Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 2 new columns ({'O.1', "L'"}) and 2 missing columns ({'Intenzionato', 'B-FACTUAL'}). This happened while the csv dataset builder was generating data using hf://datasets/dhfbk/modafact-ita/cg/multitask_seq_bio/fold_63/training_set.tsv (at revision 4a05a7fb04c377e6b2b93fcf15cc312d2acf2ae1) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast L': string O: string O.1: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 575 to {'Intenzionato': Value(dtype='string', id=None), 'B-FACTUAL': Value(dtype='string', id=None), 'O': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1420, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1052, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 2 new columns ({'O.1', "L'"}) and 2 missing columns ({'Intenzionato', 'B-FACTUAL'}). This happened while the csv dataset builder was generating data using hf://datasets/dhfbk/modafact-ita/cg/multitask_seq_bio/fold_63/training_set.tsv (at revision 4a05a7fb04c377e6b2b93fcf15cc312d2acf2ae1) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Intenzionato
string | B-FACTUAL
string | O
string |
---|---|---|
a | O | O |
rovesciare | B-NON_FACTUAL | B-WILL |
l' | O | O |
ordine | O | O |
repubblicano | O | O |
, | O | O |
Franco | O | O |
mise | B-FACTUAL | O |
in | I-FACTUAL | O |
atto | I-FACTUAL | O |
con | O | O |
altri | O | O |
generali | O | O |
un | I-FACTUAL | O |
colpo | I-FACTUAL | O |
di | I-FACTUAL | O |
Stato | I-FACTUAL | O |
nel | O | O |
luglio | O | O |
seguente | O | O |
, | O | O |
che | O | O |
portò | B-FACTUAL | O |
alla | O | O |
sanguinosa | O | O |
guerra | B-FACTUAL | O |
civile | O | O |
spagnola | O | O |
. | O | O |
Nel | O | O |
paesaggio | O | O |
sullo | O | O |
sfondo | O | O |
un | O | O |
angelo | O | O |
, | O | O |
che | O | O |
indica | B-FACTUAL | O |
Sebastiano | O | O |
, | O | O |
dialoga | B-FACTUAL | O |
con | O | O |
san | O | O |
Rocco | O | O |
, | O | O |
il | O | O |
santo | O | O |
che | O | O |
con | O | O |
Sebastiano | O | O |
era | O | O |
evocato | B-FACTUAL | O |
per | O | O |
proteggersi | B-NON_FACTUAL | B-FINAL |
dalle | O | O |
pestilenze | B-NON_FACTUAL | O |
: | O | O |
Il | O | O |
24 | O | O |
ottobre | O | O |
Gesja | O | O |
partorì | B-FACTUAL | O |
una | O | O |
bambina | O | O |
sana | O | O |
, | O | O |
ma | O | O |
il | O | O |
dottor | O | O |
Balandin | O | O |
non | O | O |
mise | B-COUNTERFACTUAL | O |
( | O | O |
forse | O | O |
di | O | O |
proposito | O | O |
) | O | O |
i | O | O |
punti | O | O |
al | O | O |
peritoneo | O | O |
che | O | O |
s' | O | O |
era | O | O |
strappato | B-FACTUAL | O |
, | O | O |
affermando | B-FACTUAL | O |
che | O | O |
la | O | O |
ferita | O | O |
si | O | O |
sarebbe | O | O |
risanata | B-NON_FACTUAL | O |
da | O | O |
sé | O | O |
. | O | O |
L' | O | O |
efficacia | O | O |
dimostrata | B-FACTUAL | O |
nello | O | O |
ModaFact - Dataset
Dataset Description
Dataset Summary
ModaFact is a textual dataset annotated with Event Factuality and Modality in Italian. ModaFact’s goal is to model in a joint way factuality and modality values of event-denoting expressions in text.
Textual data source
Original texts (sentences) have been sampled from EventNet-ITA, a dataset for Frame Parsing, consisting of annotated sentences from Wikipedia.
Statistics
Feature | # |
---|---|
Sentences | 3,039 |
Words | 73,784 |
Annotations | 10,445 |
Unique label assignments | 33,029 |
Words per sentence (avg.) | 24.28 |
Annotations per sentence (avg.) | 3.44 |
Unique label assignments per sentence | 10.87 |
Annotation
ModaFact has been originally annotated at token level, adopting the IOB2 style. Whereas for Modality the schema is unique, for Factuality we provide two representations: a fine-grained representation (FG), which specifies values over three axes (CERTAINTY, POLARITY, TIME), and a coarse-grained representation (CG), which only provides the final factuality value.
Example of fine-grained representation (FG):
Per O
chiarire B-POSSIBLE-POS-FUTURE-FINAL
la O
questione O
la O
Santa O
Sede O
autorizzò B-CERTAIN-POS-PRESENT/PAST
il O
prelievo B-UNDERSPECIFIED-POS-FUTURE-CONCESSIVE
di O
campioni O
del O
legno O
che O
vennero O
datati B-CERTAIN-POS-PRESENT/PAST
attraverso O
l' O
utilizzo B-CERTAIN-POS-PRESENT/PAST
del O
metodo O
del O
carbonio-14 O
. O
Example of coarse-grained representation (CG):
Per O
chiarire B-NON_FACTUAL-FINAL
la O
questione O
la O
Santa O
Sede O
autorizzò B-FACTUAL
il O
prelievo B-NON_FACTUAL-CONCESSIVE
di O
campioni O
del O
legno O
che O
vennero O
datati B-FACTUAL
attraverso O
l' O
utilizzo B-FACTUAL
del O
metodo O
del O
carbonio-14 O
. O
Labelset
Factuality:
Fine-grained
- CERTAINTY: {
CERTAIN
,PROBABLE
,POSSIBLE
,UNDERSPECIFIED
} - POLARITY: {
POSITIVE
,NEGATIVE
,UNDERSPECIFIED
} - TIME: {
PRESENT/PAST
,FUTURE
,UNDERSPECIFIED
}
- CERTAINTY: {
Coarse-grained
- {
FACTUAL
,NON-FACTUAL
,COUNTERFACTUAL
,UNDERSPECIFIED
}
- {
Modality:
- {
WILL
,FINAL
,CONCESSIVE
,POSSIBILITY
,CAPABILITY
,DUTY
,COERCION
,EXHORTATIVE
,COMMITMENT
,DECISION
}
Data format
According to the experimental set presented in the paper (see below, Citation Information) we provide different data formats:
- token-level BIO sequence labelling: the dataset is formatted as a two-column
tsv
. The first column contains the token, the second column contains all corresponding labels (factuality and modality), concatenated with-
. This format makes the dataset ready-to-train with the MaChAmp seq_bio task type. - token-level multi-task sequence labelling: the dataset is formatted as a three-column
tsv
. The first column contains the token, the second column contains all factuality labels, the third column contains the modality label. This format makes the dataset ready-to-train with the Machamp seq_bio multitask setting. - generative and sequence-to-sequence: the dataset is formatted as a
jsonl
file, containing a list of dictionaries. Each dictionary has an Input field (the sentence) and an Output field, a string composed by token=labels pairs, separated by|
. This format makes the dataset ready-to train with sequence-to-sequence and causal/generative models.
Data Split
For the sake of reproducibility, we provide, for each configuration, the 5 folds used in the paper. The data split follows a 60/20/20 ratio and has been created in a stratified way. This means each train/dev/test set contains (approx) the same relative distribution of classes.
Additional Information
An instance of the mT5 model, fine-tuned on ModaFact, is available at this repo.
Licensing Information
ModaFact is released under the CC-BY-SA-4.0 License.
Citation Information
If you use ModaFact, please cite the following paper:
@inproceedings{rovera-etal-2025-modafact,
title = "{M}oda{F}act: Multi-paradigm Evaluation for Joint Event Modality and Factuality Detection",
author = "Rovera, Marco and
Cristoforetti, Serena and
Tonelli, Sara",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.425/",
pages = "6378--6396",
}
- Downloads last month
- 18