id
int64
-30,985
55.9k
text
stringlengths
5
437k
-20,091
45\cdot y/\left(y\cdot (-35)\right) = -\frac17\cdot 9\cdot \dfrac{y\cdot (-5)}{\left(-5\right)\cdot y}
-25,998
-5 = \frac{1}{-2} \cdot 10
34,389
6\cdot l + 6 = 6\cdot l + 3\cdot 2
-7,172
\tfrac{1}{9} \cdot 4 = 4/9
-20,778
\frac{7}{n + 4}\cdot 5/5 = \frac{1}{5n + 20}35
17,795
\dfrac{\dfrac{g_1}{x} + y}{y + g_2/c}\cdot \frac1c\cdot x = \frac{g_1 + y\cdot x}{y\cdot c + g_2}
17,900
(h^x Xc)^x = c^x X^x h = c^x Xh
-20,580
5/5*\dfrac{3*(-1) + n}{n*2 + 2*(-1)} = \frac{5*n + 15*(-1)}{10*n + 10*\left(-1\right)}
33,700
\binom{(-1) + S + 8 \left(-1\right) + 4}{(-1) + 4} = \binom{5 (-1) + S}{3}
21,683
2x=0\Rightarrow x=0\\y=3-x\\y=0
19,366
|z| \gt 1 \Rightarrow 1 > 1/|z|
22,154
y_2/6 + \frac{1}{10}*Y + \frac{1}{7.5}*y_1 = 3 \Rightarrow 90 = y_2*5 + Y*3 + 4*y_1
-19,669
\tfrac{10}{5} = 10/5
22,756
|x_1|/|x_2| = |\frac{1}{x_2} \cdot x_1|
126
\cos{\theta/2} = \frac{\sin{\theta}}{\sin{\theta/2} \cdot 2}
20,447
x \cdot a_1 \cdot a_2 = a_1 \cdot a_2 \cdot x
12,755
n^4 + \left(-1\right) = (n^2 + 1)\cdot ((-1) + n^2)
18,296
t/x\cdot \binom{\left(-1\right) + t}{x + (-1)} = \binom{t}{x}
-2,110
\pi \tfrac{1}{12}17 - \pi \frac{1}{3}5 = -\frac{\pi}{4}
31,713
2 = -2 z + y \Rightarrow -2 = -y + z\cdot 2
-23,493
\dfrac{4}{5}\cdot 5/6 = \frac23
5,897
3*(x + 3) = x*3 + 3*3
34,858
10^{\left(k + 1\right)^2} = 10^{k^2 + 2\cdot k + 1} = 10^{k \cdot k}\cdot 10^{2\cdot k + 1}
293
7 = 5\cdot y + 20 - 24\cdot y rightarrow 7 = -y\cdot 19 + 20
37,854
1/9 = \dfrac{1}{10} + \tfrac{1}{100} + 1/1000 + \dots
4,345
i\cdot \sin{x} + \cos{x} = e^{x\cdot i} \Rightarrow \left(e^{-i\cdot x} + e^{x\cdot i}\right)/2 = \cos{x}
4,388
\tfrac{1}{g_2} - \tfrac{1}{g_1} = g_1/(g_2\cdot g_1) - \frac{1}{g_2\cdot g_1}\cdot g_2 = \frac{g_1 - g_2}{g_2\cdot g_1}
13,574
(\sqrt{3} - 1)/4 = -1/4 + \tfrac{1}{4}\times \sqrt{3}
14,920
d/dx (-x^2) = -2 \cdot x
26,314
-\frac{1}{a} = \frac{1}{(-1) a}
17,425
\frac{1}{m + 1} m + m^2 - m = \frac{m m^2}{m + 1}
16,266
5\cdot \tan^2(π/10) + 10\cdot \left(-1\right) + \cot^2(\frac{π}{10}) = 0
1,205
\sin{z} = \tan{z} \times \cos{z}
-16,550
7 \cdot \sqrt{99} = \sqrt{9 \cdot 11} \cdot 7
34,573
B^k \cdot A^0 \cdot B^0 \cdot A^l = B^k \cdot A^l
-20,524
\frac{1}{(-3) \cdot p} \cdot (4 \cdot p + 10 \cdot (-1)) \cdot \frac33 = \frac{1}{(-9) \cdot p} \cdot \left(p \cdot 12 + 30 \cdot \left(-1\right)\right)
-1,834
\pi\times \dfrac{1}{12}\times 13 + 11/6\times \pi = 35/12\times \pi
18,500
l\cdot \binom{p}{l} = p\cdot \binom{p + (-1)}{\left(-1\right) + l}
16,941
0 = -\tfrac{7*6}{7} + 6
-10,317
-\dfrac{40 + 40 \cdot m}{30 \cdot (-1) + m \cdot 30} = -\frac{4 \cdot m + 4}{m \cdot 3 + 3 \cdot (-1)} \cdot 10/10
20,523
\frac14 \cdot \pi + 3 \cdot \pi/2 = \dfrac{7}{4} \cdot \pi
-3,657
\frac{x^4}{x^2 * x} = \frac{x*x*x*x}{x*x*x} = x
30,500
\left\lceil{x + \left(-1\right)}\right\rceil = \left\lceil{x}\right\rceil + (-1)
23,899
\frac{a}{a} = \frac1a*a = a
5,871
x/(y\cdot 1/z) = z\cdot x/y
6,396
(\frac{v b}{v})^x = b^x v^x v^{-x}
21,090
\frac{1}{7 \cdot 1/2} = \frac{1}{7} \cdot 2 \approx 0.285714
2,117
h + 1 - j + \left(-1\right) = 2 + h - j
38,391
2^2 \cdot 2 \cdot 37 = 296
12,558
60 = 30\cdot q \Rightarrow q = 2
14,299
{6 \choose 2} \times {4 \choose 1} \times 3! \times {5 \choose 2} = 3600
13,502
\tfrac{1}{x^2} = \frac{1}{x^2 * x}*x
23,953
30 + 20 + 12 - 10 + 6 + 4 + 2 = 62 + 20*(-1) + 2 = 44
4,758
\frac{h + s/2}{1/2 \cdot s} = \frac{1}{s} \cdot (2 \cdot h + s)
3,122
\dfrac{\sqrt{17}}{2}*\left(10 + 12\right) = 11*\sqrt{17}
-20,891
-\dfrac94 \frac{-8x + 7(-1)}{-x\cdot 8 + 7(-1)} = \frac{63 + 72 x}{28 (-1) - x\cdot 32}
3,900
\frac{1}{y \times y + 4}\times 2 = \frac{8}{64 + y \times y} \Rightarrow y = 4
28,252
\cos{2 \cdot (y + (-1))} = \cos(2 \cdot \left(-1\right) + 2 \cdot y)
-21,969
-\dfrac{5}{2} - 6/10 = -5\cdot 5/(2\cdot 5) - 6/(10) = -25/10 - 6/10 = -(25 + 6\cdot \left(-1\right))/10 = -\tfrac{31}{10}
13,902
\tfrac{21}{7} = 3
21,159
\cos{\theta\cdot 2} = -\sin^2{\theta} + \cos^2{\theta}
30,831
44 = 4 \cdot 4\cdot 1/4\cdot 11
12,012
-\frac{-1}{2\cdot (1 + 1 + 1)} + 1 - -\dfrac{1}{2\cdot (1 + \left(-1\right) + 1)} = \dfrac53
11,333
|E \cdot B| = |B| \cdot |E|
15,473
(z^3)^2 = z^6 = z^2 \cdot z^2 \cdot z^2
32,502
21 = {2 + 6 + \left(-1\right) \choose \left(-1\right) + 6}
26,113
X^{2001} = (X^3)^{667}
18,354
\cos(2\cdot y) = \cos^2(y) - \sin^2\left(y\right) = 2\cdot \cos^2(y) + (-1) = 1 - 2\cdot \sin^2(y)
-3,614
\dfrac{1}{q \cdot q}\cdot q^5\cdot 16/4 = \frac{16}{q^2\cdot 4}\cdot q^5
13,307
(\sqrt{5} + 1)/2 = \dfrac12 \cdot \sqrt{5} + \dfrac12
26,162
9 = 9 + 0 \cdot 3^{1/2}
28,748
g + g - h = 2\cdot g - h
-11,580
-8 - i\cdot 6 = -9 + 1 - i\cdot 6
-207
\frac{1}{(7 + 4\cdot (-1))!}\cdot 7! = 7\cdot 6\cdot 5\cdot 4
24,027
\frac{\left(-1\right) + x}{x + 4} = \frac{4 + x}{4 + x} - \frac{1}{x + 4} \cdot 5
8,423
0 = 32*x^4 + 16*x^3 - 12*x^2 - 4*x + 1 = (2*x + 1)*\left(2*x + \left(-1\right)\right)*(8*x^2 + 4*x + (-1))
-8,498
-\frac{16}{2} = -8
28,362
x*(b + d) = d*x + b*x
35,379
(0.23\%) * (0.23\%) = 0.0023^2 = 5.29*10^{-6}
3,066
{n + 2 \choose 2} = \frac{1}{2}(n + 1) (n + 2) = \frac12\left(n^2 + 3n + 2\right)
-7,226
0 = \dfrac38\times 0
23,218
\left|{A}\right|\cdot \left|{A}\right| = \left|{A}\right|^2
17,687
5^5 = 5^4 \cdot 5
14,637
\frac{1}{|z|^n \cdot (|z|^n + (-1))} + \frac{1}{|z|^n} = \frac{1}{(-1) + |z|^n}
5,921
((-1) + 5 + 3)*G*5 = G*5*7
37,976
\left(1 + 2^{29}\right)/3 = 178956971
22,967
n\cdot 2 - n + (-1) = n + 1
-511
e^{7\dfrac{11}{12}\pi i} = (e^{11 \pi i/12})^7
15,775
1/(1/a) = \frac{1}{\dfrac1a}
21,912
(h/1000)^2\cdot 0.25\cdot 1000 = h^2/4000
33,585
(-1) + 7 = 3 + (-1) + 5 + (-1)
10,134
|w_0| = (\frac{2l}{l + 1}1)^{\frac{1}{2}} \Rightarrow l = \dfrac{w_0 * w_0}{-w_0^2 + 2}
-20,264
\dfrac{1}{-20\cdot p + 30}\cdot \left(36\cdot (-1) + 24\cdot p\right) = \dfrac{1}{6 - 4\cdot p}\cdot \left(6 - 4\cdot p\right)\cdot (-\frac{6}{5})
-27,707
\frac{\text{d}}{\text{d}z} \sin(z) = \cos\left(z\right)
5,090
2 \times \cos(\theta/2) \times \sin(\theta/2) = \sin(\theta)
9,968
26/\left(1/3*52\right) = 3/2
-15,682
\frac{z^4}{\frac{1}{z^4\cdot \dfrac{1}{r^2}}} = \frac{z^4}{\frac{1}{z^4}\cdot r^2}
31,506
\dfrac{n + (-1)}{2 \cdot n} = \frac{1}{2} \cdot (1 - \frac{1}{n}) = 1/2 - \frac{1}{2 \cdot n}
-3,664
\dfrac{9}{5\cdot n^2} = \frac{\frac15}{n^2}\cdot 9
-24,445
\frac{98}{5 + 9} = 98/14 = \frac{1}{14}98 = 7