id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-1,214 | \frac{1}{\frac{1}{8} \cdot (-1)} \cdot ((-1) \cdot 4 \cdot 1/5) = -\tfrac{1}{5} \cdot 4 \cdot (-8/1) |
17,866 | 12 = 3 3 + 3 = 2^3 + 2^2 |
-17,172 | -8 = -8*5 z - -8 = -40 z + 8 = -40 z + 8 |
16,006 | \frac{c_1}{q}\cdot \frac{c_2}{s} = \frac{c_1\cdot c_2}{s\cdot q}\cdot 1 |
16,359 | \sin(A - B) = \cos(B) \sin(A) - \sin(B) \cos\left(A\right) |
5,342 | \dfrac{2}{y + 4*\left(-1\right)} - \tfrac{1}{y + (-1)} = \frac{y + 2}{((-1) + y)*(y + 4*(-1))} |
7,722 | d^T x \leq 0 \Rightarrow -xd^T \geq 0 |
-6,428 | \frac{1}{4\cdot y + 20\cdot (-1)}\cdot 5 = \tfrac{5}{(y + 5\cdot (-1))\cdot 4} |
18,918 | \frac{2 z^2}{z z + (-1)} = 2 + \frac{1}{z^2 + (-1)} (z + 1 - z + (-1)) = 2 + \frac{1}{z + (-1)} - \frac{1}{z + 1} |
18,687 | 1 - 1/y = \frac{1}{-\frac{1}{1 - y} + 1} |
520 | 8\cdot (-1) + 20 + 6\cdot (-1) = 6 |
35,532 | g' x = g' g x = g g' x |
-10,496 | 3/3 \cdot 9/a = \dfrac{1}{3 \cdot a} \cdot 27 |
-30,652 | 5 \cdot \left(-1\right) - z^2 \cdot 5 = -5 \cdot (z^2 + 1) |
-6,980 | 56 = 4*2*7 |
-20,980 | \dfrac{p + 10}{p + 10} (-9/10) = \dfrac{90 (-1) - 9p}{10 p + 100} |
21,091 | \sin{g} \cdot \cos{g} \cdot 2 = \sin{g \cdot 2} |
-3,918 | \frac{t^5}{t^2}\cdot 66/24 = \frac{66\cdot t^5}{t \cdot t\cdot 24}\cdot 1 |
24,497 | \frac{1}{(1 + x^2)^{1/2}} = \cos(\operatorname{atan}(x)) |
4,816 | b*a*2 = 2*-a*(-b) |
1,065 | 9/2 - -\dfrac92 = 9/2 + 9/2 = 9 \neq 0 |
14,451 | 1 + z - 2 \cdot z^2 = \left(-z + 1\right) \cdot \left(1 + 2 \cdot z\right) |
866 | 1/(A*a) = \frac{1}{a*A} |
32,588 | 5 + 13^2 + 2 \cdot 13 = 5 \cdot 5 \cdot 8 |
1,551 | \sqrt{4-(x-3)^2}=2\sqrt{1-((x-3)/2)^2} |
37,387 | |Q^Q| = 1 = |Q| |
11,905 | y\cdot 5 + x\cdot 12 = 1 \Rightarrow x = -2,1 = y |
16,987 | D I_\epsilon = D I_\epsilon |
19,439 | m*x + y*k = 1 \Rightarrow m*x = -y*k + 1 |
25,935 | 2^6 + 1 = \left(2^2 + 1\right) \cdot \left(1 + 3 \cdot 2^2\right) = 5 \cdot 13 |
30,870 | x^2 = \alpha^2 \Rightarrow \alpha = x |
6,094 | \mathbb{Var}[X^2] = \mathbb{E}[(X^2)^2] - \mathbb{E}[X^2]^2 = \mathbb{E}[X^4] - \mathbb{E}[X^2]^2 |
26,097 | -k * k + (1 + k)^2 = 1 + k*2 |
-20,989 | -\frac{7}{-63} = \frac19 \cdot (\dfrac{1}{-7} \cdot (-7)) |
48,275 | 1234567 = 127 \times 9721 |
-12,018 | 19/24 = \dfrac{x}{12*\pi}*12*\pi = x |
5,975 | (fz)^2 = z^2 = (zf) \cdot (zf) |
-20,905 | \frac{3(-1) + x}{x + 3\left(-1\right)} (-7/4) = \dfrac{-7x + 21}{12 (-1) + x*4} |
-15,825 | 5\cdot \frac{5}{10} - \frac{5}{10}\cdot 5 = 0 |
-13,276 | 6\times \left(9 + 4\right) = 6\times 13 = 78 |
21,648 | g' \cdot g \cdot H := H \cdot g/g' |
16,189 | \pi\cdot 2 = 3\cdot \pi\cdot 2/3 |
4,198 | \frac{1}{b}\cdot m\cdot b\cdot d/m = d \Rightarrow b\cdot d/m |
27,148 | 11/6 + \dfrac14 = \dfrac{50}{24} = 25/12 |
-30,243 | (4 + x)*(x + 4*(-1)) = x * x + 16*(-1) |
17,869 | (A * A * A)^T = (AAA)^T = A^T A^T A^T = (A^T)^3 |
1,723 | (x + 2\cdot (-1))\cdot (x + 1) = 2\cdot (-1) + x^2 - x |
-5,928 | \frac{1}{3 \cdot z + 6} \cdot 3 = \frac{3}{(z + 2) \cdot 3} |
-4,567 | \frac{13 (-1) - z\cdot 4}{6(-1) + z \cdot z - z} = -\frac{5}{3(-1) + z} + \frac{1}{z + 2} |
17,161 | 52 + y y*4 - y*40 = 0 \implies y = 5 \pm 2 \sqrt{3} |
34,324 | 2^{200} - 2^{192}\cdot 31 + 2^{198} = (2^{96}\cdot 17) \cdot (2^{96}\cdot 17) |
53,994 | \ln\left(1\right) = 0 |
-4,052 | 100/40\cdot m/m = 100\cdot m/\left(m\cdot 40\right) |
48,873 | 105 = \binom{7}{3}*3 |
37,399 | m + 1 = {m \choose 1} + 1 |
20,884 | 1 \cdot 2 + (-1) = 1 \cdot 1 |
-9,381 | 2*7 - 2*2*3*z = 14 - z*12 |
20,734 | \frac{9}{8} = \frac123*\frac143 |
-22,282 | z^2 - 8 \cdot z + 7 = (7 \cdot \left(-1\right) + z) \cdot \left(z + (-1)\right) |
31,069 | 10 = {3 + 3 + (-1) \choose 3 + (-1)} |
3,106 | \frac{1}{\left(x^2 + 1\right)^2} = \frac{1}{x^2 + 1} - \frac{1}{\left(x^2 + 1\right)^2} \cdot x \cdot x |
7,847 | 37 = 7(-100) + 11*67 |
-18,439 | \frac{30 + x^2 - 13 x}{-10 x + x * x} = \dfrac{1}{x*(x + 10 (-1))}\left(x + 3(-1)\right) (x + 10 (-1)) |
8,405 | f + \left(g - f\right)/2 = \frac{1}{2}\left(2f + g - f\right) = \dfrac12(f + g) |
30,694 | x^{l + (-1)}\cdot l = \frac{\partial}{\partial x} x^l |
-3,995 | k*\frac{7}{6} = k*7/6 |
36,178 | \cos(y) \times (1 - \sin^2(y)) = \cos^3(y) |
-18,517 | 4 = \dfrac{1}{2}8 |
20,641 | c\cdot x = 0 = x\cdot c |
19,989 | \frac{C}{b} \cdot b/b = \frac{1}{b} \cdot C |
-24,669 | 52*i + 8 = 9 + 52*i + (-1) |
5,265 | 1 + d + d^2 + d^3 + \dotsm + d^n = \frac{1}{1 - d} \cdot (-d^{n + 1} + 1) |
19,779 | 64 + 16\times (-1) = 48 |
13,840 | x^4 + \left(-1\right) = (x^2 + 1) \left(x^2 + (-1)\right) = (x + i) \left(x - i\right) \left(x + 1\right) \left(x + (-1)\right) |
3,087 | (-4 + 4\cdot (-1))/2 = -4 |
42,644 | 7!\cdot 7!\cdot 8 = 8!\cdot 7! |
2,644 | \dfrac{1}{2^4}\cdot {4 \choose 2} = \frac{1}{16}\cdot 6 = 3/8 |
-12,862 | 10/25 = \dfrac{2}{5} |
-6,524 | \frac{4}{4(9\left(-1\right) + y) (5(-1) + y)} = \frac{\frac{1}{4}}{(y + 9(-1)) \left(y + 5(-1)\right)}4 |
23,378 | 100 = 10 \cdot (15 + 5 \cdot (-1)) |
-20,330 | \frac{1}{24*(-1) - t*9}*(-30*t + 80*(-1)) = 10/3*\frac{-3*t + 8*(-1)}{-3*t + 8*\left(-1\right)} |
29,193 | \left(-kb * b + h^2\right)*4 = -(2b)^2 k + (2h)^2 |
15,126 | c^n/b*b = (\frac1b*c*b)^n |
27,177 | \frac{(2\cdot n)!}{(2\cdot n + 2)!} = \frac{1}{(2\cdot n + 2)\cdot (1 + 2\cdot n)} |
511 | x\cdot 0.5832 = 0.72\cdot x\cdot 0.81 |
-9,571 | \tfrac44 = 1 |
6,600 | 2^{n + 1} + \left(-1\right) + 2^{n + 1} = 2\cdot 2^{n + 1} + (-1) = 2^{n + 1 + 1} + (-1) |
19,432 | 84 = 4*3*(2*2 + 3) |
2,538 | G^2 = G_x^2 + G_z^2 \implies G = \sqrt{G_x^2 + G_z^2} |
28,972 | B^{m + 1} = B\cdot B^m |
9,838 | 2 \cdot q = y + 4 \Rightarrow 2 \cdot q + 4 \cdot (-1) = y |
28,765 | (-1) + 2 \cos^2(t) = \cos(2 t) |
4,807 | x^2 + z*x*4 + z^2 = \left(2*z + 7*x\right)^2 - 3*(4*x + z)^2 |
-9,482 | 3\cdot (-1) + e\cdot 12 = e\cdot 2\cdot 2\cdot 3 + 3\cdot (-1) |
17,064 | y = \frac{1}{6}\cdot (-1 \pm \sqrt{12 + 1}) \Rightarrow y = (-1 + \sqrt{13})/6 |
1,190 | \cos(\theta + \alpha) = -\sin\left(\alpha\right) \cdot \sin\left(\theta\right) + \cos(\alpha) \cdot \cos(\theta) |
639 | y^2 - 10\cdot y + 25 = (5\cdot \left(-1\right) + y)^2 |
25,644 | y\times (-z) = -y\times z |
8,870 | 1 \leq b \cdot b + d^2 \leq 2^2 rightarrow 1 \leq b^2 + d^2 \leq 4 |
33,686 | 3^2\cdot 2\cdot 5\cdot 2\cdot 5 \cdot 5\cdot 2^4\cdot 3 = 60^3 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.