id
int64
-30,985
55.9k
text
stringlengths
5
437k
18,059
(-g + y) \cdot (-h + y) = g \cdot h + y^2 - (h + g) \cdot y
-20,338
\frac{6 (-1) + 2 x}{2 x + 4 \left(-1\right)} = \frac{3 (-1) + x}{2 (-1) + x} \frac{2}{2}
-3,608
\frac{27}{54 x^5}x^3 = 27/54 \frac{x^3}{x^5}
9,725
(2y^3)^{1 / 2} + 2(2y^3)^{\dfrac{1}{2}} + (2y^3)^{1 / 2} = 4(2y^3)^{\dfrac{1}{2}} = 4y \cdot (2y)^{\dfrac{1}{2}}
29,474
\frac{1}{2 + x}*(x * x * x + g*x + b) = x^2 - x*2 + g + 4 + \frac{b - 2*(4 + g)}{x + 2}
15,926
-z^2 - 2*z + 3 = -(z + 3)*(z + (-1))
-26,435
9\cdot \dfrac{5}{3} = 15
41,434
10 \cdot 5^5 = 31250 = 32768 + 1518 (-1) = 2^{15} + 1518 (-1)
-8,367
-16 = 8*(-2)
-20,210
-9/5 \frac{-4s + 3(-1)}{3(-1) - 4s} = \tfrac{36 s + 27}{15 \left(-1\right) - s \cdot 20}
18,745
(d_m - i)^2 + 2\cdot i\cdot (d_m - i) = -i \cdot i + d_m^2
27,259
-\sin^2(X)\cdot 2 + 1 = \cos\left(2\cdot X\right)
35,014
I + rr' = (I + r) (I + r')
19,804
2^4 + 2^2 + 2^2 = 2^2 2 + 2^3 + 2^3
1,865
\dfrac{154}{\binom{15}{3}} = 22/65
8,008
\frac{4}{n + (-1)} + 1 = \dfrac{1}{\left(-1\right) + n}*\left(3 + n\right)
-7,384
\dfrac{5}{10}*2/9 = \frac19
18,542
\cos(A)*\sin(A)*2 = \sin(A*2)
-7,201
\frac27 = \frac{1}{7} \cdot 4 \cdot \frac16 \cdot 3
18,478
\left(-i + 1\right)^{1/4} = i \times y + z \Rightarrow -i + 1 = (z + y \times i)^4
35,157
\sin{5\cdot \pi/18} > \sin{\frac{1}{4}\cdot \pi}
-20,467
\frac{-x\cdot 9 + (-1)}{-9\cdot x + (-1)}\cdot (-9/2) = \frac{9 + 81\cdot x}{2\cdot \left(-1\right) - x\cdot 18}
30,925
5 = \tfrac{1}{24*5}\left(24^2 + 5^2 + (-1)\right)
20,539
x^2 + x^2 + x \cdot x = x \cdot x + x \cdot x + x \cdot x + x \cdot x \cdot x + 1 = x^2 + x^2 + x \cdot x + x^3 + 1
-3,759
\dfrac{121 a^3}{a*99}1 = a^3/a*121/99
-11,142
(z + 8) \cdot (z + 8) + f = (z + 8) \cdot (z + 8) + f = z^2 + 16 \cdot z + 64 + f
7,903
d/h = \dfrac{1}{h \cdot \dfrac1d}
-20,839
-7/6\cdot \dfrac{2 + q\cdot 3}{3\cdot q + 2} = \frac{1}{q\cdot 18 + 12}\cdot (14\cdot (-1) - q\cdot 21)
29,234
\frac{x^2}{x + 2 \cdot (-1)} = \dfrac{4}{2 \cdot (-1) + x} + x + 2
35,541
3!\cdot 2!\cdot 3 = 36
1,324
x \cdot x \cdot 18 = x \cdot 9 \cdot 2x
-25,492
5\cos{y} + 2y = d/dy (y^2 + 5\sin{y})
31,309
\overline{g + x} = \overline{x} + \overline{g}
5,094
\frac{b}{x + b}*d_1/b + \frac{d_2}{x}*\dfrac{x}{b + x} = \frac{d_1 + d_2}{b + x}
14,447
\sin\left(2 \cdot y\right) = \sin(y + y) = \sin\left(y\right) \cdot \cos(y) + \sin(y) \cdot \cos(y) = 2 \cdot \sin(y) \cdot \cos(y)
3,189
(x + 1)! = (x + 1) x! > (x + 1)*2^x
33,651
\frac{1}{(1 + \frac{x^2*3}{2})*2} = \frac{1}{3*x^2 + 2}
-1,795
\pi \dfrac{7}{12} + \pi/2 = \pi*13/12
-13,184
-\tfrac{0.01932}{-0.4} = 0.0483
26,690
(c + \left(2 \cdot n + (-1)\right) \cdot c)/2 \cdot n = c \cdot n^2
6,415
\int\limits_b^d h\,dx = -\int_d^b h\,dx
-12,780
\frac{4}{6} = \frac{1}{3}2
8,951
\left(\left(B*A = x \implies A*B*A = x*A = A\right) \implies A*B*A/A = \frac1A*A\right) \implies B*A = x
15,479
\left(3 + (-1)\right)*3 = 6
28,211
\sin(2 \cdot (\dfrac32 + z)) = \sin(z \cdot 2 + 3)
5,721
-(m + (-1)) + x = 1 + x - m
4,584
-x^2\cdot 23 = -x^2 - 22\cdot x^2
828
A^{x/3} + A^{\frac{1}{3}\cdot (x\cdot (-1))} = 8\Longrightarrow A^{x/3} \cdot A^{x/3} - A^{x/3}\cdot 8 + 1 = 0
-4,433
\frac{5 - x}{x^2 + 8\times x + 15} = -\dfrac{5}{5 + x} + \frac{1}{x + 3}\times 4
16,458
-1 = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{-1 \cdot -1} = \sqrt{1} = 1
11,532
e\times a/e = a
39,974
\frac{1}{4}*\frac{1}{4} = 1/16
-5,159
10^{6 + 2\left(-1\right)}\cdot 0.81 = 0.81\cdot 10^4
-715
e^{17\cdot i\cdot \pi} = \left(e^{i\cdot \pi}\right)^{17}
14,093
57/8 = 7 + \frac18
29,646
1 < \alpha + (-1) \implies 2 < \alpha
44,108
125\cdot 101 + 36\cdot \left(-1\right) = 12625 + 36\cdot (-1) = 12589 > 0
20,681
194401220013 = 21557 \times (3 \times 7 \times 11 \times 13) \times (3 \times 7 \times 11 \times 13)
-4,514
\frac{1}{z^2 - 4 \cdot z + 3} \cdot (11 \cdot \left(-1\right) + z \cdot 3) = \frac{4}{z + (-1)} - \frac{1}{z + 3 \cdot (-1)}
14,991
b^2 + c \cdot c - c\cdot b > b\cdot c \implies b^3 + c \cdot c \cdot c \gt b\cdot c\cdot (b + c) = b \cdot b\cdot c + b\cdot c \cdot c
2,297
-x\cdot 4 + x^2 = \left(x + 2\cdot (-1)\right)^2 + 4\cdot (-1)
14,859
e^w\cdot e^\nu = e^{\nu + w}
9,353
(1 + z) \cdot (z^2 + 1) \cdot \left(1 + z^4\right) \cdot \ldots \cdot \left(z^{2 \cdot m} + 1\right) = \frac{1}{1 - z} \cdot \left(1 - z^{m \cdot 2 + 1}\right)
30,726
(x + 1)*(1 + x*2) = 1 + 2*x^2 + 3*x
15,407
16\cdot (-1) + x_1 = x_1
-9,360
y \cdot 2 \cdot 2 \cdot 3 \cdot 5 = y \cdot 60
-18,954
3/4 = \frac{B_q}{4 \cdot \pi} \cdot 4 \cdot \pi = B_q
29,764
1/52 = \frac{1}{52} 51*50/51/50
16,223
h^2 + g^2 = h\cdot g\cdot 2 + g^2 - g\cdot h\cdot 2 + h^2
5,693
n = x^{x^{x^{\cdots}}} \implies x = n^{1/n}
26,694
48/(-10) = -\frac{1}{5}\cdot 24
-17,955
1 = 10 + 9 \cdot \left(-1\right)
45,078
\frac{1}{20}=20^{-1}
20,102
c_k*c_w = c_w*c_k
34,315
60 = 5^1 \cdot 3^1 \cdot 2^2
7,455
x = \dfrac13 \cdot 2 + (1 + x)/3 = 1 + \dfrac{x}{3}
11,960
2\cdot k\cdot x - 2\cdot x - x\cdot k + 2\cdot x - 2\cdot k^2 + 4\cdot k + k \cdot k - k\cdot 4 + 3 + 2\cdot (-1) = x\cdot k - k^2 + 1
-18,962
1/3 = \frac{x_t}{25\cdot \pi}\cdot 25\cdot \pi = x_t
8,525
z^m/y*y = (y*\frac1y*z)^m
23,069
y^3 - 3 y + 2 (-1) = (y + 2 (-1)) (y^2 + 2 y + 1) = (y + 2 (-1)) (y + 1)^2
33,658
(zx)^2 = x^2 z^2
33,048
1000 + (-1) + 193 \cdot \left(-1\right) + 298 \cdot \left(-1\right) = 508
45,430
|-c| = c = c
-4,569
\dfrac{1}{4 + x} \cdot 5 - \dfrac{4}{x + 5 \cdot (-1)} = \frac{1}{20 \cdot (-1) + x^2 - x} \cdot \left(41 \cdot (-1) + x\right)
10,018
7 + 11*k = (3 + 5*k)*2 + k + 1
-12,573
43 = 90 + 47 \times (-1)
7,894
b_j = b_j*2
1,940
l \cdot (ag_0 + bg_s) = ag_0 l + blg_s
28,459
\sqrt{i} + \sqrt{2*i} + \sqrt{i*3} = \sqrt{i}*(\sqrt{3} + 1 + \sqrt{2})
17,885
23100 = 2\cdot {5 \choose 2}\cdot {22 \choose 2}\cdot 5
8,043
\alpha \cdot \alpha + (-1) = \left(\alpha + (-1)\right)\cdot (\alpha + 1)
15,060
3^{1/2} \cdot 0 + 11 = 11
-7,426
9/91 = \frac{1}{14}*6*\tfrac{1}{13}*3
709
\frac{1}{-\frac{1}{x}*b + a/x} = \frac{x}{a - b}
31,129
43^8 + 96222^2 96222 = 30042907 30042907
44,743
4^k = (1 + 3)^k
-8,058
\frac{1}{13} \cdot \left(6 + 30 \cdot i + 9 \cdot i + 45 \cdot (-1)\right) = \frac{1}{13} \cdot \left(-39 + 39 \cdot i\right) = -3 + 3 \cdot i
-20,237
7/6\cdot \frac{j + 6\cdot (-1)}{j + 6\cdot (-1)} = \frac{j\cdot 7 + 42\cdot (-1)}{36\cdot (-1) + j\cdot 6}
12,846
\dfrac12(1 + \sqrt{5}) = \dfrac12 + \frac{\sqrt{5}}{2}
-1,246
\frac{3 / 2}{1/8}\cdot 1 = \frac{3}{2}\cdot \frac81