id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
2,896 |
\left(1 + y^4/9\right)^{\frac12}\cdot 9^{\frac12} = \left(9 + y^4\right)^{1/2}
|
38,105 |
1 - 34/50*34/50 = \frac{1344}{2500}
|
-5,340 |
4.2 \cdot 10^{3 \cdot (-1) + 4} = 4.2 \cdot 10^1
|
8,225 |
\left(\left(-1\right) H_n\right)/(B_n*(-1)) = H_n/(B_n)
|
-18,799 |
x = \frac{x\cdot 9}{9}
|
12,223 |
h\cdot 36 + 4/h = 72 \implies 1 + h \cdot h\cdot 9 = 18\cdot h
|
19,068 |
\sec(x) = -25/7 \Rightarrow -\dfrac{7}{25} = \cos(x)
|
20,242 |
13 = (3 + 2\cdot \text{i})\cdot \left(3 - \text{i}\cdot 2\right)
|
12,172 |
-\cos(x) + \sin(x\cdot 0) = -\cos(x)
|
-1,964 |
π \cdot \frac{19}{12} + π \cdot 7/6 = \frac{1}{4} \cdot 11 \cdot π
|
25,570 |
\tanh(1) = \frac{e^2 + (-1)}{e e + 1}
|
-1,884 |
-7/4 \pi + 3/2 \pi = -\tfrac{\pi}{4}
|
1,283 |
\dfrac{1/13*6}{4}*4 = \dfrac{6}{13}
|
19,372 |
\left(\alpha \cdot \beta\right)^1 = \beta \cdot \alpha
|
23,645 |
\frac{1}{m!} \times (m + 1)! = m + 1
|
13,386 |
(-b + a)^2 = (-a + b) \cdot (-a + b)
|
22,802 |
\sqrt{8^2 + 4 \cdot 4 + (-8)^2} = 12
|
45,805 |
2 \cdot 3=6
|
27,567 |
c\cdot \overline{z} = \overline{z\cdot \overline{c}}
|
-3,803 |
4 \cdot t \cdot t \cdot t = t^3 \cdot 4
|
-4,413 |
(2\cdot (-1) + z)\cdot (4\cdot (-1) + z) = z^2 - 6\cdot z + 8
|
-20,249 |
\dfrac{1}{-4 \cdot y + 9} \cdot (-4 \cdot y + 9) \cdot 9/2 = \dfrac{81 - 36 \cdot y}{18 - 8 \cdot y}
|
1,098 |
B \times B + A^2 + B \times A \times 2 = B^2 + A^2 + A \times B + B \times A
|
19,393 |
(2 - 1/3)\cdot \left(3 - 1/5\right)\cdot (-1/2 + 5) = 21
|
16,828 |
g \times E = g \times E
|
2,186 |
s = s \cdot s = (-s)^2 = -s
|
7,192 |
x^{10} = \left(1 - x\right)\times (13 - 21\times x) = 21\times x \times x - 34\times x + 13 = 21\times (1 - x) - 34\times x + 13 = 34 - 55\times x
|
26,537 |
-(3*\sqrt{3} + 5)/2 = -\frac{5}{2} - \sqrt{3}*3/2
|
12,189 |
\left(-5\right)^2 + \left(-3\right)^2 + 1^2 = 35 = 5*(\left(-5\right)*(-3) - 5 - 3)
|
7,743 |
d/dy (4 + y^3 + y^2*2 + 3*y) = 3 + 3*y^2 + y*4
|
-9,200 |
-k \cdot 72 + 36 \cdot \left(-1\right) = -k \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 - 2 \cdot 2 \cdot 3 \cdot 3
|
-25,871 |
y^3 = \frac{y^5}{y^2}
|
30,264 |
b + c \neq 0 \Rightarrow b \neq -c
|
38,347 |
\left(k_2 + 1\right)! + (-1) = \left(k_2 + 1\right)\cdot k_2! + (-1) = (k_1 + 1)\cdot k_2! + (k_2 - k_1)\cdot k_2! + (-1) > (k_1 + 1)\cdot k_2!
|
14,975 |
x\cdot x + 2\cdot x\cdot d + d\cdot d = (d + x)\cdot \left(x + d\right)
|
2,856 |
\frac{1}{Y}Z^Q = \frac{1}{Y}Z^Q
|
-21,610 |
\sin(\frac12\pi) = 1
|
-3,109 |
\sqrt{25\cdot 3} + \sqrt{16\cdot 3} = \sqrt{48} + \sqrt{75}
|
-11,540 |
4 + 6\cdot i = 6\cdot i + 4 + 0\cdot \left(-1\right)
|
-29,320 |
-4 + 8 + i\cdot 18 = 4 + 18\cdot i
|
1,999 |
{(-1) + x + r \choose x} = {(-1) + x + r \choose r + (-1)}
|
15,244 |
1 + \frac{2}{b + (-1)} = \frac{1 + b}{(-1) + b}
|
29,779 |
\frac{4}{6^3}\cdot 6\cdot 5 = 5/9
|
-1,898 |
-\frac{\pi}{6} = -13/12 \pi + \pi \tfrac{11}{12}
|
26,421 |
-\frac{1}{x\cdot (1 - 1/x)} = \frac{1}{-x + 1}
|
-9,458 |
t \cdot 60 + 54 = t \cdot 2 \cdot 2 \cdot 3 \cdot 5 + 2 \cdot 3 \cdot 3 \cdot 3
|
2,442 |
o^6 + y^6 = (o^2)^3 + (y^2)^3 = \left(o \cdot o + y^2\right) \cdot \left(o^4 - o^2 \cdot y^2 + y^4\right)
|
1,501 |
1 + b + b^2 + b^3 + \ldots + b^x = \frac{1}{1 - b}\cdot (-b^{x + 1} + 1)
|
-9,397 |
-3 \times 2 \times 2 \times 2 \times 2 + x \times 2 \times 3 \times 3 = 18 \times x + 48 \times (-1)
|
-4,715 |
\dfrac{7 \times x + 15}{x^2 + x \times 6 + 5} = \dfrac{2}{x + 1} + \frac{5}{x + 5}
|
17,756 |
\sqrt{2} = 1.414213562373*...
|
24,796 |
1/(L\cdot U) = \frac{1}{L\cdot U}
|
8,901 |
(0^2 + 1 \cdot 1)^2 + 2^2 = \left(0 + 1\right)^2 + 2 \cdot 2 = 1^2 + 2^2 = 1 + 4 = 5
|
-20,772 |
\dfrac{-8\cdot n + 24}{15\cdot (-1) + n\cdot 5} = \dfrac{n + 3\cdot (-1)}{3\cdot \left(-1\right) + n}\cdot (-\frac15\cdot 8)
|
15,319 |
\sin^l{x} = \sin^{l + 2*(-1)}{x}*\sin^2{x} = \sin^{l + 2*(-1)}{x}*\left(1 - \cos^2{x}\right)
|
26,924 |
\left(-1\right) + 10*4 = 39
|
-7,519 |
19/3 = \frac1957
|
14,728 |
|2\cdot e^{i\cdot t} + (-1)|^2 = |2\cdot \cos{t} + 2\cdot i\cdot \sin{t} + (-1)|^2 = \left(2\cdot \cos{t} + (-1)\right)^2 + (2\cdot \sin{t})^2
|
11,998 |
\dfrac{1}{\sqrt{r + 3 (-1)}} = \sqrt{\frac{1}{r + 3 \left(-1\right)}} = \sqrt{e^{3 r}}
|
42,110 |
d^0 d^1 = d^1 = d^1
|
20,115 |
d^{i + 1}\cdot x^{i + 1} = d\cdot x\cdot (d\cdot x)^i = d\cdot x\cdot d^i\cdot x^i
|
32,199 |
\dfrac{1}{455} \cdot 64 = 384/2730
|
23,745 |
|x + b|^2 = (x + b)*\overline{x + b} = \left(x + b\right)*(\overline{x} + \overline{b})
|
-20,342 |
3/3 \cdot \frac{1}{-3 \cdot k + 3 \cdot (-1)} \cdot (\left(-2\right) \cdot k) = \frac{1}{-9 \cdot k + 9 \cdot (-1)} \cdot (k \cdot \left(-6\right))
|
-18,962 |
\frac{1}{3} = \frac{B_s}{25\cdot \pi}\cdot 25\cdot \pi = B_s
|
4,792 |
(-1) + \frac{k}{u + k} = \frac{u \cdot (-1)}{u + k}
|
32,883 |
x^6 x^n = x^{6 + n}
|
-7,031 |
\frac{5}{13}\cdot 6/14 = 15/91
|
-30,582 |
-\left(2\cdot x + 3\right)\cdot 7 = -x\cdot 14 + 21\cdot (-1)
|
1,836 |
E_x \cdot E_l = E_l \cdot E_x
|
-1,485 |
-2/9 (-9/5) = \frac{1}{1/2 (-9)}((-1) \cdot 9 \cdot \frac15)
|
4,850 |
\left(36/100 = 4/z \Rightarrow z \cdot 36 = 400\right) \Rightarrow 11.11 = z
|
50,482 |
3 + 1108 = 1111
|
17,981 |
1 - (\tfrac56)^6 = 31031/46656
|
10,830 |
x = \dfrac{1}{1^{-1}}\cdot x = x/1 = x
|
-162 |
\binom{9}{3} = \frac{9!}{\left(3 \cdot (-1) + 9\right)! \cdot 3!}
|
-1,505 |
7\cdot \frac{1}{8}/(8\cdot 1/7) = 7/8\cdot 7/8
|
-18,604 |
z = 5 \cdot (5 \cdot z + 6 \cdot (-1)) = 25 \cdot z + 30 \cdot (-1)
|
20,717 |
p^{m + 1} \gt p^{m + 1} + (-1) = (p^m + (-1))^p > p^{\left(m + (-1)\right)*p}
|
21,468 |
p^2 + p*2 + 9 = 8 + \left(1 + p\right)^2
|
-6,562 |
\frac{1}{4\cdot l + 28\cdot (-1)}\cdot 4 = \frac{4}{(l + 7\cdot (-1))\cdot 4}
|
6,539 |
x + 1 + 2*(-1) = x + (-1)
|
13,812 |
\sin{\theta} = \frac{2\cdot \tan{\theta/2}}{\tan^2{\frac12\cdot \theta} + 1}
|
-22,235 |
(k + 6)\cdot (k + 9) = 54 + k^2 + 15\cdot k
|
-17,406 |
\dfrac{127.6}{100} = 1.276
|
-1,289 |
-9/5\cdot 6/1 = ((-9)\cdot \frac15)/(\tfrac16)
|
-1,252 |
-\frac57\cdot 7/1 = (\frac17 (-5))/(\frac17)
|
37,940 |
{5 \choose 4}*{8 \choose 4} = 350
|
14,793 |
x^3 + (-1) = (x + (-1)) \cdot \left(1 + x \cdot x + x\right)
|
15,491 |
|x*D| = |x*D|
|
14,967 |
D^T D = D^T D
|
-17,477 |
7 = 32 + 25 \left(-1\right)
|
-5,210 |
10^5\cdot 7.1 = 7.1\cdot 10^{(-4) (-1) + 1}
|
6,727 |
\frac{2}{7!}\cdot 6! = \frac{2}{7}
|
-20,439 |
\frac{1}{8*j + 16}*(7*j + 14) = 7/8*\frac{1}{j + 2}*(2 + j)
|
9,208 |
564.453 \lt 1000 \vartheta \lt 564.484 \Rightarrow 564 = \left\lfloor{1000 \vartheta}\right\rfloor
|
-8,077 |
\left(38 - 8i + 95 i + 20\right)/29 = \frac{1}{29}(58 + 87 i) = 2 + 3i
|
-18,955 |
3/5 = x_r/(25*\pi)*25*\pi = x_r
|
-11,971 |
\tfrac{71}{90} = p/(12*\pi)*12*\pi = p
|
-10,663 |
12/12*\frac{1}{c^2}*2 = \frac{1}{12*c * c}*24
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.