modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
cahya/xlm-roberta-base-indonesian-NER
2020-09-23T15:55:35.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
cahya
73
transformers
cahya/xlm-roberta-large-indonesian-NER
2020-09-23T15:55:50.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
cahya
30
transformers
caicia/cnews
2021-04-19T08:56:10.000Z
[]
[ ".gitattributes" ]
caicia
0
caixin1998/chinese-poetry-gpt
2020-12-13T14:39:30.000Z
[]
[ ".gitattributes" ]
caixin1998
0
caixin1998/chinese-poetry-gpt2-pretrain
2021-05-21T14:42:36.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
caixin1998
31
transformers
caixin1998/chinese-poetry-gpt2
2021-05-21T14:43:50.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
caixin1998
15
transformers
calpt/adapter-bert-base-squad1
2021-06-08T10:13:48.000Z
[ "bert", "adapter-transformers", "adapterhub:qa/squad1" ]
[ ".gitattributes", "README.md", "adapter_config.json", "head_config.json", "pytorch_adapter.bin", "pytorch_model_head.bin" ]
calpt
0
adapter-transformers
--- tags: - adapter-transformers - adapterhub:qa/squad1 --- # BERT-base Adapter for SQuAD 1.1 Imported from https://adapterhub.ml/adapters/ukp/bert-base-uncased_qa_squad1_houlsby/.
cambridgeltl/BioRedditBERT-uncased
2021-05-19T13:43:40.000Z
[ "pytorch", "tf", "jax", "bert", "en", "arxiv:2010.03295", "transformers", "BioNLP", "social_media" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cambridgeltl
912
transformers
--- language: - en tags: - BioNLP - social_media --- # BioRedditBERT ## Model description BioRedditBERT is a BERT model initialised from BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) and further pre-trained on health-related Reddit posts. Please view our paper [COMETA: A Corpus for Medical Entity Linking in the Social Media](https://arxiv.org/pdf/2010.03295.pdf) (EMNLP 2020) for more details. ## Training data We crawled all threads from 68 health themed subreddits such as `r/AskDocs`, `r/health` and etc. starting from the beginning of 2015 to the end of 2018, obtaining a collection of more than 800K discussions. This collection was then pruned by removing deleted posts, comments from bots or moderators, and so on. In the end, we obtained the training corpus with ca. 300 million tokens and a vocabulary size of ca. 780,000 words. ## Training procedure We use the same pre-training script in the original [google-research/bert](https://github.com/google-research/bert) repo. The model is initialised with [`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`](https://github.com/dmis-lab/biobert). We train with a batch size of 64, a max sequence length of 64, a learning rate of `2e-5` for 100k steps on two GeForce GTX 1080Ti (11 GB) GPUs. Other hyper-parameters are the same as default. ## Eval results To show the benefit from further pre-training on the social media domain, we demonstrate results on a medical entity linking dataset also in the social media: [AskAPatient](https://zenodo.org/record/55013#.X4ncRmTYpb8) [(Limsopatham and Collier 2016)](https://www.aclweb.org/anthology/P16-1096.pdf). We follow the same 10-fold cross-validation procedure for all models and report the average result without fine-tuning. `[CLS]` is used as representations for entity mentions (we also tried average of all tokens but found `[CLS]` generally performs better). Model | Accuracy@1 | Accuracy@5 -------|---------|--------- [BERT-base-uncased](https://huggingface.co/bert-base-uncased) | 38.2 | 43.3 [BioBERT v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) | 41.4 | 51.5 [ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) | 43.9 | 54.3 [BlueBERT](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/NCBI_BERT_pubmed_mimic_uncased_L-12_H-768_A-12.zip) | 41.5 | 48.5 [SciBERT](https://huggingface.co/allenai/scibert_scivocab_uncased) | 42.3 | 51.9 [PubMedBERT](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) | 42.5 | 49.6 BioRedditBERT | **44.3** | **56.2** ### BibTeX entry and citation info ```bibtex @inproceedings{basaldella-2020-cometa, title = "{COMETA}: A Corpus for Medical Entity Linking in the Social Media", author = "Basaldella, Marco and Liu, Fangyu, and Shareghi, Ehsan, and Collier, Nigel", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2020", publisher = "Association for Computational Linguistics" } ```
cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR-large
2021-05-27T18:49:10.000Z
[ "pytorch", "xlm-roberta", "arxiv:2010.11784", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
cambridgeltl
51
transformers
--- language: multilingual tags: - biomedical - lexical-semantics - cross-lingual datasets: - UMLS **[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> **[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! ### SapBERT-XLMR SapBERT [(Liu et al. 2021)](https://arxiv.org/pdf/2010.11784.pdf) trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AB, using [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) as the base model. Please use [CLS] as the representation of the input. ### Citation ```bibtex @inproceedings{liu2021learning, title={Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={Proceedings of ACL-IJCNLP 2021}, month = aug, year={2021} } ```
cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR
2021-05-27T18:49:34.000Z
[ "pytorch", "xlm-roberta", "arxiv:2010.11784", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
cambridgeltl
75
transformers
--- language: multilingual tags: - biomedical - lexical-semantics - cross-lingual datasets: - UMLS **[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> **[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! ### SapBERT-XLMR SapBERT [(Liu et al. 2020)](https://arxiv.org/pdf/2010.11784.pdf) trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AB, using [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the base model. Please use [CLS] as the representation of the input. ### Citation ```bibtex @inproceedings{liu2021learning, title={Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={Proceedings of ACL-IJCNLP 2021}, month = aug, year={2021} } ```
cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token
2021-05-24T09:59:29.000Z
[ "pytorch", "jax", "bert", "arxiv:2010.11784", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
cambridgeltl
21
transformers
--- language: en tags: - biomedical - lexical-semantics datasets: - UMLS **[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> **[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! ### SapBERT-PubMedBERT SapBERT by [Liu et al. (2020)](https://arxiv.org/pdf/2010.11784.pdf). Trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AA (English only), using [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) as the base model. Please use the mean-pooling of the output as the representation. ### Citation ```bibtex @inproceedings{liu-etal-2021-self, title = "Self-Alignment Pretraining for Biomedical Entity Representations", author = "Liu, Fangyu and Shareghi, Ehsan and Meng, Zaiqiao and Basaldella, Marco and Collier, Nigel", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.naacl-main.334", pages = "4228--4238", abstract = "Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.", } ```
cambridgeltl/SapBERT-from-PubMedBERT-fulltext
2021-05-24T09:59:06.000Z
[ "pytorch", "tf", "jax", "bert", "arxiv:2010.11784", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cambridgeltl
2,070
transformers
--- language: en tags: - biomedical - lexical-semantics datasets: - UMLS **[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> **[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! ### SapBERT-PubMedBERT SapBERT by [Liu et al. (2020)](https://arxiv.org/pdf/2010.11784.pdf). Trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AA (English only), using [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) as the base model. Please use [CLS] as the representation of the input. ### Citation ```bibtex @inproceedings{liu-etal-2021-self, title = "Self-Alignment Pretraining for Biomedical Entity Representations", author = "Liu, Fangyu and Shareghi, Ehsan and Meng, Zaiqiao and Basaldella, Marco and Collier, Nigel", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.naacl-main.334", pages = "4228--4238", abstract = "Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.", } ```
camembert/camembert-base-ccnet-4gb
2020-12-11T21:35:11.000Z
[ "pytorch", "camembert", "fr", "arxiv:1911.03894", "transformers" ]
[ ".gitattributes", "LICENSE", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model" ]
camembert
65
transformers
--- language: fr --- # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-ccnet-4gb") camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet-4gb") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-ccnet-4gb", tokenizer="camembert/camembert-base-ccnet-4gb") results = camembert_fill_mask("Le camembert est-il <mask> ?") # results #[{'sequence': '<s> Le camembert est-il sain?</s>', 'score': 0.07001790404319763, 'token': 10286}, #{'sequence': '<s> Le camembert est-il français?</s>', 'score': 0.057594332844018936, 'token': 384}, #{'sequence': '<s> Le camembert est-il bon?</s>', 'score': 0.04098724573850632, 'token': 305}, #{'sequence': '<s> Le camembert est-il périmé?</s>', 'score': 0.03486393392086029, 'token': 30862}, #{'sequence': '<s> Le camembert est-il cher?</s>', 'score': 0.021535946056246758, 'token': 1604}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[ 0.0331, 0.0095, -0.2776, ..., 0.2875, -0.0827, -0.2467], # [-0.1348, 0.0478, -0.5409, ..., 0.8330, 0.0467, 0.0662], # [ 0.0920, -0.0264, 0.0177, ..., 0.1112, 0.0108, -0.1123], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-ccnet-4gb", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet-4gb", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0144, 0.1855, 0.4895, ..., -0.1537, 0.0107, -0.2293], # [-0.6664, -0.0880, -0.1539, ..., 0.3635, 0.4047, 0.1258], # [ 0.0511, 0.0540, 0.2545, ..., 0.0709, -0.0288, -0.0779], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
camembert/camembert-base-ccnet
2020-12-11T21:35:15.000Z
[ "pytorch", "camembert", "fr", "arxiv:1911.03894", "transformers" ]
[ ".gitattributes", "LICENSE", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model" ]
camembert
556
transformers
--- language: fr --- # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-ccnet") camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-ccnet", tokenizer="camembert/camembert-base-ccnet") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est bon :)</s>', 'score': 0.14011502265930176, 'token': 305}, # {'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.13929404318332672, 'token': 11661}, # {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.07010319083929062, 'token': 3497}, # {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.025885622948408127, 'token': 2528}, # {'sequence': '<s> Le camembert est top :)</s>', 'score': 0.025684962049126625, 'token': 2328}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁cam', 'ember', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[ 0.0667, -0.2467, 0.0954, ..., 0.2144, 0.0279, 0.3621], # [-0.0472, 0.4092, -0.6602, ..., 0.2095, 0.1391, -0.0401], # [ 0.1911, -0.2347, -0.0811, ..., 0.4306, -0.0639, 0.1821], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-ccnet", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[ 0.0057, -0.1022, 0.0163, ..., -0.0675, -0.0360, 0.1078], # [-0.1096, -0.3344, -0.0593, ..., 0.1625, -0.0432, -0.1646], # [ 0.3751, -0.3829, 0.0844, ..., 0.1067, -0.0330, 0.3334], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
camembert/camembert-base-oscar-4gb
2020-12-11T21:35:18.000Z
[ "pytorch", "camembert", "fr", "arxiv:1911.03894", "transformers" ]
[ ".gitattributes", "LICENSE", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model" ]
camembert
186
transformers
--- language: fr --- # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-oscar-4gb") camembert = CamembertModel.from_pretrained("camembert/camembert-base-oscar-4gb") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-oscar-4gb", tokenizer="camembert/camembert-base-oscar-4gb") >>> results = camembert_fill_mask("Le camembert est <mask> !") # results #[{'sequence': '<s> Le camembert est parfait!</s>', 'score': 0.04089554399251938, 'token': 1654}, #{'sequence': '<s> Le camembert est délicieux!</s>', 'score': 0.037193264812231064, 'token': 7200}, #{'sequence': '<s> Le camembert est prêt!</s>', 'score': 0.025467922911047935, 'token': 1415}, #{'sequence': '<s> Le camembert est meilleur!</s>', 'score': 0.022812040522694588, 'token': 528}, #{'sequence': '<s> Le camembert est différent!</s>', 'score': 0.017135459929704666, 'token': 2935}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[-0.1120, -0.1464, 0.0181, ..., -0.1723, -0.0278, 0.1606], # [ 0.1234, 0.1202, -0.0773, ..., -0.0405, -0.0668, -0.0788], # [-0.0440, 0.0480, -0.1926, ..., 0.1066, -0.0961, 0.0637], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-oscar-4gb", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-oscar-4gb", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.1584, -0.1207, -0.0179, ..., 0.5457, 0.1491, -0.1191], # [-0.1122, 0.3634, 0.0676, ..., 0.4395, -0.0470, -0.3781], # [-0.2232, 0.0019, 0.0140, ..., 0.4461, -0.0233, 0.0735], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
camembert/camembert-base-wikipedia-4gb
2020-12-11T21:35:21.000Z
[ "pytorch", "camembert", "fr", "arxiv:1911.03894", "transformers" ]
[ ".gitattributes", "LICENSE", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model" ]
camembert
287
transformers
--- language: fr --- # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb") camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb") results = camembert_fill_mask("Le camembert est un fromage de <mask>!") # results #[{'sequence': '<s> Le camembert est un fromage de chèvre!</s>', 'score': 0.4937814474105835, 'token': 19370}, #{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616}, #{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364}, # {'sequence': '<s> Le camembert est un fromage de Noël!</s>', 'score': 0.02823255956172943, 'token': 3236}, #{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[-0.0928, 0.0506, -0.0094, ..., -0.2388, 0.1177, -0.1302], # [ 0.0662, 0.1030, -0.2355, ..., -0.4224, -0.0574, -0.2802], # [-0.0729, 0.0547, 0.0192, ..., -0.1743, 0.0998, -0.2677], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0059, -0.0227, 0.0065, ..., -0.0770, 0.0369, 0.0095], # [ 0.2838, -0.1531, -0.3642, ..., -0.0027, -0.8502, -0.7914], # [-0.0073, -0.0338, -0.0011, ..., 0.0533, -0.0250, -0.0061], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
camembert/camembert-base
2021-02-02T07:14:41.000Z
[ "pytorch", "camembert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "LICENSE", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model" ]
camembert
1,198
transformers
camembert/camembert-large
2020-12-11T21:35:25.000Z
[ "pytorch", "camembert", "fr", "arxiv:1911.03894", "transformers" ]
[ ".gitattributes", "LICENSE", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model" ]
camembert
1,722
transformers
--- language: fr --- # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-large") camembert = CamembertModel.from_pretrained("camembert/camembert-large") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-large", tokenizer="camembert/camembert-large") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est bon :)</s>', 'score': 0.15560828149318695, 'token': 305}, #{'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.06821336597204208, 'token': 3497}, #{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.060438305139541626, 'token': 11661}, #{'sequence': '<s> Le camembert est ici :)</s>', 'score': 0.02023460529744625, 'token': 373}, #{'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.01778135634958744, 'token': 876}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁cam', 'ember', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # torch.Size([1, 10, 1024]) #tensor([[[-0.1284, 0.2643, 0.4374, ..., 0.1627, 0.1308, -0.2305], # [ 0.4576, -0.6345, -0.2029, ..., -0.1359, -0.2290, -0.6318], # [ 0.0381, 0.0429, 0.5111, ..., -0.1177, -0.1913, -0.1121], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-large", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-large", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 25 (input embedding layer + 24 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 1024]) #tensor([[[-0.0600, 0.0742, 0.0332, ..., -0.0525, -0.0637, -0.0287], # [ 0.0950, 0.2840, 0.1985, ..., 0.2073, -0.2172, -0.6321], # [ 0.1381, 0.1872, 0.1614, ..., -0.0339, -0.2530, -0.1182], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
camille/bert-base-pruned-voc-esw0.1-40000-en-de-cased
2021-05-19T13:48:06.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
8
transformers
camille/bert-base-pruned-voc-esw0.1-40000-en-fr-cased
2021-05-19T13:49:02.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
12
transformers
camille/bert-base-pruned-voc-esw0.3-40000-en-de-cased
2021-05-19T13:49:57.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
9
transformers
camille/bert-base-pruned-voc-esw0.3-40000-en-fr-cased
2021-05-19T13:51:33.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
13
transformers
camille/bert-base-pruned-voc-esw0.5-40000-en-de-cased
2021-05-19T13:52:49.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
12
transformers
camille/bert-base-pruned-voc-esw0.5-40000-en-fr-cased
2021-05-19T13:53:48.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
10
transformers
camille/bert-base-pruned-voc-esw0.7-40000-en-de-cased
2021-05-19T13:54:46.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
11
transformers
camille/bert-base-pruned-voc-esw0.7-40000-en-fr-cased
2021-05-19T13:55:45.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
50
transformers
camille/bert-base-pruned-voc-esw0.9-40000-en-de-cased
2021-05-19T13:56:49.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
12
transformers
camille/bert-base-pruned-voc-esw0.9-40000-en-fr-cased
2021-05-19T13:57:46.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
camille
19
transformers
canwenxu/BERT-of-Theseus-MNLI
2021-05-19T13:58:30.000Z
[ "pytorch", "jax", "bert", "dataset:multi_nli", "arxiv:2002.02925", "arxiv:2005.00628", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
canwenxu
26
transformers
--- thumbnail: https://raw.githubusercontent.com/JetRunner/BERT-of-Theseus/master/bert-of-theseus.png datasets: - multi_nli --- # BERT-of-Theseus See our paper ["BERT-of-Theseus: Compressing BERT by Progressive Module Replacing"](http://arxiv.org/abs/2002.02925). BERT-of-Theseus is a new compressed BERT by progressively replacing the components of the original BERT. ![BERT of Theseus](https://github.com/JetRunner/BERT-of-Theseus/blob/master/bert-of-theseus.png?raw=true) ## Load Pretrained Model on MNLI We provide a 6-layer pretrained model on MNLI as a general-purpose model, which can transfer to other sentence classification tasks, outperforming DistillBERT (with the same 6-layer structure) on six tasks of GLUE (dev set). | Method | MNLI | MRPC | QNLI | QQP | RTE | SST-2 | STS-B | |-----------------|------|------|------|------|------|-------|-------| | BERT-base | 83.5 | 89.5 | 91.2 | 89.8 | 71.1 | 91.5 | 88.9 | | DistillBERT | 79.0 | 87.5 | 85.3 | 84.9 | 59.9 | 90.7 | 81.2 | | BERT-of-Theseus | 82.1 | 87.5 | 88.8 | 88.8 | 70.1 | 91.8 | 87.8 | Please Note: this checkpoint is for [Intermediate-Task Transfer Learning](https://arxiv.org/abs/2005.00628) so it does not include the classification head for MNLI! Please fine-tune it before use (like DistilBERT).
canwenxu/evil_gpt2
2021-05-21T14:44:54.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
canwenxu
14
transformers
**It's for testing use. Don't use it in your project ;)**
cardiffnlp/bertweet-base-emoji
2021-05-20T14:43:48.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
26
transformers
cardiffnlp/bertweet-base-emotion
2021-05-20T14:45:11.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
48
transformers
cardiffnlp/bertweet-base-hate
2021-05-20T14:46:38.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
246
transformers
cardiffnlp/bertweet-base-irony
2021-05-20T14:48:25.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
87
transformers
cardiffnlp/bertweet-base-offensive
2021-05-20T14:49:35.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
51
transformers
cardiffnlp/bertweet-base-sentiment
2021-05-20T14:50:57.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
721
transformers
cardiffnlp/bertweet-base-stance-abortion
2021-05-20T14:52:02.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
10
transformers
cardiffnlp/bertweet-base-stance-atheism
2021-05-20T14:53:17.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
9
transformers
cardiffnlp/bertweet-base-stance-climate
2021-05-20T14:54:22.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
32
transformers
cardiffnlp/bertweet-base-stance-feminist
2021-05-20T14:57:14.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
12
transformers
cardiffnlp/bertweet-base-stance-hillary
2021-05-20T14:58:18.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "added_tokens.json", "bpe.codes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
cardiffnlp
12
transformers
cardiffnlp/twitter-roberta-base-emoji
2021-05-20T14:59:33.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json", ".ipynb_checkpoints/README-checkpoint.md" ]
cardiffnlp
167
transformers
# Twitter-roBERTa-base This is a roBERTa-base model trained on ~58M tweets and finetuned for the emoji prediction task at Semeval 2018. For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='emoji' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") spamreader = csv.reader(html[:-1], delimiter='\t') labels = [row[1] for row in spamreader] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) 😘 0.2637 2) ❤️ 0.1952 3) 💕 0.1171 4) ✨ 0.0927 5) 😊 0.0756 6) 💜 0.046 7) 💙 0.0444 8) 😍 0.0272 9) 😉 0.0228 10) 😎 0.0198 11) 😜 0.0166 12) 😂 0.0132 13) 😁 0.0131 14) ☀ 0.0112 15) 🎄 0.009 16) 💯 0.009 17) 🔥 0.008 18) 📷 0.0057 19) 🇺🇸 0.005 20) 📸 0.0048 ```
cardiffnlp/twitter-roberta-base-emotion
2021-05-20T15:00:38.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json", ".ipynb_checkpoints/README-checkpoint.md" ]
cardiffnlp
75,714
transformers
# Twitter-roBERTa-base This is a roBERTa-base model trained on ~58M tweets and finetuned for the emotion prediction task at Semeval 2018. For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='emotion' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") spamreader = csv.reader(html[:-1], delimiter='\t') labels = [row[1] for row in spamreader] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) 😘 0.2637 2) ❤️ 0.1952 3) 💕 0.1171 4) ✨ 0.0927 5) 😊 0.0756 6) 💜 0.046 7) 💙 0.0444 8) 😍 0.0272 9) 😉 0.0228 10) 😎 0.0198 11) 😜 0.0166 12) 😂 0.0132 13) 😁 0.0131 14) ☀ 0.0112 15) 🎄 0.009 16) 💯 0.009 17) 🔥 0.008 18) 📷 0.0057 19) 🇺🇸 0.005 20) 📸 0.0048 ```
cardiffnlp/twitter-roberta-base-hate
2021-05-20T15:02:45.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json", ".ipynb_checkpoints/README-checkpoint.md" ]
cardiffnlp
1,366
transformers
# Twitter-roBERTa-base This is a roBERTa-base model trained on ~58M tweets and finetuned for the hate detection task at Semeval 2019. For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='hate' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") spamreader = csv.reader(html[:-1], delimiter='\t') labels = [row[1] for row in spamreader] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) 😘 0.2637 2) ❤️ 0.1952 3) 💕 0.1171 4) ✨ 0.0927 5) 😊 0.0756 6) 💜 0.046 7) 💙 0.0444 8) 😍 0.0272 9) 😉 0.0228 10) 😎 0.0198 11) 😜 0.0166 12) 😂 0.0132 13) 😁 0.0131 14) ☀ 0.0112 15) 🎄 0.009 16) 💯 0.009 17) 🔥 0.008 18) 📷 0.0057 19) 🇺🇸 0.005 20) 📸 0.0048 ```
cardiffnlp/twitter-roberta-base-irony
2021-05-20T15:03:56.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json", ".ipynb_checkpoints/README-checkpoint.md" ]
cardiffnlp
3,040
transformers
# Twitter-roBERTa-base This is a roBERTa-base model trained on ~58M tweets and finetuned for the irony prediction task at Semeval 2018. For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='irony' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") spamreader = csv.reader(html[:-1], delimiter='\t') labels = [row[1] for row in spamreader] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) 😘 0.2637 2) ❤️ 0.1952 3) 💕 0.1171 4) ✨ 0.0927 5) 😊 0.0756 6) 💜 0.046 7) 💙 0.0444 8) 😍 0.0272 9) 😉 0.0228 10) 😎 0.0198 11) 😜 0.0166 12) 😂 0.0132 13) 😁 0.0131 14) ☀ 0.0112 15) 🎄 0.009 16) 💯 0.009 17) 🔥 0.008 18) 📷 0.0057 19) 🇺🇸 0.005 20) 📸 0.0048 ```
cardiffnlp/twitter-roberta-base-offensive
2021-05-20T15:05:00.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json", ".ipynb_checkpoints/README-checkpoint.md" ]
cardiffnlp
64,312
transformers
# Twitter-roBERTa-base This is a roBERTa-base model trained on ~58M tweets and finetuned for the Offensive Language Identification task at Semeval 2019. For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='offensive' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") spamreader = csv.reader(html[:-1], delimiter='\t') labels = [row[1] for row in spamreader] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) 😘 0.2637 2) ❤️ 0.1952 3) 💕 0.1171 4) ✨ 0.0927 5) 😊 0.0756 6) 💜 0.046 7) 💙 0.0444 8) 😍 0.0272 9) 😉 0.0228 10) 😎 0.0198 11) 😜 0.0166 12) 😂 0.0132 13) 😁 0.0131 14) ☀ 0.0112 15) 🎄 0.009 16) 💯 0.009 17) 🔥 0.008 18) 📷 0.0057 19) 🇺🇸 0.005 20) 📸 0.0048 ```
cardiffnlp/twitter-roberta-base-sentiment
2021-05-20T15:06:21.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json", ".ipynb_checkpoints/README-checkpoint.md" ]
cardiffnlp
188,133
transformers
# Twitter-roBERTa-base This is a roBERTa-base model trained on ~58M tweets and finetuned for the Sentiment Analysis task at Semeval 2018. For full description: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other models on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='sentiment' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") spamreader = csv.reader(html[:-1], delimiter='\t') labels = [row[1] for row in spamreader] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) positive 0.8466 2) neutral 0.1458 3) negative 0.0076 ```
cardiffnlp/twitter-roberta-base-stance-abortion
2021-05-20T15:07:21.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json" ]
cardiffnlp
12
transformers
cardiffnlp/twitter-roberta-base-stance-atheism
2021-05-20T15:08:50.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json" ]
cardiffnlp
13
transformers
cardiffnlp/twitter-roberta-base-stance-climate
2021-05-20T15:10:09.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json" ]
cardiffnlp
22
transformers
cardiffnlp/twitter-roberta-base-stance-feminist
2021-05-20T15:11:14.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json" ]
cardiffnlp
19
transformers
cardiffnlp/twitter-roberta-base-stance-hillary
2021-05-20T15:12:15.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "vocab.json" ]
cardiffnlp
12
transformers
cardiffnlp/twitter-roberta-base
2021-05-20T15:13:17.000Z
[ "pytorch", "tf", "jax", "roberta", "masked-lm", "arxiv:2010.12421", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tf_model.h5", "vocab.json", ".ipynb_checkpoints/README-checkpoint.md" ]
cardiffnlp
6,389
transformers
# Twitter-roBERTa-base This is a roBERTa-base model trained on ~58M tweets, described and evaluated in the [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other LMs on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer import numpy as np MODEL = "cardiffnlp/twitter-roberta-base" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def print_candidates(): for i in range(5): token = tokenizer.decode(candidates[i]['token']) score = np.round(candidates[i]['score'], 4) print(f"{i+1}) {token} {score}") texts = [ "I am so <mask> 😊", "I am so <mask> 😢" ] for text in texts: print(f"{'-'*30}\n{text}") candidates = fill_mask(text) print_candidates() ``` Output: ``` ------------------------------ I am so <mask> 😊 1) happy 0.402 2) excited 0.1441 3) proud 0.143 4) grateful 0.0669 5) blessed 0.0334 ------------------------------ I am so <mask> 😢 1) sad 0.2641 2) sorry 0.1605 3) tired 0.138 4) sick 0.0278 5) hungry 0.0232 ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base" text = "Good night 😊" tokenizer = AutoTokenizer.from_pretrained(MODEL) # Pytorch encoded_input = tokenizer(text, return_tensors='pt') model = AutoModel.from_pretrained(MODEL) features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # encoded_input = tokenizer(text, return_tensors='tf') # model = TFAutoModel.from_pretrained(MODEL) # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
cardiffnlp/twitter-xlm-roberta-base-sentiment
2021-04-27T15:40:10.000Z
[ "pytorch", "tf", "xlm-roberta", "text-classification", "multilingual", "arxiv:2104.12250", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tf_model.h5" ]
cardiffnlp
2,955
transformers
--- language: multilingual widget: - text: "🤗" - text: "T'estimo! ❤️" - text: "I love you!" - text: "I hate you 🤮" - text: "Mahal kita!" - text: "사랑해!" - text: "난 너가 싫어" - text: "😍😍😍" --- # twitter-XLM-roBERTa-base for Sentiment Analysis This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis. The sentiment fine-tuning was done on 8 languages (Ar, En, Fr, De, Hi, It, Sp, Pt) but it can be used for more languages (see paper for details). - Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://arxiv.org/abs/2104.12250). - Git Repo: [XLM-T official repository](https://github.com/cardiffnlp/xlm-t). ## Example Pipeline ```python from transformers import pipeline model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment" sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) sentiment_task("T'estimo!") ``` ``` [{'label': 'Positive', 'score': 0.6600581407546997}] ``` ## Full classification example ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment" tokenizer = AutoTokenizer.from_pretrained(MODEL) config = AutoConfig.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) # Print labels and scores ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = config.id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) Positive 0.7673 2) Neutral 0.2015 3) Negative 0.0313 ```
cardiffnlp/twitter-xlm-roberta-base
2021-04-28T16:24:53.000Z
[ "pytorch", "tf", "xlm-roberta", "masked-lm", "multilingual", "arxiv:2104.12250", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "tf_model.h5", "tokenizer.json" ]
cardiffnlp
1,259
transformers
--- language: multilingual widget: - text: "🤗🤗🤗<mask>" - text: "🔥The goal of life is <mask> . 🔥" - text: "Il segreto della vita è l’<mask> . ❤️" - text: "Hasta <mask> 👋!" --- # Twitter-XLM-Roberta-base This is a XLM-Roberta-base model trained on ~198M multilingual tweets, described and evaluated in the [reference paper](https://arxiv.org/abs/2104.12250). To evaluate this and other LMs on Twitter-specific data, please refer to the [main repository](https://github.com/cardiffnlp/xlm-t). A usage example is provided below. ## Computing tweet similarity ```python def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) def get_embedding(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().numpy() features_mean = np.mean(features[0], axis=0) return features_mean query = "Acabo de pedir pollo frito 🐣" #spanish tweets = ["We had a great time! ⚽️", # english "We hebben een geweldige tijd gehad! ⛩", # dutch "Nous avons passé un bon moment! 🎥", # french "Ci siamo divertiti! 🍝"] # italian d = defaultdict(int) for tweet in tweets: sim = 1-cosine(get_embedding(query),get_embedding(tweet)) d[tweet] = sim print('Most similar to: ',query) print('----------------------------------------') for idx,x in enumerate(sorted(d.items(), key=lambda x:x[1], reverse=True)): print(idx+1,x[0]) ``` ``` Most similar to: Acabo de pedir pollo frito 🐣 ---------------------------------------- 1 Ci siamo divertiti! 🍝 2 Nous avons passé un bon moment! 🎥 3 We had a great time! ⚽️ 4 We hebben een geweldige tijd gehad! ⛩ ```
cariai/meds
2021-05-20T15:14:34.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
cariai
36
transformers
cariai/medslabs
2021-05-20T15:16:39.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
cariai
24
transformers
Med Labs Cariai
carlota/foreclosure_test_1
2021-03-12T05:51:51.000Z
[]
[ ".gitattributes", "README.md" ]
carlota
0
carlsonhoo/Bert_Multi-Mood-Classification-Social-Movement
2020-11-21T09:26:50.000Z
[]
[ ".gitattributes" ]
carlsonhoo
0
casinobike/online_gambling
2021-01-16T18:31:33.000Z
[]
[ ".gitattributes" ]
casinobike
0
castorini/ance-dpr-context-multi
2021-04-21T01:35:21.000Z
[ "pytorch", "dpr", "arxiv:2007.00808", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
castorini
8
transformers
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
castorini/ance-dpr-question-multi
2021-04-21T01:36:24.000Z
[ "pytorch", "dpr", "arxiv:2007.00808", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
castorini
15
transformers
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
castorini/ance-msmarco-doc-firstp
2021-05-20T15:17:20.000Z
[ "pytorch", "roberta", "arxiv:2007.00808", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
castorini
7
transformers
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
castorini/ance-msmarco-doc-maxp
2021-05-20T15:17:50.000Z
[ "pytorch", "roberta", "arxiv:2007.00808", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
castorini
16,365
transformers
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
castorini/ance-msmarco-passage
2021-05-20T15:18:16.000Z
[ "pytorch", "roberta", "arxiv:2007.00808", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
castorini
116
transformers
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
castorini/dkrr-dpr-nq-retriever
2021-05-29T21:55:33.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
castorini
17
transformers
castorini/doc2query-t5-base-msmarco
2021-04-01T16:53:12.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
castorini
629
transformers
For more information, check [doc2query.ai](http://doc2query.ai)
castorini/doc2query-t5-large-msmarco
2021-04-01T17:17:45.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
castorini
42
transformers
For more information, check [doc2query.ai](http://doc2query.ai)
castorini/duot5-3b-med-msmarco
2021-05-28T12:02:55.000Z
[ "pytorch", "t5", "arxiv:2101.05667", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
castorini
7
transformers
This model is a T5-3B reranker pre-finetuned on the MS MARCO passage dataset for 10K steps (or 1 epoch) on the pairwise task and then finetuned on MedMARCO (from [Sledge-Z paper](https://www.aclweb.org/anthology/2020.emnlp-main.341.pdf)) for 1K steps on the pairwise task. For more details on how to use it, check [pygaggle.ai](pygaggle.ai)! Paper describing the model: [The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models](https://arxiv.org/abs/2101.05667)
castorini/duot5-3b-msmarco
2021-05-28T11:51:36.000Z
[ "pytorch", "t5", "arxiv:2101.05667", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
castorini
8
transformers
This model is a T5-3B reranker, initialized with our pointwise ranker, [castorini/monot5-3b-msmarco](https://huggingface.co/castorini/monot5-3b-msmarco), and finetuned on the MS MARCO passage dataset for 50K steps (or 5 epochs) on the pairwise reranking task. For more details on how to use it, check [pygaggle.ai](pygaggle.ai)! Paper describing the model: [The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models](https://arxiv.org/abs/2101.05667)
castorini/duot5-base-msmarco
2021-04-03T13:47:04.000Z
[ "pytorch", "t5", "seq2seq", "arxiv:2101.05667", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
castorini
83
transformers
This model is a T5-base pairwise reranker fine-tuned on MS MARCO passage dataset for 50k steps (or 5 epochs). For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models](https://arxiv.org/pdf/2101.05667.pdf)
castorini/monobert-large-msmarco-finetune-only
2021-05-19T14:00:06.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
castorini
34
transformers
# Model Description This checkpoint is a direct conversion of [BERT_Large_trained_on_MSMARCO.zip](https://drive.google.com/open?id=1crlASTMlsihALlkabAQP6JTYIZwC1Wm8) from the original [repo](https://github.com/nyu-dl/dl4marco-bert/). The corresponding model class is BertForSequenceClassification, and its purpose is for MS MARCO passage ranking. Please find the original repo for more detail of its training settings regarding hyperparameter/device/data.
castorini/monobert-large-msmarco
2020-05-29T03:41:44.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
castorini
298
transformers
castorini/monot5-3b-med-msmarco
2021-05-28T11:54:47.000Z
[ "pytorch", "t5", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
castorini
33
transformers
This model is a T5-3B reranker fine-tuned on the MS MARCO passage dataset for 10K steps (or 1 epoch) and then fine-tuned again on MedMARCO (from [Sledge-Z paper](https://www.aclweb.org/anthology/2020.emnlp-main.341.pdf)) for 1K steps. For more details on how to use it, check [pygaggle.ai](pygaggle.ai)! Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
castorini/monot5-3b-msmarco
2021-04-03T13:48:44.000Z
[ "pytorch", "t5", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
castorini
35
transformers
This model is a T5-3B reranker fine-tuned on the MS MARCO passage dataset for 100k steps (or 10 epochs). For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
castorini/monot5-base-med-msmarco
2021-04-03T13:49:41.000Z
[ "pytorch", "t5", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
castorini
13
transformers
This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch) and then fine-tuned again on MedMARCO (from [Sledge-Z paper](https://www.aclweb.org/anthology/2020.emnlp-main.341.pdf) for 1k steps. For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
castorini/monot5-base-msmarco-10k
2021-04-03T13:51:07.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
castorini
81
transformers
This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch). For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
castorini/monot5-base-msmarco
2021-04-03T13:50:49.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
castorini
911
transformers
This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 100k steps (or 10 epochs). For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
castorini/monot5-large-msmarco-10k
2021-04-03T13:50:13.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
castorini
12
transformers
This model is a T5-large reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epochs). For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
castorini/monot5-large-msmarco
2021-04-03T13:50:28.000Z
[ "pytorch", "t5", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
castorini
34
transformers
This model is a T5-large reranker fine-tuned on the MS MARCO passage dataset for 100k steps (or 10 epochs). For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
castorini/t5-base-canard
2021-03-16T11:40:39.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
castorini
559
transformers
This model is trained for conversational question rewriting. Usage: Source text format: ${HISTORY} ||| ${CURRENT_QUESTION} example from [CANARD](https://sites.google.com/view/qanta/projects/canard): Frank Zappa ||| Disbandment ||| What group disbanded ||| Zappa and the Mothers of Invention ||| When did they disband? Target text: When did Zappa and the Mothers of Invention disband? You can find our guide to reproduce the training in this [repo](https://github.com/castorini/chatty-goose/blob/c7d0cd8c45354b09b5fb930ab0b5af8be2e5772b/docs/t5_finetuning.md).
castorini/tct_colbert-msmarco
2021-04-21T01:29:30.000Z
[ "pytorch", "arxiv:2010.11386", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "vocab.txt" ]
castorini
238
transformers
This model is to reproduce the TCT-ColBERT dense retrieval described in the following paper: > Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. [Distilling Dense Representations for Ranking using Tightly-Coupled Teachers.](https://arxiv.org/abs/2010.11386) arXiv:2010.11386, October 2020. For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert.md)
castorini/tct_colbert-v2-hn-msmarco
2021-06-08T02:00:20.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
castorini
9
transformers
castorini/tct_colbert-v2-hnp-msmarco
2021-06-08T02:01:18.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
castorini
56
transformers
castorini/tct_colbert-v2-msmarco
2021-06-08T01:53:34.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
castorini
13
transformers
cataremix15/distilbert-tiln-proj
2021-05-17T19:13:00.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
cataremix15
31
transformers
catpotat/vinagpt2-alpha
2021-05-21T14:46:01.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
catpotat
20
transformers
ccoreilly/wav2vec2-large-100k-voxpopuli-catala
2021-05-26T08:50:54.000Z
[ "pytorch", "wav2vec2", "ca", "dataset:common_voice", "dataset:parlament_parla", "transformers", "audio", "automatic-speech-recognition", "speech", "speech-to-text", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "LICENSE", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
ccoreilly
91
transformers
--- language: ca datasets: - common_voice - parlament_parla metrics: - wer tags: - audio - automatic-speech-recognition - speech - speech-to-text license: apache-2.0 model-index: - name: Catalan VoxPopuli Wav2Vec2 Large results: - task: name: Speech Recognition type: automatic-speech-recognition datasets: - name: Common Voice ca type: common_voice args: ca - name: ParlamentParla url: https://www.openslr.org/59/ metrics: - name: Test WER type: wer value: 5.98 - name: Google Crowsourced Corpus WER type: wer value: 12.14 - name: Audiobook “La llegenda de Sant Jordi” WER type: wer value: 12.02 --- # Wav2Vec2-Large-100k-VoxPopuli-Català Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) on Catalan language using the [Common Voice](https://huggingface.co/datasets/common_voice) and [ParlamentParla](https://www.openslr.org/59/) datasets. **Attention:** The split train/dev/test used does not fully map with the CommonVoice 6.1 dataset. A custom split was used combining both the CommonVoice and ParlamentParla dataset and can be found [here](https://github.com/ccoreilly/wav2vec2-catala). Evaluating on the CV test dataset will produce a biased WER as 1144 audio files of that dataset were used in training/evaluation of this model. WER was calculated using this [test.csv](https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv) which was not seen by the model during training/evaluation. You can find training and evaluation scripts in the github repository [ccoreilly/wav2vec2-catala](https://github.com/ccoreilly/wav2vec2-catala) When using this model, make sure that your speech input is sampled at 16kHz. ## Results Word error rate was evaluated on the following datasets unseen by the model: | Dataset | WER | | ------- | --- | | [Test split CV+ParlamentParla]((https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv)) | 5.98% | | [Google Crowsourced Corpus](https://www.openslr.org/69/) | 12.14% | | Audiobook “La llegenda de Sant Jordi” | 12.02% | ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") model = Wav2Vec2ForCTC.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
ccoreilly/wav2vec2-large-xlsr-catala
2021-04-18T18:07:41.000Z
[ "pytorch", "wav2vec2", "ca", "dataset:common_voice", "dataset:parlament_parla", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "LICENSE", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
ccoreilly
45
transformers
--- language: ca datasets: - common_voice - parlament_parla metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Catalan XLSR Wav2Vec2 Large results: - task: name: Speech Recognition type: automatic-speech-recognition datasets: - name: Common Voice ca type: common_voice args: ca - name: ParlamentParla url: https://www.openslr.org/59/ metrics: - name: Test WER type: wer value: 6.92 - name: Google Crowsourced Corpus WER type: wer value: 12.99 - name: Audiobook “La llegenda de Sant Jordi” WER type: wer value: 13.23 --- # Wav2Vec2-Large-XLSR-Català Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Catalan language using the [Common Voice](https://huggingface.co/datasets/common_voice) and [ParlamentParla](https://www.openslr.org/59/) datasets. **Attention:** The split train/dev/test used does not fully map with the CommonVoice 6.1 dataset. A custom split was used combining both the CommonVoice and ParlamentParla dataset and can be found [here](https://github.com/ccoreilly/wav2vec2-catala). Evaluating on the CV test dataset will produce a biased WER as 1144 audio files of that dataset were used in training/evaluation of this model. WER was calculated using this [test.csv](https://github.com/ccoreilly/wav2vec2-catala/blob/master/test.csv) which was not seen by the model during training/evaluation. You can find training and evaluation scripts in the github repository [ccoreilly/wav2vec2-catala](https://github.com/ccoreilly/wav2vec2-catala) When using this model, make sure that your speech input is sampled at 16kHz. ## Results Word error rate was evaluated on the following datasets unseen by the model: | Dataset | WER | | ------- | --- | | [Test split CV+ParlamentParla]((https://github.com/ccoreilly/wav2vec2-catala/blob/master/test.csv)) | 6.92% | | [Google Crowsourced Corpus](https://www.openslr.org/69/) | 12.99% | | Audiobook “La llegenda de Sant Jordi” | 13.23% | ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ccoreilly/wav2vec2-large-xlsr-catala") model = Wav2Vec2ForCTC.from_pretrained("ccoreilly/wav2vec2-large-xlsr-catala") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
cedpsam/chatbot_fr
2021-05-26T10:36:41.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "fr", "transformers", "conversational", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
cedpsam
245
transformers
--- language: fr tags: - conversational widget: - text: "bonjour." - text: "mais encore" - text: "est ce que l'argent achete le bonheur?" --- ## a dialoggpt model trained on french opensubtitles with custom tokenizer trained with this notebook https://colab.research.google.com/drive/1pfCV3bngAmISNZVfDvBMyEhQKuYw37Rl#scrollTo=AyImj9qZYLRi&uniqifier=3 config from microsoft/DialoGPT-medium dataset generated from 2018 opensubtitle downloaded from opus folowing these guidelines https://github.com/PolyAI-LDN/conversational-datasets/tree/master/opensubtitles with this notebook https://colab.research.google.com/drive/1uyh3vJ9nEjqOHI68VD73qxt4olJzODxi#scrollTo=deaacv4XfLMk ### How to use Now we are ready to try out how the model works as a chatting partner! ```python import torch from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("cedpsam/chatbot_fr") model = AutoModelWithLMHead.from_pretrained("cedpsam/chatbot_fr") for step in range(6): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, top_p=0.92, top_k = 50 ) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
celential/erc
2020-09-04T10:15:02.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "spiece.model", "training_args.bin" ]
celential
9
transformers
celine/emotion-detection_indobenchmark-indobert-lite-base-p1
2021-05-22T09:49:20.000Z
[ "tf", "albert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
celine
947
transformers
celine/hate-speech_indobenchmark-indobert-lite-base-p1
2021-05-20T21:41:41.000Z
[ "tf", "albert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
celine
218
transformers
cemdenizsel/10k-finetuned-bert-model
2021-05-28T15:09:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
cemdenizsel
23
transformers
cemdenizsel/51k-finetuned-bert-model
2021-06-04T15:20:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
cemdenizsel
16
transformers
cemdenizsel/51k-pretrained-bert-model
2021-06-04T14:11:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
cemdenizsel
11
transformers
cemigo/cemigo-test-model
2021-03-15T18:09:36.000Z
[]
[ ".gitattributes", "README.md" ]
cemigo
0
tags: - array - of - tags license: "any valid license identifier"
cemigo/test-bart
2021-02-07T19:12:49.000Z
[]
[ ".gitattributes" ]
cemigo
0
ceostroff/harry-potter-gpt2-fanfiction
2021-05-21T14:51:47.000Z
[ "pytorch", "tf", "jax", "gpt2", "lm-head", "causal-lm", "en", "transformers", "harry-potter", "license:mit", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "eval_results_clm.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ceostroff
163
transformers
--- language: - en tags: - harry-potter license: mit --- # Harry Potter Fanfiction Generator This is a pre-trained GPT-2 generative text model that allows you to generate your own Harry Potter fanfiction, trained off of the top 100 rated fanficition stories. We intend for this to be used for individual fun and experimentation and not as a commercial product.
ceshine/TinyBERT_L-4_H-312_v2-distill-AllNLI
2021-05-19T14:01:36.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "oggdo_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
ceshine
6
transformers
# TinyBERT_L-4_H-312_v2 English Sentence Encoder This is distilled from the `bert-base-nli-stsb-mean-tokens` pre-trained model from [Sentence-Transformers](https://sbert.net/). The embedding vector is obtained by mean/average pooling of the last layer's hidden states. Update 20210325: Added the attention matrices imitation objective as in the TinyBERT paper, and the distill target has been changed from `distilbert-base-nli-stsb-mean-tokens` to `bert-base-nli-stsb-mean-tokens` (they have almost the same STSb performance). ## Model Comparison We compute cosine similarity scores of the embeddings of the sentence pair to get the spearman correlation on the STS benchmark (bigger is better): | | Dev | Test | | ------------------------------------ | ----- | ----- | | bert-base-nli-stsb-mean-tokens | .8704 | .8505 | | distilbert-base-nli-stsb-mean-tokens | .8667 | .8516 | | TinyBERT_L-4_H-312_v2-distill-AllNLI | .8587 | .8283 | | TinyBERT_L-4_H (20210325) | .8551 | .8341 |