id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
35,914 | \frac92 = \dfrac92 |
-7,511 | 7 = \tfrac{1}{9}63 |
20,899 | \frac{1}{1 + x \cdot x} \cdot (x^4 + x^3 + 8 \cdot x^2 + d \cdot x + h) = x^2 + x + 7 + \frac{1}{1 + x^2} \cdot (7 \cdot \left(-1\right) + x \cdot (d + (-1)) + h) |
1,353 | \sin(z) = \frac{1}{i \cdot 2} \cdot (-e^{-z \cdot i} + e^{i \cdot z})\Longrightarrow 2 \cdot \sin(z) \cdot i = e^{i \cdot z} - e^{-z \cdot i} |
-20,925 | \frac{x \cdot \left(-5\right)}{\left(-5\right) \cdot x} \cdot (-\frac{10}{7}) = \dfrac{50 \cdot x}{(-1) \cdot 35 \cdot x} |
-3,743 | 14 = 2\cdot 7 |
35,873 | 1 = e^{i*0} = e^{\dfrac{i*3\pi}{2}} = -i |
-23,189 | \dfrac{1}{2}*4 = 2 |
-12,332 | 2\sqrt{6} = \sqrt{24} |
-3,044 | 3\cdot 7^{1/2} + 2\cdot 7^{1/2} = 7^{1/2}\cdot 4^{1/2} + 7^{1/2}\cdot 9^{1/2} |
25,617 | 3 \cdot 3 \cdot 3 + 19\cdot 2^3 + 2018 = 2197 = 13^3 |
35,051 | 2 * 2^2/32 = 2^{3 + 5*\left(-1\right)} = 1/4 |
-5,561 | \frac{15 \cdot \left(t + 10 \cdot (-1)\right)}{9 \cdot (10 \cdot (-1) + t) \cdot (2 + t)} = \frac{5}{\left(2 + t\right) \cdot 3} \cdot \dfrac{1}{3 \cdot (10 \cdot (-1) + t)} \cdot (t \cdot 3 - 30) |
35,781 | d^2 + 3 \cdot a^2 - 2 \cdot 3^{1 / 2} \cdot a \cdot d = 0 \Rightarrow a \cdot 3^{\frac{1}{2}} = d |
27,063 | \frac{1}{2^k} \cdot ((1 + 2 \cdot x)^k + (1 + 2 \cdot b)^k) = \left(1/2 + x\right)^k + (b + \frac{1}{2})^k |
-20,447 | -\frac{1}{2 + k} \cdot 7 \cdot 8/8 = -\frac{56}{k \cdot 8 + 16} |
-17,146 | 5 = 5 \times r + 5 \times (-8) = 5 \times r - 40 = 5 \times r + 40 \times (-1) |
3,747 | \left(1 + n^2*2 - 4*n\right)*3 = 3 + n * n*6 - n*12 |
33,554 | m + 2 (-1) + 2 = m |
-7,740 | -\dfrac{8*i}{-4} + \dfrac{12}{-4} = \frac{1}{-4}*\left(-8*i + 12\right) |
16,014 | g_2 \cdot g_1 \cdot y = g_1 \cdot g_2 \cdot y |
1,967 | {10 + 4 + \left(-1\right) \choose 4 + (-1)} = 286 |
10,796 | B'\cdot J = J\cdot B' |
5,572 | (x_1 + x_2)^2 = x_1^2 + x_2^2 + 2!*x_1*x_2 |
-6,304 | \frac{5x}{x \cdot x + 81 \left(-1\right)} = \dfrac{5x}{(x + 9) \left(x + 9(-1)\right)} |
-29,343 | (-c_1 + c_2) (c_2 + c_1) = c_2^2 - c_1^2 |
36,560 | \frac12 + \frac{1}{4} + 1/8 = 7/8 |
23,968 | q\cdot r := r\cdot q |
2,953 | (1 + z) (z + 4) = 4 + z^2 + z \cdot 5 |
-6,811 | 210 = 3\cdot 7\cdot 10 |
49,148 | -(c + z) = -(c + z) = -c - z |
-1,740 | 0 + \pi \cdot 5/4 = 5/4 \cdot \pi |
-4,620 | \frac{8\cdot \left(-1\right) + 2\cdot x}{x \cdot x - 4\cdot x + 3} = \frac{3}{x + (-1)} - \dfrac{1}{3\cdot (-1) + x} |
21,978 | \left(a + bi\right) \left(x + ni\right) = ax - bn + (an + bx) i = ax - bn + i |
523 | \cos{p\cdot 2} = -\sin^2{p}\cdot 2 + 1 |
3,425 | \frac{1}{y} + 0\cdot (-1) = 1/y |
31,762 | 1 = x + 2 \cdot \nu + z = ( 1, 2, 1) \cdot ( x, \nu, z) |
5,767 | \left(-1\right) + x^3 = (x^2 + x + 1) (\left(-1\right) + x) |
14,490 | \left|{F + B}\right|*\left|{F - B}\right| = \left|{F + B}\right|*\left|{F^X - B^X}\right| = \left|{(F + B)*(F^X - B^X)}\right| |
25,544 | \cos(x) = \frac{\sin(x\cdot 2)}{2\cdot \sin\left(x\right)} |
18,129 | \dfrac{1^{-1}\cdot 1^{-1}}{3^4} = \frac{1^{-1}\cdot 1^{-1}}{3^4} = \frac{1^{-1}}{3^4} = \frac{1}{3^4} = \frac{1}{81} |
7,514 | n - \sum_{k=1}^n \cos(k*x) = \sum_{k=1}^n (1 - \cos(k*x)) = 2*\sum_{k=1}^n \sin^2(k*x/2) |
-9,146 | x\cdot 16 + 32 = 2\cdot 2\cdot 2\cdot 2\cdot x + 2\cdot 2\cdot 2\cdot 2\cdot 2 |
-18,253 | \tfrac{-7\cdot s + s^2}{14 + s^2 - 9\cdot s} = \frac{s}{(7\cdot (-1) + s)\cdot (s + 2\cdot (-1))}\cdot (s + 7\cdot (-1)) |
-19,276 | \frac{1}{\frac{2}{9} \cdot 5} = 9 \cdot \tfrac{1}{2}/5 |
23,091 | \left(l * l * l - l^2 + l^2 - l + 1\right) (l * l + l + 1) = (l * l + l + 1) (l * l * l - l + 1) |
30,879 | \sin{\theta*2} = \sin{\theta} \cos{\theta}*2 |
-3,322 | \sqrt{13}\times ((-1) + 3 + 5) = 7\times \sqrt{13} |
4,948 | \left((-1) + x\right) \cdot l + l = l \cdot x |
6,395 | s\times c\times x = c\times s\times x |
14,772 | 4 = y - z \cdot 2 \Rightarrow 2z = y + 4(-1) |
-20,700 | \frac{8\cdot y + 8}{y\cdot 8 + 48\cdot \left(-1\right)} = \frac{8}{8}\cdot \dfrac{1 + y}{y + 6\cdot \left(-1\right)} |
5,462 | 2^{\tfrac13} + 3^{\frac{1}{3}} = 2^{\dfrac{1}{3}} + 3^{1/3} |
11,752 | x_k := x_k - x |
-4,486 | \frac{-6\cdot z + 18}{5\cdot (-1) + z^2 - z\cdot 4} = -\frac{2}{5\cdot (-1) + z} - \dfrac{4}{1 + z} |
13,544 | -(z + 1) + x + 1 = x - z |
855 | \cos^n\left(x + \pi\cdot 2\right) = \cos^n(x) |
-10,437 | \frac{1}{s \cdot 80} \cdot 10 = \frac{2}{s \cdot 16} \cdot 5/5 |
10,760 | x*2 + 1 + 2\beta + 1 = 2(x + \beta + 1) |
-7,177 | 0 = \frac{1}{5}2 \cdot 0 |
19,059 | y^2 + 5 y + 2 = \left(y + 1\right)^2 = y^2 + 2 y + 1 \Rightarrow y = -\frac{1}{3} |
22,653 | 2 - 10^4 = 2 + 10000*\left(-1\right) = -9998 = -9.998*10^3 = -\dfrac{10}{1000} = -10^4 |
10,597 | |L| |f| = |L f| |
3,573 | 1101870 = 1484 \cdot 1485/2 |
46,254 | \tfrac{1}{2^{2\cdot k}\cdot k!^2}\cdot (2\cdot k)! = \frac{1}{(2^2)^k}\cdot \frac{1}{k!\cdot (2\cdot k - k)!}\cdot (2\cdot k)! = \frac{1}{4^k}\cdot \binom{2\cdot k}{k} |
21,041 | \min{\cdots,1/2} = \min{\cdots,\frac12} |
19,613 | h*10 + h * h = (5 + h + 5(-1)) (5 + 5 + h) |
-7,390 | \frac25*\dfrac{3}{6}*4/7*5/8 = 1/14 |
-2,340 | \frac{1}{11}\cdot 6 - 4/11 = \tfrac{1}{11}\cdot 2 |
-20,830 | 7/7\cdot \tfrac{8}{a + 5\cdot (-1)} = \frac{56}{35\cdot (-1) + a\cdot 7} |
10,240 | x \cdot x \cdot 4 = (x \cdot 2) \cdot (x \cdot 2) |
1,865 | \frac{1}{{15 \choose 3}}154 = 22/65 |
14,326 | \tfrac{1}{3} = (1 - a)/3 \Rightarrow a = 0 |
-8,036 | \frac{27 - i*5}{5 - i*2} = \dfrac{2*i + 5}{i*2 + 5}*\frac{27 - i*5}{5 - 2*i} |
-14,227 | (10 + 4 - 8*4)*10 = \left(10 + 4 + 32*(-1)\right)*10 = (10 - 28)*10 = (10 + 28*(-1))*10 = (-18)*10 = (-18)*10 = -180 |
18,350 | \sin(\dfrac{1}{q}\pi)/(\pi \frac1q) \pi = q\sin(\frac{\pi}{q}) |
16,990 | l = \left\{l, ..., 1, 2\right\} |
39,553 | 100 + 1.04*\left(-2500\right) = -2500 |
488 | ac + bc + c^2 = (a + b + c) c = abc |
-18,255 | \frac{1}{p^2 + p \cdot 9 + 8}(p \cdot p - p + 2\left(-1\right)) = \frac{\left(p + 2\left(-1\right)\right) (p + 1)}{(1 + p) (p + 8)} |
-5,082 | 10^3*18.0 = 18*10^{2 + 1} |
-20,878 | \frac{-y\cdot 70 + 21\cdot \left(-1\right)}{7\cdot y + 7\cdot (-1)} = \frac{-10\cdot y + 3\cdot (-1)}{y + \left(-1\right)}\cdot \frac77 |
-9,184 | k^3\cdot 40 = k\cdot k\cdot 2\cdot 2\cdot 2\cdot 5\cdot k |
-10,269 | \frac{6 (-1) + q*9}{12 (-1) + 24 q} = \tfrac{3 q + 2 (-1)}{8 q + 4 (-1)} \frac33 |
-15,845 | -\frac{74}{10} = -\frac{1}{10} \cdot 9 \cdot 9 + 7/10 |
-5,039 | 10^{0(-1) + 5}*0.73 = 10^5*0.73 |
-26,043 | (-30 - 120*i - 50*i + 200)/34 = \tfrac{1}{34}*(170 - 170*i) = 5 - 5*i |
-1,216 | -3/2 \cdot (-\frac{1}{2}) = \frac{(-1) \cdot \frac{1}{2}}{\frac{1}{3} \cdot (-2)} |
4,393 | 31250 = 5^2\times 5^3\times \binom{5}{3} |
33,249 | 30 = \frac{5!}{2!*2!} |
38,352 | -80 = -2^{5 + (-1)}*5 |
-471 | (e^{5 \cdot \pi \cdot i/12})^{12} = e^{12 \cdot \tfrac{1}{12} \cdot 5 \cdot \pi \cdot i} |
-15,081 | \frac{1}{r^4 \cdot \frac{x^{12}}{r^9}} = \frac{1}{\frac{1}{r^9 \cdot \frac{1}{x^{12}}} \cdot r^4} |
9,624 | \left(\frac{600}{\pi \cdot 4}\right)^{1/3} = \frac{150^{1/3}}{\pi^{1/3}} |
-7,952 | \tfrac{1}{29} \cdot (-65 + 90 \cdot i + 26 \cdot i + 36) = \left(-29 + 116 \cdot i\right)/29 = -1 + 4 \cdot i |
18,654 | 1 + 2\cdot \left(-1\right) + 3\cdot \left(-1\right) + 4 = 0 + (-1) + 2 + 3 + 4\cdot (-1) = 0 |
34,407 | {9 + r \choose 9} = {r + 10 + (-1) \choose (-1) + 10} |
2,865 | (\frac{1}{(z + 1)!}\cdot z!)^3 = \dfrac{1}{\left(z + 1\right) \cdot (z + 1)^2} |
23,152 | \frac{4}{3!^2}\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5 = 1680 |
21,035 | i \cdot e^{x \cdot i} = d/dx e^{i \cdot x} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.