id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
20,959 | \left(d + 3\right)^2 = 3^2 + d \cdot 2 \cdot 3 + d^2 |
39,383 | \sin(n\cdot \pi + \tfrac{\pi}{2}) = \sin\left(n\cdot \pi\right)\cdot \cos(\dfrac{\pi}{2}) + \cos(n\cdot \pi)\cdot \sin(\dfrac{\pi}{2}) = 0\cdot 0 + (-1)^n |
3,141 | 5 + 6\cdot j = -((-1) - j)\cdot 6 - 1 |
38,115 | 9^2 - (-6)^2 = 45 |
404 | 1 + \sqrt{5} = (g + f \times \sqrt{5}) \times (c + x \times \sqrt{5}) = g \times c + 5 \times f \times x |
5,347 | \frac{n!}{m! (-m + n)!} = {n \choose m} |
-24,977 | \int_0^\pi ( 1, 2)*( -3*\sin(t), 3*\cos\left(t\right))\,dt = \int\limits_0^\pi (-3*\sin(t) + 6*\cos(t))\,dt = 3*\cos(t) + 6*\sin\left(t\right) |
-17,786 | 53 (-1) + 59 = 6 |
-6,752 | 2/100 + \frac{1}{100}\cdot 70 = \frac{1}{100}\cdot 2 + \dfrac{1}{10}\cdot 7 |
-4,811 | 77.6\cdot 10^0 = 77.6\cdot 10^{2 - 2} |
27,230 | \tan{\alpha} = \frac{1}{\cos{\alpha}} \cdot \sin{\alpha} |
5,335 | ((-3) \cdot \left(-1\right) + x) \cdot (x + 5 \cdot (-1)) = (3 + x) \cdot (5 \cdot \left(-1\right) + x) |
12,929 | \operatorname{acos}(\frac{1}{x^2 + 1} \cdot (x^2 + (-1))) = 2 \cdot y \implies \cos{y \cdot 2} = \frac{x^2 + (-1)}{1 + x \cdot x} |
-25,789 | 4/40 = \frac{1}{8\cdot 5}\cdot 4 |
31,401 | \frac{1}{233}*377 = 1 + 144/233 |
-16,763 | 6 = 20\cdot p^2 - 8\cdot p + 6\cdot (-5\cdot p) + 6\cdot 2 = 20\cdot p^2 - 8\cdot p - 30\cdot p + 12 |
35,130 | \dfrac{1}{(2 + 2)^2} = 2^{2\cdot (-1) - 2} |
-9,243 | -y\cdot 2\cdot 2\cdot 3\cdot 5 + 2\cdot 3\cdot 3\cdot 5 = 90 - 60\cdot y |
12,751 | \frac{1}{y^2}\cdot x^2 = \frac{1}{1}\cdot 2 rightarrow 2 = x \cdot x, y^2 = 1 |
7,719 | \frac{1}{x^{1 + m}}\times x = x^{-m} |
15,718 | \frac{5!}{2! \times 2!} = 120/4 = 30 |
17,511 | \frac{1}{(2^l)^2} = \dfrac{1}{4^l} |
-7,646 | \frac{4 + i*19}{-5 - i*2} = \frac{19*i + 4}{-i*2 - 5}*\tfrac{1}{2*i - 5}*(-5 + i*2) |
-5,634 | \frac{1}{288 \cdot \left(-1\right) + q \cdot q \cdot 4 - q \cdot 4} \cdot (q \cdot 9 + 25 \cdot (-1)) = \frac{1}{288 \cdot (-1) + 4 \cdot q^2 - q \cdot 4} \cdot (4 \cdot q + 32 + 5 \cdot q + 45 \cdot (-1) + 12 \cdot (-1)) |
32,015 | 900 - 8*9*9 = 900 + 648*(-1) = 252 |
6,624 | \xi^k = -1 \Rightarrow 1 = \xi^{k*2} |
577 | (W^2 + 3*(-1)) * (W^2 + 3*(-1)) + 8*(-1) = 1 + W^4 - W * W*6 |
-9,156 | -49\cdot a^2 + 70\cdot a = -a\cdot a\cdot 7\cdot 7 + a\cdot 2\cdot 5\cdot 7 |
28,483 | \cos^2\left(\frac{z}{2}\right)\times 4 + 2\times (-1) = 2\times \cos(z) |
24,558 | A \setminus E = A = A = A \cup (A \cap E) |
-2,784 | 7 \cdot \sqrt{3} = \left(2 + 1 + 4\right) \cdot \sqrt{3} |
30,808 | z^3 - z^2 + 2 \cdot z + (-1) = z + 2 \cdot z^2 + 2 \cdot z + 2 = 2 \cdot z^2 + 2 |
49,626 | \sin^2(x) \cos^3(x) = (\sin(x) \cos(x))^2 \cos(x) = (\sin(2x)/2)^2 \cos(x) = \tfrac{\sin^{22}(x) \cos(x)}{4} |
-4,784 | \frac{2}{x + 3} + \frac{3}{x + (-1)} = \frac{1}{x^2 + x\cdot 2 + 3\cdot (-1)}\cdot (x\cdot 5 + 7) |
9,620 | k^2*4 + k*8 + 4 = \left(k + 1\right)^2*4 |
23,388 | \frac{1}{3*\frac23} = \frac{3*\frac{1}{2}}{3} |
43,474 | |z - 0| = |z| = |z-1| |
-18,457 | 3\cdot c + 10\cdot (-1) = 9\cdot (c + 5\cdot \left(-1\right)) = 9\cdot c + 45\cdot (-1) |
28,621 | \tfrac{1}{a c} = \frac{1}{a c} |
-7,381 | \frac{1}{91}\cdot 10 = \frac{1}{13}\cdot 4\cdot \frac{5}{14} |
21,209 | \sin(2\cdot z) = 2\cdot \cos\left(z\right)\cdot \sin(z) |
-7,075 | \dfrac{1}{7}\cdot 2 = \frac{2}{7} |
756 | \cosh(x) = \frac12\cdot (e^x + e^{-x}) \leq e^{\dfrac{x^2}{2}} |
-14,002 | 10*7 + 2*24/3 = 10*7 + 2*8 = 70 + 2*8 = 70 + 16 = 86 |
18,968 | z*z = z^2 = z + 1 |
-6,986 | \frac{6}{12} \cdot 4/11 = \frac{1}{11} \cdot 2 |
6,520 | \frac{\binom{13}{4}}{39 \cdot \binom{13}{3} + \binom{13}{4}} = 5/83 |
6,210 | \sin(\frac{1}{4}\pi + x) = \cos(x) \sin\left(\pi/4\right) + \sin(x) \cos\left(\frac{\pi}{4}\right) |
-19,707 | \frac{6\cdot 9}{7} = \dfrac17\cdot 54 |
-4,542 | \frac{1}{Q + 5 \cdot (-1)} \cdot 4 - \frac{5}{Q + 3} = \tfrac{1}{Q \cdot Q - Q \cdot 2 + 15 \cdot (-1)} \cdot (-Q + 37) |
-28,894 | 20! = 20*19*18 \ldots*3*2 |
14,321 | (\cos(x) - \sin(x)) \cdot g \cdot x = dt \Rightarrow g \cdot x \cdot (\sin(x) - \cos(x)) = dt |
-10,651 | \frac44 \cdot \frac{9}{3 \cdot f^2} = \frac{1}{12 \cdot f^2} \cdot 36 |
-4,670 | -\frac{1}{5 + z} + \frac{1}{5\times (-1) + z}\times 2 = \dfrac{1}{25\times (-1) + z^2}\times (15 + z) |
-20,769 | \frac{-30 \cdot y + 50}{y \cdot 36 + 60 \cdot (-1)} = -\frac56 \cdot \frac{10 \cdot (-1) + y \cdot 6}{10 \cdot (-1) + y \cdot 6} |
10,612 | (y + r)\cdot y = y\cdot y + r\cdot y = y\cdot y + r = y + r |
-15,636 | \frac{1}{q^{20}\cdot \frac{1}{p^3\cdot q}} = \dfrac{(\dfrac{1}{q^4})^5}{\dfrac{1}{p^3}\cdot 1/q} |
19,433 | (Z^Q\cdot x\cdot Y)^Q = Y^Q\cdot x^Q\cdot Z = Y^Q\cdot x\cdot Z |
15,950 | x^4 - z \cdot z x \cdot x\cdot 9 - 2x^2 z^2 + z^4 = z^4 + x^4 - x^2 z^2\cdot 11 |
-9,866 | 0.8 = \frac{1}{10}\cdot 8 = 4/5 |
11,391 | \frac{1}{3}*(10002*\left(-1\right) + 99999) + 1 = 1 + \frac{1}{3}*(99999 + 10002*(-1)) |
28,390 | (n + 1)\cdot (n + 2)\cdot n\cdot \ldots = \left(n + 2\right)! |
-6,395 | \dfrac{1}{(9 + n)\times 3} = \frac{1}{3\times n + 27} |
4,700 | 2\cdot ((-3)\cdot (-1) + 10) = 26 - 3\cdot y\cdot z\cdot x \Rightarrow 26 + 26\cdot (-1) = 3\cdot x\cdot z\cdot y |
27,017 | \frac{x\cdot 1/h}{\frac{1}{g}\cdot f} = \frac{x}{h}\cdot g/f |
9,151 | \dfrac{1}{2} \times \left(4021 + 1\right) = 2011 |
26,789 | 9^2 * 9 - 3^3 - 2^3 = 694 |
3,783 | 341 = 10^0 + 10^2*3 + 4*10^1 |
6,369 | \frac{\partial}{\partial z} (z^3 + y^3) = \frac{dy}{dz}\cdot y^2\cdot 3 + z^2\cdot 3 |
-7,794 | \frac{1}{4 - i \cdot 4} \cdot (12 + i \cdot 12) = \dfrac{4 + i \cdot 4}{4 + i \cdot 4} \cdot \frac{1}{-i \cdot 4 + 4} \cdot (i \cdot 12 + 12) |
35,690 | \dfrac{1}{4} (8 + 512 + 8 + 32) = 140 |
25,743 | Dg bD = bD gD |
15,535 | \mathbb{E}\left[X*U\right] = \mathbb{E}\left[U\right]*\mathbb{E}\left[X\right] |
23,303 | \int x^2 \cdot x\cdot x\,\mathrm{d}x + c = x^3\cdot y \Rightarrow x^5/5 + c = y\cdot x^3 |
7,298 | 1 = b \cdot a \implies 1 = a \cdot b |
3,217 | z^2\cdot z \cdot z = z^4 |
19,292 | \tfrac{1}{1 + 1}\cdot (g + g) = 2\cdot g/2 = g/1 = g |
-16,659 | 2 = 2(-3p) + 2 = -6p + 2 = -6p + 2 |
-10,485 | \dfrac{4}{4}\cdot \frac{1}{t}\cdot (3\cdot t + 10\cdot (-1)) = \left(12\cdot t + 40\cdot (-1)\right)/(4\cdot t) |
273 | d^3 - c^2 \cdot c = (d - c) \cdot (d^2 + c \cdot d + c^2) |
3,453 | \left(0 = 2*x + 5*\left(-1\right) \Rightarrow 2*x = 5\right) \Rightarrow x = 5/2 |
-29,006 | \dfrac12\cdot ((-1)\cdot 4.4 + 7.4) = 1.5 |
37,953 | 101 = 10 + 13*7 |
30,562 | 2/(\sqrt{3}) = \frac{\sqrt{3}}{3}2 |
1,205 | \cos(y) \tan(y) = \sin\left(y\right) |
-569 | \left(e^{\tfrac{11}{12} \cdot \pi \cdot i}\right)^4 = e^{11 \cdot i \cdot \pi/12 \cdot 4} |
17,558 | (2\cdot x^2 + x\cdot 3 + 3)\cdot ((-1) + x) = (x + \left(-1\right))\cdot (1 + 2\cdot (x \cdot x + x + 1) + x) |
-18,597 | 4 \cdot y + 2 \cdot (-1) = 6 \cdot (y + 9 \cdot (-1)) = 6 \cdot y + 54 \cdot (-1) |
14,555 | \frac{x}{x - y} \cdot y = \frac{1}{1/y - \dfrac1x} |
24,806 | \left(5 - 1.8\right) x + (9 - 3.7) x + (9 - 3.7) x = 3.2 x + 5.3 x + 5.3 x = 13.8 x |
-2,002 | \pi/3 + \frac{11}{12} \pi = \pi \frac{1}{4} 5 |
29,986 | 9/2 = (1 + 8)/2 |
8,493 | c(ai+bj)=(ac)i+(bc)j |
20,386 | (g_1 \cdot g_2) \cdot (g_1 \cdot g_2) = g_1^2 \cdot g_2^2 |
37,259 | -1 = \left\lfloor{z}\right\rfloor\Longrightarrow -1 \leq z < 0 |
-4,408 | -\dfrac{1}{4 \cdot (-1) + z} + \frac{5}{2 \cdot (-1) + z} = \frac{18 \cdot \left(-1\right) + 4 \cdot z}{8 + z^2 - z \cdot 6} |
15,746 | n! = ((-1) + n)\cdot n\cdot \dots\cdot 2 |
24,343 | x \cdot x + (-1) = (x + (-1)) \left(x + 1\right) |
31,015 | (-1) + 2 = (-7)*2 + 5*3 |
24,948 | 1 = -6\cdot z \implies -6 = z |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.