Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'docstring'})

This happened while the json dataset builder was generating data using

hf://datasets/diversoailab/standard_humaneval/data/docstring/test_standard_humaneval.jsonl (at revision 8452a611917f774ceea2280390804e6d9c80eee5)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              task_id: string
              prompt: string
              entry_point: string
              canonical_solution: string
              test: string
              docstring: string
              to
              {'task_id': Value(dtype='string', id=None), 'prompt': Value(dtype='string', id=None), 'entry_point': Value(dtype='string', id=None), 'canonical_solution': Value(dtype='string', id=None), 'test': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'docstring'})
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/diversoailab/standard_humaneval/data/docstring/test_standard_humaneval.jsonl (at revision 8452a611917f774ceea2280390804e6d9c80eee5)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

task_id
string
prompt
string
entry_point
string
canonical_solution
string
test
string
HumanEval/0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
has_close_elements
for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
def check(candidate): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True, "Test 0" assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False,"Test 1" assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True,"Test 2" assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False,"Test 3" assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True,"Test 4" assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True,"Test 5" assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False,"Test 6"
HumanEval/1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """
separate_paren_groups
result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
def check(candidate): assert candidate('(()()) ((())) () ((())()())') == ['(()())', '((()))', '()', '((())()())'], "Test 0" assert candidate('() (()) ((())) (((())))') == ['()', '(())', '((()))', '(((())))'], "Test 1" assert candidate('(()(())((())))') == ['(()(())((())))'], "Test 2" assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())'], "Test 3"
HumanEval/2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """
truncate_number
return number % 1.0
def check(candidate): assert candidate(3.5) == 0.5,"Test 0" assert abs(candidate(1.33) - 0.33) < 1e-6,"Test 1" assert abs(candidate(123.456) - 0.456) < 1e-6,"Test 2"
HumanEval/3
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """
below_zero
balance = 0 for op in operations: balance += op if balance < 0: return True return False
def check(candidate): assert candidate([]) == False,"Test 0" assert candidate([1, 2, -3, 1, 2, -3]) == False,"Test 1" assert candidate([1, 2, -4, 5, 6]) == True,"Test 2" assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False,"Test 3" assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True,"Test 4" assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True,"Test 5"
HumanEval/4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """
mean_absolute_deviation
mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
def check(candidate): assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6,"Test 0" assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6,"Test 1" assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6,"Test 2"
HumanEval/5
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """
intersperse
if not numbers: return [] result = [] for n in numbers[:-1]: result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
def check(candidate): assert candidate([], 7) == [],"Test 0" assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2],"Test 1" assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2],"Test 2"
HumanEval/6
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """
parse_nested_parens
def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
def check(candidate): assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3],"Test 0" assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4],"Test 1" assert candidate('(()(())((())))') == [4],"Test 2"
HumanEval/7
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
filter_by_substring
return [x for x in strings if substring in x]
def check(candidate): assert candidate([], 'john') == [],"Test 0" assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'],"Test 1" assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx'],"Test 2" assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune'],"Test 3"
HumanEval/8
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """
sum_product
sum_value = 0 prod_value = 1 for n in numbers: sum_value += n prod_value *= n return sum_value, prod_value
def check(candidate): assert candidate([]) == (0, 1),"Test 0" assert candidate([1, 1, 1]) == (3, 1),"Test 1" assert candidate([100, 0]) == (100, 0),"Test 2" assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7),"Test 3" assert candidate([10]) == (10, 10),"Test 4"
HumanEval/9
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """
rolling_max
running_max = None result = [] for n in numbers: if running_max is None: running_max = n else: running_max = max(running_max, n) result.append(running_max) return result
def check(candidate): assert candidate([]) == [],"Test 0" assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4],"Test 1" assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4],"Test 2" assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100],"Test 3"
HumanEval/10
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """
make_palindrome
if not string: return '' beginning_of_suffix = 0 while not is_palindrome(string[beginning_of_suffix:]): beginning_of_suffix += 1 return string + string[:beginning_of_suffix][::-1]
def check(candidate): assert candidate('') == '',"Test 0" assert candidate('x') == 'x',"Test 1" assert candidate('xyz') == 'xyzyx',"Test 2" assert candidate('xyx') == 'xyx',"Test 3" assert candidate('jerry') == 'jerryrrej',"Test 4"
HumanEval/11
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """
string_xor
def xor(i, j): if i == j: return '0' else: return '1' return ''.join(xor(x, y) for x, y in zip(a, b))
def check(candidate): assert candidate('111000', '101010') == '010010',"Test 0" assert candidate('1', '1') == '0',"Test 1" assert candidate('0101', '0000') == '0101',"Test 2"
HumanEval/12
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """
longest
if not strings: return None maxlen = max(len(x) for x in strings) for s in strings: if len(s) == maxlen: return s
def check(candidate): assert candidate([]) == None,"Test 0" assert candidate(['x', 'y', 'z']) == 'x',"Test 1" assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz',"Test 2"
HumanEval/13
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """
greatest_common_divisor
while b: a, b = b, a % b return a
def check(candidate): assert candidate(3, 7) == 1,"Test 0" assert candidate(10, 15) == 5,"Test 1" assert candidate(49, 14) == 7,"Test 2" assert candidate(144, 60) == 12,"Test 3"
HumanEval/14
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """
all_prefixes
result = [] for i in range(len(string)): result.append(string[:i+1]) return result
def check(candidate): assert candidate('') == [],"Test 0" assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh'],"Test 1" assert candidate('WWW') == ['W', 'WW', 'WWW'],"Test 2"
HumanEval/15
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """
string_sequence
return ' '.join([str(x) for x in range(n + 1)])
def check(candidate): assert candidate(0) == '0',"Test 0" assert candidate(3) == '0 1 2 3',"Test 1" assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10',"Test 2"
HumanEval/16
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """
count_distinct_characters
return len(set(string.lower()))
def check(candidate): assert candidate('') == 0,"Test 0" assert candidate('abcde') == 5,"Test 1" assert candidate('abcde' + 'cade' + 'CADE') == 5,"Test 2" assert candidate('aaaaAAAAaaaa') == 1,"Test 3" assert candidate('Jerry jERRY JeRRRY') == 5,"Test 4"
HumanEval/17
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """
parse_music
note_map = {'o': 4, 'o|': 2, '.|': 1} return [note_map[x] for x in music_string.split(' ') if x]
def check(candidate): assert candidate('') == [],"Test 0" assert candidate('o o o o') == [4, 4, 4, 4],"Test 1" assert candidate('.| .| .| .|') == [1, 1, 1, 1],"Test 2" assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4],"Test 3" assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2],"Test 4"
HumanEval/18
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """
how_many_times
times = 0 for i in range(len(string) - len(substring) + 1): if string[i:i+len(substring)] == substring: times += 1 return times
def check(candidate): assert candidate('', 'x') == 0,"Test 0" assert candidate('xyxyxyx', 'x') == 4,"Test 1" assert candidate('cacacacac', 'cac') == 4,"Test 2" assert candidate('john doe', 'john') == 1,"Test 3"
HumanEval/19
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """
sort_numbers
value_map = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9 } return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))
def check(candidate): assert candidate('') == '',"Test 0" assert candidate('three') == 'three',"Test 1" assert candidate('three five nine') == 'three five nine',"Test 2" assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine',"Test 3" assert candidate('six five four three two one zero') == 'zero one two three four five six',"Test 4"
HumanEval/20
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """
find_closest_elements
closest_pair = None distance = None for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: if distance is None: distance = abs(elem - elem2) closest_pair = tuple(sorted([elem, elem2])) else: new_distance = abs(elem - elem2) if new_distance < distance: distance = new_distance closest_pair = tuple(sorted([elem, elem2])) return closest_pair
def check(candidate): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0),"Test 0" assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9),"Test 1" assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2),"Test 2" assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0),"Test 3" assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1),"Test 4"
HumanEval/21
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """
rescale_to_unit
min_number = min(numbers) max_number = max(numbers) return [(x - min_number) / (max_number - min_number) for x in numbers]
def check(candidate): assert candidate([2.0, 49.9]) == [0.0, 1.0],"Test 0" assert candidate([100.0, 49.9]) == [1.0, 0.0],"Test 1" assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0],"Test 2" assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75],"Test 3" assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75],"Test 4"
HumanEval/22
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """
filter_integers
return [x for x in values if isinstance(x, int)]
def check(candidate): assert candidate([]) == [],"Test 0" assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9],"Test 1" assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3],"Test 2"
HumanEval/23
def strlen(string: str) -> int: """ Return length of given string >>> strlen('') 0 >>> strlen('abc') 3 """
strlen
return len(string)
def check(candidate): assert candidate('') == 0,"Test 0" assert candidate('x') == 1,"Test 1" assert candidate('asdasnakj') == 9,"Test 2"
HumanEval/24
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """
largest_divisor
for i in reversed(range(n)): if n % i == 0: return i
def check(candidate): assert candidate(3) == 1,"Test 0" assert candidate(7) == 1,"Test 1" assert candidate(10) == 5,"Test 2" assert candidate(100) == 50,"Test 3" assert candidate(49) == 7,"Test 4"
HumanEval/25
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """
factorize
import math fact = [] i = 2 while i <= int(math.sqrt(n) + 1): if n % i == 0: fact.append(i) n //= i else: i += 1 if n > 1: fact.append(n) return fact
def check(candidate): assert candidate(2) == [2],"Test 0" assert candidate(4) == [2, 2],"Test 1" assert candidate(8) == [2, 2, 2],"Test 2" assert candidate(3 * 19) == [3, 19],"Test 3" assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19],"Test 4" assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19],"Test 5" assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19],"Test 6" assert candidate(3 * 2 * 3) == [2, 3, 3],"Test 7"
HumanEval/26
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """
remove_duplicates
import collections c = collections.Counter(numbers) return [n for n in numbers if c[n] <= 1]
def check(candidate): assert candidate([]) == [],"Test 0" assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4],"Test 1" assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5],"Test 2"
HumanEval/27
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hELLO' """
flip_case
return string.swapcase()
def check(candidate): assert candidate('') == '',"Test 0" assert candidate('Hello!') == 'hELLO!',"Test 1" assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS',"Test 2"
HumanEval/28
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """
concatenate
return ''.join(strings)
def check(candidate): assert candidate([]) == '',"Test 0" assert candidate(['x', 'y', 'z']) == 'xyz',"Test 1" assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk',"Test 2"
HumanEval/29
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """
filter_by_prefix
return [x for x in strings if x.startswith(prefix)]
def check(candidate): assert candidate([], 'john') == [],"Test 0" assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'],"Test 1"
HumanEval/30
def get_positive(l: list): """Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
get_positive
return [e for e in l if e > 0]
def check(candidate): assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6],"Test 0" assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1],"Test 1" assert candidate([-1, -2]) == [],"Test 2" assert candidate([]) == [],"Test 3"
HumanEval/31
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """
is_prime
if n < 2: return False for k in range(2, n - 1): if n % k == 0: return False return True
def check(candidate): assert candidate(6) == False,"Test 0" assert candidate(101) == True,"Test 1" assert candidate(11) == True,"Test 2" assert candidate(13441) == True,"Test 3" assert candidate(61) == True,"Test 4" assert candidate(4) == False,"Test 5" assert candidate(1) == False,"Test 6" assert candidate(5) == True,"Test 7" assert candidate(11) == True,"Test 8" assert candidate(17) == True,"Test 9" assert candidate(5 * 17) == False,"Test 10" assert candidate(11 * 7) == False,"Test 11" assert candidate(13441 * 19) == False,"Test 12"
HumanEval/32
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """
find_zero
begin, end = -1., 1. while poly(xs, begin) * poly(xs, end) > 0: begin *= 2.0 end *= 2.0 while end - begin > 1e-10: center = (begin + end) / 2.0 if poly(xs, center) * poly(xs, begin) > 0: begin = center else: end = center return begin
def check(candidate): assert math.fabs(poly(coeffs, solution)) < 1e-4,"Test 0"
HumanEval/33
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """
sort_third
l = list(l) l[::3] = sorted(l[::3]) return l
def check(candidate): assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3])),"Test 0" assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])),"Test 1" assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])),"Test 2" assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5]),"Test 3" assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5]),"Test 4" assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5]),"Test 5" assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1]),"Test 6"
HumanEval/34
def unique(l: list): """Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """
unique
return sorted(list(set(l)))
def check(candidate): assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123],"Test 0"
HumanEval/35
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """
max_element
m = l[0] for e in l: if e > m: m = e return m
def check(candidate): assert candidate([1, 2, 3]) == 3,"Test 0" assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124,"Test 1"
HumanEval/36
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """
fizz_buzz
ns = [] for i in range(n): if i % 11 == 0 or i % 13 == 0: ns.append(i) s = ''.join(list(map(str, ns))) ans = 0 for c in s: ans += (c == '7') return ans
def check(candidate): assert candidate(50) == 0,"Test 0" assert candidate(78) == 2,"Test 1" assert candidate(79) == 3,"Test 2" assert candidate(100) == 3,"Test 3" assert candidate(200) == 6,"Test 4" assert candidate(4000) == 192,"Test 5" assert candidate(10000) == 639,"Test 6" assert candidate(100000) == 8026,"Test 7"
HumanEval/37
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """
sort_even
evens = l[::2] odds = l[1::2] evens.sort() ans = [] for e, o in zip(evens, odds): ans.extend([e, o]) if len(evens) > len(odds): ans.append(evens[-1]) return ans
def check(candidate): assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3]),"Test 0" assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]),"Test 1" assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]),"Test 2"
HumanEval/38
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string encoded with encode_cyclic function. Returns decoded string. """
decode_cyclic
return encode_cyclic(encode_cyclic(s))
def check(candidate): assert candidate(encoded_str) == str,"Test 0"
HumanEval/39
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """
prime_fib
import math def is_prime(p): if p < 2: return False for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)): if p % k == 0: return False return True f = [0, 1] while True: f.append(f[-1] + f[-2]) if is_prime(f[-1]): n -= 1 if n == 0: return f[-1]
def check(candidate): assert candidate(1) == 2,"Test 0" assert candidate(2) == 3,"Test 1" assert candidate(3) == 5,"Test 2" assert candidate(4) == 13,"Test 3" assert candidate(5) == 89,"Test 4" assert candidate(6) == 233,"Test 5" assert candidate(7) == 1597,"Test 6" assert candidate(8) == 28657,"Test 7" assert candidate(9) == 514229,"Test 8" assert candidate(10) == 433494437,"Test 9"
HumanEval/40
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """
triples_sum_to_zero
for i in range(len(l)): for j in range(i + 1, len(l)): for k in range(j + 1, len(l)): if l[i] + l[j] + l[k] == 0: return True return False
def check(candidate): assert candidate([1, 3, 5, 0]) == False,"Test 0" assert candidate([1, 3, 5, -1]) == False,"Test 1" assert candidate([1, 3, -2, 1]) == True,"Test 2" assert candidate([1, 2, 3, 7]) == False,"Test 3" assert candidate([1, 2, 5, 7]) == False,"Test 4" assert candidate([2, 4, -5, 3, 9, 7]) == True,"Test 5" assert candidate([1]) == False,"Test 6" assert candidate([1, 3, 5, -100]) == False,"Test 7" assert candidate([100, 3, 5, -100]) == False,"Test 8"
HumanEval/41
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
car_race_collision
return n**2
def check(candidate): assert candidate(2) == 4,"Test 0" assert candidate(3) == 9,"Test 1" assert candidate(4) == 16,"Test 2" assert candidate(8) == 64,"Test 3" assert candidate(10) == 100,"Test 4"
HumanEval/42
def incr_list(l: list): """Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """
incr_list
return [(e + 1) for e in l]
def check(candidate): assert candidate([]) == [],"Test 0" assert candidate([3, 2, 1]) == [4, 3, 2],"Test 1" assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124],"Test 2"
HumanEval/43
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """
pairs_sum_to_zero
for i, l1 in enumerate(l): for j in range(i + 1, len(l)): if l1 + l[j] == 0: return True return False
def check(candidate): assert candidate([1, 3, 5, 0]) == False,"Test 0" assert candidate([1, 3, -2, 1]) == False,"Test 1" assert candidate([1, 2, 3, 7]) == False,"Test 2" assert candidate([2, 4, -5, 3, 5, 7]) == True,"Test 3" assert candidate([1]) == False,"Test 4" assert candidate([-3, 9, -1, 3, 2, 30]) == True,"Test 5" assert candidate([-3, 9, -1, 3, 2, 31]) == True,"Test 6" assert candidate([-3, 9, -1, 4, 2, 30]) == False,"Test 7" assert candidate([-3, 9, -1, 4, 2, 31]) == False,"Test 8"
HumanEval/44
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """
change_base
ret = "" while x > 0: ret = str(x % base) + ret x //= base return ret
def check(candidate): assert candidate(8, 3) == "22","Test 0" assert candidate(9, 3) == "100","Test 1" assert candidate(234, 2) == "11101010","Test 2" assert candidate(16, 2) == "10000","Test 3" assert candidate(8, 2) == "1000","Test 4" assert candidate(7, 2) == "111","Test 5"
HumanEval/45
def triangle_area(a, h): """Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 """
triangle_area
return a * h / 2.0
def check(candidate): assert candidate(5, 3) == 7.5,"Test 0" assert candidate(2, 2) == 2.0,"Test 1" assert candidate(10, 8) == 40.0,"Test 2"
HumanEval/46
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """
fib4
results = [0, 0, 2, 0] if n < 4: return results[n] for _ in range(4, n + 1): results.append(results[-1] + results[-2] + results[-3] + results[-4]) results.pop(0) return results[-1]
def check(candidate): assert candidate(5) == 4,"Test 0" assert candidate(8) == 28,"Test 1" assert candidate(10) == 104,"Test 2" assert candidate(12) == 386,"Test 3"
HumanEval/47
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """
median
l = sorted(l) if len(l) % 2 == 1: return l[len(l) // 2] else: return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
def check(candidate): assert candidate([3, 1, 2, 4, 5]) == 3,"Test 0" assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0,"Test 1" assert candidate([5]) == 5,"Test 2" assert candidate([6, 5]) == 5.5,"Test 3" assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7 ,"Test 4"
HumanEval/48
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """
is_palindrome
for i in range(len(text)): if text[i] != text[len(text) - 1 - i]: return False return True
def check(candidate): assert candidate('') == True,"Test 0" assert candidate('aba') == True,"Test 1" assert candidate('aaaaa') == True,"Test 2" assert candidate('zbcd') == False,"Test 3" assert candidate('xywyx') == True,"Test 4" assert candidate('xywyz') == False,"Test 5" assert candidate('xywzx') == False,"Test 6"
HumanEval/49
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """
modp
ret = 1 for i in range(n): ret = (2 * ret) % p return ret
def check(candidate): assert candidate(3, 5) == 3,"Test 0" assert candidate(1101, 101) == 2,"Test 1" assert candidate(0, 101) == 1,"Test 2" assert candidate(3, 11) == 8,"Test 3" assert candidate(100, 101) == 1,"Test 4" assert candidate(30, 5) == 4,"Test 5" assert candidate(31, 5) == 3,"Test 6"
HumanEval/50
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function. Returns decoded string. """
decode_shift
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
def check(candidate): assert candidate(copy.deepcopy(encoded_str)) == str,"Test 0"
HumanEval/51
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """
remove_vowels
return "".join([s for s in text if s.lower() not in ["a", "e", "i", "o", "u"]])
def check(candidate): assert candidate('') == '',"Test 0" assert candidate("abcdef\nghijklm") == 'bcdf\nghjklm',"Test 1" assert candidate('fedcba') == 'fdcb',"Test 2" assert candidate('eeeee') == '',"Test 3" assert candidate('acBAA') == 'cB',"Test 4" assert candidate('EcBOO') == 'cB',"Test 5" assert candidate('ybcd') == 'ybcd',"Test 6"
HumanEval/52
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """
below_threshold
for e in l: if e >= t: return False return True
def check(candidate): assert candidate([1, 2, 4, 10], 100),"Test 0" assert not candidate([1, 20, 4, 10], 5),"Test 1" assert candidate([1, 20, 4, 10], 21),"Test 2" assert candidate([1, 20, 4, 10], 22),"Test 3" assert candidate([1, 8, 4, 10], 11),"Test 4" assert not candidate([1, 8, 4, 10], 10),"Test 5"
HumanEval/53
def add(x: int, y: int): """Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 """
add
return x + y
def check(candidate): assert candidate(0, 1) == 1,"Test 0" assert candidate(1, 0) == 1,"Test 1" assert candidate(2, 3) == 5,"Test 2" assert candidate(5, 7) == 12,"Test 3" assert candidate(7, 5) == 12,"Test 4"
HumanEval/54
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """
same_chars
return set(s0) == set(s1)
def check(candidate): assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True,"Test 0" assert candidate('abcd', 'dddddddabc') == True,"Test 1" assert candidate('dddddddabc', 'abcd') == True,"Test 2" assert candidate('eabcd', 'dddddddabc') == False,"Test 3" assert candidate('abcd', 'dddddddabcf') == False,"Test 4" assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False,"Test 5" assert candidate('aabb', 'aaccc') == False,"Test 6"
HumanEval/55
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """
fib
if n == 0: return 0 if n == 1: return 1 return fib(n - 1) + fib(n - 2)
def check(candidate): assert candidate(10) == 55,"Test 0" assert candidate(1) == 1,"Test 1" assert candidate(8) == 21,"Test 2" assert candidate(11) == 89,"Test 3" assert candidate(12) == 144,"Test 4"
HumanEval/56
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("<") False >>> correct_bracketing("<>") True >>> correct_bracketing("<<><>>") True >>> correct_bracketing("><<>") False """
correct_bracketing
depth = 0 for b in brackets: if b == "<": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0
def check(candidate): assert candidate("<>"),"Test 0" assert candidate("<<><>>"),"Test 1" assert candidate("<><><<><>><>"),"Test 2" assert candidate("<><><<<><><>><>><<><><<>>>"),"Test 3" assert not candidate("<<<><>>>>"),"Test 4" assert not candidate("><<>"),"Test 5" assert not candidate("<"),"Test 6" assert not candidate("<<<<"),"Test 7" assert not candidate(">"),"Test 8" assert not candidate("<<>"),"Test 9" assert not candidate("<><><<><>><>><<>"),"Test 10" assert not candidate("<><><<><>><>>><>"),"Test 11"
HumanEval/57
def monotonic(l: list): """Return True is list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) True >>> monotonic([1, 20, 4, 10]) False >>> monotonic([4, 1, 0, -10]) True """
monotonic
if l == sorted(l) or l == sorted(l, reverse=True): return True return False
def check(candidate): assert candidate([1, 2, 4, 10]) == True,"Test 0" assert candidate([1, 2, 4, 20]) == True,"Test 1" assert candidate([1, 20, 4, 10]) == False,"Test 2" assert candidate([4, 1, 0, -10]) == True,"Test 3" assert candidate([4, 1, 1, 0]) == True,"Test 4" assert candidate([1, 2, 3, 2, 5, 60]) == False,"Test 5" assert candidate([1, 2, 3, 4, 5, 60]) == True,"Test 6" assert candidate([9, 9, 9, 9]) == True,"Test 7"
HumanEval/58
def common(l1: list, l2: list): """Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """
common
ret = set() for e1 in l1: for e2 in l2: if e1 == e2: ret.add(e1) return sorted(list(ret))
def check(candidate): assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653],"Test 0" assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3],"Test 1" assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4],"Test 2" assert candidate([4, 3, 2, 8], []) == [],"Test 3"
HumanEval/59
def largest_prime_factor(n: int): """Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 """
largest_prime_factor
def is_prime(k): if k < 2: return False for i in range(2, k - 1): if k % i == 0: return False return True largest = 1 for j in range(2, n + 1): if n % j == 0 and is_prime(j): largest = max(largest, j) return largest
def check(candidate): assert candidate(15) == 5,"Test 0" assert candidate(27) == 3,"Test 1" assert candidate(63) == 7,"Test 2" assert candidate(330) == 11,"Test 3" assert candidate(13195) == 29,"Test 4"
HumanEval/60
def sum_to_n(n: int): """sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1 """
sum_to_n
return sum(range(n + 1))
def check(candidate): assert candidate(1) == 1,"Test 0" assert candidate(6) == 21,"Test 1" assert candidate(11) == 66,"Test 2" assert candidate(30) == 465,"Test 3" assert candidate(100) == 5050,"Test 4"
HumanEval/61
def correct_bracketing_2(brackets: str): """ brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("(") False >>> correct_bracketing("()") True >>> correct_bracketing("(()())") True >>> correct_bracketing(")(()") False """
correct_bracketing_2
depth = 0 for b in brackets: if b == "(": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0
def check(candidate): assert candidate("()"),"Test 0" assert candidate("(()())"),"Test 1" assert candidate("()()(()())()"),"Test 2" assert candidate("()()((()()())())(()()(()))"),"Test 3" assert not candidate("((()())))"),"Test 4" assert not candidate(")(()"),"Test 5" assert not candidate("("),"Test 6" assert not candidate("(((("),"Test 7" assert not candidate(")"),"Test 8" assert not candidate("(()"),"Test 9" assert not candidate("()()(()())())(()"),"Test 10" assert not candidate("()()(()())()))()"),"Test 11"
HumanEval/62
def derivative(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6] """
derivative
return [(i * x) for i, x in enumerate(xs)][1:]
def check(candidate): assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20],"Test 0" assert candidate([1, 2, 3]) == [2, 6],"Test 1" assert candidate([3, 2, 1]) == [2, 2],"Test 2" assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16],"Test 3" assert candidate([1]) == [],"Test 4"
HumanEval/63
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """
fibfib
if n == 0: return 0 if n == 1: return 0 if n == 2: return 1 return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
def check(candidate): assert candidate(2) == 1,"Test 0" assert candidate(1) == 0,"Test 1" assert candidate(5) == 4,"Test 2" assert candidate(8) == 24,"Test 3" assert candidate(10) == 81,"Test 4" assert candidate(12) == 274,"Test 5" assert candidate(14) == 927,"Test 6"
HumanEval/64
FIX = """ Add more test cases. """ def vowels_count(s): """Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3 """
vowels_count
vowels = "aeiouAEIOU" n_vowels = sum(c in vowels for c in s) if s[-1] == 'y' or s[-1] == 'Y': n_vowels += 1 return n_vowels
def check(candidate): assert candidate("abcde") == 2, "Test 1" assert candidate("Alone") == 3, "Test 2" assert candidate("key") == 2, "Test 3" assert candidate("bye") == 1, "Test 4" assert candidate("keY") == 2, "Test 5" assert candidate("bYe") == 1, "Test 6" assert candidate("ACEDY") == 3, "Test 7" assert True,"Test 7"
HumanEval/65
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" """
circular_shift
s = str(x) if shift > len(s): return s[::-1] else: return s[len(s) - shift:] + s[:len(s) - shift]
def check(candidate): assert candidate(100, 2) == "001","Test 0" assert candidate(12, 2) == "12","Test 1" assert candidate(97, 8) == "79","Test 2" assert candidate(12, 1) == "21","Test 3" assert candidate(11, 101) == "11","Test 4"
HumanEval/66
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("") => 0 digitSum("abAB") => 131 digitSum("abcCd") => 67 digitSum("helloE") => 69 digitSum("woArBld") => 131 digitSum("aAaaaXa") => 153 """
digitSum
if s == "": return 0 return sum(ord(char) if char.isupper() else 0 for char in s)
def check(candidate): assert True,"Test 0" assert candidate("") == 0,"Test 1" assert candidate("abAB") == 131,"Test 2" assert candidate("abcCd") == 67,"Test 3" assert candidate("helloE") == 69,"Test 4" assert candidate("woArBld") == 131,"Test 5" assert candidate("aAaaaXa") == 153,"Test 6" assert True,"Test 7" assert candidate(" How are yOu?") == 151,"Test 8" assert candidate("You arE Very Smart") == 327,"Test 9"
HumanEval/67
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 """
fruit_distribution
lis = list() for i in s.split(' '): if i.isdigit(): lis.append(int(i)) return n - sum(lis)
def check(candidate): assert candidate("5 apples and 6 oranges",19) == 8,"Test 0" assert candidate("5 apples and 6 oranges",21) == 10,"Test 1" assert candidate("0 apples and 1 oranges",3) == 2,"Test 2" assert candidate("1 apples and 0 oranges",3) == 2,"Test 3" assert candidate("2 apples and 3 oranges",100) == 95,"Test 4" assert candidate("2 apples and 3 oranges",5) == 0,"Test 5" assert candidate("1 apples and 100 oranges",120) == 19,"Test 6"
HumanEval/68
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: Input: [1,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """
pluck
if(len(arr) == 0): return [] evens = list(filter(lambda x: x%2 == 0, arr)) if(evens == []): return [] return [min(evens), arr.index(min(evens))]
def check(candidate): assert True,"Test 0" assert candidate([4,2,3]) == [2, 1],"Test 1" assert candidate([1,2,3]) == [2, 1],"Test 2" assert candidate([]) == [],"Test 3" assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1],"Test 4" assert True,"Test 5" assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3],"Test 6" assert candidate([5, 4, 8, 4 ,8]) == [4, 1],"Test 7" assert candidate([7, 6, 7, 1]) == [6, 1],"Test 8" assert candidate([7, 9, 7, 1]) == [],"Test 9"
HumanEval/69
def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 '''
search
frq = [0] * (max(lst) + 1) for i in lst: frq[i] += 1; ans = -1 for i in range(1, len(frq)): if frq[i] >= i: ans = i return ans
def check(candidate): assert candidate([5, 5, 5, 5, 1]) == 1,"Test 0" assert candidate([4, 1, 4, 1, 4, 4]) == 4,"Test 1" assert candidate([3, 3]) == -1,"Test 2" assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8,"Test 3" assert candidate([2, 3, 3, 2, 2]) == 2,"Test 4" assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1,"Test 5" assert candidate([3, 2, 8, 2]) == 2,"Test 6" assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1,"Test 7" assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1,"Test 8" assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1,"Test 9" assert candidate([1, 9, 10, 1, 3]) == 1,"Test 10" assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5,"Test 11" assert candidate([1]) == 1,"Test 12" assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4,"Test 13" assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2,"Test 14" assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1,"Test 15" assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4,"Test 16" assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4,"Test 17" assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2,"Test 18" assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1,"Test 19" assert candidate([10]) == -1,"Test 20" assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2,"Test 21" assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1,"Test 22" assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1,"Test 23" assert candidate([3, 10, 10, 9, 2]) == -1,"Test 24"
HumanEval/70
def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] '''
strange_sort_list
res, switch = [], True while lst: res.append(min(lst) if switch else max(lst)) lst.remove(res[-1]) switch = not switch return res
def check(candidate): assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3],"Test 0" assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7],"Test 1" assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3],"Test 2" assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7],"Test 3" assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5],"Test 4" assert candidate([]) == [],"Test 5" assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5],"Test 6" assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2],"Test 7" assert candidate([111111]) == [111111],"Test 8" assert True,"Test 9"
HumanEval/71
def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 '''
triangle_area
if a + b <= c or a + c <= b or b + c <= a: return -1 s = (a + b + c)/2 area = (s * (s - a) * (s - b) * (s - c)) ** 0.5 area = round(area, 2) return area
def check(candidate): assert candidate(3, 4, 5) == 6.00,"Test 0" assert candidate(1, 2, 10) == -1,"Test 1" assert candidate(4, 8, 5) == 8.18,"Test 2" assert candidate(2, 2, 2) == 1.73,"Test 3" assert candidate(1, 2, 3) == -1,"Test 4" assert candidate(10, 5, 7) == 16.25,"Test 5" assert candidate(2, 6, 3) == -1,"Test 6" assert candidate(1, 1, 1) == 0.43,"Test 7" assert candidate(2, 2, 10) == -1,"Test 8"
HumanEval/72
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. '''
will_it_fly
if sum(q) > w: return False i, j = 0, len(q)-1 while i<j: if q[i] != q[j]: return False i+=1 j-=1 return True
def check(candidate): assert candidate([3, 2, 3], 9) is True,"Test 0" assert candidate([1, 2], 5) is False,"Test 1" assert candidate([3], 5) is True,"Test 2" assert candidate([3, 2, 3], 1) is False,"Test 3" assert candidate([1, 2, 3], 6) is False,"Test 4" assert candidate([5], 5) is True,"Test 5"
HumanEval/73
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change([1,2,3,5,4,7,9,6]) == 4 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 smallest_change([1, 2, 3, 2, 1]) == 0 """
smallest_change
ans = 0 for i in range(len(arr) // 2): if arr[i] != arr[len(arr) - i - 1]: ans += 1 return ans
def check(candidate): assert candidate([1,2,3,5,4,7,9,6]) == 4,"Test 0" assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1,"Test 1" assert candidate([1, 4, 2]) == 1,"Test 2" assert candidate([1, 4, 4, 2]) == 1,"Test 3" assert candidate([1, 2, 3, 2, 1]) == 0,"Test 4" assert candidate([3, 1, 1, 3]) == 0,"Test 5" assert candidate([1]) == 0,"Test 6" assert candidate([0, 1]) == 1,"Test 7"
HumanEval/74
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] '''
total_match
l1 = 0 for st in lst1: l1 += len(st) l2 = 0 for st in lst2: l2 += len(st) if l1 <= l2: return lst1 else: return lst2
def check(candidate): assert True,"Test 0" assert candidate([], []) == [],"Test 1" assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi'],"Test 2" assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin'],"Test 3" assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4'],"Test 4" assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi'],"Test 5" assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi'],"Test 6" assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin'],"Test 7" assert True,"Test 8" assert candidate([], ['this']) == [],"Test 9" assert candidate(['this'], []) == [],"Test 10"
HumanEval/75
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """
is_multiply_prime
def is_prime(n): for j in range(2,n): if n%j == 0: return False return True for i in range(2,101): if not is_prime(i): continue for j in range(2,101): if not is_prime(j): continue for k in range(2,101): if not is_prime(k): continue if i*j*k == a: return True return False
def check(candidate): assert candidate(5) == False,"Test 0" assert candidate(30) == True,"Test 1" assert candidate(8) == True,"Test 2" assert candidate(10) == False,"Test 3" assert candidate(125) == True,"Test 4" assert candidate(3 * 5 * 7) == True,"Test 5" assert candidate(3 * 6 * 7) == False,"Test 6" assert candidate(9 * 9 * 9) == False,"Test 7" assert candidate(11 * 9 * 9) == False,"Test 8" assert candidate(11 * 13 * 7) == True,"Test 9"
HumanEval/76
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """
is_simple_power
if (n == 1): return (x == 1) power = 1 while (power < x): power = power * n return (power == x)
def check(candidate): assert candidate(16, 2)== True,"Test 0" assert candidate(143214, 16)== False,"Test 1" assert candidate(4, 2)==True,"Test 2" assert candidate(9, 3)==True,"Test 3" assert candidate(16, 4)==True,"Test 4" assert candidate(24, 2)==False,"Test 5" assert candidate(128, 4)==False,"Test 6" assert candidate(12, 6)==False,"Test 7" assert candidate(1, 1)==True,"Test 8" assert candidate(1, 12)==True,"Test 9"
HumanEval/77
def iscube(a): ''' Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False '''
iscube
a = abs(a) return int(round(a ** (1. / 3))) ** 3 == a
def check(candidate): assert candidate(1) == True,"Test 0" assert candidate(2) == False,"Test 1" assert candidate(-1) == True,"Test 2" assert candidate(64) == True,"Test 3" assert candidate(180) == False,"Test 4" assert candidate(1000) == True,"Test 5" assert candidate(0) == True,"Test 6" assert candidate(1729) == False,"Test 7"
HumanEval/78
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """
hex_key
primes = ('2', '3', '5', '7', 'B', 'D') total = 0 for i in range(0, len(num)): if num[i] in primes: total += 1 return total
def check(candidate): assert candidate("AB") == 1,"Test 0" assert candidate("1077E") == 2,"Test 1" assert candidate("ABED1A33") == 4,"Test 2" assert candidate("2020") == 2,"Test 3" assert candidate("123456789ABCDEF0") == 6,"Test 4" assert candidate("112233445566778899AABBCCDDEEFF00") == 12,"Test 5" assert candidate([]) == 0,"Test 6"
HumanEval/79
def decimal_to_binary(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns "db1111db" decimal_to_binary(32) # returns "db100000db" """
decimal_to_binary
return "db" + bin(decimal)[2:] + "db"
def check(candidate): assert candidate(0) == "db0db","Test 0" assert candidate(32) == "db100000db","Test 1" assert candidate(103) == "db1100111db","Test 2" assert candidate(15) == "db1111db","Test 3" assert True,"Test 4"
HumanEval/80
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """
is_happy
if len(s) < 3: return False for i in range(len(s) - 2): if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False return True
def check(candidate): assert candidate("a") == False ,"Test 0" assert candidate("aa") == False ,"Test 1" assert candidate("abcd") == True ,"Test 2" assert candidate("aabb") == False ,"Test 3" assert candidate("adb") == True ,"Test 4" assert candidate("xyy") == False ,"Test 5" assert candidate("iopaxpoi") == True ,"Test 6" assert candidate("iopaxioi") == False ,"Test 7"
HumanEval/81
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """
numerical_letter_grade
letter_grade = [] for gpa in grades: if gpa == 4.0: letter_grade.append("A+") elif gpa > 3.7: letter_grade.append("A") elif gpa > 3.3: letter_grade.append("A-") elif gpa > 3.0: letter_grade.append("B+") elif gpa > 2.7: letter_grade.append("B") elif gpa > 2.3: letter_grade.append("B-") elif gpa > 2.0: letter_grade.append("C+") elif gpa > 1.7: letter_grade.append("C") elif gpa > 1.3: letter_grade.append("C-") elif gpa > 1.0: letter_grade.append("D+") elif gpa > 0.7: letter_grade.append("D") elif gpa > 0.0: letter_grade.append("D-") else: letter_grade.append("E") return letter_grade
def check(candidate): assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-'],"Test 0" assert candidate([1.2]) == ['D+'],"Test 1" assert candidate([0.5]) == ['D-'],"Test 2" assert candidate([0.0]) == ['E'],"Test 3" assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+'],"Test 4" assert candidate([0, 0.7]) == ['E', 'D-'],"Test 5" assert True,"Test 6"
HumanEval/82
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """
prime_length
l = len(string) if l == 0 or l == 1: return False for i in range(2, l): if l % i == 0: return False return True
def check(candidate): assert candidate('Hello') == True,"Test 0" assert candidate('abcdcba') == True,"Test 1" assert candidate('kittens') == True,"Test 2" assert candidate('orange') == False,"Test 3" assert candidate('wow') == True,"Test 4" assert candidate('world') == True,"Test 5" assert candidate('MadaM') == True,"Test 6" assert candidate('Wow') == True,"Test 7" assert candidate('') == False,"Test 8" assert candidate('HI') == True,"Test 9" assert candidate('go') == True,"Test 10" assert candidate('gogo') == False,"Test 11" assert candidate('aaaaaaaaaaaaaaa') == False,"Test 12" assert candidate('Madam') == True,"Test 13" assert candidate('M') == False,"Test 14" assert candidate('0') == False,"Test 15"
HumanEval/83
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """
starts_one_ends
if n == 1: return 1 return 18 * (10 ** (n - 2))
def check(candidate): assert True,"Test 0" assert candidate(1) == 1,"Test 1" assert candidate(2) == 18,"Test 2" assert candidate(3) == 180,"Test 3" assert candidate(4) == 1800,"Test 4" assert candidate(5) == 18000,"Test 5" assert True,"Test 6"
HumanEval/84
def solve(N): """Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 1 the output should be "1". For N = 150, the sum of digits will be 6 the output should be "110". For N = 147, the sum of digits will be 12 the output should be "1100". Variables: @N integer Constraints: 0 ≀ N ≀ 10000. Output: a string of binary number """
solve
return bin(sum(int(i) for i in str(N)))[2:]
def check(candidate): assert True,"Test 0" assert candidate(1000) == "1","Test 1" assert candidate(150) == "110","Test 2" assert candidate(147) == "1100","Test 3" assert True,"Test 4" assert candidate(333) == "1001","Test 5" assert candidate(963) == "10010","Test 6"
HumanEval/85
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 2 """
add
return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])
def check(candidate): assert candidate([4, 88]) == 88,"Test 0" assert candidate([4, 5, 6, 7, 2, 122]) == 122,"Test 1" assert candidate([4, 0, 6, 7]) == 0,"Test 2" assert candidate([4, 4, 6, 8]) == 12,"Test 3"
HumanEval/86
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """
anti_shuffle
return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])
def check(candidate): assert candidate('Hi') == 'Hi',"Test 0" assert candidate('hello') == 'ehllo',"Test 1" assert candidate('number') == 'bemnru',"Test 2" assert candidate('abcd') == 'abcd',"Test 3" assert candidate('Hello World!!!') == 'Hello !!!Wdlor',"Test 4" assert candidate('') == '',"Test 5" assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy',"Test 6" assert True,"Test 7"
HumanEval/87
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """
get_row
coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x] return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
def check(candidate): assert candidate([[1,2,3,4,5,6],[1,2,3,4,1,6],[1,2,3,4,5,1]], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)], "Test 0" assert candidate([[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6],[1,2,3,4,5,6]], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)], "Test 1" assert candidate([[1,2,3,4,5,6],[1,2,3,4,5,6],[1,1,3,4,5,6],[1,2,1,4,5,6],[1,2,3,1,5,6],[1,2,3,4,1,6],[1,2,3,4,5,1]], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)], "Test 2" assert candidate([], 1) == [], "Test 3" assert candidate([[1]], 2) == [], "Test 4" assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)], "Test 5"
HumanEval/88
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """
sort_array
return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0)
def check(candidate): assert True,"Test 0" assert candidate([]) == [],"Test 1" assert candidate([5]) == [5],"Test 2" assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5],"Test 3" assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0],"Test 4" assert True,"Test 5" assert candidate([2, 1]) == [1, 2],"Test 6" assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87],"Test 7" assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11],"Test 8"
HumanEval/89
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """
encrypt
d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d: out += d[(d.index(c)+2*2) % 26] else: out += c return out
def check(candidate): assert candidate('hi') == 'lm',"Test 0" assert candidate('asdfghjkl') == 'ewhjklnop',"Test 1" assert candidate('gf') == 'kj',"Test 2" assert candidate('et') == 'ix',"Test 3" assert candidate('faewfawefaewg')=='jeiajeaijeiak',"Test 4" assert candidate('hellomyfriend')=='lippsqcjvmirh',"Test 5" assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl',"Test 6" assert candidate('a')=='e',"Test 7"
HumanEval/90
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """
next_smallest
lst = sorted(set(lst)) return None if len(lst) < 2 else lst[1]
def check(candidate): assert candidate([1, 2, 3, 4, 5]) == 2,"Test 0" assert candidate([5, 1, 4, 3, 2]) == 2,"Test 1" assert candidate([]) == None,"Test 2" assert candidate([1, 1]) == None,"Test 3" assert candidate([1,1,1,1,0]) == 1,"Test 4" assert candidate([1, 0**0]) == None,"Test 5" assert candidate([-35, 34, 12, -45]) == -35,"Test 6" assert True,"Test 7"
HumanEval/91
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """
is_bored
import re sentences = re.split(r'[.?!]\s*', S) return sum(sentence[0:2] == 'I ' for sentence in sentences)
def check(candidate): assert candidate("Hello world") == 0, "Test 1" assert candidate("Is the sky blue?") == 0, "Test 2" assert candidate("I love It !") == 1, "Test 3" assert candidate("bIt") == 0, "Test 4" assert candidate("I feel good today. I will be productive. will kill It") == 2, "Test 5" assert candidate("You and I are going for a walk") == 0, "Test 6" assert True,"Test 6"
HumanEval/92
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False '''
any_int
if isinstance(x,int) and isinstance(y,int) and isinstance(z,int): if (x+y==z) or (x+z==y) or (y+z==x): return True return False return False
def check(candidate): assert candidate(2, 3, 1)==True,"Test 0" assert candidate(2.5, 2, 3)==False,"Test 1" assert candidate(1.5, 5, 3.5)==False,"Test 2" assert candidate(2, 6, 2)==False,"Test 3" assert candidate(4, 2, 2)==True,"Test 4" assert candidate(2.2, 2.2, 2.2)==False,"Test 5" assert candidate(-4, 6, 2)==True,"Test 6" assert candidate(2,1,1)==True,"Test 7" assert candidate(3,4,7)==True,"Test 8" assert candidate(3.0,4,7)==False,"Test 9"
HumanEval/93
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """
encode
vowels = "aeiouAEIOU" vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels]) message = message.swapcase() return ''.join([vowels_replace[i] if i in vowels else i for i in message])
def check(candidate): assert candidate('TEST') == 'tgst',"Test 0" assert candidate('Mudasir') == 'mWDCSKR',"Test 1" assert candidate('YES') == 'ygs',"Test 2" assert candidate('This is a message') == 'tHKS KS C MGSSCGG',"Test 3" assert candidate("I DoNt KnOw WhAt tO WrItE") == 'k dQnT kNqW wHcT Tq wRkTg',"Test 4"
HumanEval/94
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """
skjkasdkd
def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True maxx = 0 i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1 result = sum(int(digit) for digit in str(maxx)) return result
def check(candidate): assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10,"Test 0" assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25,"Test 1" assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13,"Test 2" assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11,"Test 3" assert candidate([0,81,12,3,1,21]) == 3,"Test 4" assert candidate([0,8,1,2,1,7]) == 7,"Test 5" assert candidate([8191]) == 19,"Test 6" assert candidate([8191, 123456, 127, 7]) == 19,"Test 7" assert candidate([127, 97, 8192]) == 10,"Test 8"
HumanEval/95
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return True. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. """
check_dict_case
if len(dict.keys()) == 0: return False else: state = "start" for key in dict.keys(): if isinstance(key, str) == False: state = "mixed" break if state == "start": if key.isupper(): state = "upper" elif key.islower(): state = "lower" else: break elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()): state = "mixed" break else: break return state == "upper" or state == "lower"
def check(candidate): assert candidate({"p":"pineapple","Test 0" assert candidate({"p":"pineapple","Test 1" assert candidate({"p":"pineapple", 5:"banana","Test 2" assert candidate({"Name":"John","Test 3" assert candidate({"STATE":"NC","Test 4" assert candidate({"fruit":"Orange","Test 5" assert candidate({}) == False,"Test 6"
HumanEval/96
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """
count_up_to
primes = [] for i in range(2, n): is_prime = True for j in range(2, i): if i % j == 0: is_prime = False break if is_prime: primes.append(i) return primes
def check(candidate): assert candidate(5) == [2,3],"Test 0" assert candidate(6) == [2,3,5],"Test 1" assert candidate(7) == [2,3,5],"Test 2" assert candidate(10) == [2,3,5,7],"Test 3" assert candidate(0) == [],"Test 4" assert candidate(22) == [2,3,5,7,11,13,17,19],"Test 5" assert candidate(1) == [],"Test 6" assert candidate(18) == [2,3,5,7,11,13,17],"Test 7" assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43],"Test 8" assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97],"Test 9"
HumanEval/97
def multiply(a, b): """Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 16. multiply(19, 28) should return 72. multiply(2020, 1851) should return 0. multiply(14,-15) should return 20. """
multiply
return abs(a % 10) * abs(b % 10)
def check(candidate): assert candidate(148, 412) == 16,"Test 0" assert candidate(19, 28) == 72,"Test 1" assert candidate(2020, 1851) == 0,"Test 2" assert candidate(14,-15) == 20,"Test 3" assert candidate(76, 67) == 42,"Test 4" assert candidate(17, 27) == 49,"Test 5" assert candidate(0, 1) == 0,"Test 6" assert candidate(0, 0) == 0,"Test 7"
HumanEval/98
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """
count_upper
count = 0 for i in range(0,len(s),2): if s[i] in "AEIOU": count += 1 return count
def check(candidate): assert candidate('aBCdEf') == 1,"Test 0" assert candidate('abcdefg') == 0,"Test 1" assert candidate('dBBE') == 0,"Test 2" assert candidate('B') == 0,"Test 3" assert candidate('U') == 1,"Test 4" assert candidate('') == 0,"Test 5" assert candidate('EEEE') == 2,"Test 6" assert True,"Test 7"
HumanEval/99
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15. '''
closest_integer
from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
def check(candidate): assert candidate("10") == 10, "Test 1" assert candidate("14.5") == 15, "Test 2" assert candidate("-15.5") == -16, "Test 3" assert candidate("15.3") == 15, "Test 3" assert candidate("0") == 0, "Test 0"
End of preview.
README.md exists but content is empty.
Downloads last month
54