id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
24,871 | y + 1 + y + (-1) = y\cdot 2 |
-3,659 | 5/(6\cdot q) = 5\cdot \dfrac{1}{6}/q |
3,649 | s_2\cdot x = x\cdot s_2 |
3,572 | z_2 = 0,z_1 \neq 0 rightarrow \frac{z_2 \cdot z_2\cdot z_1}{z_1^2 + z_2^4} = 0 |
7,784 | \frac{1}{16 \cdot 8} = \dfrac{1}{128} |
-21,600 | \sin{\pi \cdot \dfrac12 \cdot 5} = 1 |
-2,582 | 2 \cdot \sqrt{11} = (3 \cdot (-1) + 5) \cdot \sqrt{11} |
31,631 | \frac{1}{1/2 \cdot 6} = 1/3 |
1,637 | x + \beta + x + x = \beta + 3*x |
-17,989 | 50 + 21\cdot (-1) = 29 |
-1,332 | 5/9*\frac{7}{3} = 7*\frac13/(9*1/5) |
11,815 | (2^{k + 1} + (-1)) \left(x + 1\right) = \left(2^{k + 1} + (-1)\right) (b + 1) \left(d + 1\right) = 2^k\cdot \left(x + bd\right) |
14,772 | -x_1 \cdot 2 + x_2 = 4\Longrightarrow x_1 \cdot 2 = x_2 + 4 \cdot \left(-1\right) |
24,246 | g^2 g^2 = g^4 |
27,679 | 2 = \frac42 = \dfrac{4}{4*1/2} |
8,902 | -\frac{c \cdot d}{1 - c} + 0 = \frac{d \cdot c}{c + \left(-1\right)} |
20,337 | (a + a) \cdot 0 = a \cdot 0 |
35,414 | 5 - \dfrac{1}{7} = ((-1) + 35)/7 |
39,974 | 1/16 = \dfrac{1}{4} \cdot \dfrac14 |
-4,444 | \frac{1}{x^2 - x \cdot 2 + 3 \cdot (-1)} \cdot (-5 \cdot x + 7) = -\dfrac{2}{x + 3 \cdot \left(-1\right)} - \frac{1}{x + 1} \cdot 3 |
19,585 | r^{\frac12\cdot n}\cdot f = f\cdot r^{\frac{1}{2}\cdot ((-1)\cdot n)} = f\cdot r^{\frac{n}{2}} |
-2,338 | -\frac{1}{14} + \frac{2}{14} = 1/14 |
51 | 2 \cdot (-1) + y^3 - 3 \cdot y = \left(1 + y\right)^2 \cdot (y + 2 \cdot (-1)) |
31,506 | \frac{1}{2*k}*(k + (-1)) = (1 - \tfrac1k)/2 = \frac{1}{2} - 1/(2*k) |
14,011 | \left(u*(-1)\right)/(v*\left(-1\right)) = \frac{u}{v} |
23,775 | \frac{456}{\left((-1) + 10 \cdot 10^2\right) \cdot 10^4} + 1.3245 = \frac{456}{10000 \cdot 999} + 1.3245 |
9,890 | \sin{x}\cdot \tan{x} = \frac{\sin^2{x}}{\cos{x}} = \dfrac{1}{\cos{x}}\cdot \left(1 - \cos^2{x}\right) |
17,657 | tz^{(-1) + t} = \frac{\partial}{\partial z} z^t |
32,734 | -80 = -4\times (-4)\times (-4) + 2\times 2\times 2 + 3\times 2\times (-4) |
4,790 | 1/X = (1/X)^W = \dfrac{1}{X^W} |
30,093 | 1^2 \cdot 1 + 5^3 + 3 \cdot 3 \cdot 3 = 153 |
6,021 | f^{\frac{1}{h}} = f^{1/h} |
-19,068 | \frac{7}{20} = A_q/(16 \pi)\cdot 16 \pi = A_q |
12,690 | h = x\cdot 3 \Rightarrow h^2 = 9\cdot x^2 = 3\cdot 3\cdot x^2 |
19,045 | z^2 + z*2 + 1 = (1 + z)^2 |
-20,285 | \frac{1}{8(-1) + z} (z + 8(-1))/1 = \frac{z + 8(-1)}{8(-1) + z} |
18,368 | 6 = 6 \cdot (-1) + 23 + 11 \cdot \left(-1\right) |
14,944 | \frac{0}{0} = \frac{1}{0}\left(0 + 0(-1)\right) = 0/0 - \frac100 |
7,456 | \left(1 + u\right)^{1/6} = (1 + u)^{1/6} |
138 | \cos(d + a) = \cos{a} \cdot \cos{d} - \sin{d} \cdot \sin{a} |
27,453 | 0.6 = (148 + 59 \left(-1\right))/148 = 0.6 |
14,350 | |v_{l + 1} - v_l| = 1 > \tfrac{v_l v_{l + 1}}{(l + 1)^2} |
-20,557 | \frac{2}{2} \cdot \frac{1}{(-5) \cdot x} \cdot ((-1) - 9 \cdot x) = \frac{1}{\left(-10\right) \cdot x} \cdot \left(-x \cdot 18 + 2 \cdot (-1)\right) |
-9,486 | 15 \cdot e + 30 \cdot (-1) = 3 \cdot 5 \cdot e - 2 \cdot 3 \cdot 5 |
27,005 | z_1 \cdot s - u \cdot z_1 - s \cdot z_2 + u \cdot z_2 = (s - u) \cdot (z_1 - z_2) |
25,744 | a^2 + a\cdot b + b \cdot b = \left(a \cdot a + b^2 + (a + b)^2\right)/2 |
-23,081 | -\frac{1}{16} \cdot 27 \cdot \frac34 = -81/64 |
-19,647 | \dfrac43 = \dfrac23 \cdot 2 |
36,589 | 63016 = 4^8 - \frac{1}{2!*2!*2!*2!}*8! |
36,230 | (d + f)^2 = 2\times f\times d + f^2 + d^2 |
18,888 | (d \cdot g \cdot h \cdot x)^2 = h \cdot x \cdot g \cdot d \cdot g \cdot d \cdot x \cdot h |
33,949 | 1 - q^2 = (-q + 1)*(1 + q) |
50,479 | e^{\pi} = (e^{\frac{\pi}{2}})^2 = (\dfrac{1}{e^{\frac{1}{2} \cdot ((-1) \cdot \pi)}})^2 = (\left(i^i\right)^{-1})^2 = \left(i^{-i}\right)^2 = (-1)^{-i} |
-22,800 | \frac{24}{32} = \tfrac{8\cdot 3}{4\cdot 8} |
22,314 | 1 = \sqrt{2} - (-1) + \sqrt{2} |
13,262 | 0\cdot {m \choose 0} + {m \choose 1} + 6\cdot {m \choose 2} + {m \choose 3}\cdot 6 = m^3 |
2,579 | a^3 - b^3 = \left(a - b\right) \cdot \left(b \cdot b + a^2 + b \cdot a\right) |
1,074 | 2520 = \dfrac{6!}{2! \cdot 2! \cdot 2!} \cdot 4 \cdot 7 |
41,663 | 2/64 = \tfrac{1}{32} |
21,921 | \frac{1}{7 + 10\cdot n}\cdot x = d \Rightarrow x = 10\cdot n\cdot d + 7\cdot d |
23,571 | 2 \cdot \sin{0} + \cos{0} = 1 |
12,921 | \cos\left(z\times 2\right) = \cos^2(z)\times 2 + (-1) |
12,771 | 1 - a - b + b\cdot a = (1 - a)\cdot (1 - b) |
11,057 | \frac{1}{c * c + x * x - c*x}*\left(x^2 * x + c * c * c\right) = x + c |
24,595 | (\frac{1}{3}2)^4 = \frac{16}{81} |
-2,006 | \frac{23}{12} \cdot \pi + \pi \cdot \frac{5}{3} = 43/12 \cdot \pi |
-6,640 | \frac{1}{(q + 10*(-1))*2}*4 = \frac{4}{q*2 + 20*(-1)} |
-5,827 | \frac{5}{s\cdot 4 + 20} = \frac{5}{4\cdot (5 + s)} |
21,307 | x^2 + 1 - 2 \cdot x = (-x + 1)^2 |
26,069 | n + (-1) \geq 1 + n \cdot n + n\Longrightarrow n^2 \leq -2 |
16,053 | 100 = (333 + 33\cdot (-1))/3 |
34,364 | 1 + x \lt 0\Longrightarrow x \lt -1 |
52,328 | \log_e(\frac32) = \log(\frac{3}{2}) |
33,733 | 6 = 18 + 12\cdot (-1) |
-4,269 | \frac{10}{r^2} = \frac{1}{r^2} 10 |
21,121 | x * x + 5 = x^2 + 4*(-1) + 9 = (x + 2)*(x + 2*(-1)) + 9 |
25,238 | \tan(\tfrac{1}{4} \pi + x) = \cot(\pi/4 - x) |
23,821 | 1 + \dfrac12 + \frac{1}{4} + 1/8 + \frac{1}{16} + \ldots = 2 |
4,177 | 1 = \cosh^2{z} - \sinh^2{z}\Longrightarrow \sinh^2{z} = \cosh^2{z} + (-1) |
-20,268 | 8*r/(r*72) = \frac{\frac{1}{r*8}*8*r}{9} |
-4,842 | 0.16 \cdot 10^{(-5) \cdot (-1) - 3} = 10 \cdot 10 \cdot 0.16 |
-19,020 | \dfrac{1}{40}\cdot 29 = \frac{x_t}{25\cdot \pi}\cdot 25\cdot \pi = x_t |
-20,837 | \frac{1}{9 + x}*\left(9 + x\right)*(-\dfrac{3}{4}) = \dfrac{-x*3 + 27*(-1)}{4*x + 36} |
-5,572 | \tfrac{z \cdot 3}{z^2 + 7z + 6} = \frac{3z}{\left(z + 1\right) (z + 6)} |
12,262 | i^2=0 \Rightarrow -1=0 |
20,684 | y^3 + y^2 + 2\cdot (-1) = (y + (-1))\cdot \left(y^2 + 2\cdot y + 2\right) = (y + (-1))\cdot ((y + 1)^2 + 1) |
33,342 | 2 = y\Longrightarrow 4 = y^2 |
10,931 | \sin\left(-\frac{2}{2} π + π*21/2\right) = \sin{\dfrac{19}{2} π} |
21,783 | -z^6 + 1 = (1 - z)*(1 + z^2 + z)*(z^2 - z + 1)*(1 + z) |
11 | \sin\left(\rho \cdot 2\right) = 2 \cdot \sin(\rho) \cdot \cos(\rho) |
30,955 | \sqrt{1 - \sin(2 \cdot y)} = \sqrt{(\sin(y) - \cos(y)) \cdot (\sin(y) - \cos(y))} = \sqrt{(\cos(y) - \sin(y))^2} |
-4,526 | -\frac{2}{2 + x} - \frac{4}{(-1) + x} = \frac{1}{2\cdot (-1) + x \cdot x + x}\cdot \left(-x\cdot 6 + 6\cdot (-1)\right) |
16,071 | 1/4 + 1/4 \cdot 2 = \frac143 \lt 1 |
30,125 | 73 = -8 + 3\cdot 27 |
28,951 | x = 2 \Rightarrow x \in \left(2,3\right] |
14,256 | (t^2 + 1 + 2 \cdot t) \cdot 2 - \left(3 - 9 \cdot t^2\right)/3 = 1 + 4 \cdot t + t \cdot t \cdot 5 |
2,181 | B_2 \times a = a \times B_2 |
15,745 | Z\cdot B = I \Rightarrow Z\cdot B = I |
-2,754 | (3 + 4) \cdot 5^{1/2} = 7 \cdot 5^{1/2} |
14,975 | (h + d)\cdot (h + d) = d\cdot d + 2\cdot d\cdot h + h\cdot h |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.