id
int64
-30,985
55.9k
text
stringlengths
5
437k
9,366
\frac{3}{36} + \frac{1}{36}*2 + \frac{1}{36} = \frac{6}{36}
353
2 = \frac17 \cdot (22 + 8 \cdot (-1))
3,680
8 + 3\left(-1\right) = 5 = 3*\frac{5}{3}
39,806
\binom{10}{3} = \frac{10!}{3! \cdot 7!}
25,680
x \times \left(x + \left(-1\right)\right) \times ... = x!
48,318
95=5\cdot19
32,868
\frac{1}{x + i} = \frac{1}{(1 + i) \cdot \left(\frac{x + (-1)}{1 + i} + 1\right)}
6,848
-t + t^2 = 2 + (t + 2 (-1)) (t + 1)
28,315
(1 + \cos(2 \cdot z))^2 = (1 + 2 \cdot \cos^2(z) + (-1))^2 = 4 \cdot \cos^4(z)
15,374
(1 + l)^{l + 1} = (l + 1) (1 + l)^l
-20,650
(70\cdot p + 10\cdot (-1))/30 = \tfrac{10}{10}\cdot \left(7\cdot p + (-1)\right)/3
-16,700
-3 = -3(-2x) - 21 = 6x - 21 = 6x + 21 (-1)
-20,610
-\tfrac{9}{4} \tfrac{7 - 5p}{-5p + 7} = \tfrac{45 p + 63 (-1)}{28 - 20 p}
6,565
1/(S_1\cdot S_2) = 1/\left(S_1\cdot S_2\right)
25,922
\left(1 + 1\right) \cdot \left(x + z\right) = (1 + 1) \cdot x + \left(1 + 1\right) \cdot z = x + x + z + z
33,397
(1 + y^4 + y^2 \cdot \sqrt{2}) \cdot (1 + y^4 - y \cdot y \cdot \sqrt{2}) = y^8 + 1
18,689
(3 + 6 + 3)\cdot (4\cdot 6 + 3 + 2\cdot 4 + 3\cdot 5) = 600
22,910
(-1) + z^3 - z^2 + z = (z^2 + 1)\cdot ((-1) + z)
-10,551
-\dfrac{5}{4\cdot \left(-1\right) + 4\cdot r}\cdot 5/5 = -\frac{25}{r\cdot 20 + 20\cdot (-1)}
11,351
(k + 1)/2 - \dfrac{1}{2} \times k = \frac12 = \frac{k}{2} - (k + (-1))/2
25,344
800 = {\left(-1\right) + 17 \choose 2} + {(-1) + 17 \choose 2} + {17 + (-1) \choose 3}
6,978
fg = (\left(g + f\right)^2 - \left(f - g\right)^2)/4
-20,543
\tfrac{p \cdot 15}{p \cdot (-9)} = -5/3 \cdot \frac{(-1) \cdot 3 \cdot p}{p \cdot \left(-3\right)}
34,568
(Z + 2)^k + (Z + 2)^{2\cdot k + 3} + (Z + 2)^0 = (Z + 2)^{3\cdot k + 3} = \left(Z + 2\right)^{(k + 1)^3}
3,364
x = \frac{3}{x\cdot 3}\cdot x^2
45,376
-2\cdot 0.08 + 1 = 0.84
9,338
\frac{1}{n + 1} \cdot (n + 1)! = n!
10,139
π\cdot 5/12 = 75\cdot π/180
46,671
144 = 3!*4!
-21,216
\dfrac{1}{12}9 = \frac{3}{4}
-7,008
9/28 = \dfrac{6}{7} \cdot \dfrac{3}{8}
20,977
2^{2*\left(-1\right) + n}*2 = 2^{n + (-1)}
-10,711
-\frac{18}{18 + y \cdot 30} = 6/6 \cdot (-\dfrac{3}{y \cdot 5 + 3})
-20,640
\frac{6}{24 + 18 \cdot k} = \dfrac33 \cdot \frac{2}{k \cdot 6 + 8}
37,931
n\cdot {p \choose n} = {(-1) + p \choose n + (-1)}\cdot p
17,543
G_i \times G_x \times G_l = G_i \times G_x \times G_l
-4,155
\dfrac{1}{2 \cdot j^3} = \frac{1}{2 \cdot j^3}
17,010
z = 2 \cdot (z + 4 \cdot (-1)) + 4 - z + 4 \cdot \left(-1\right) = 2 \cdot (z + 4 \cdot (-1)) + 8 - z
2,247
4417 = 1 + 8^2\cdot 5 + 8^4
-15,530
\frac{1}{\dfrac{1}{r\times \frac{1}{m^3}}}\times (r^3)^3 = \tfrac{r^9}{m^3\times 1/r}
22,767
\sin\left((n + 1)^2 - n^2\right) = \sin\left(2 \cdot n + 1\right)
31,892
(\sqrt{x} - x)/(\sqrt{x}) + (-\sqrt{x} + 1)/1 = 2\cdot (1 - \sqrt{x})
-2,342
\tfrac{1}{20} = 4/20 - 3/20
31,351
\pi*2*(1 - 1/2) = \pi
4,866
n - j = j + n - j \cdot 2
24,901
\frac{1}{3}5 = \frac{5}{3}
12,936
(a + \sqrt{b}) (a - \sqrt{b}) = a a - \left(\sqrt{b}\right)^2 = a^2 - b
38,508
G^R \cdot G = G^R \cdot G
-15,791
-\frac{7}{10} + 1 = \frac{3}{10}
13,375
\left(p + 1\right)/2 = p - \frac12\cdot \left(p + (-1)\right)
-22,151
\frac{30}{27} = \dfrac{1}{9}\cdot 10
-499
(e^{i\pi/4})^{17} = e^{17 \frac{i\pi}{4}}
30,790
m = \left\{3, m, \dotsm, 2, 1\right\}
20,112
b \gt x rightarrow x * x \lt b^2 = \dfrac{1}{9}
20,996
\frac{1}{3} = 1/9/(\frac13)
-4,991
6.86*10 = \dfrac{6.86*10}{100} = \dfrac{6.86}{10}
8,153
\tan^2{-G\cdot z} = \tan^2{G\cdot z}
-2,092
23/12\cdot \pi + \pi/2 = \pi\cdot 29/12
-9,468
-5\cdot 2\cdot 2 - 5\cdot r = -5\cdot r + 20\cdot (-1)
-6,177
\frac{1}{(5(-1) + t)*2}2 = \frac{2}{t*2 + 10 \left(-1\right)}
17,160
\frac{1}{2}*\left(20 + 18*(-1)\right) + 18 = 19
-19,592
7/2*\frac159 = \frac{9*1/5}{2*\frac17}
-30,177
\frac{\mathrm{d}}{\mathrm{d}x} x^{12} = 12 \cdot x^{12 + (-1)} = 12 \cdot x^{11}
11,040
-c^p + x^p = \left(-c + x\right) \cdot (x^{p + \left(-1\right)} + x^{p + 2 \cdot (-1)} \cdot c + c \cdot c \cdot x^{p + 3 \cdot (-1)} + \dotsm + x \cdot c^{p + 2 \cdot (-1)} + c^{(-1) + p})
-26,552
2 \cdot y^2 - 40 \cdot y + 200 = 2 \cdot \left(y^2 - 20 \cdot y + 100\right) = 2 \cdot \left(y + 10 \cdot (-1)\right)^2
-3,736
p*\frac15*8 = 8*p/5
5,911
f^2 - 4 \cdot f + 5 \cdot (-1) = (f + 5 \cdot (-1)) \cdot (f + 1) = 0 \implies -1 = f, 5
20,710
{m \choose k} = \dfrac{m!}{k! \cdot (-k + m)!}
54,655
(0!)! = (1!)! = 1
6,273
\frac23 \cdot 2 = 4/3
3,002
-(\sqrt{5}*2 - \sqrt{11}) + 2\sqrt{5} + \sqrt{11} = \sqrt{11}*2
12,404
d\cdot \tau/d = d\cdot \tau/d
22,675
X \cap (A) = A \cap (A \cap X) = A \cap X
-23,230
\dfrac{1}{5} = 1 - 4/5
14,935
x*4 + w = w * w + x^2*2 \Rightarrow 0 = 2*x * x - 4*x + w^2 - w
21,824
4 (-1) + 2 (k\cdot 5 + 1) (5 k + 1)^2 + 7\cdot \left(1 + 5 k\right) = 250 k k k + k^2\cdot 150 + 65 k + 5
17,526
(ab)^{-1} = b^{-1} a^{-1} = ba
14,315
\sin(-x + \alpha) = \cos{x} \cdot \sin{\alpha} - \sin{x} \cdot \cos{\alpha}
4,275
y^4 + (-1) = (y^2 + \left(-1\right)) \times (y^2 + 1) = \left(y + (-1)\right) \times \left(y + 1\right) \times (y^2 + 1)
7,975
\frac{1}{k} = \frac{1}{(-1)^{1/2}} = (1/(-1))^{1/2} = (-1)^{1/2} = k
13,849
(-1)^{1 + k} = (-1)^k \cdot (-1)
2,783
(n + 1)*(n + 2)*...*2*n = (n*2)!/n!
21,281
t \cdot y \cdot q = t \cdot q \cdot y
-26,650
\left(5 + 8(-1)\right)^2 = 25 + 80 (-1) + 64
46,807
7 + 56 = 63
8,140
E = \left(E \cap Y\right) \cup (E \cap \overline{Y}) = Y \cup (E \cap \overline{Y})
-26,462
\left(-h + g\right)^2 = h^2 + g^2 - 2\cdot h\cdot g
20,923
2\sin\left(5x\right) \cos(4x) = \sin(5x + 4x) + \sin(5x - 4x) = \sin(9x) + \sin(x)
-2,298
\frac{3}{11} - 1/11 = 2/11
8,024
\left(\left(t + x = 0 \Rightarrow x = -t\right) \Rightarrow (-t)^2 = x * x\right) \Rightarrow x = t
22,446
a \cdot a \cdot c \cdot c = (c \cdot a)^2
-27,493
8\cdot f^2 = 2\cdot f\cdot f\cdot 2\cdot 2
-18,375
\frac{(q + 5) \cdot \left(q + 6\right)}{((-1) + q) \cdot (q + 5)} = \frac{1}{q^2 + 4 \cdot q + 5 \cdot (-1)} \cdot (q^2 + 11 \cdot q + 30)
30,919
x*\frac34 = \left(\frac12*x + x\right)/2
27,338
\{C_1, C_2\} \Rightarrow C_1 \cup C_2 \setminus C_1 = C_2
29,991
4 = \frac19(1 + 2 + 3 + 2 + 4 + 6 + 3 + 6 + 9)
-6,308
\frac{1}{q^2\cdot 3 + 243\cdot \left(-1\right)}\cdot (q + 9\cdot \left(-1\right) - 9\cdot q + 81\cdot \left(-1\right) + q\cdot 15) = \frac{90\cdot \left(-1\right) + 7\cdot q}{243\cdot (-1) + 3\cdot q^2}
5,276
\sin{\beta} = 2.71 \cdot \sin{46}/2.29 = 0.85 \Rightarrow 58.35 = \beta
9,812
b\cdot c = b\cdot e_x\cdot c = b\cdot e_x\cdot c
1,097
a y^2 + g y + f = 0 \Rightarrow y^2 + y g/a = -f/a