id
int64
-30,985
55.9k
text
stringlengths
5
437k
23,425
\cos(-u + w) - \cos\left(w + u\right) = 2*\sin{w}*\sin{u}
19,472
3^{1/2} \cdot 81 = 3^{\frac{9}{2}}
-10,512
-\frac{1}{n^2*4}\left(n*12 + 4(-1)\right) = \frac{4}{4} (-\frac{n*3 + (-1)}{n * n})
24,753
1/16 = (-3/4 + 7/8)/2
21,719
\cos{t} = \dfrac{\sec^2{t}}{\sec^3{t}}
-16,550
7\cdot 99^{1/2} = 7\cdot (9\cdot 11)^{1/2}
7,902
x^3 - y * y * y = (-y + x) (y^2 + x^2 + xy)
8,041
\alpha\cdot (x + 1) = x\cdot \alpha + \alpha
33,084
\sin^2\left(4\cdot \pi/7\right) - \sin^2(\dfrac{2\cdot \pi}{7}) = 2\cdot \sin(\frac{\pi}{7})\cdot \cos(3\cdot \pi/7) \gt 0
13,034
(1 + x)^2 + (-1) = 2 \cdot x + x \cdot x
5,068
\mathbb{E}[X] + \mathbb{E}[Q] = \mathbb{E}[X + Q]
23,049
5 + 2 + 4 \cdot \left(-1\right) = 3
-9,485
y\cdot 2\cdot 2\cdot 3\cdot 3 = y\cdot 36
30,516
24/45 = \frac{1}{10!}\cdot \left(9!\cdot 2 + 8!\cdot 2\cdot 8 + 8!\cdot 2\cdot 7\right)
-5,344
\frac{1}{10}\cdot 15.6 = \frac{15.6}{10}
15,248
\binom{n}{3}\cdot 3 + \binom{n}{4}\cdot 3 = \binom{\binom{n}{2}}{2}
12,661
(c + b) \cdot a = a \cdot c + b \cdot a
25,120
\frac{1}{132} \cdot 42 + 20/132 = 62/132 = \frac{1}{66} \cdot 31
-15,989
-\frac{28}{10} = \frac{2}{10}\cdot 10 - 6\cdot 8/10
12,406
1 = (48 \cdot (-1) + 49)^{1 / 2}
7,023
x*a^2 = a*x*a
18,319
\sqrt{|a_n|^2} = |a_n|
25,994
G*B = B*G
-545
π \times 11 - 10 \times π = π
-4,790
4.16 \times 10 = \frac{4.16}{10^6} \times 10 = \frac{4.16}{10^5}
-20,015
\dfrac{1}{-r\cdot 2 + 3}\cdot \left(r + 9\cdot (-1)\right)\cdot 6/6 = \frac{r\cdot 6 + 54\cdot (-1)}{18 - 12\cdot r}
10,872
33! = 2^{33 + 2 \cdot \left(-1\right)} \cdot 4043484860477916195764296875
-18,655
25/14 = \frac{50}{28}
7,603
21 \cdot 21^2 + 3^3 + 5^3 + 19^3 = 1^3 + 9^3 + 15^3 + 23^3
22,875
z^3 + z*3 + 4\left(-1\right) = (z^2 + z + 4) \left((-1) + z\right)
32,140
\sqrt{9*\left(-1\right)} = \sqrt{9}*\sqrt{-1} = 3*i
38,933
\frac{20}{50} \cdot 7 = 2.8
2,824
z^{1/3} z^{1/6} = z^{\frac{1}{3} + 1/6} = z^{1/2}
43,837
\sin{\frac{1}{2} \cdot \pi} = 1
838
\frac{1}{\binom{5}{2}} \binom{4}{2} = 6/10 = 3/5
7,035
y \cdot z = 1 \implies \frac1z = y
27,833
\dfrac{2}{16} + 1/17 = \dfrac{1}{16} + \frac{1}{16} + \tfrac{1}{17}
-4,387
\frac{p^5}{p^2}\cdot 8/14 = \frac{p^5}{14\cdot p^2}\cdot 8
-10,601
\frac{35}{5 \cdot t + 15 \cdot (-1)} = \frac{7}{t + 3 \cdot (-1)} \cdot \frac55
35,741
0 = -|x|^{p + 2 \cdot (-1)} \cdot x + a \Rightarrow |x|^{2 \cdot (-1) + p} \cdot x = a
11,148
\frac{\epsilon^2}{1 + \epsilon} = -(1 - \epsilon) + \dfrac{1}{1 + \epsilon}
17,574
6 \cdot (-1) + x \cdot x - x = 0 rightarrow 3 = x
519
\frac{1}{\mathbb{E}\left[T_2\right]} \cdot \mathbb{E}\left[T_1\right] = \mathbb{E}\left[\dfrac{1}{T_2} \cdot T_1\right]
-3,022
2\sqrt{10} = \left(4 + 2(-1)\right) \sqrt{10}
-4,673
\frac{1}{z \cdot z + (-1)}\cdot \left(-4\cdot z + 2\cdot \left(-1\right)\right) = -\frac{1}{1 + z} - \frac{3}{(-1) + z}
-4,210
\dfrac52 \cdot a^3 = \frac{5}{2} \cdot a^3
24,691
-1^2 + \left(x^2\right)^2 = (-1) + x^4
18,575
1/9 + \frac18 = 17/72
11,620
(\sqrt{5})^2 = 5 + \sqrt{30}\cdot 0
-22,298
(1 + x)\cdot (x + 7\cdot (-1)) = 7\cdot (-1) + x \cdot x - 6\cdot x
-19,920
-\frac{29}{20} = -1.45
22,678
1 - \frac{1}{z^4 + 1} = \frac{z^4}{z^4 + 1}
5,060
\frac{1}{-1} \cdot \left(-\left(-1\right)^2 + 2 \cdot |-1|\right)^{1/2} = -1
21,744
0 = (-1) + 2 \cdot \sin{z} \Rightarrow 1/2 = \sin{z}
36,840
exp(x) = \frac{d}{dx} exp(x)
31,822
n \cdot n + 1 = 2n \cdot n - n^2 + \left(-1\right)
16,993
\frac{\sin(y^2 \cdot z)}{z \cdot y^2} \cdot \dfrac{y^2 \cdot z}{z^2 + y^2} = \frac{1}{z^2 + y^2} \cdot \sin(z \cdot y^2)
-20,006
\frac{y\cdot 80 + 48 (-1)}{90 y + 54 \left(-1\right)} = \frac89 \frac{10 y + 6\left(-1\right)}{10 y + 6(-1)}
21,889
a_{2*k + 1} = \frac{1}{a_{\left(-1\right) + k*2}}*(1 + a_{k*2} * a_{k*2}) \implies a_{(-1) + k*2}*a_{2*k + 1} + (-1) = a_{2*k}^2
23,828
2*\left((-1)*0.5 + 2.5\right) = 4
24,710
(2 + y)*((-1) + y) = y^2 + y + 2*(-1)
8,192
(d\cdot c)^{\frac{1}{2}} = (c\cdot d)^{1 / 2}
1,539
x^2 - x \cdot 3 + 6 = 8 + x^2 - x \cdot 3 + 2 \cdot (-1)
23,320
6^{1/3} \cdot 6^{1/3} = (2^{\frac13})^2 \cdot 3^{1/3} \cdot 3^{1/3}
-9,453
z \cdot 36 + 84 \cdot (-1) = -7 \cdot 2 \cdot 2 \cdot 3 + z \cdot 2 \cdot 2 \cdot 3 \cdot 3
11,566
x^2 = \frac{1}{2}*x^2 + \frac{x^2}{2}
-27,099
\sum_{x=1}^\infty \frac{1}{x\cdot 4^x}\cdot (-8 + 4)^x = \sum_{x=1}^\infty \frac{(-4)^x}{x\cdot 4^x} = \sum_{x=1}^\infty \frac{(-1)^x\cdot 4^x}{x\cdot 4^x} = \sum_{x=1}^\infty \left(-1\right)^x/x
-1,740
\pi \cdot 5/4 = \pi \cdot 5/4 + 0
12,610
k\cdot \left(m + (-1)\right) - m = -k + k\cdot m - m
36,124
|1/x + x| = |\frac{1}{x \cdot (-1)} - x|
29,229
0\cdot x + x\cdot 0 + 0\cdot x = x\cdot 0 + x\cdot 0
2,843
\frac12\cdot 4 + \frac12\cdot 8 = (4 + 8)/2 = 12/2
20,083
(-p + x) \times 16 = -p \Rightarrow 15 \times p = 16 \times x
2,177
n!! = n \cdot (n - 2) \cdot ... \cdot 3 \cdot 1
8,604
\frac{1}{1 + x}\left(2(-1) + x \cdot x \cdot x + x^2\cdot 4 + x\right) = x^2 + x\cdot 3 + 2(-1)
-22,800
\frac{1}{32}*24 = \frac{8*3}{4*8}
14,692
\|v\|^2 = (\sqrt{v_1^2 + v_2^2 + v_3^2})^2 = v_1^2 + v_2^2 + v_3 \cdot v_3
24,626
790 = 250\cdot 3 + ((-1) + 3)\cdot 20
-1,549
\dfrac98 = 9/8
-18,338
\frac{1}{s^2 - 10*s + 24}*(s^2 + 36*\left(-1\right)) = \frac{(s + 6)*(6*(-1) + s)}{(s + 6*(-1))*(s + 4*(-1))}
-22,965
\frac{91}{4 \cdot 13} \cdot 1 = \dfrac{91}{52}
18,919
(1 + r)^3 - (1 - r)^3 = 2 \cdot \left(3 \cdot r + r^3\right) = 2 \cdot r \cdot (3 + r^2)
42,402
1 + (-1) + 1 + (-1) + \ldots = 0 + 0 + \ldots = 0
-20,095
\dfrac{r + 5(-1)}{r + 5\left(-1\right)}*9/4 = \frac{1}{20 \left(-1\right) + 4r}(45 (-1) + r*9)
-14,089
5 - 4 \cdot 8 + 80/8 = 5 - 4 \cdot 8 + 10 = 5 + 32 \cdot (-1) + 10 = -27 + 10 = -17
10,341
r = \frac{1}{r x r^2 x} = \tfrac{1}{r r x r x} = r^2 x r x
49,132
\tfrac{1}{e^y} = e^{-y}
19,490
\left(800^2 + 800 \cdot 800\right)^{1/2} = 2^{1/2} \cdot 800 \approx 1131
7,600
7\cdot 3^2 + 1^2 = 8^2
-15,856
6\times 6/10 - \tfrac{4}{10}\times 10 = -4/10
14,807
\left(3 * 3 + (-1)\right) (3^2 + 3(-1)) = 48 = 3*2^4
-11,986
\dfrac{29}{30} = \dfrac{s}{10\pi} \times 10\pi = s
18,022
\left(A*z = b \Rightarrow \frac{z*A}{A} = b/A\right) \Rightarrow z = b/A
-23,394
\frac{3}{20} = \frac15\cdot 2\cdot 3/8
22,652
-a\cdot x = x\cdot \left(-a\right)
18,714
x_1*g_1 = x_1*g_1
12,154
\left((2*n)!\right)! = 2*n*2*(n + (-1))*2*(n + 2*(-1))*\dotsm*2 = 2^n*n!
34,656
3 = \frac{2}{2}\cdot 3
6,327
\cos(-u + \pi\cdot 4) = \cos(2\cdot \pi - u)
-10,565
5/5\cdot (-\frac{6}{y\cdot 4 + 8}) = -\frac{30}{40 + 20\cdot y}