id
int64
-30,985
55.9k
text
stringlengths
5
437k
34,041
2*y = d/dy y^2
24,506
500*\dfrac{10}{100} = 50
818
-B\cdot n/n + B = \left(-n\cdot B + B\cdot n\right)/n
10,912
39^5+75^5+128^5 =2\cdot135689^2
4,842
|y_k| |x_k| = |x_k y_k|
16,588
6*k + 4 = 2*\left(2 + 3*k\right)
3,706
1 - \cos{x} = 2*\sin^2{x/2} \leq \frac{1}{2}*x^2
16,055
\int 1*2 \pi r\,dr = 2 \pi \frac{r^2}{2} = \pi r^2
-22,316
(3 + k)\cdot \left(8 + k\right) = 24 + k^2 + 11\cdot k
15,994
|x|*2 = d/dx (x*|x|)
-20,670
\frac{10}{10}\cdot \frac{z + 10\cdot (-1)}{z + 6\cdot \left(-1\right)} = \frac{10\cdot z + 100\cdot (-1)}{60\cdot (-1) + 10\cdot z}
24,716
E[Q_1 \cdot Q_2] = E[Q_1] \cdot E[Q_2]
24,729
224 + 20 \cdot (-1) = 204
30,914
\cos(x) = 1 - \sin^2\left(\frac12\cdot x\right)\cdot 2
7,253
\frac{1^{-1}}{1}a = \frac{a*1^{-1}}{1^{-1}} = a/1
22,671
(z * z)^3 + 64 = (z^2)^3 + 4^3 = (z^2 + 4)*(z^4 - 4*z^2 + 16)
13,297
\binom{48}{3}/\left(\binom{52}{3}\right) \binom{4}{0} = \dfrac{\binom{48}{3}}{\binom{52}{3}}
-18,544
t + 9 = 5 \cdot (t + 4) = 5 \cdot t + 20
-11,692
(\frac{1}{4})^2 = 1/16
13,098
z \cdot z^2 = zzz
28,772
3 = e \cdot |3 \cdot (-1)| = e \cdot |-3| = e \cdot |3|
29,053
\frac{9*\frac{1}{40}}{2*1/5} = \dfrac{45}{80} = 9/16
-20,126
\frac{1}{2 + n}\cdot (9\cdot (-1) + n\cdot 8)\cdot 3/3 = \frac{1}{3\cdot n + 6}\cdot (n\cdot 24 + 27\cdot (-1))
4,776
2 \cdot c^2 + (-1) = 4 \cdot c + (-1) \implies c = 2
-9,835
-\dfrac{85}{100} = -\dfrac{1}{20} \cdot 17
8,842
\frac{21}{2}*2 + 16 (-1) = 5
10,530
\frac{1}{2^U}*U!*\frac{1}{2}*(U + 1) = \frac{(U + 1)!}{2^{U + 1}}
9,701
z^{-\frac14 \cdot 4} = 1/z
17,498
\frac{x}{(x*6 + 1) * (x*6 + 1)} = \frac{\mathrm{d}}{\mathrm{d}x} (-\frac{1}{(x*6 + 1)*6})*x
-23,063
40/27 = 2/3\cdot \frac{20}{9}
-9,155
q*2*2*2*5 + 5*13 = 65 + q*40
40,398
(\sqrt{2} + 1)/2 = 1/2 + \sqrt{2}/2
41,856
24*\sec^2(x) = 24 + 24*\tan^2(x) = 24 + 4*6*\tan^2(x)
6,455
0 = 8\cdot \left(-1\right) + 2\cdot k \Rightarrow 4 = k
47,046
10080 = 7 \cdot 5 \cdot 3 \cdot 3! \cdot 2^4
21,161
(1 + n)^3 + \left(11 + n\right)^3 + (-n + 7)^3 + (7 - n)^3 = 78 \times n^2 + 72 \times n + 2018
2,329
\tfrac{1}{12} (8\cdot 4 + 3\cdot 16 + 64) = \frac{144}{12} = 12
14,679
6/9 = \tfrac13*2
221
1 + 2 + 3\cdot ... = -\frac{1}{12}
27,110
\frac{1}{33} = -(\dfrac{1}{22} + \dfrac{1}{11}) + 1/15 + 1/10
23,282
G/D + \dfrac{A}{B} = \frac{1}{B\cdot D}\cdot (A\cdot D + B\cdot G)
7,633
\|p\|^2 = \|p + q_x \cdot x\|^2 = \|p\| \cdot \|p\| + 2 \cdot q_x
11,623
-\left(4 + x^2 - 4*x\right)*7 + 4 = -x * x*7 + x*28 + 24*(-1)
-20,726
\frac{90 z}{z\cdot 10 + 30 (-1)} = \frac{1}{10}10 \frac{9z}{z + 3(-1)}1
11,985
\frac{\partial}{\partial x} x^n = n x^{n + (-1)}
-25,793
\frac{\frac{1}{5}}{8} 4 = 4/40
2,979
(4 - ((-1) + x^2)^{1 / 2}*3)/(5*x) = \sin(t) rightarrow 9*(x^2 + \left(-1\right)) = (4 - 5*x*\sin(t)) * (4 - 5*x*\sin(t))
8,608
4/73 = \tfrac{3}{1387} + \frac{1}{19}
10,004
1 + \tan^2(D) = \dfrac{1}{\cos^2(D)}
13,506
-(\omega\cdot 2 - X) = X - 2\cdot \omega
-8,288
21 = \left(-3\right)*(-7)
17,881
\frac{1}{3125}*1024 = (\frac45)^5
-26,544
-(x \cdot 3)^2 + 10^2 = -9 \cdot x^2 + 100
15,103
(x^{\dfrac14})^4 = (x^{\frac{1}{3}4})^{\frac34} = |x|
46,108
2\times 2811 = 5622
-1,305
\left((-2)\cdot 1/3\right)/(\left(-4\right)\cdot \frac13) = -\frac{3}{4}\cdot (-2/3)
9,966
\frac{1}{1 - q}*(-q^{1 + k} + 1) = \frac{1}{-q + 1}*(1 - q^{1 + k})
39,704
(-1) + x^3 = (1 + x^2 + x) \cdot ((-1) + x)
49,891
6*6*6 = 6^3
32,935
1/8*\frac14/(\frac14*\frac{1}{16}) = 2
15,788
\dfrac{7\pi }{8}=\pi-\dfrac{\pi}{8}
21,712
\tfrac{15}{250}\cdot 40 = 2.4
24,091
2 = 5 + 2*\left(-1\right) + (-1)
4,623
9 - \left(4 \cdot (-1) + 5\right) \cdot \left(4 \cdot (-1) + 5\right) = 8
36,373
4 * 4 + 1^2 = 17
43,016
-x\times (-z) = x\times z = x\times z = x\times z
-22,011
1/5 + \frac{6}{4} = \dfrac{4}{5\cdot 4} + \frac{30}{4\cdot 5}\cdot 1 = 4/20 + \frac{1}{20}\cdot 30 = \frac{1}{20}\cdot (4 + 30) = \frac{1}{20}\cdot 34
13,655
7 = a + \frac17 \cdot (-a^2 + 9 \cdot a + 1) = (-a^2 + 16 \cdot a + 1)/7
9,849
\frac{1}{fh} = 1/\left(fh\right)
-2,819
2^{1/2} \cdot (4 \cdot (-1) + 5) = 2^{1/2}
29,271
\binom{7}{2}*\binom{40 + 7*(-1)}{5 + 2*(-1)} = 114576
20,415
a*U = U*a
-24,087
5 + \dfrac{1}{1}*5 = 5 + 5 = 10
22,609
\cos(x + 2\times π) = \cos{x}
19,769
123 = 3 \cdot 10^0 + 10^1 \cdot 2 + 10^2
20,240
t^3 \cdot \xi + t^4 \cdot x = t \Rightarrow t^3 \cdot x + t^2 \cdot \xi = 1 = 0
4,143
\dfrac{2}{2^m} = \tfrac{1}{1/2\cdot 2^m}
23,848
(h^4 - 6 \cdot h^2 + 1)^2 = 1 + h^8 - 12 \cdot h^6 + 38 \cdot h^4 - 12 \cdot h^2
11,221
\left|{MN}\right| = \left|{NM}\right|
-10,600
\frac{50}{y \cdot 5 + 15 \cdot (-1)} = \frac{10}{y + 3 \cdot (-1)} \cdot 5/5
37,176
\frac{1}{89}\times 144 = 55/89 + 1
-25,532
\frac{\mathrm{d}}{\mathrm{d}t} \left(3 \cdot t^2 + t\right) = 2 \cdot 3 \cdot t + 1 = 6 \cdot t + 1
-22,178
z^2 - z \cdot 2 + 80 (-1) = (z + 10 (-1)) (z + 8)
-499
e^{i \cdot \pi/4 \cdot 17} = \left(e^{\tfrac{\pi}{4} \cdot i}\right)^{17}
1,450
\frac{2014}{12} \cdot π - 84 \cdot 2 \cdot π = ((-1) \cdot π)/6
3,410
(C_1 + C_2)^2 = (C_1 + C_2)*(C_1 + C_2) = C_1^2 + C_1*C_2 + C_2*C_1 + C_2^2 \neq C_1^2 + C_2^2
2,604
x \cdot x - k^2 = (x - k)\cdot (x^1\cdot k^0 + x^0\cdot k^1) = (x - k)\cdot (x + k)
12,244
\frac{1/3}{1 - \frac{1}{3}} = \frac12
14,502
(\cos(y + x) + \cos\left(y - x\right))/2 = \cos(y)\cdot \cos(x)
7,867
2 \cdot c + x + g = 1 + c \geq 2 \cdot \sqrt{\left(x + c\right) \cdot (c + g)}
-23,810
\frac{63}{5 + 2} = \frac{1}{7}63 = \dfrac{1}{7}63 = 9
4,926
(A^2 + G^2) (Z \cdot Z + D \cdot D) = \left(AZ + GD\right)^2 + (AD - GZ)^2 = (AD + GZ)^2 + (AZ - GD)^2
-12,017
\dfrac{5}{6} = s/(16\cdot \pi)\cdot 16\cdot \pi = s
-24,261
\dfrac{126}{9 + 5} = \frac{1}{14}\cdot 126 = \dfrac{1}{14}\cdot 126 = 9
-29,368
(x + 2)\cdot \left(x + 3\right) = x \cdot x + 3\cdot x + 2\cdot x + 6 = x^2 + 5\cdot x + 6
-20,592
\frac{56 \cdot (-1) + x \cdot 7}{70 - x \cdot 42} = \frac{7}{7} \cdot \frac{8 \cdot (-1) + x}{-6 \cdot x + 10}
19,067
2.5 = \frac{1}{4} + 1/4\cdot 2 + \dfrac{1}{4}\cdot 3 + 4\cdot \frac14
-2,661
3^{1/2} \cdot (4 + 3 \cdot (-1)) = 3^{1/2}
26,552
\frac{1}{1/120 + \dfrac{1}{40}} = 30
18,717
-\frac{1}{2^{\frac{1}{2}}} = -\dfrac122^{\frac{1}{2}}