id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
4,937 | b/c + a/c = \frac1c\cdot (b + a) |
16,327 | a_t + b_t = a_t + b_t |
20,836 | -5 = 4*(-1) - 1 |
-15,574 | \frac{z^4}{\left(z^2\cdot t^2\right)^3} = \frac{z^4}{t^6\cdot z^6} |
15,807 | -(x \cdot x^2 + 1) + (x + 1)^3 = 3 \cdot (x + x^2) |
33,998 | 2*13 * 13 = 338 |
18,805 | 1 - \cos{4 \cdot y} = (4 \cdot y)^2/2! + ... = 8 \cdot y^2 + ... |
15,351 | \cos(x + y) = \cos{x} \cdot \cos{y} - \sin{y} \cdot \sin{x} |
1,779 | a^{1/2} \cdot a^{1/2} \cdot a^{1/2} = a^{3/2} |
9,553 | 4 + \eta = v \Rightarrow \eta = v + 4 (-1) |
-1,600 | -\frac{5}{12}\cdot \pi + 2\cdot \pi = 19/12\cdot \pi |
-22,899 | \dfrac{56}{8 \cdot 10} \cdot 1 = 56/80 |
-23,942 | 7 + \frac{48}{8} = 7 + 6 = 13 |
3,410 | (A + E)^2 = (A + E) (A + E) = A A + A E + E A + E^2 \neq A^2 + E^2 |
11,918 | S \cdot T = (S^{1/2} \cdot T^{\frac{1}{2}})^2 |
20,036 | (2 + \sqrt{3})*\left(2 - \sqrt{3}\right) = 2 * 2 - \sqrt{3} * \sqrt{3} = 1 |
30,811 | \frac{1/3}{2} \cdot 2 = \dfrac13 |
43,381 | 286 = 12 \cdot 3 + 50 \cdot 5 |
-4,580 | \frac{-2 \cdot x + 8}{15 + x \cdot x - 8 \cdot x} = -\dfrac{1}{5 \cdot (-1) + x} - \frac{1}{x + 3 \cdot \left(-1\right)} |
-11,501 | -30 - i*20 = -5 + 25 (-1) - i*20 |
983 | Z = Q - Y \Rightarrow Q = Z + Y |
27,209 | \cos\left(\sin^{-1}{-y}\right) = \cos(-\sin^{-1}{y}) = \cos\left(\sin^{-1}{y}\right) |
-486 | e^{19 \frac{i\pi}{6}11} = (e^{\frac{i\pi}{6}11})^{19} |
27,098 | \cos(\pi/2) = \cos(\frac32 \cdot \pi) = 0 |
1,050 | z \cdot 21/20 = 4 \cdot z/5 + z/4 |
-5,464 | \frac{l\cdot 3}{25\cdot \left(-1\right) + l^2} = \frac{l\cdot 3}{(5 + l)\cdot (5\cdot (-1) + l)} |
15,859 | \cot(-B) = z \Rightarrow \operatorname{arccot}(z) = -B |
13,534 | \frac12\sin{y \cdot 2} = \cos{y} \sin{y} |
-90 | -13 + 2\cdot (-1) = -15 |
8,008 | \frac{3 + n}{(-1) + n} = 1 + \frac{4}{n + (-1)} |
12,180 | 0 = 315 \cdot (-1) - 3 \cdot b \cdot b + 66 \cdot b rightarrow b^2 - 22 \cdot b + 105 = (b + 15 \cdot (-1)) \cdot (b + 7 \cdot (-1)) = 0 |
8,186 | 80/10 \cdot 5 = 8 \cdot 5 = 40 |
5,211 | (j + 1)/j = 1 + \tfrac1j |
25,363 | \sqrt{X\cdot 4}/2 = \sqrt{X} |
32,158 | i! = \dfrac{(i!)!}{(i! + (-1))!} |
42,230 | 2 + 67 + 22*(-1) + 6*\left(-1\right) = 41 |
22,153 | \tfrac{1}{(1 - y)^3} = (1 + y + y^2 + \dots)^3 |
-5,367 | 10^4*0.24 = 10^{(-5) (-1) - 1}*0.24 |
20,536 | \frac{1}{2} + \dfrac{1}{4} + 1/8 + \frac{1}{12} + 1/24 = 1 |
-2,701 | 16^{1/2}*3^{1/2} - 3^{1/2}*9^{1/2} = 3^{1/2}*4 - 3*3^{1/2} |
-18,506 | 5*c + 10 = 6*\left(2*c + 2\right) = 12*c + 12 |
-12,496 | 3 = \frac{19.5}{6.5} |
10,540 | e^c\cdot e^d = e^{c + d} |
-3,409 | 11^{1/2} \cdot 2 = 11^{1/2} \cdot (5 + 4 \cdot \left(-1\right) + 1) |
5,289 | \sigma(BA) \backslash 0 = \sigma\left(BA\right) \backslash 0 |
6,821 | -\frac{9}{25} + 16/25 + \dfrac{12}{25} = 19/25 |
11,599 | 3 \cdot 5 + 2 \cdot 2 + 2 \cdot 4 + 2 \cdot 6 = -5 \cdot 3 + (2 + 5) \cdot 2 + 2 \cdot (6 + 5) + (4 + 5) \cdot 2 |
48,656 | 108\cdot (-1) + 120 = 12 |
7,621 | h + z \cdot (1 + k) = y rightarrow \frac{-h + y}{1 + k} = z |
26,780 | \left(1 + x^4 + x^3 + x^2 + x\right)\cdot (\left(-1\right) + x) = x^5 + (-1) |
14,137 | 1 + t^4 + t^2 = (t \cdot t + 1)^2 - t^2 |
40,161 | 3 \cdot 3 \cdot 4 = 36 |
-20,869 | \frac{1}{z \cdot (-60)} \cdot (100 \cdot \left(-1\right) + 10 \cdot z) = \frac{1}{\left(-6\right) \cdot z} \cdot (z + 10 \cdot (-1)) \cdot 10/10 |
-20,817 | \frac{1}{-24} \times (-n \times 9 + 21 \times (-1)) = (-n \times 3 + 7 \times (-1))/(-8) \times \dfrac33 |
-4,052 | \frac{m}{40*m}*100 = 100/40*\dfrac{m}{m} |
1,527 | 2\cdot k = m \implies (-1) + m\cdot 3 = (-1) + k\cdot 6 |
-23,571 | 12/25 = \frac{3}{5} \cdot \frac45 |
-4,939 | 7.4 \cdot 10^0 = 7.4 \cdot 10^{1 - 1} |
10,916 | 1989/867 = \dfrac{51 \cdot 39}{51 \cdot 17} = 39/17 |
8,397 | 1 = \tfrac12*(3 + (-1)) |
8,418 | 36*3^{1/2} = 72*3^{1/2}/2 |
-9,158 | 49\cdot (-1) - 7\cdot k = -7\cdot 7 - 7\cdot k |
-29,935 | \frac{d}{dx} (-x^3) = -\frac{d}{dx} x \cdot x^2 = -3 \cdot x^2 = -3 \cdot x \cdot x |
26,118 | (\left(-1\right) + 1)*20 + 250 = 250 |
27,569 | h \cdot b \cdot d = h \cdot b \cdot d = \frac{1}{b \cdot d} \cdot h |
35,082 | \frac{1}{1 - x^2} = (\frac{1}{1 - x} + \dfrac{1}{x + 1})/2 |
-5,081 | 10^{11}*48.0 = 48.0*10^{6 + 5} |
31,515 | -\dfrac{u}{u * u + 1} + u = \frac{1}{u * u + 1}*u * u * u |
213 | 1 + 2*u = -u^2 + (u + 1)^2 |
1,862 | (-1) + m \leq -r + x \Rightarrow 1 + x \geq m + r |
-22,378 | (n + 10)\cdot (n + 3\cdot (-1)) = n^2 + 7\cdot n + 30\cdot (-1) |
27,729 | a^2 \cdot a + b^3 = \left(a^2 - ab + b^2\right) (a + b) |
-20,422 | \frac{x \cdot 70 + 14 \cdot (-1)}{14 + x \cdot 35} = \frac{1}{7} \cdot 7 \cdot \dfrac{1}{2 + 5 \cdot x} \cdot (2 \cdot (-1) + 10 \cdot x) |
-4,146 | 8m^2 = 8m^2 |
27,861 | 1/a = \tfrac1a |
14,592 | 1/2\cdot 1/2\cdot \dfrac{1}{2} = 1/8 |
19,931 | 3^{2*x + 2} + (-1) = 3^{2*x}*3^2 + (-1) = 9*3^{2*x} + (-1) = 8*3^{2*x} + 3^{2*x} + (-1) |
40,937 | 26^6 + 140552 (-1) = 308775224 |
20,600 | m^2 + 2\cdot m + 1 = (m + 1)^2 |
9,015 | \tfrac{0}{(0 + 2 \cdot \left(-1\right)) \cdot (0 + 1)} = \frac{0}{\left(-2\right)} = 0/2 = 0 |
10,550 | 2^k\cdot k + 2^{1 + k} = 2^{1 + k}\cdot (k + 1) - k\cdot 2^k |
-8,387 | \left(-6\right)*(-2) = 12 |
35,995 | -2\times x \times x + 2\times (x^2 + x)^2 - 2\times x^4 = 4\times x^3 |
-26,673 | 8*z^2 - z*18 + 5*(-1) = \left(4*z + 1\right)*(5*(-1) + 2*z) |
26,832 | 2^{15} + \left(-1\right) = \frac{1}{((-1) + 2 \cdot 2 \cdot 2) \cdot (\left(-1\right) + 2^5)} \cdot (2^{15} + (-1)) \cdot ((-1) + 2^5) \cdot (\left(-1\right) + 2^3) |
2,540 | AA^U = A^U A |
28,190 | x^2 - a^2 = \left(x - a\right) \cdot \left(a + x\right) |
4,867 | 19 + s^4 - 20 \cdot s^2 = (s^2 + 19 \cdot \left(-1\right)) \cdot \left(s \cdot s + (-1)\right) |
31,392 | z^4 + 2*z + 1 = z^4 + 1 = (z + 1)^4 |
29,521 | 4\cdot a = \left(a + 1 + \rho\right)^2 = a^2 + 2\cdot \left(1 + \rho\right)\cdot a + (1 + \rho)^2 |
44,378 | x = \dfrac{x}{1} |
19,041 | {l + (-1) + x - l + 1 + (-1) \choose l + (-1)} = {(-1) + x \choose l + (-1)} |
1,351 | (D - x) \cdot B \cdot D = B \cdot D \cdot \left(-x + D\right) |
-20,396 | -\frac{1}{4} \cdot \frac{1}{4 \cdot (-1) - r \cdot 5} \cdot \left(4 \cdot \left(-1\right) - r \cdot 5\right) = \dfrac{5 \cdot r + 4}{-r \cdot 20 + 16 \cdot (-1)} |
-12,617 | 141*\left(-1\right) + 172 = 31 |
-20,235 | \frac{x \cdot 90 + 50}{-20 \cdot x + 40 \cdot \left(-1\right)} = \frac{1}{10} \cdot 10 \cdot \frac{5 + x \cdot 9}{4 \cdot (-1) - x \cdot 2} |
3,200 | 0 = 3\cdot \left(-1\right) + z^2\cdot 3\Longrightarrow 1 = z^2 |
1,817 | \frac{2^4}{3^4} = 16/81 |
-24,251 | 7*10 + 7*\frac22 = 7*10 + 7 = 70 + 7 = 70 + 7 = 77 |
-27,626 | -1 + 3 \cdot \left(-1\right) + 9 + 5 \cdot \left(-1\right) = -4 + 9 + 5 \cdot (-1) = 5 + 5 \cdot (-1) = 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.