modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
healx/gpt-2-pubmed-medium
2020-12-11T21:43:41.000Z
[ "pytorch", "arxiv:2004.13845", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
healx
39
transformers
GPT-2 (355M model) finetuned on 0.5m PubMed abstracts. Used in the [writemeanabstract.com](writemeanabstract.com) and the following preprint: [Papanikolaou, Yannis, and Andrea Pierleoni. "DARE: Data Augmented Relation Extraction with GPT-2." arXiv preprint arXiv:2004.13845 (2020).](https://arxiv.org/abs/2004.13845)
hectorcotelo/autonlp-spanish_songs-202661
2021-05-19T11:38:11.000Z
[ "pytorch", "bert", "text-classification", "es", "dataset:hectorcotelo/autonlp-data-spanish_songs", "transformers", "autonlp" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "sample_input.pkl", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hectorcotelo
47
transformers
--- tags: autonlp language: es widget: - text: "Y si me tomo una cerveza Vuelves a mi cabeza Y empiezo a recordarte Es que me gusta cómo besas Con tu delicadeza Puede ser que Tú y yo, somos el uno para el otro Que no dejo de pensarte Quise olvidarte y tomé un poco Y resultó extrañarte, yeah" datasets: - hectorcotelo/autonlp-data-spanish_songs --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 202661 ## Validation Metrics - Loss: 1.5369086265563965 - Accuracy: 0.30762817840766987 - Macro F1: 0.28034259092597485 - Micro F1: 0.30762817840766987 - Weighted F1: 0.28072818168048186 - Macro Precision: 0.3113843896292072 - Micro Precision: 0.30762817840766987 - Weighted Precision: 0.3128459166476807 - Macro Recall: 0.3071652685939504 - Micro Recall: 0.30762817840766987 - Weighted Recall: 0.30762817840766987 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/hectorcotelo/autonlp-spanish_songs-202661 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("hectorcotelo/autonlp-spanish_songs-202661", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("hectorcotelo/autonlp-spanish_songs-202661", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
heipa/coronabot-qc-model
2021-06-04T18:18:38.000Z
[]
[ ".gitattributes", "tensorflow-model/model/encoder.npy", "tensorflow-model/model/1/saved_model.pb", "tensorflow-model/model/1/variables/variables.data-00000-of-00001", "tensorflow-model/model/1/variables/variables.index" ]
heipa
0
helboukkouri/character-bert-medical
2021-05-17T10:41:06.000Z
[ "pytorch", "character_bert", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "mlm_vocab.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
helboukkouri
23
transformers
helboukkouri/character-bert
2021-05-17T10:40:43.000Z
[ "pytorch", "character_bert", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "mlm_vocab.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
helboukkouri
77
transformers
helworld/test
2021-04-02T01:10:28.000Z
[]
[ ".gitattributes" ]
helworld
0
hemanthravi/test-1
2021-05-27T21:45:08.000Z
[]
[ ".gitattributes" ]
hemanthravi
0
hemekci/off_detection_turkish
2021-05-19T18:54:44.000Z
[ "pytorch", "jax", "bert", "text-classification", "tr", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hemekci
31
transformers
--- language: tr widget: - text: "sevelim sevilelim bu dunya kimseye kalmaz" --- ## Offensive Language Detection Model in Turkish - uses Bert and pytorch - fine tuned with Twitter data. - UTF-8 configuration is done ### Training Data Number of training sentences: 31,277 **Example Tweets** - 19823 Daliaan yifng cok erken attin be... 1.38 ...| NOT| - 30525 @USER Bak biri kollarımda uyuyup gitmem diyor..|NOT| - 26468 Helal olsun be :) Norveçten sabaha karşı geldi aq... | OFF| - 14105 @USER Sunu cekecek ve güzel oldugunu söylecek aptal... |OFF| - 4958 Ya seni yerim ben şapşal şey 🤗 | NOT| - 12966 Herkesin akıllı geçindiği bir sosyal medyamız var ... |NOT| - 5788 Maçın özetlerini izleyenler futbolcular gidiyo... |NOT| |OFFENSIVE |RESULT | |--|--| |NOT | 25231| |OFF|6046| dtype: int64 ### Validation |epoch |Training Loss | Valid. Loss | Valid.Accuracy | Training Time | Validation Time | |--|--|--|--|--|--| |1 | 0.31| 0.28| 0.89| 0:07:14 | 0:00:13 |2 | 0.18| 0.29| 0.90| 0:07:18 | 0:00:13 |3 | 0.08| 0.40| 0.89| 0:07:16 | 0:00:13 |4 | 0.04| 0.59| 0.89| 0:07:13 | 0:00:13 **Matthews Corr. Coef. (-1 : +1):** Total MCC Score: 0.633
hendrixcosta/bertimbau-squad1.1
2021-05-19T18:57:24.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hendrixcosta
11
transformers
hendrixcosta/bertoso
2021-05-19T18:58:51.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hendrixcosta
15
transformers
hendrixcosta/hendrixcosta
2021-05-19T18:59:50.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt", "bertimbau-squad1.1/special_tokens_map.json", "bertimbau-squad1.1/vocab.txt", "bertoso/pytorch_model.bin" ]
hendrixcosta
15
transformers
henryezell/ai
2021-05-07T21:41:57.000Z
[]
[ ".gitattributes" ]
henryezell
0
henryezell/model_name
2021-05-07T21:41:35.000Z
[]
[ ".gitattributes" ]
henryezell
0
henryk/bert-base-multilingual-cased-finetuned-dutch-squad1
2021-05-19T19:01:13.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "nbest_predictions_.json", "predictions_.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
henryk
22
transformers
henryk/bert-base-multilingual-cased-finetuned-dutch-squad2
2021-05-19T19:02:45.000Z
[ "pytorch", "jax", "tfsavedmodel", "bert", "question-answering", "nl", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "nbest_predictions_.json", "null_odds_.json", "predictions_.json", "pytorch_model.bin", "saved_model.tar.gz", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
henryk
684
transformers
--- language: nl --- # Multilingual + Dutch SQuAD2.0 This model is the multilingual model provided by the Google research team with a fine-tuned dutch Q&A downstream task. ## Details of the language model Language model ([**bert-base-multilingual-cased**](https://github.com/google-research/bert/blob/master/multilingual.md)): 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on cased text in the top 104 languages with the largest Wikipedias. ## Details of the downstream task Using the `mtranslate` Python module, [**SQuAD2.0**](https://rajpurkar.github.io/SQuAD-explorer/) was machine-translated. In order to find the start tokens, the direct translations of the answers were searched in the corresponding paragraphs. Due to the different translations depending on the context (missing context in the pure answer), the answer could not always be found in the text, and thus a loss of question-answer examples occurred. This is a potential problem where errors can occur in the data set. | Dataset | # Q&A | | ---------------------- | ----- | | SQuAD2.0 Train | 130 K | | Dutch SQuAD2.0 Train | 99 K | | SQuAD2.0 Dev | 12 K | | Dutch SQuAD2.0 Dev | 10 K | ## Model benchmark | Model | EM/F1 |HasAns (EM/F1) | NoAns | | ---------------------- | ----- | ----- | ----- | | [robBERT](https://huggingface.co/pdelobelle/robBERT-base) | 58.04/60.95 | 33.08/40.64 | 73.67 | | [dutchBERT](https://huggingface.co/wietsedv/bert-base-dutch-cased) | 64.25/68.45 | 45.59/56.49 | 75.94 | | [multiBERT](https://huggingface.co/bert-base-multilingual-cased) | **67.38**/**71.36** | 47.42/57.76 | 79.88 | ## Model training The model was trained on a **Tesla V100** GPU with the following command: ```python export SQUAD_DIR=path/to/nl_squad python run_squad.py --model_type bert \ --model_name_or_path bert-base-multilingual-cased \ --do_train \ --do_eval \ --train_file $SQUAD_DIR/nl_squadv2_train_clean.json \ --predict_file $SQUAD_DIR/nl_squadv2_dev_clean.json \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps=8000 \ --output_dir ../../output \ --overwrite_cache \ --overwrite_output_dir ``` **Results**: {'exact': 67.38028751680629, 'f1': 71.362297054268, 'total': 9669, 'HasAns_exact': 47.422126745435015, 'HasAns_f1': 57.761023151910734, 'HasAns_total': 3724, 'NoAns_exact': 79.88225399495374, 'NoAns_f1': 79.88225399495374, 'NoAns_total': 5945, 'best_exact': 67.53542248422795, 'best_exact_thresh': 0.0, 'best_f1': 71.36229705426837, 'best_f1_thresh': 0.0} ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="henryk/bert-base-multilingual-cased-finetuned-dutch-squad2", tokenizer="henryk/bert-base-multilingual-cased-finetuned-dutch-squad2" ) qa_pipeline({ 'context': "Amsterdam is de hoofdstad en de dichtstbevolkte stad van Nederland.", 'question': "Wat is de hoofdstad van Nederland?"}) ``` # Output: ```json { "score": 0.83, "start": 0, "end": 9, "answer": "Amsterdam" } ``` ## Contact Please do not hesitate to contact me via [LinkedIn](https://www.linkedin.com/in/henryk-borzymowski-0755a2167/) if you want to discuss or get access to the Dutch version of SQuAD.
henryk/bert-base-multilingual-cased-finetuned-polish-squad1
2021-05-19T19:04:09.000Z
[ "pytorch", "jax", "bert", "question-answering", "pl", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "nbest_predictions_.json", "predictions_.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
henryk
31
transformers
--- language: pl --- # Multilingual + Polish SQuAD1.1 This model is the multilingual model provided by the Google research team with a fine-tuned polish Q&A downstream task. ## Details of the language model Language model ([**bert-base-multilingual-cased**](https://github.com/google-research/bert/blob/master/multilingual.md)): 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on cased text in the top 104 languages with the largest Wikipedias. ## Details of the downstream task Using the `mtranslate` Python module, [**SQuAD1.1**](https://rajpurkar.github.io/SQuAD-explorer/) was machine-translated. In order to find the start tokens, the direct translations of the answers were searched in the corresponding paragraphs. Due to the different translations depending on the context (missing context in the pure answer), the answer could not always be found in the text, and thus a loss of question-answer examples occurred. This is a potential problem where errors can occur in the data set. | Dataset | # Q&A | | ---------------------- | ----- | | SQuAD1.1 Train | 87.7 K | | Polish SQuAD1.1 Train | 39.5 K | | SQuAD1.1 Dev | 10.6 K | | Polish SQuAD1.1 Dev | 2.6 K | ## Model benchmark | Model | EM | F1 | | ---------------------- | ----- | ----- | | [SlavicBERT](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) | **60.89** | 71.68 | | [polBERT](https://huggingface.co/dkleczek/bert-base-polish-uncased-v1) | 57.46 | 68.87 | | [multiBERT](https://huggingface.co/bert-base-multilingual-cased) | 60.67 | **71.89** | | [xlm](https://huggingface.co/xlm-mlm-100-1280) | 47.98 | 59.42 | ## Model training The model was trained on a **Tesla V100** GPU with the following command: ```python export SQUAD_DIR=path/to/pl_squad python run_squad.py --model_type bert \ --model_name_or_path bert-base-multilingual-cased \ --do_train \ --do_eval \ --train_file $SQUAD_DIR/pl_squadv1_train_clean.json \ --predict_file $SQUAD_DIR/pl_squadv1_dev_clean.json \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps=8000 \ --output_dir ../../output \ --overwrite_cache \ --overwrite_output_dir ``` **Results**: {'exact': 60.670731707317074, 'f1': 71.8952193697293, 'total': 2624, 'HasAns_exact': 60.670731707317074, 'HasAns_f1': 71.8952193697293, 'HasAns_total': 2624, 'best_exact': 60.670731707317074, 'best_exact_thresh': 0.0, 'best_f1': 71.8952193697293, 'best_f1_thresh': 0.0} ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="henryk/bert-base-multilingual-cased-finetuned-polish-squad1", tokenizer="henryk/bert-base-multilingual-cased-finetuned-polish-squad1" ) qa_pipeline({ 'context': "Warszawa jest największym miastem w Polsce pod względem liczby ludności i powierzchni", 'question': "Jakie jest największe miasto w Polsce?"}) ``` # Output: ```json { "score": 0.9988, "start": 0, "end": 8, "answer": "Warszawa" } ``` ## Contact Please do not hesitate to contact me via [LinkedIn](https://www.linkedin.com/in/henryk-borzymowski-0755a2167/) if you want to discuss or get access to the Polish version of SQuAD.
henryk/bert-base-multilingual-cased-finetuned-polish-squad2
2021-05-19T19:05:33.000Z
[ "pytorch", "jax", "bert", "question-answering", "pl", "transformers" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "nbest_predictions_.json", "null_odds_.json", "predictions_.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
henryk
353
transformers
--- language: pl --- # Multilingual + Polish SQuAD2.0 This model is the multilingual model provided by the Google research team with a fine-tuned polish Q&A downstream task. ## Details of the language model Language model ([**bert-base-multilingual-cased**](https://github.com/google-research/bert/blob/master/multilingual.md)): 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on cased text in the top 104 languages with the largest Wikipedias. ## Details of the downstream task Using the `mtranslate` Python module, [**SQuAD2.0**](https://rajpurkar.github.io/SQuAD-explorer/) was machine-translated. In order to find the start tokens, the direct translations of the answers were searched in the corresponding paragraphs. Due to the different translations depending on the context (missing context in the pure answer), the answer could not always be found in the text, and thus a loss of question-answer examples occurred. This is a potential problem where errors can occur in the data set. | Dataset | # Q&A | | ---------------------- | ----- | | SQuAD2.0 Train | 130 K | | Polish SQuAD2.0 Train | 83.1 K | | SQuAD2.0 Dev | 12 K | | Polish SQuAD2.0 Dev | 8.5 K | ## Model benchmark | Model | EM/F1 |HasAns (EM/F1) | NoAns | | ---------------------- | ----- | ----- | ----- | | [SlavicBERT](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) | 69.35/71.51 | 47.02/54.09 | 79.20 | | [polBERT](https://huggingface.co/dkleczek/bert-base-polish-uncased-v1) | 67.33/69.80| 45.73/53.80 | 76.87 | | [multiBERT](https://huggingface.co/bert-base-multilingual-cased) | **70.76**/**72.92** |45.00/52.04 | 82.13 | ## Model training The model was trained on a **Tesla V100** GPU with the following command: ```python export SQUAD_DIR=path/to/pl_squad python run_squad.py --model_type bert \ --model_name_or_path bert-base-multilingual-cased \ --do_train \ --do_eval \ --version_2_with_negative \ --train_file $SQUAD_DIR/pl_squadv2_train.json \ --predict_file $SQUAD_DIR/pl_squadv2_dev.json \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps=8000 \ --output_dir ../../output \ --overwrite_cache \ --overwrite_output_dir ``` **Results**: {'exact': 70.76671723655035, 'f1': 72.92156947155917, 'total': 8569, 'HasAns_exact': 45.00762195121951, 'HasAns_f1': 52.04456128116991, 'HasAns_total': 2624, 'NoAns_exact': 82.13624894869638, ' NoAns_f1': 82.13624894869638, 'NoAns_total': 5945, 'best_exact': 71.72365503559342, 'best_exact_thresh': 0.0, 'best_f1': 73.62662512059369, 'best_f1_thresh': 0.0} ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="henryk/bert-base-multilingual-cased-finetuned-polish-squad2", tokenizer="henryk/bert-base-multilingual-cased-finetuned-polish-squad2" ) qa_pipeline({ 'context': "Warszawa jest największym miastem w Polsce pod względem liczby ludności i powierzchni", 'question': "Jakie jest największe miasto w Polsce?"}) ``` # Output: ```json { "score": 0.9986, "start": 0, "end": 8, "answer": "Warszawa" } ``` ## Contact Please do not hesitate to contact me via [LinkedIn](https://www.linkedin.com/in/henryk-borzymowski-0755a2167/) if you want to discuss or get access to the Polish version of SQuAD.
henryu-lin/bart-large-samsum
2021-06-17T00:40:59.000Z
[ "pytorch", "bart", "seq2seq", "en", "dataset:samsum", "transformers", "azureml", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
henryu-lin
79
transformers
--- language: en tags: - azureml - bart - summarization license: apache-2.0 datasets: - samsum model-index: - name: bart-large-samsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization" type: samsum widget: - text: | Henry: Hey, is Nate coming over to watch the movie tonight? Kevin: Yea, he said he'll be arriving a bit later at around 7 since he gets off of work at 6. Have you taken out the garbage yet? Henry: Oh I forgot. I'll do that once I'm finished with my assignment for my math class. Kevin: Yea, you should take it out as soon as possible. And also, Nate is bringing his girlfriend. Henry: Nice, I'm really looking forward to seeing them again. --- ## `bart-large-samsum` This model was trained using `AzureML`. It was fine-tuned on the `SAMSum` corpus from `facebook/bart-large` checkpoint. ## Usage ```python from transformers import pipeline summarizer = pipeline("summarization", model="henryu-lin/bart-large-samsum") conversation = '''Henry: Hey, is Nate coming over to watch the movie tonight? Kevin: Yea, he said he'll be arriving a bit later at around 7 since he gets off of work at 6. Have you taken out the garbage yet? Henry: Oh I forgot. I'll do that once I'm finished with my assignment for my math class. Kevin: Yea, you should take it out as soon as possible. And also, Nate is bringing his girlfriend. Henry: Nice, I'm really looking forward to seeing them again. ''' summarizer(conversation) ``` ## Results | key | value | | --- | ----- | | eval_rouge1 | 54.5013 | | eval_rouge2 | 29.3672 | | eval_rougeL | 44.784 | | eval_rougeLsum | 49.906 | | predict_rouge1 | 53.5417 | | predict_rouge2 | 28.3906 | | predict_rougeL | 44.2561 | | predict_rougeLsum | 49.1162 |
heziyevv/aze_basic_lang_model
2021-01-21T14:47:21.000Z
[]
[ ".gitattributes" ]
heziyevv
0
hfl/chinese-bert-wwm-ext
2021-05-19T19:06:39.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
415,310
transformers
--- language: - zh license: "apache-2.0" --- ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/chinese-bert-wwm
2021-05-19T19:07:49.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
13,087
transformers
--- language: - zh license: "apache-2.0" --- ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/chinese-electra-180g-base-discriminator
2021-03-03T01:26:14.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
128,685
transformers
--- language: - zh license: "apache-2.0" --- # This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-180g-base-generator
2021-03-03T01:26:40.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
108
transformers
--- language: - zh license: "apache-2.0" pipeline_tag: "fill-mask" --- # This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-180g-large-discriminator
2021-03-03T01:29:12.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
3,310
transformers
--- language: - zh license: "apache-2.0" --- # This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-180g-large-generator
2021-03-03T01:27:24.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
141
transformers
--- language: - zh license: "apache-2.0" pipeline_tag: "fill-mask" --- # This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-180g-small-discriminator
2021-03-03T01:04:26.000Z
[ "pytorch", "tf", "electra", "pretraining", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
88,603
transformers
--- language: - zh license: "apache-2.0" --- # This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-180g-small-ex-discriminator
2021-03-03T01:25:29.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
900
transformers
--- language: - zh license: "apache-2.0" --- # This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-180g-small-ex-generator
2021-03-03T01:25:06.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
96
transformers
--- language: - zh license: "apache-2.0" pipeline_tag: "fill-mask" --- # This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-180g-small-generator
2021-03-03T01:23:58.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
972
transformers
--- language: - zh license: "apache-2.0" pipeline_tag: "fill-mask" --- # This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-base-discriminator
2021-03-03T01:40:07.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
814
transformers
--- language: - zh license: "apache-2.0" --- **Please use `ElectraForPreTraining` for `discriminator` and `ElectraForMaskedLM` for `generator` if you are re-training these models.** ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-base-generator
2021-03-03T01:39:38.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
66
transformers
--- language: - zh license: "apache-2.0" pipeline_tag: "fill-mask" --- **Please use `ElectraForPreTraining` for `discriminator` and `ElectraForMaskedLM` for `generator` if you are re-training these models.** ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-large-discriminator
2021-03-03T01:42:48.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
178
transformers
--- language: - zh license: "apache-2.0" --- **Please use `ElectraForPreTraining` for `discriminator` and `ElectraForMaskedLM` for `generator` if you are re-training these models.** ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-large-generator
2021-03-03T01:40:52.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
44
transformers
--- language: - zh license: "apache-2.0" pipeline_tag: "fill-mask" --- **Please use `ElectraForPreTraining` for `discriminator` and `ElectraForMaskedLM` for `generator` if you are re-training these models.** ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-small-discriminator
2021-03-03T01:39:00.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
414
transformers
--- language: - zh license: "apache-2.0" --- **Please use `ElectraForPreTraining` for `discriminator` and `ElectraForMaskedLM` for `generator` if you are re-training these models.** ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-small-ex-discriminator
2021-03-03T01:39:26.000Z
[ "pytorch", "tf", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
131
transformers
--- language: - zh license: "apache-2.0" --- **Please use `ElectraForPreTraining` for `discriminator` and `ElectraForMaskedLM` for `generator` if you are re-training these models.** ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-small-ex-generator
2021-03-03T01:39:16.000Z
[ "pytorch", "tf", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
39
transformers
--- language: - zh license: "apache-2.0" pipeline_tag: "fill-mask" --- **Please use `ElectraForPreTraining` for `discriminator` and `ElectraForMaskedLM` for `generator` if you are re-training these models.** ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-electra-small-generator
2021-03-03T01:38:55.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
257
transformers
--- language: - zh license: "apache-2.0" pipeline_tag: "fill-mask" --- **Please use `ElectraForPreTraining` for `discriminator` and `ElectraForMaskedLM` for `generator` if you are re-training these models.** ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-legal-electra-base-discriminator
2021-01-22T05:19:42.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json" ]
hfl
40
transformers
--- language: - zh license: "apache-2.0" --- # This model is specifically designed for legal domain. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-legal-electra-base-generator
2021-02-25T09:21:52.000Z
[ "pytorch", "tf", "electra", "pretraining", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
hfl
28
transformers
--- language: - zh license: "apache-2.0" --- # This model is specifically designed for legal domain. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-legal-electra-large-discriminator
2021-01-22T05:19:50.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
hfl
325
transformers
--- language: - zh license: "apache-2.0" --- # This model is specifically designed for legal domain. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-legal-electra-large-generator
2021-02-25T09:22:21.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
hfl
33
transformers
--- language: - zh license: "apache-2.0" --- # This model is specifically designed for legal domain. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-legal-electra-small-discriminator
2021-01-22T05:19:55.000Z
[ "pytorch", "tf", "electra", "pretraining", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
hfl
36
transformers
--- language: - zh license: "apache-2.0" --- # This model is specifically designed for legal domain. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-legal-electra-small-generator
2021-02-25T09:22:27.000Z
[ "pytorch", "tf", "electra", "pretraining", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
hfl
35
transformers
--- language: - zh license: "apache-2.0" --- # This model is specifically designed for legal domain. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-macbert-base
2021-05-19T19:09:45.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
5,614
transformers
--- language: - zh tags: - bert license: "apache-2.0" --- <p align="center"> <br> <img src="https://github.com/ymcui/MacBERT/raw/master/pics/banner.png" width="500"/> <br> </p> <p align="center"> <a href="https://github.com/ymcui/MacBERT/blob/master/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/ymcui/MacBERT.svg?color=blue&style=flat-square"> </a> </p> # Please use 'Bert' related functions to load this model! This repository contains the resources in our paper **"Revisiting Pre-trained Models for Chinese Natural Language Processing"**, which will be published in "[Findings of EMNLP](https://2020.emnlp.org)". You can read our camera-ready paper through [ACL Anthology](#) or [arXiv pre-print](https://arxiv.org/abs/2004.13922). **[Revisiting Pre-trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922)** *Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, Guoping Hu* You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Introduction **MacBERT** is an improved BERT with novel **M**LM **a**s **c**orrection pre-training task, which mitigates the discrepancy of pre-training and fine-tuning. Instead of masking with [MASK] token, which never appears in the fine-tuning stage, **we propose to use similar words for the masking purpose**. A similar word is obtained by using [Synonyms toolkit (Wang and Hu, 2017)](https://github.com/chatopera/Synonyms), which is based on word2vec (Mikolov et al., 2013) similarity calculations. If an N-gram is selected to mask, we will find similar words individually. In rare cases, when there is no similar word, we will degrade to use random word replacement. Here is an example of our pre-training task. | | Example | | -------------- | ----------------- | | **Original Sentence** | we use a language model to predict the probability of the next word. | | **MLM** | we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word . | | **Whole word masking** | we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word . | | **N-gram masking** | we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word . | | **MLM as correction** | we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word . | Except for the new pre-training task, we also incorporate the following techniques. - Whole Word Masking (WWM) - N-gram masking - Sentence-Order Prediction (SOP) **Note that our MacBERT can be directly replaced with the original BERT as there is no differences in the main neural architecture.** For more technical details, please check our paper: [Revisiting Pre-trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922) ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-macbert-large
2021-05-19T19:14:18.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
8,635
transformers
--- language: - zh tags: - bert license: "apache-2.0" --- <p align="center"> <br> <img src="https://github.com/ymcui/MacBERT/raw/master/pics/banner.png" width="500"/> <br> </p> <p align="center"> <a href="https://github.com/ymcui/MacBERT/blob/master/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/ymcui/MacBERT.svg?color=blue&style=flat-square"> </a> </p> # Please use 'Bert' related functions to load this model! This repository contains the resources in our paper **"Revisiting Pre-trained Models for Chinese Natural Language Processing"**, which will be published in "[Findings of EMNLP](https://2020.emnlp.org)". You can read our camera-ready paper through [ACL Anthology](#) or [arXiv pre-print](https://arxiv.org/abs/2004.13922). **[Revisiting Pre-trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922)** *Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, Guoping Hu* You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Introduction **MacBERT** is an improved BERT with novel **M**LM **a**s **c**orrection pre-training task, which mitigates the discrepancy of pre-training and fine-tuning. Instead of masking with [MASK] token, which never appears in the fine-tuning stage, **we propose to use similar words for the masking purpose**. A similar word is obtained by using [Synonyms toolkit (Wang and Hu, 2017)](https://github.com/chatopera/Synonyms), which is based on word2vec (Mikolov et al., 2013) similarity calculations. If an N-gram is selected to mask, we will find similar words individually. In rare cases, when there is no similar word, we will degrade to use random word replacement. Here is an example of our pre-training task. | | Example | | -------------- | ----------------- | | **Original Sentence** | we use a language model to predict the probability of the next word. | | **MLM** | we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word . | | **Whole word masking** | we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word . | | **N-gram masking** | we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word . | | **MLM as correction** | we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word . | Except for the new pre-training task, we also incorporate the following techniques. - Whole Word Masking (WWM) - N-gram masking - Sentence-Order Prediction (SOP) **Note that our MacBERT can be directly replaced with the original BERT as there is no differences in the main neural architecture.** For more technical details, please check our paper: [Revisiting Pre-trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922) ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-roberta-wwm-ext-large
2021-05-19T19:17:25.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
49,216
transformers
--- language: - zh tags: - bert license: "apache-2.0" --- # Please use 'Bert' related functions to load this model! ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/chinese-roberta-wwm-ext
2021-05-19T19:19:05.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
200,472
transformers
--- language: - zh tags: - bert license: "apache-2.0" --- # Please use 'Bert' related functions to load this model! ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/chinese-xlnet-base
2021-03-03T01:44:59.000Z
[ "pytorch", "tf", "xlnet", "lm-head", "causal-lm", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer.json", "tokenizer_config.json" ]
hfl
27,051
transformers
--- language: - zh license: "apache-2.0" --- ## Chinese Pre-Trained XLNet This project provides a XLNet pre-training model for Chinese, which aims to enrich Chinese natural language processing resources and provide a variety of Chinese pre-training model selection. We welcome all experts and scholars to download and use this model. This project is based on CMU/Google official XLNet: https://github.com/zihangdai/xlnet You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/chinese-xlnet-mid
2021-03-03T01:46:39.000Z
[ "pytorch", "tf", "xlnet", "lm-head", "causal-lm", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer.json", "tokenizer_config.json" ]
hfl
2,060
transformers
--- language: - zh license: "apache-2.0" --- ## Chinese Pre-Trained XLNet This project provides a XLNet pre-training model for Chinese, which aims to enrich Chinese natural language processing resources and provide a variety of Chinese pre-training model selection. We welcome all experts and scholars to download and use this model. This project is based on CMU/Google official XLNet: https://github.com/zihangdai/xlnet You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hfl/rbt3
2021-05-19T19:19:45.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
1,050
transformers
--- language: - zh tags: - bert license: "apache-2.0" pipeline_tag: "fill-mask" --- # This is a re-trained 3-layer RoBERTa-wwm-ext model. ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/rbt4
2021-05-19T19:21:20.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
141
transformers
--- language: - zh tags: - bert license: "apache-2.0" --- # This is a re-trained 4-layer RoBERTa-wwm-ext model. ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/rbt6
2021-05-19T19:22:02.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
441
transformers
--- language: - zh tags: - bert license: "apache-2.0" --- # This is a re-trained 6-layer RoBERTa-wwm-ext model. ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/rbtl3
2021-05-19T19:22:46.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
hfl
542
transformers
--- language: - zh tags: - bert license: "apache-2.0" --- # This is a re-trained 3-layer RoBERTa-wwm-ext-large model. ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hgiyt/ar-mbertmodel-mberttok
2021-05-19T19:24:02.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/ar-mbertmodel-monotok-adapter
2021-05-19T19:25:37.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/ar-mbertmodel-monotok
2021-05-19T19:26:40.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/ar-monomodel-mberttok
2021-05-19T19:28:13.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/ar-monomodel-monotok
2021-05-19T19:29:22.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/fi-mbertmodel-mberttok
2021-05-19T19:30:50.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/fi-mbertmodel-monotok-adapter
2021-05-19T19:32:58.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/fi-mbertmodel-monotok
2021-05-19T19:35:04.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/fi-monomodel-mberttok
2021-05-19T19:37:49.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/fi-monomodel-monotok
2021-05-19T19:38:51.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/id-mbertmodel-mberttok
2021-05-19T19:39:54.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
10
transformers
hgiyt/id-mbertmodel-monotok-adapter
2021-05-19T19:41:22.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/id-mbertmodel-monotok
2021-05-19T19:42:17.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/id-monomodel-mberttok
2021-05-19T19:43:23.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/id-monomodel-monotok
2021-05-19T19:44:30.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/ko-mbertmodel-mberttok
2021-05-19T19:45:42.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/ko-mbertmodel-monotok-adapter
2021-05-19T19:46:39.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/ko-mbertmodel-monotok
2021-05-19T19:47:41.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/ko-monomodel-mberttok
2021-05-19T19:48:46.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/ko-monomodel-monotok
2021-05-19T19:49:45.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/tr-mbertmodel-mberttok
2021-05-19T19:50:52.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/tr-mbertmodel-monotok-adapter
2021-05-19T19:53:48.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
7
transformers
hgiyt/tr-mbertmodel-monotok
2021-05-19T19:54:58.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/tr-monomodel-mberttok
2021-05-19T19:56:10.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
6
transformers
hgiyt/tr-monomodel-monotok
2021-05-19T19:58:31.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
hgiyt
8
transformers
hhou435/chinese_roberta_L-2_H-128
2020-11-16T17:02:05.000Z
[]
[]
hhou435
15
himanshu-dutta/pycoder-gpt2
2021-05-23T11:56:06.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "added_tokens.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
himanshu-dutta
81
transformers
<br /> <div align="center"> <img src="https://raw.githubusercontent.com/himanshu-dutta/pycoder/master/docs/pycoder-logo-p.png"> <br/> <img alt="Made With Python" src="http://ForTheBadge.com/images/badges/made-with-python.svg" height=28 style="display:inline; height:28px;" /> <img alt="Medium" src="https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white" height=28 style="display:inline; height:28px;"/> <a href="https://wandb.ai/himanshu-dutta/pycoder"> <img alt="WandB Dashboard" src="https://raw.githubusercontent.com/wandb/assets/04cfa58cc59fb7807e0423187a18db0c7430bab5/wandb-github-badge-28.svg" height=28 style="display:inline; height:28px;" /> </a> [![PyPI version fury.io](https://badge.fury.io/py/pycoder.svg)](https://pypi.org/project/pycoder/) </div> <div align="justify"> `PyCoder` is a tool to generate python code out of a few given topics and a description. It uses GPT-2 language model as its engine. Pycoder poses writing Python code as a conditional-Causal Language Modelling(c-CLM). It has been trained on millions of lines of Python code written by all of us. At the current stage and state of training, it produces sensible code with few lines of description, but the scope of improvement for the model is limitless. Pycoder has been developed as a Command-Line tool (CLI), an API endpoint, as well as a python package (yet to be deployed to PyPI). This repository acts as a framework for anyone who either wants to try to build Pycoder from scratch or turn Pycoder into maybe a `CPPCoder` or `JSCoder` 😃. A blog post about the development of the project will be released soon. To use `Pycoder` as a CLI utility, clone the repository as normal, and install the package with: ```console foo@bar:❯ pip install pycoder ``` After this the package could be verified and accessed as either a native CLI tool or a python package with: ```console foo@bar:❯ python -m pycoder --version Or directly as: foo@bar:❯ pycoder --version ``` On installation the CLI can be used directly, such as: ```console foo@bar:❯ pycoder -t pytorch -t torch -d "a trainer class to train vision model" -ml 120 ``` The API endpoint is deployed using FastAPI. Once all the requirements have been installed for the project, the API can be accessed with: ```console foo@bar:❯ pycoder --endpoint PORT_NUMBER Or foo@bar:❯ pycoder -e PORT_NUMBER ``` </div> ## Tech Stack <div align="center"> <img alt="Python" src="https://img.shields.io/badge/python-%2314354C.svg?style=for-the-badge&logo=python&logoColor=white" style="display:inline;" /> <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white" style="display:inline;" /> <img alt="Transformers" src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" height=28 width=120 style="display:inline; background-color:white; height:28px; width:120px"/> <img alt="Docker" src="https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white" style="display:inline;" /> <img src="https://fastapi.tiangolo.com/img/logo-margin/logo-teal.png" alt="FastAPI" height=28 style="display:inline; background-color:black; height:28px;" /> <img src="https://typer.tiangolo.com/img/logo-margin/logo-margin-vector.svg" height=28 style="display:inline; background-color:teal; height:28px;" /> </div> ## Tested Platforms <div align="center"> <img alt="Linux" src="https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black" style="display:inline;" /> <img alt="Windows 10" src="https://img.shields.io/badge/Windows-0078D6?style=for-the-badge&logo=windows&logoColor=white" style="display:inline;" /> </div> ## BibTeX If you want to cite the framework feel free to use this: ```bibtex @article{dutta2021pycoder, title={Pycoder}, author={Dutta, H}, journal={GitHub. Note: https://github.com/himanshu-dutta/pycoder}, year={2021} } ``` <hr /> <div align="center"> <img alt="MIT License" src="https://img.shields.io/github/license/himanshu-dutta/pycoder?style=for-the-badge&logo=appveyor" style="display:inline;" /> <img src="https://img.shields.io/badge/Copyright-Himanshu_Dutta-2ea44f?style=for-the-badge&logo=appveyor" style="display:inline;" /> </div>
hjj/hh
2021-04-04T17:01:15.000Z
[]
[ ".gitattributes" ]
hjj
0
hoangtubk/model_luke
2021-05-24T02:13:27.000Z
[]
[ ".gitattributes" ]
hoangtubk
0
hollischan/yup
2021-04-22T12:57:02.000Z
[]
[ ".gitattributes" ]
hollischan
0
holodata/sensai
2021-05-29T05:40:11.000Z
[]
[ ".gitattributes" ]
holodata
0
honayst/barebase
2021-05-21T14:55:33.000Z
[]
[ ".gitattributes" ]
honayst
0
hory/myfirstmodel
2021-03-18T14:36:23.000Z
[]
[ ".gitattributes" ]
hory
0
howey/bert-base-uncased-cola
2021-05-26T08:35:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
404
transformers
howey/bert-base-uncased-mnli
2021-05-19T19:59:55.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
150
transformers
howey/bert-base-uncased-mrpc
2021-05-26T14:47:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
1,381
transformers
howey/bert-base-uncased-qnli
2021-05-26T08:32:48.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
163
transformers
howey/bert-base-uncased-qqp
2021-06-01T03:48:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
165
transformers
howey/bert-base-uncased-rte
2021-06-01T03:52:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
250
transformers
howey/bert-base-uncased-squad-L6
2021-05-19T20:00:41.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
howey
10
transformers
howey/bert-base-uncased-squadv2
2021-06-03T13:59:15.000Z
[]
[ ".gitattributes" ]
howey
0
howey/bert-base-uncased-sst2
2021-05-26T08:29:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
928
transformers
howey/bert-base-uncased-stsb
2021-05-26T08:39:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
242
transformers
howey/bert-large-squad2
2021-06-15T03:55:37.000Z
[]
[ ".gitattributes" ]
howey
0
howey/bert_base_uncased_squad_L3
2021-05-19T20:01:16.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers" ]
question-answering
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
howey
7
transformers
howey/electra-base-cola
2021-05-24T08:40:52.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
757
transformers
howey/electra-base-mnli
2021-04-16T12:36:46.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "trainer_state.json", "training_args.bin", "vocab.txt" ]
howey
264
transformers