Datasets:

ArXiv:
DOI:
License:
File size: 6,231 Bytes
430d827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright 2022 for msynth dataset
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Custom dataset-builder for ssynth dataset
'''

import os
import datasets
import glob
import re


logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@article{kim2024ssynth,
  title={Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses},
  author={Kim, Andrea and Saharkhiz, Niloufar and Sizikova, Elena and Lago, Miguel, and Sahiner, Berkman and Delfino, Jana G., and Badano, Aldo},
  journal={International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)},
  volume={},
  pages={},
  year={2024}
}
"""


_DESCRIPTION = """\
S-SYNTH is an open-source, flexible skin simulation framework to rapidly generate synthetic skin models and images using digital rendering of an anatomically inspired multi-layer, multi-component skin and growing lesion model. It allows for generation of highly-detailed 3D skin models and digitally rendered synthetic images of diverse human skin tones, with full control of underlying parameters and the image formation process.
Curated by: Andrea Kim, Niloufar Saharkhiz, Elena Sizikova, Miguel Lago, Berkman Sahiner, Jana Delfino, Aldo Badano
License: Creative Commons 1.0 Universal License (CC0)
"""


_HOMEPAGE = "https://github.com/DIDSR/ssynth-release?tab=readme-ov-file"

_REPO = "https://huggingface.co/datasets/didsr/ssynth_data/resolve/main"

# Initialize an empty list to store the file paths
_CROPPED = True

_URLS = {
    "synthetic_data": f"{_REPO}/data/synthetic_dataset/output_10k.zip",
    "read_me": f"{_REPO}/README.md"
}

DATA_DIR = {"all_data": "output_10k"}

class ssynth_dataConfig(datasets.BuilderConfig):
    """ssynth dataset"""
    def __init__(self, name, **kwargs):
        super(ssynth_dataConfig, self).__init__(
        version=datasets.Version("1.0.0"),
        name=name,
        description="ssynth_data",
        **kwargs,
        )

class ssynth_data(datasets.GeneratorBasedBuilder):
    """ssynth dataset."""
    
    DEFAULT_WRITER_BATCH_SIZE = 256
    BUILDER_CONFIGS = [
        ssynth_dataConfig("output_10k"),
    ]
    
    def _info(self):
        if self.config.name == "output_10k":
            # Define dataset features and keys
            features = datasets.Features(
                {       
                    "Cropped": datasets.Features({
                        "image": datasets.Value("string"),
                        "mask": datasets.Value("string")
                    }),
                    "Uncropped": datasets.Features({
                        "image": datasets.Value("string"),
                        "mask": datasets.Value("string")
                    })
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )
    
    def _split_generators(
        self, dl_manager: datasets.utils.download_manager.DownloadManager):
        
        if self.config.name == "output_10k":
            data_dir = dl_manager.download_and_extract(_URLS['synthetic_data'])
            return [
                datasets.SplitGenerator(
                    name="output_10k",
                    gen_kwargs={
                        "files": data_dir,
                        "name": "all_data",
                    },
                ),
            ]
        
    def get_all_file_paths(self, root_directory):
        file_paths = []  # List to store file paths

        # Walk through the directory and its subdirectories using os.walk
        for folder, _, files in os.walk(root_directory):
            for file in files:
                if file == "cropped_image.png":
                # Get the full path of the file
                    file_path = os.path.join(folder, file)
                    file_paths.append(file_path)
        return file_paths
    
    def get_other_images(self, cropped_image_path, file_name):
        other_image_paths = []

        # Get the directory containing the cropped_image.png
        directory = os.path.dirname(cropped_image_path)

        # Walk through the directory to find other image files
        for file in os.listdir(directory):
            if file == file_name:
                # Get the full path of the other image file
                file_path = os.path.join(directory, file)
                #other_image_paths.append(file_path)
                return file_path
        return None
   
    
    def _generate_examples(self, files, name):
        if self.config.name == "output_10k":
            key = 0
            data_paths = self.get_all_file_paths(os.path.join(files, DATA_DIR[name]))
            
            cropped_images = []
            uncropped_images = []
            for path in data_paths:
                res_dic = {}
                cropped_image = path
                cropped_mask = self.get_other_images(path,"cropped_mask.png")
                image = self.get_other_images(path,"image.png")
                mask = self.get_other_images(path,"mask.png")
                cropped_data = {
                    "image": cropped_image,
                    "mask": cropped_mask
                }
                uncropped_data = {
                    "image": image,
                    "mask": mask
                }
                res_dic["Cropped"] = cropped_data
                res_dic["Uncropped"] = uncropped_data
                
                yield key, res_dic
                key += 1