id
int64
-30,985
55.9k
text
stringlengths
5
437k
29,703
x = z rightarrow z = x
5,675
\frac{|x|}{|c|} = |x/c|
-6,188
\dfrac{2}{2\cdot (2 + t)} = \frac{2}{4 + 2\cdot t}
-743
e^{\dfrac{\pi}{6} \cdot i \cdot 16} = (e^{\frac{\pi}{6} \cdot i})^{16}
-4,052
100/40 \cdot m/m = \dfrac{100}{40 \cdot m} \cdot m
-7,601
\frac{-7 + i \cdot 22}{3 - i \cdot 2} \cdot \frac{3 + 2 \cdot i}{3 + i \cdot 2} = \frac{1}{3 - 2 \cdot i} \cdot \left(i \cdot 22 - 7\right)
14,128
0 = p^4 + 3 \cdot p^2 - 2 \cdot p + 3 = (p^2 + 1) \cdot (p^2 + 1) + (p + (-1))^2 + 1
16,487
x^4 + 2x \cdot x \cdot x - x\cdot 2 + (-1) = (x + (-1)) (x + 1)^3
-595
(e^{\dfrac{i}{12}*\pi})^{13} = e^{\dfrac{\pi*i}{12}*13}
37,733
\frac{\sin{z \cdot i}}{i \cdot z} \cdot i \cdot i = i \cdot \sin{z \cdot i}/z
5,513
f^c\cdot f^h = f^{h + c}
9,934
c \cdot x + c \cdot y = c \cdot \left(x + y\right)
2,536
E_1 \cup E_2^c = E_1^c \cup E_2^c = E_1 \cup E_2
1,045
\frac19 \cdot (2^{3^x} \cdot 2^{3^x} \cdot 2^{3^x} + 1) = \frac{1}{9} \cdot (1 + 2^{3^{x + 1}})
35,620
\left(a = a\cdot 2 \implies a = a + a\right) \implies a = 0
-16,967
-6 = -6 \times (-2 \times q) - -24 = 12 \times q + 24 = 12 \times q + 24
21,428
3^n\cdot \sin{\tfrac{a}{3^n}} = \frac{\sin{\frac{1}{3^n}\cdot a}}{\frac{1}{3^n}}
32,235
f \cdot h \cdot 2 + h \cdot h + f^2 = \left(h + f\right)^2
-5,640
-\dfrac{1}{2*\left(5 + x\right)*(x + 6*(-1))}*4 + \frac{5}{2*(x + 6*\left(-1\right))*(x + 5)}*(x + 6*(-1)) - \dfrac{(5 + x)*2}{(5 + x)*\left(x + 6*(-1)\right)*2} = \frac{1}{(x + 6*(-1))*(x + 5)*2}*(4*\left(-1\right) + (6*(-1) + x)*5 - (5 + x)*2)
4,477
\left(x \cdot c/c\right) \cdot \left(x \cdot c/c\right) = \frac{x}{c} \cdot c \cdot \frac{c}{c} \cdot x = x^2 \cdot c/c
25,663
-b/s = (b*\left(-1\right))/s
28,750
\operatorname{E}[b]\cdot \operatorname{E}[h] = \operatorname{E}[b\cdot h] = 0\Longrightarrow b\cdot h = 0
-20,580
\dfrac{1}{x \times 10 + 10 \times (-1)} \times \left(15 \times (-1) + x \times 5\right) = \frac{1}{2 \times (-1) + 2 \times x} \times (x + 3 \times (-1)) \times \frac55
36,153
144 = \left(a + d\right)^2 = a^2 + d^2 + 2\cdot a\cdot d = 100 + 2\cdot a\cdot d
7,839
\frac{1 + 0}{1 + 0(-1)} = 1
9,610
(x + b*i)*(x - b*i) = x^2 - b^2*i^2 = x^2 + b * b
11,087
b + 2 = 3 \Rightarrow 1 = b
19,878
\cos(t*2) = \cos^2(t) - \sin^2(t)
16,259
(4/6)^5 = (\frac{1}{3}\cdot 2)^5
29,705
\frac{11\cdot 10\cdot 9}{4\cdot 3\cdot 2}8 = 330
22,272
v_1 \cdot v_2 \cdot \cdots \cdot v_N = v_1 \cdot v_2 \cdot \cdots \cdot v_N
3,833
x^6 + \left(-1\right) = (x^3 + (-1))\cdot (x^3 + 1) = (x + (-1))\cdot (x + 1)\cdot (x^2 + x + 1)\cdot \left(x^2 - x + 1\right)
6,356
-s + 1/2 = \frac{1}{(-1/2 + s)^4} \Rightarrow -1 = (s - 1/2)^5
25,811
-\sin{\frac12\cdot k\cdot \pi} = \sin{\pi\cdot (k + 2)/2}
31,704
\frac{120}{5} + \left\lfloor{\frac{1}{25}120}\right\rfloor = 24 + 4 = 28 < 30
1,333
2^8 + (-1) - 2\cdot ((-1) + 2^4) = 1 + 2^8 - 2^5
28,702
l^2 - \frac{3l}{2} - \dfrac{3l}{2} + 9/4 = l^2 - 6l/2 + 9/4 = l^2 - 3l + \frac94
18,693
( z, y) + \left( x'' + x', y'' + y'\right) = ( x', y') + ( x'', y'') + ( z, y)
33,892
\cos(i\cdot x) = \frac12\cdot (e^{-x} + e^x) = \cosh\left(x\right)
18,719
\sec^2(\dfrac{1}{2} \times y) = \frac{1}{(1 + \cos(y)) \times 1/2} = \frac{1}{1 + \cos(y)} \times 2
26,377
((z + 1)^2 - z*3)*(z + 1) = 1 + z^3
6,338
\frac{1}{2\cdot 2} + 1/2 = \frac34
4,040
((-1) + p)\cdot \left(q + (-1)\right) + (-1) = p\cdot q - p - q
11,774
(a \times 0)^2 = a \times 0
-24,834
\frac{2094}{6} = 349
-21,642
\frac{1}{4}\cdot 3 = \frac34
12,592
(g_1 + g_2)\cdot F = g_2\cdot F + F\cdot g_1
7,368
P(y) = (y - a - g \cdot \sqrt{c}) \cdot (y - a + g \cdot \sqrt{c}) = y \cdot y - 2 \cdot a \cdot y + a^2 - g^2 \cdot c
14,644
\frac{l^2}{l + 1} > \tfrac{l^2 + \left(-1\right)}{l + 1} = \frac{1}{l + 1}\cdot (l + 1)\cdot (l + \left(-1\right)) = l + (-1)
1,587
1 = 2 - (-\frac{1}{2} + 1)^3 \cdot 2 - (1 - 1/2)^2 \cdot 3
17,873
\cos{B}*\sin{A} = (\sin(A - B) + \sin(B + A))/2
-5,616
\frac{1}{\left(y + 5\right) \left(y + 6 \left(-1\right)\right)*2} 4 = 2/2*\dfrac{2}{(6 (-1) + y) (5 + y)}
890
X/m + \left(-1\right) + (X - \frac{X}{m})\cdot m/X = X/m + m + 2\cdot \left(-1\right)
-26,365
-\dfrac34\cdot\left(-\dfrac34\right)=\dfrac{9}{16}
5,265
1 + x + x^2 + x^3 + \ldots + x^n = \dfrac{1 - x^{1 + n}}{-x + 1}
-4,493
\dfrac{21 \left(-1\right) + 9x}{x^2 - 5x + 4} = \dfrac{4}{x + (-1)} + \frac{5}{x + 4\left(-1\right)}
50,093
7^{12}=7^6\times7^6
32,592
\cot\left(z*2\right) = 1 \Rightarrow \tan(z*2) = 1
26,424
2 + 8 + 24 + 64 + \dotsm + 2^n n = \left(1 + (n + \left(-1\right))*2^n\right)*2
-1,650
\tfrac{9}{4}\cdot \pi = 11/12\cdot \pi + \pi\cdot 4/3
-20,346
-\frac{1}{3}*5*\frac{t*4 + 10*(-1)}{10*(-1) + t*4} = \frac{-t*20 + 50}{t*12 + 30*(-1)}
30,665
2/18 = \dfrac{1}{3*6} + \frac{1}{3*6}
4,710
\frac{1}{16^{\frac34}\cdot 27^{\frac{2}{3}}} = \frac{1}{(16^3)^{1/4}\cdot (27^2)^{1/3}}
23,530
h * h - b^2 = (-b + h)*(b + h)
2,120
y^2 + x^2 = 25 \implies y = \sqrt{-x^2 + 25}
-1,596
3\times \pi - 2\times \pi = \pi
9,596
\frac{1}{2 \cdot 2} \cdot 1/2/2 = \frac{1}{16}
23,047
\frac{1}{221} + \frac{16}{221} = 17/221 = \frac{1}{52}*4
26,208
\frac{1}{\left(2 \cdot m\right)!} \cdot m = \frac{m}{2 \cdot m \cdot (2 \cdot m + \left(-1\right))!} = \dfrac{1}{2 \cdot (2 \cdot m + (-1))!}
9,369
\left(2\cdot 10^n + 1\right)/3 = (10^n + (-1))/9\cdot 6 + 1
12,596
(0 + 1 + 4)*(1 + 1 + 1)*(1 + 0 + 0) = 15
-5,138
0.82*10^{0 - -2} = 0.82*10^2
8,250
\tanh\left(T\right) = \tanh\left(z\right) \Rightarrow z = T
19,756
0 = 0\left( 1, 4, 0\right) + 0( 2, 2, 2)
568
c_2 \cdot c_1 = ((c_2 + c_1)^2 - c_2^2 - c_1^2)/2
33,893
C_2 \times C_1 = C_1 \times C_2
-19,052
7/24 = \frac{1}{81 \times \pi} \times A_s \times 81 \times \pi = A_s
29,232
\frac{1}{36}\times 6 = \dfrac{1}{6}
9,108
-y \cdot z + x \cdot z = (x - y) \cdot z
6,876
(-a + x) * (-a + x) + b^2 = x^2 - 2ax + a^2 + b^2
40,575
1 = -7\cdot 8 + 3\cdot 19
16,600
5^x \cdot 6 - 5^x = ((-1) + 6) \cdot 5^x
35,387
(a + x)^2 = a^2 + x*a + a*x + x * x = a^2 + 2*a*x + x^2
-10,553
5/5\cdot \frac{1}{a\cdot 3}\cdot 10 = 50/(15\cdot a)
31,426
(\sqrt{2} + \sqrt{3})^2 = 5 + 2\times \sqrt{6}
15,895
\phi C = gC \Rightarrow \frac{C}{g} = C/\phi
-16,468
5\sqrt{4\cdot 5} = 5\sqrt{20}
53,338
6 = 20 \cdot 0.3
23,832
1020 = 20\cdot z + x\cdot 50 \Rightarrow x\cdot 5 + 2\cdot z = 102
10,289
\cos(\frac12 \cdot \pi) + i \cdot \sin(\pi/2) = i
21,155
\frac{-z * z + 1}{1 - z} = z^1 + z^0
11,569
g \cdot d = \dfrac{1}{1/g \cdot 1/d} = \frac{1}{\frac{1}{d} \cdot \frac1g} = d \cdot g
20,692
100\cdot \dfrac{1}{100}/2 = 1/2 = 1/2
10,425
x \cdot z = \left(-z \cdot z + (x + z)^2 - x^2\right)/2
6,836
1/(x\cdot \beta) = \frac{1}{\beta\cdot x}
3,455
z \cdot 0 = 0z + 0
7,552
\frac{x}{d} \implies x/d
14,487
\dfrac{1}{(t + (-1))^2} = -\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{t + (-1)}
37,354
(-y + x) (x + y) = -y^2 + x^2
-10,286
20/20\cdot (-\frac{4}{i + 2\cdot \left(-1\right)}) = -\frac{1}{40\cdot (-1) + 20\cdot i}\cdot 80