot q^{25}} = \frac{x^5}{x^{10}} \cdot \frac{q^4}{q^{25}} = \frac{1}{x^5 \cdot q^{21}} = \dfrac{1}{x^5 \cdot q^{21}}
33,824
2 = -11 \cdot 2 + 3 \cdot 8
-27,699
-10*\sin(x) = \frac{d}{dx} (10*\cos(x))
-10,484
3/3 \cdot (h \cdot 5 + (-1))/h = \tfrac{1}{h \cdot 3} \cdot (3 \cdot \left(-1\right) + h \cdot 15)
-3,364
-\sqrt{4\cdot 11} + \sqrt{25\cdot 11} + \sqrt{16\cdot 11} = \sqrt{275} + \sqrt{176} - \sqrt{44}
1,153
\frac12 + \dfrac14\cdot 5 = \frac14\cdot 7
-1,760
4/3 \pi + \dfrac16\pi = \pi*3/2
6,089
x + 3 \geq 2\cdot (\left(-1\right) + x) \Rightarrow x \leq 5
21,729
\left(1 + n\right) \cdot \left(n + 1\right) \cdot (1 + n) = \left(1 + n\right)^3
30,998
216 = 2^2 \times 2\times 3^3 = 6^3
6,844
-t + t^2 = 1 + t \cdot (1 + t) - t - t + 1
-10,649
-15 = -x + 3 + 20\cdot (-1) = -x + 17\cdot (-1)
18,022
\left(F*x = g \Rightarrow F*x/F = g/F\right) \Rightarrow \frac{g}{F} = x
-9,662
(\left(-23\right) \times \frac{1}{25})/1 \times (-\frac{1}{4}) = \dfrac{1}{25 \times 4} \times 23 = 23/100
28,095
-x^4 + x^2\cdot 34 + 225\cdot (-1) = -(x^2 + 9\cdot \left(-1\right))\cdot (x \cdot x + 25\cdot (-1))
10,107
A_x\times A_j = A_x\times A_j
3,499
\frac{109^2 + 11^2 - 100^2}{11 \cdot 109 \cdot 2} = \frac{1}{2 \cdot 109 \cdot 136} \cdot (-75^2 + 109 \cdot 109 + 136 \cdot 136)
30,769
\frac{49^3}{50^6}15\cdot 50 = \frac{1}{62500000}352947 = 0.005647152
-4,480
8 + x^2 + 6\cdot x = (4 + x)\cdot (2 + x)
23,527
n^2 = 9*k^2 + 6*k + 1 = 3*(3*k^2 + 2*k) + 1 \implies 3*(3*k^2 + k*2) = (-1) + n^2
5,709
1 - \frac{1}{100}*95 = 5/100
-30,912
\frac{1}{150} \cdot h \cdot 3 = h/50
14,278
\binom{m}{k} + \binom{m}{k + (-1)} = \binom{1 + m}{k}
15,830
x*a_2*a_1 = a_2*a_1*x
20,874
x A_2^2 + K^2 B' + C' A_1^2 = C'^2 K + x^2 A_1 + A_2 B' B'
47,007
\left(-38\right) \cdot 34 + 3 \cdot 431 = 1
35,924
y^2 \cdot x^2 \cdot 4 = y^2 \cdot x \cdot 2 \cdot x \cdot 2
22,520
7^{1 / 2} \cdot 2 \cdot 4 = 2 \cdot 4 \cdot 7^{1 / 2}
-2,947
8\cdot 2^{1/2} = 2^{1/2}\cdot (1 + 2 + 5)
-23,221
5/8\cdot \frac59 = \frac{25}{72}
7,201
\frac38 - \dfrac78 = -\dfrac{4}{8} = -\dfrac12
-3,537
2\cdot 7/(2\cdot 50) = \dfrac{1}{100}14
-10,700
\frac{1}{z*10 + 6}*9*3/3 = \dfrac{27}{z*30 + 18}
-22,217
z^2 + z*12 + 35 = (7 + z) (z + 5)
-1,215
-1/2 \cdot (-\frac12 \cdot 3) = \dfrac{(-1) \cdot (-3)}{2 \cdot 2} = \frac14 \cdot 3
-28,792
\int x^9\,\mathrm{d}x = \frac{x^{9 + 1}}{9 + 1} + G = x^{10}/10 + G
35,248
{2 + 2 \choose 2} + \left(-1\right) = 5
-4,773
\dfrac{1}{1 + y} 5 - \dfrac{1}{2 (-1) + y} 3 = \frac{1}{2 \left(-1\right) + y^2 - y} (13 (-1) + y \cdot 2)
-30,239
(2\cdot (-1) + y)\cdot (y + 10\cdot \left(-1\right)) = y^2 - 12\cdot y + 20
9,456
6*\tan^2\left(y\right) + \tan\left(y\right) + \left(-1\right) = \tfrac{1}{\cos^2(y)}*5 = 5*(1 + \tan^2\left(y\right))
29,756
y^{1/X} = y^{\dfrac{1}{X}}
28,313
28/p = \tfrac{7}{p}*4/p = \frac{7}{p}
13,167
x = \dfrac12\cdot (x + y - \varphi + x + \varphi - y) \geq \sqrt{(x + y - \varphi)\cdot (\varphi + x - y)}
2,686
m - j \cdot 2 + 1 = m - j - (-1) + j
39,170
0.05*0.5*(3000 + 2\psi) = 0.025*\left(3000 + 2\psi\right) = 75 + 0.05 \psi
9,231
1 + (1 - \sqrt{5})/2 = \left((-\sqrt{5} + 1)/2\right)^2
30,604
\cos(-D) = \cos(D)
-10,594
-\frac{1}{s*60}*(s*100 + 80) = -(s*5 + 4)/(3*s)*20/20
9,758
-i = (Z + i \cdot B) \cdot (Z + i \cdot B) = Z^2 - B^2 + 2 \cdot Z \cdot B \cdot i
28,490
\sin\left(90 - x\right) = -\sin(x + 90 (-1)) = \sin\left(x + 90 (-1) + 180\right) = \sin(90 + x)
-20,592
\dfrac{8 \times \left(-1\right) + k}{-k \times 6 + 10} \times \frac77 = \frac{56 \times (-1) + 7 \times k}{70 - k \times 42}
19,585
r^{\frac{n}{2}}*f = f*r^{((-1)*n)/2} = f*r^{\frac{n}{2}}
3,135
(1 + x)^{k + n} = (1 + x)^k \cdot (1 + x)^n
31,820
\left(5^{\frac{1}{2}} + 1\right)\cdot (1 - 5^{\tfrac{1}{2}}) = -4
26,846
{n \choose \phi} = {n \choose -\phi + n}
-1,158
-\frac{45}{72} = \frac{(-45)\cdot 1/9}{72\cdot 1/9} = -\frac{5}{8}
21,459
\frac{4^x + 3^x}{2^x + 5^x} = \frac{1}{1 + (\frac{2}{5})^x}*(\left(4/5\right)^x + (\frac{3}{5})^x)
30,236
30 = 1890/63
5,481
x^2 - 3 \cdot x + 4 \cdot (-1) = (1 + x) \cdot (4 \cdot (-1) + x)
45,313
\frac{1}{-1}\cdot 0 = 0
25,767
\dfrac{1}{3} \cdot 4 = \frac12 + 1 - \dfrac16
24,128
23 = 3 + 5\times 4
5,297
(a_2 + a_1)*\frac1t = \tfrac1t*a_2 + \frac{a_1}{t}
7,204
(\left(-1\right) + A) (A + 1) = (-1) + A^2
-24,693
\sqrt{150*z^6} = \sqrt{5^2*2*3*z^3 * z^3} = \sqrt{5 * 5}*\sqrt{6}*\sqrt{(z^3)^2} = 5*\sqrt{6}*z^3 = 5*z^3*\sqrt{6}
14,370
x \cdot 2 + 4 \cdot j = x^2 \cdot 2 \Rightarrow x^2 \cdot 2 = 2 \cdot (x + j \cdot 2)