id
int64
-30,985
55.9k
text
stringlengths
5
437k
35,914
\frac92 = \dfrac92
-7,511
7 = \tfrac{1}{9}63
20,899
\frac{1}{1 + x \cdot x} \cdot (x^4 + x^3 + 8 \cdot x^2 + d \cdot x + h) = x^2 + x + 7 + \frac{1}{1 + x^2} \cdot (7 \cdot \left(-1\right) + x \cdot (d + (-1)) + h)
1,353
\sin(z) = \frac{1}{i \cdot 2} \cdot (-e^{-z \cdot i} + e^{i \cdot z})\Longrightarrow 2 \cdot \sin(z) \cdot i = e^{i \cdot z} - e^{-z \cdot i}
-20,925
\frac{x \cdot \left(-5\right)}{\left(-5\right) \cdot x} \cdot (-\frac{10}{7}) = \dfrac{50 \cdot x}{(-1) \cdot 35 \cdot x}
-3,743
14 = 2\cdot 7
35,873
1 = e^{i*0} = e^{\dfrac{i*3\pi}{2}} = -i
-23,189
\dfrac{1}{2}*4 = 2
-12,332
2\sqrt{6} = \sqrt{24}
-3,044
3\cdot 7^{1/2} + 2\cdot 7^{1/2} = 7^{1/2}\cdot 4^{1/2} + 7^{1/2}\cdot 9^{1/2}
25,617
3 \cdot 3 \cdot 3 + 19\cdot 2^3 + 2018 = 2197 = 13^3
35,051
2 * 2^2/32 = 2^{3 + 5*\left(-1\right)} = 1/4
-5,561
\frac{15 \cdot \left(t + 10 \cdot (-1)\right)}{9 \cdot (10 \cdot (-1) + t) \cdot (2 + t)} = \frac{5}{\left(2 + t\right) \cdot 3} \cdot \dfrac{1}{3 \cdot (10 \cdot (-1) + t)} \cdot (t \cdot 3 - 30)
35,781
d^2 + 3 \cdot a^2 - 2 \cdot 3^{1 / 2} \cdot a \cdot d = 0 \Rightarrow a \cdot 3^{\frac{1}{2}} = d
27,063
\frac{1}{2^k} \cdot ((1 + 2 \cdot x)^k + (1 + 2 \cdot b)^k) = \left(1/2 + x\right)^k + (b + \frac{1}{2})^k
-20,447
-\frac{1}{2 + k} \cdot 7 \cdot 8/8 = -\frac{56}{k \cdot 8 + 16}
-17,146
5 = 5 \times r + 5 \times (-8) = 5 \times r - 40 = 5 \times r + 40 \times (-1)
3,747
\left(1 + n^2*2 - 4*n\right)*3 = 3 + n * n*6 - n*12
33,554
m + 2 (-1) + 2 = m
-7,740
-\dfrac{8*i}{-4} + \dfrac{12}{-4} = \frac{1}{-4}*\left(-8*i + 12\right)
16,014
g_2 \cdot g_1 \cdot y = g_1 \cdot g_2 \cdot y
1,967
{10 + 4 + \left(-1\right) \choose 4 + (-1)} = 286
10,796
B'\cdot J = J\cdot B'
5,572
(x_1 + x_2)^2 = x_1^2 + x_2^2 + 2!*x_1*x_2
-6,304
\frac{5x}{x \cdot x + 81 \left(-1\right)} = \dfrac{5x}{(x + 9) \left(x + 9(-1)\right)}
-29,343
(-c_1 + c_2) (c_2 + c_1) = c_2^2 - c_1^2
36,560
\frac12 + \frac{1}{4} + 1/8 = 7/8
23,968
q\cdot r := r\cdot q
2,953
(1 + z) (z + 4) = 4 + z^2 + z \cdot 5
-6,811
210 = 3\cdot 7\cdot 10
49,148
-(c + z) = -(c + z) = -c - z
-1,740
0 + \pi \cdot 5/4 = 5/4 \cdot \pi
-4,620
\frac{8\cdot \left(-1\right) + 2\cdot x}{x \cdot x - 4\cdot x + 3} = \frac{3}{x + (-1)} - \dfrac{1}{3\cdot (-1) + x}
21,978
\left(a + bi\right) \left(x + ni\right) = ax - bn + (an + bx) i = ax - bn + i
523
\cos{p\cdot 2} = -\sin^2{p}\cdot 2 + 1
3,425
\frac{1}{y} + 0\cdot (-1) = 1/y
31,762
1 = x + 2 \cdot \nu + z = ( 1, 2, 1) \cdot ( x, \nu, z)
5,767
\left(-1\right) + x^3 = (x^2 + x + 1) (\left(-1\right) + x)
14,490
\left|{F + B}\right|*\left|{F - B}\right| = \left|{F + B}\right|*\left|{F^X - B^X}\right| = \left|{(F + B)*(F^X - B^X)}\right|
25,544
\cos(x) = \frac{\sin(x\cdot 2)}{2\cdot \sin\left(x\right)}
18,129
\dfrac{1^{-1}\cdot 1^{-1}}{3^4} = \frac{1^{-1}\cdot 1^{-1}}{3^4} = \frac{1^{-1}}{3^4} = \frac{1}{3^4} = \frac{1}{81}
7,514
n - \sum_{k=1}^n \cos(k*x) = \sum_{k=1}^n (1 - \cos(k*x)) = 2*\sum_{k=1}^n \sin^2(k*x/2)
-9,146
x\cdot 16 + 32 = 2\cdot 2\cdot 2\cdot 2\cdot x + 2\cdot 2\cdot 2\cdot 2\cdot 2
-18,253
\tfrac{-7\cdot s + s^2}{14 + s^2 - 9\cdot s} = \frac{s}{(7\cdot (-1) + s)\cdot (s + 2\cdot (-1))}\cdot (s + 7\cdot (-1))
-19,276
\frac{1}{\frac{2}{9} \cdot 5} = 9 \cdot \tfrac{1}{2}/5
23,091
\left(l * l * l - l^2 + l^2 - l + 1\right) (l * l + l + 1) = (l * l + l + 1) (l * l * l - l + 1)
30,879
\sin{\theta*2} = \sin{\theta} \cos{\theta}*2
-3,322
\sqrt{13}\times ((-1) + 3 + 5) = 7\times \sqrt{13}
4,948
\left((-1) + x\right) \cdot l + l = l \cdot x
6,395
s\times c\times x = c\times s\times x
14,772
4 = y - z \cdot 2 \Rightarrow 2z = y + 4(-1)
-20,700
\frac{8\cdot y + 8}{y\cdot 8 + 48\cdot \left(-1\right)} = \frac{8}{8}\cdot \dfrac{1 + y}{y + 6\cdot \left(-1\right)}
5,462
2^{\tfrac13} + 3^{\frac{1}{3}} = 2^{\dfrac{1}{3}} + 3^{1/3}
11,752
x_k := x_k - x
-4,486
\frac{-6\cdot z + 18}{5\cdot (-1) + z^2 - z\cdot 4} = -\frac{2}{5\cdot (-1) + z} - \dfrac{4}{1 + z}
13,544
-(z + 1) + x + 1 = x - z
855
\cos^n\left(x + \pi\cdot 2\right) = \cos^n(x)
-10,437
\frac{1}{s \cdot 80} \cdot 10 = \frac{2}{s \cdot 16} \cdot 5/5
10,760
x*2 + 1 + 2\beta + 1 = 2(x + \beta + 1)
-7,177
0 = \frac{1}{5}2 \cdot 0
19,059
y^2 + 5 y + 2 = \left(y + 1\right)^2 = y^2 + 2 y + 1 \Rightarrow y = -\frac{1}{3}
22,653
2 - 10^4 = 2 + 10000*\left(-1\right) = -9998 = -9.998*10^3 = -\dfrac{10}{1000} = -10^4
10,597
|L| |f| = |L f|
3,573
1101870 = 1484 \cdot 1485/2
46,254
\tfrac{1}{2^{2\cdot k}\cdot k!^2}\cdot (2\cdot k)! = \frac{1}{(2^2)^k}\cdot \frac{1}{k!\cdot (2\cdot k - k)!}\cdot (2\cdot k)! = \frac{1}{4^k}\cdot \binom{2\cdot k}{k}
21,041
\min{\cdots,1/2} = \min{\cdots,\frac12}
19,613
h*10 + h * h = (5 + h + 5(-1)) (5 + 5 + h)
-7,390
\frac25*\dfrac{3}{6}*4/7*5/8 = 1/14
-2,340
\frac{1}{11}\cdot 6 - 4/11 = \tfrac{1}{11}\cdot 2
-20,830
7/7\cdot \tfrac{8}{a + 5\cdot (-1)} = \frac{56}{35\cdot (-1) + a\cdot 7}
10,240
x \cdot x \cdot 4 = (x \cdot 2) \cdot (x \cdot 2)
1,865
\frac{1}{{15 \choose 3}}154 = 22/65
14,326
\tfrac{1}{3} = (1 - a)/3 \Rightarrow a = 0
-8,036
\frac{27 - i*5}{5 - i*2} = \dfrac{2*i + 5}{i*2 + 5}*\frac{27 - i*5}{5 - 2*i}
-14,227
(10 + 4 - 8*4)*10 = \left(10 + 4 + 32*(-1)\right)*10 = (10 - 28)*10 = (10 + 28*(-1))*10 = (-18)*10 = (-18)*10 = -180
18,350
\sin(\dfrac{1}{q}\pi)/(\pi \frac1q) \pi = q\sin(\frac{\pi}{q})
16,990
l = \left\{l, ..., 1, 2\right\}
39,553
100 + 1.04*\left(-2500\right) = -2500
488
ac + bc + c^2 = (a + b + c) c = abc
-18,255
\frac{1}{p^2 + p \cdot 9 + 8}(p \cdot p - p + 2\left(-1\right)) = \frac{\left(p + 2\left(-1\right)\right) (p + 1)}{(1 + p) (p + 8)}
-5,082
10^3*18.0 = 18*10^{2 + 1}
-20,878
\frac{-y\cdot 70 + 21\cdot \left(-1\right)}{7\cdot y + 7\cdot (-1)} = \frac{-10\cdot y + 3\cdot (-1)}{y + \left(-1\right)}\cdot \frac77
-9,184
k^3\cdot 40 = k\cdot k\cdot 2\cdot 2\cdot 2\cdot 5\cdot k
-10,269
\frac{6 (-1) + q*9}{12 (-1) + 24 q} = \tfrac{3 q + 2 (-1)}{8 q + 4 (-1)} \frac33
-15,845
-\frac{74}{10} = -\frac{1}{10} \cdot 9 \cdot 9 + 7/10
-5,039
10^{0(-1) + 5}*0.73 = 10^5*0.73
-26,043
(-30 - 120*i - 50*i + 200)/34 = \tfrac{1}{34}*(170 - 170*i) = 5 - 5*i
-1,216
-3/2 \cdot (-\frac{1}{2}) = \frac{(-1) \cdot \frac{1}{2}}{\frac{1}{3} \cdot (-2)}
4,393
31250 = 5^2\times 5^3\times \binom{5}{3}
33,249
30 = \frac{5!}{2!*2!}
38,352
-80 = -2^{5 + (-1)}*5
-471
(e^{5 \cdot \pi \cdot i/12})^{12} = e^{12 \cdot \tfrac{1}{12} \cdot 5 \cdot \pi \cdot i}
-15,081
\frac{1}{r^4 \cdot \frac{x^{12}}{r^9}} = \frac{1}{\frac{1}{r^9 \cdot \frac{1}{x^{12}}} \cdot r^4}
9,624
\left(\frac{600}{\pi \cdot 4}\right)^{1/3} = \frac{150^{1/3}}{\pi^{1/3}}
-7,952
\tfrac{1}{29} \cdot (-65 + 90 \cdot i + 26 \cdot i + 36) = \left(-29 + 116 \cdot i\right)/29 = -1 + 4 \cdot i
18,654
1 + 2\cdot \left(-1\right) + 3\cdot \left(-1\right) + 4 = 0 + (-1) + 2 + 3 + 4\cdot (-1) = 0
34,407
{9 + r \choose 9} = {r + 10 + (-1) \choose (-1) + 10}
2,865
(\frac{1}{(z + 1)!}\cdot z!)^3 = \dfrac{1}{\left(z + 1\right) \cdot (z + 1)^2}
23,152
\frac{4}{3!^2}\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5 = 1680
21,035
i \cdot e^{x \cdot i} = d/dx e^{i \cdot x}