id
int64
-30,985
55.9k
text
stringlengths
5
437k
-8,598
\frac{4}{3} - \frac{1}{10}\cdot 5 = 4\cdot 10/(3\cdot 10) - \dfrac{3}{10\cdot 3}\cdot 5 = 40/30 - \frac{15}{30} = \left(40 + 15\cdot (-1)\right)/30 = \frac{25}{30}
2,627
\frac{5^1}{6^6} {6 \choose 5} = 30/46656
20,547
1050 = 2^1*3^1*5 * 5*7^1
-3,647
\frac{1}{r^2}\cdot r^4 = \frac{r\cdot r\cdot r\cdot r}{r\cdot r} = r^2
20,204
a \cdot c = (c^{1/2} \cdot a^{1/2})^2
-20,230
\frac55 \cdot \frac{3}{3 \cdot (-1) - 4 \cdot r} = \dfrac{15}{-20 \cdot r + 15 \cdot (-1)}
30,046
-(-x^2 + 4) + 4 = x^2
-19,399
\frac{\frac{2}{9}}{9*\frac12}*1 = 2/9*2/9
20,150
\sin^2\theta\cos^2\theta = (\sin\theta\cos\theta)^2
-2,903
2\cdot 13^{\frac{1}{2}} = (3 + 1 + 2\cdot \left(-1\right))\cdot 13^{1 / 2}
6,886
2^{2^m + 2 \cdot (-1)} + 1 = 4^{2^{m + (-1)} + (-1)} + 1 = 4^{2^{m + \left(-1\right)} + (-1)} + 1^{2^{m + (-1)} + \left(-1\right)}
-586
\pi\cdot 115/4 - \pi\cdot 28 = 3/4\cdot \pi
15,545
(5 + 1 + 2 + 3 + 4 + 5)/6 = \dfrac{10}{3}
34,864
\frac34 = \frac{1}{4} + 1/2
4,988
1009 = \dfrac12\cdot (1 + 2017)
-20,317
\dfrac{t + 3}{t + 3}*3/5 = \frac{9 + 3*t}{t*5 + 15}
29,884
b\cdot i + a = a + i\cdot b
-16,695
7 = 7 \times 3 \times z + 7 \times 3 = 21 \times z + 21 = 21 \times z + 21
43,431
1*2*3 + 2*3*4 + 3*4*5 + 4*5*6 = 210 = \frac{840}{4}*1
32,074
( z^2 + 1, 1 + z) = ( z \cdot z + 1, 1 + z, 2) = \left( z^2 + \left(-1\right), 1 + z, 2\right) = ( 1 + z, 2)
5,823
Q^2*Q^2*Q^2 = Q^6 = Q^3*Q^3
19,767
I_2 d*2 = 2dI_2
5,173
|-\frac{1}{2}\cdot 9 + 5| = |-9/2 + 4|
30,444
|g_k - h_k| = |h_k - g_k|
-3,925
\frac{t^3}{t^4}\cdot 8/4 = \frac{8\cdot t^3}{4\cdot t^4}
24,203
4 \cdot (-\sqrt{2} \cdot 2 + 3) = -\sqrt{2} \cdot 8 + 12
40,138
6 = 2*3 = \left(1 + \sqrt{-5}\right) \left(1 - \sqrt{-5}\right)
9,319
\rho_1 + 2 \times \pi \times i = \rho_2 \times 2 - \rho_1 \Rightarrow \rho_2 = \rho_1 + \pi \times i
6,748
5\cdot \frac{5}{9} = \frac{25}{9}
-20,087
\frac{1}{28 + 21 z} (35 (-1) + 7 z) = \dfrac{z + 5 (-1)}{3 z + 4}*7/7
-20,280
(5 \cdot q + 20)/45 = 5/5 \cdot (q + 4)/9
36,752
2(x - k) = -(1 + 2k) + 2x + 1
25,619
c/g \cdot g = c \cdot g \cdot \frac{1}{c \cdot g} \cdot c
8,376
-s + (-1) = x\Longrightarrow s + x = -1
38,634
Y = Y\times \pi/\pi
4,980
\tfrac{1}{2} \cdot (1 - \cos(2 \cdot z)) = \sin^2(z)
-4,901
\frac{1}{10}\cdot 3.8 = 3.8/10
30,367
2 = 198 \cdot \left(-21\right) + 288 \cdot (-14) + 16 \cdot 512
4,309
\frac{1}{2} \cdot (n + (-1)) + \frac{1}{2} \cdot \left(n + 5 \cdot (-1)\right) + 3 = n
-24,650
\frac{11}{20} = -3/10 + \frac14 + \dfrac{1}{5}3
15,353
(-1) + \dfrac{2}{\cos(2\cdot z) + 1} = \tan^2(z)
-1,884
3/2*\pi - \pi*\frac{7}{4} = -\pi/4
14,026
5^2 \cdot 5^k = 5^{k + 2}
7,225
\sin{\frac{1}{5}\cdot 2\cdot \pi} = -\sin{\frac{8}{5}\cdot \pi}
12,445
5/6*(1 - p) + 1/6 = p \Rightarrow 6/11 = p
4,291
(-1) * (-1) * (-1) = \left(-1\right)^{\frac62} = (\left(-1\right)^6)^{1/2} = 1^{\frac{1}{2}} = 1
35,620
\left(f = f*2 \implies f + f = f\right) \implies f = 0
23,286
\cos{l \cdot y} \cdot \left(1 + i \cdot \tan{l \cdot y}\right) = e^{i \cdot l \cdot y} = (e^{i \cdot y})^l
14,917
\left(-1\right) + 120 = 7\cdot 17
18,458
\psi\cdot 0 + \psi\cdot 0 = \psi\cdot 0
24,217
\frac{\tan{z\cdot 2}}{\tan{2 z} + 1} = 1 - \tan{z} + \tan^2{z} - \tan^3{z} + \ldots
-15,828
-55/10 = 8/10 - 7 \cdot 9/10
-16,026
\frac{46}{10} = \frac{1}{10} \cdot 7 \cdot 10 - 8 \cdot 3/10
34,041
\frac{d}{dx} x \cdot x = x \cdot 2
29,105
F*a = a*F
25,072
a\cdot y = y\cdot a
35,539
\sin(g + b) = \cos(b)*\sin(g) + \cos(g)*\sin(b)
-18,250
\frac{1}{-z\cdot 7 + z z} (7 (-1) + z^2 - z\cdot 6) = \frac{1}{\left(z + 7 (-1)\right) z} (7 (-1) + z) \left(1 + z\right)
4,797
z = \frac{z}{(-1) + e^z} \left(e^z + (-1)\right)
-26,667
(x\cdot 3 + 2\cdot (-1))\cdot (5\cdot x + 2) = 15\cdot x^2 - 4\cdot x + 4\cdot (-1)
-28,794
\frac{2*\pi}{\pi*2*1/365}*1 = 365
28,972
Q^{n + 1} = Q^n*Q
-1,449
\dfrac{3}{4} \cdot (-2/1) = \frac{\tfrac{1}{4} \cdot 3}{\left(-1\right) \cdot 1/2}
-10,286
-\frac{80}{40 \cdot (-1) + 20 \cdot m} = 20/20 \cdot \left(-\frac{1}{2 \cdot (-1) + m} \cdot 4\right)
-10,620
\dfrac{20 + 20*q}{q*20 + 5*(-1)} = \dfrac{4*q + 4}{(-1) + q*4}*5/5
17,287
\sqrt{10}\cdot 4/9 - 10/9 = \left(-10 + 4\cdot \sqrt{10}\right)/9
27,244
z_2 + z_1 = 100 rightarrow z_1 = 100 - z_2
36,542
63 = 4 + 100 + 25 \cdot (-1) + 16 \cdot (-1)
12,225
2*x + \frac{1}{16}*(1 - 2*x - \frac{15*x}{16} - 1/16) = 2*x + 15/256 - 47*x/256 = 465*x/256 + \frac{15}{256}
29,521
4 \cdot a = (a + 1 + x)^2 = a \cdot a + 2 \cdot (1 + x) \cdot a + (1 + x)^2
12,672
\binom{31 + 11 + \left(-1\right)}{31} = \binom{41}{31} = \binom{41}{10}
11,827
-2^{1/2}\cdot 7 + 3 + 2^{1/2}\cdot 8 = 3 + 2^{1/2}
18,942
\sin{\pi/4} - \sin{\frac{(-1) \pi}{4}} = \sqrt{2}
31,613
1/(b\times c) = 1/(b\times c)
-11,467
-20 + i*12 = 0 + 20*\left(-1\right) + 12*i
-12,755
7\times (-1) + 28 = 21
-15,874
\frac{1}{10}\cdot 5 = 7\cdot 5/10 - 6\cdot 5/10
47,368
p^2 - p + 1 = p^2 - 2\cdot \frac12\cdot p + \dfrac14 + 1 - \dfrac{1}{4} = (p - \frac{1}{2}) \cdot (p - \frac{1}{2}) + \frac{3}{4}
7,818
(e + g) \cdot x = x \cdot e + g \cdot x
27,982
e^x = \lim_{n \to \infty} \left(1 + x/n\right)^n = \lim_{n \to \infty} (1 - \frac1n\cdot x)^{-n}
33,723
2*\left(-1\right) + 0 = -2
7,309
3\cdot \left(-1\right) + 2^3 = 5
31,373
\dfrac12\cdot 20 = 10
17,209
\frac{1}{0^2 + 1}\cdot 0 = 0
-7,123
\dfrac{1}{30} = \frac{1}{10}*4*\tfrac39*\frac{1}{8}*2
39,481
(-3)^4 = ((-1)*3)^4 = \left(-1\right)^4*3^4 = 81 = 81
9,052
2 \cdot \left(q \cdot 3 + 1\right) = 6 \cdot q + 2
14,512
c\cdot (a\cdot b + b\cdot a) = c\cdot \left(a\cdot b + a\cdot b\right)
1,234
\alpha,\beta,\alpha \leq \beta \implies \beta = \alpha*\beta
22,006
{y \choose n} = {n + y - n + 1 + \left(-1\right) \choose n}
5,956
(-y + x)\cdot (x^1 + x^0\cdot y + \dots + x\cdot y^0 + y^1) = x^2 - y \cdot y
40,125
l^2 = l\cdot l = l + (l + (-1))\cdot l
6,295
105 \cdot 105^2 + (-104)^3 = 181 \cdot 181
-4,464
20*(-1) + x^2 - x = (x + 4)*(x + 5*(-1))
-9,346
50*(-1) + k*10 = k*2*5 - 2*5*5
11,541
\bar{c_x} \cdot D \cdot e \cdot d = d \cdot D \cdot e \cdot \bar{c_x}
-3,951
\frac{f^5 \cdot 44}{f^5 \cdot 55} = \frac{44}{55} \cdot \frac{1}{f^5} \cdot f^5
10,842
x^3*2 + 6x + 12 = (x^3 + 3x + 6)*2
24,223
e^{i \cdot s \cdot X} \cdot E = E \cdot e^{X \cdot s \cdot i}
16,123
2/775 = \frac{2}{25} \cdot \dfrac{1}{31}