modelId
stringlengths 4
112
| lastModified
stringlengths 24
24
| tags
list | pipeline_tag
stringclasses 21
values | files
list | publishedBy
stringlengths 2
37
| downloads_last_month
int32 0
9.44M
| library
stringclasses 15
values | modelCard
large_stringlengths 0
100k
|
---|---|---|---|---|---|---|---|---|
huggingtweets/asofterscp
|
2021-05-21T19:34:17.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/asofterscp/1617358172358/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1326889766240067585/DLmTeuFh_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">a softer scp foundation 🤖 AI Bot </div>
<div style="font-size: 15px">@asofterscp bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@asofterscp's tweets](https://twitter.com/asofterscp).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 0 |
| Short tweets | 0 |
| Tweets kept | 3250 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jj05g3q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @asofterscp's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32zww8ef) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32zww8ef/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/asofterscp')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/atheistic_1
|
2021-05-21T19:35:24.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/atheistic_1/1616797786127/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1323522646152282120/STwG1Xk3_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Atheistic One 🤖 AI Bot </div>
<div style="font-size: 15px">@atheistic_1 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@atheistic_1's tweets](https://twitter.com/atheistic_1).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 179 |
| Short tweets | 275 |
| Tweets kept | 2793 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gyocq1j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atheistic_1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/l5vjnai7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/l5vjnai7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/atheistic_1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/atinux
|
2021-05-21T19:36:51.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/atinux/1605286256394/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1042510623962275840/1Iw_Mvud_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sébastien Chopin 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@atinux bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@atinux's tweets](https://twitter.com/atinux).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3204</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>792</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>302</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2110</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6nzh2yez/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atinux's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15g6ru92) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15g6ru92/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/atinux'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/atlassian
|
2021-06-17T00:20:35.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 16 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/atlassian/1623889197185/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1377989668189405192/II6ZfJPK_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Atlassian</div>
<div style="text-align: center; font-size: 14px;">@atlassian</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Atlassian.
| Data | Atlassian |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 824 |
| Short tweets | 58 |
| Tweets kept | 2367 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2i1f4hr0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atlassian's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/olb55vh0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/olb55vh0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/atlassian')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/atomicnicos
|
2021-05-21T19:39:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/atomicnicos/1616352732946/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1351987572747202560/v_vDGtnX_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">AtomicNicos | @d_overcon co-organiser 🤖 AI Bot </div>
<div style="font-size: 15px">@atomicnicos bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@atomicnicos's tweets](https://twitter.com/atomicnicos).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 221 |
| Short tweets | 452 |
| Tweets kept | 2576 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mnuo591/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atomicnicos's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/n30kmifp) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/n30kmifp/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/atomicnicos')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/atomicthumbs
|
2021-05-21T19:40:48.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/atomicthumbs/1614107568559/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1238289351861137408/k-sNIYOh_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">site specific carnivorous occurrence 🤖 AI Bot </div>
<div style="font-size: 15px">@atomicthumbs bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@atomicthumbs's tweets](https://twitter.com/atomicthumbs).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3203 |
| Retweets | 1686 |
| Short tweets | 287 |
| Tweets kept | 1230 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oe2pbns/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atomicthumbs's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jgkhbgt) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jgkhbgt/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/atomicthumbs')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/atreyupilled
|
2021-05-21T19:42:51.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/atreyupilled/1614099692275/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363925362699337731/cAnWI7wL_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Atreyu Joker 🤖 AI Bot </div>
<div style="font-size: 15px">@atreyupilled bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@atreyupilled's tweets](https://twitter.com/atreyupilled).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3233 |
| Retweets | 232 |
| Short tweets | 500 |
| Tweets kept | 2501 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nd8rl11/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atreyupilled's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gt351ez) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gt351ez/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/atreyupilled')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/august77lng
|
2021-05-21T19:43:58.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/august77lng/1614115355848/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1137529671690706949/nKjy1T77_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Himboclese,,,, of ACAB 🤖 AI Bot </div>
<div style="font-size: 15px">@august77lng bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@august77lng's tweets](https://twitter.com/august77lng).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3151 |
| Retweets | 2357 |
| Short tweets | 114 |
| Tweets kept | 680 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ly74f65/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @august77lng's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ck3jotc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ck3jotc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/august77lng')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/aumgensokyo
|
2021-05-31T13:07:14.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 36 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/aumgensokyo/1622466430175/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1360809734237024256/8kL1HAte_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Haruka</div>
<div style="text-align: center; font-size: 14px;">@aumgensokyo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Haruka.
| Data | Haruka |
| --- | --- |
| Tweets downloaded | 3230 |
| Retweets | 590 |
| Short tweets | 528 |
| Tweets kept | 2112 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qfwnizn0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aumgensokyo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1i4l2zlv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1i4l2zlv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/aumgensokyo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/austen
|
2021-05-21T19:46:24.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/austen/1617725908050/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1298871483310190593/Bev51BER_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Austen Allred 🤖 AI Bot </div>
<div style="font-size: 15px">@austen bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@austen's tweets](https://twitter.com/austen).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 112 |
| Short tweets | 465 |
| Tweets kept | 2672 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wyv57q5p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @austen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jltqo1x) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jltqo1x/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/austen')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/autogynefiles
|
2021-05-21T19:47:38.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356365325663666177/fgKMKMGD_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">April 🤖 AI Bot </div>
<div style="font-size: 15px">@autogynefiles bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@autogynefiles's tweets](https://twitter.com/autogynefiles).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3202 |
| Retweets | 901 |
| Short tweets | 360 |
| Tweets kept | 1941 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jw5booy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @autogynefiles's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1b1l87sd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1b1l87sd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/autogynefiles')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/autophagian
|
2021-05-21T19:48:45.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 14 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/autophagian/1616669932241/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357641829710241792/93qv43Iv_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">mika 🤖 AI Bot </div>
<div style="font-size: 15px">@autophagian bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@autophagian's tweets](https://twitter.com/autophagian).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3237 |
| Retweets | 586 |
| Short tweets | 380 |
| Tweets kept | 2271 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16w10v81/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @autophagian's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dalb9ir) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dalb9ir/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/autophagian')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/avantredguard
|
2021-05-21T19:49:47.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/avantredguard/1614096845665/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1046984086026371073/zN5I5g0G_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">deep dish pizza eater 🤖 AI Bot </div>
<div style="font-size: 15px">@avantredguard bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@avantredguard's tweets](https://twitter.com/avantredguard).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3173 |
| Retweets | 851 |
| Short tweets | 386 |
| Tweets kept | 1936 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ybevoux/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @avantredguard's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10kbxe0u) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10kbxe0u/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/avantredguard')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/avrillavigne
|
2021-05-21T19:50:56.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/avrillavigne/1601265702542/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1072899793054121990/QPK0Qv46_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Avril Lavigne 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@avrillavigne bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@avrillavigne's tweets](https://twitter.com/avrillavigne).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3112</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>766</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>306</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2040</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/f4t9xd39/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @avrillavigne's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2rkl8zq3) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2rkl8zq3/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/avrillavigne'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/awanderingi
|
2021-05-21T19:52:14.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/awanderingi/1616615246454/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1336485377461219329/VqCT-VZ0_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">A Wondering of Eye 🤖 AI Bot </div>
<div style="font-size: 15px">@awanderingi bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@awanderingi's tweets](https://twitter.com/awanderingi).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1641 |
| Retweets | 202 |
| Short tweets | 166 |
| Tweets kept | 1273 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3pnmx279/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @awanderingi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19ne4lje) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19ne4lje/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/awanderingi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/awaythrow8
|
2021-05-21T19:55:44.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/awaythrow8/1617904264202/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374488661673185281/l071mOH1_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chris 🤖 AI Bot </div>
<div style="font-size: 15px">@awaythrow8 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@awaythrow8's tweets](https://twitter.com/awaythrow8).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3060 |
| Retweets | 230 |
| Short tweets | 469 |
| Tweets kept | 2361 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18vas1gq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @awaythrow8's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ju36rrz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ju36rrz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/awaythrow8')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/axialcatwalk
|
2021-05-21T19:57:21.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/axialcatwalk/1614103612518/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362332889204015104/Rk5Iloej_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">lillie! 🤖 AI Bot </div>
<div style="font-size: 15px">@axialcatwalk bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@axialcatwalk's tweets](https://twitter.com/axialcatwalk).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1153 |
| Retweets | 244 |
| Short tweets | 197 |
| Tweets kept | 712 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/thgvv1za/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @axialcatwalk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mvj3lqy) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mvj3lqy/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/axialcatwalk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/azulcrescent
|
2021-05-23T14:17:13.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/azulcrescent/1621537893204/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1385798100430868486/QusggrjY_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Azul Crescent</div>
<div style="text-align: center; font-size: 14px;">@azulcrescent</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Azul Crescent.
| Data | Azul Crescent |
| --- | --- |
| Tweets downloaded | 1039 |
| Retweets | 9 |
| Short tweets | 92 |
| Tweets kept | 938 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hna2b57/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @azulcrescent's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23ccs0az) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23ccs0az/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/azulcrescent')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/azzamameen
|
2021-05-30T04:51:42.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/azzamameen/1622350298746/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/637912443281272832/dAsVKNNU_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Azzam Ameen</div>
<div style="text-align: center; font-size: 14px;">@azzamameen</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Azzam Ameen.
| Data | Azzam Ameen |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 2828 |
| Short tweets | 18 |
| Tweets kept | 401 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4gs8vmx7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @azzamameen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1yezh3jh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1yezh3jh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/azzamameen')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/b50
|
2021-05-21T19:58:28.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/b50/1617343613656/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1327803375144955904/CPYJCjKe_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Anupam Gupta 🤖 AI Bot </div>
<div style="font-size: 15px">@b50 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@b50's tweets](https://twitter.com/b50).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 438 |
| Short tweets | 283 |
| Tweets kept | 2522 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3sfdctj9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @b50's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jrmsda8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jrmsda8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/b50')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/badsleepwelll
|
2021-05-21T19:59:30.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 18 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/badsleepwelll/1621366332895/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1351393562764709889/ZS3zxvTT_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">c a l (b r b)</div>
<div style="text-align: center; font-size: 14px;">@badsleepwelll</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from c a l (b r b).
| Data | c a l (b r b) |
| --- | --- |
| Tweets downloaded | 3216 |
| Retweets | 692 |
| Short tweets | 533 |
| Tweets kept | 1991 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cl0ip5y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @badsleepwelll's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cz16cnsk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cz16cnsk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/badsleepwelll')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/baidu_inc
|
2021-05-21T20:00:39.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 18 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/baidu_inc/1609715579938/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/938437222948265985/NhKG-UQd_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Baidu Inc. 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@baidu_inc bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@baidu_inc's tweets](https://twitter.com/baidu_inc).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1364</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>254</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>7</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1103</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7tblrg78/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @baidu_inc's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23h9pyfk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23h9pyfk/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/baidu_inc'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/balanchinarinaa
|
2021-05-21T20:02:16.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/balanchinarinaa/1616741385918/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372581144873472004/jc7AWhim_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">maddie 🤖 AI Bot </div>
<div style="font-size: 15px">@balanchinarinaa bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@balanchinarinaa's tweets](https://twitter.com/balanchinarinaa).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3187 |
| Retweets | 358 |
| Short tweets | 232 |
| Tweets kept | 2597 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2u50n6tw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @balanchinarinaa's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3klfmyxg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3klfmyxg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/balanchinarinaa')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/banjocatt
|
2021-05-21T20:03:24.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349590876931072001/kmtebQA4_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Banjodogg 🤖 AI Bot </div>
<div style="font-size: 15px">@banjocatt bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@banjocatt's tweets](https://twitter.com/banjocatt).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1384 |
| Retweets | 27 |
| Short tweets | 150 |
| Tweets kept | 1207 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3u0ms4j5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @banjocatt's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2me74qbw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2me74qbw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/banjocatt')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/barackobama-billgates
|
2021-05-21T20:04:36.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 17 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/barackobama-billgates/1620428621185/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/988775660163252226/XpgonN0X_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329647526807543809/2SGvnHYV_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/988775660163252226/XpgonN0X_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bill Gates & Barack Obama</div>
<div style="text-align: center; font-size: 14px;">@barackobama-billgates</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Bill Gates & Barack Obama.
| Data | Bill Gates | Barack Obama |
| --- | --- | --- |
| Tweets downloaded | 3207 | 3214 |
| Retweets | 186 | 353 |
| Short tweets | 6 | 25 |
| Tweets kept | 3015 | 2836 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7wwgduen/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @barackobama-billgates's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1afk1edu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1afk1edu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/barackobama-billgates')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/barackobama-elonmusk
|
2021-06-01T12:33:03.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 19 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1383184766959120385/MM9DHPWC_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329647526807543809/2SGvnHYV_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Barack Obama</div>
<div style="text-align: center; font-size: 14px;">@barackobama-elonmusk</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Elon Musk & Barack Obama.
| Data | Elon Musk | Barack Obama |
| --- | --- | --- |
| Tweets downloaded | 1021 | 3234 |
| Retweets | 52 | 353 |
| Short tweets | 268 | 25 |
| Tweets kept | 701 | 2856 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/osj70w7o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @barackobama-elonmusk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/21huy5w1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/21huy5w1/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/barackobama-elonmusk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/barackobama
|
2021-05-21T20:05:40.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 28 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/barackobama/1619112755194/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329647526807543809/2SGvnHYV_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Barack Obama 🤖 AI Bot </div>
<div style="font-size: 15px">@barackobama bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@barackobama's tweets](https://twitter.com/barackobama).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3205 |
| Retweets | 353 |
| Short tweets | 25 |
| Tweets kept | 2827 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1zirzbfb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @barackobama's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qs7lyjk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qs7lyjk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/barackobama')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/barzoople
|
2021-05-21T20:07:03.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/barzoople/1614101635102/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362428223611670531/c08rJGpf_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">𓅅 zack 𓅅 🤖 AI Bot </div>
<div style="font-size: 15px">@barzoople bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@barzoople's tweets](https://twitter.com/barzoople).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1787 |
| Retweets | 162 |
| Short tweets | 225 |
| Tweets kept | 1400 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32bz3nyh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @barzoople's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ezszw7hb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ezszw7hb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/barzoople')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/basedgamerboi
|
2021-05-21T20:08:05.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/basedgamerboi/1618147489025/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1333015562704785412/cYcTBrHF_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Basedgamerboi 🤖 AI Bot </div>
<div style="font-size: 15px">@basedgamerboi bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@basedgamerboi's tweets](https://twitter.com/basedgamerboi).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3186 |
| Retweets | 1305 |
| Short tweets | 603 |
| Tweets kept | 1278 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/387726ql/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @basedgamerboi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36dqi3qi) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36dqi3qi/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/basedgamerboi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bayesianboy
|
2021-05-21T20:10:00.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bayesianboy/1616641444174/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372264552029679619/liCuKg_U_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mel Andrews 🤖 AI Bot </div>
<div style="font-size: 15px">@bayesianboy bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bayesianboy's tweets](https://twitter.com/bayesianboy).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 216 |
| Short tweets | 589 |
| Tweets kept | 2439 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3shc5anf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bayesianboy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rrpzuts) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rrpzuts/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bayesianboy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bcdreyer
|
2021-05-21T20:13:06.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 13 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bcdreyer/1601263745684/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1310015308833452032/VWjqd52U_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Benjamin Dreyer 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bcdreyer bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bcdreyer's tweets](https://twitter.com/bcdreyer).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3213</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>594</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>410</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2209</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2r28be7y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bcdreyer's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1uihefwp) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1uihefwp/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bcdreyer'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/beanstalkim
|
2021-05-21T20:14:10.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/beanstalkim/1619112801821/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1087417311361789958/Y1NvpnuX_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dave Davies 🤖 AI Bot </div>
<div style="font-size: 15px">@beanstalkim bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@beanstalkim's tweets](https://twitter.com/beanstalkim).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3214 |
| Retweets | 121 |
| Short tweets | 269 |
| Tweets kept | 2824 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/62fffrcn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beanstalkim's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ulhjijc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ulhjijc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/beanstalkim')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/beeboileau
|
2021-05-21T20:15:20.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/beeboileau/1616684430388/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342942616195895303/13ml_Pdw_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bee Boileau 🤖 AI Bot </div>
<div style="font-size: 15px">@beeboileau bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@beeboileau's tweets](https://twitter.com/beeboileau).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 238 |
| Retweets | 26 |
| Short tweets | 18 |
| Tweets kept | 194 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gjcxmczw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beeboileau's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2antyc8f) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2antyc8f/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/beeboileau')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/beetleboxes
|
2021-05-21T20:16:35.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/beetleboxes/1616645225701/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1323398842268684289/_OAtj-z-_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cate 🤖 AI Bot </div>
<div style="font-size: 15px">@beetleboxes bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@beetleboxes's tweets](https://twitter.com/beetleboxes).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2817 |
| Retweets | 883 |
| Short tweets | 404 |
| Tweets kept | 1530 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16fa37go/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beetleboxes's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2sjz20j3) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2sjz20j3/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/beetleboxes')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/beingandslime
|
2021-05-21T20:17:38.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/beingandslime/1616648200015/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1348756593052176385/TjNU6-T__400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Evan (master saucier) 🤖 AI Bot </div>
<div style="font-size: 15px">@beingandslime bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@beingandslime's tweets](https://twitter.com/beingandslime).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3245 |
| Retweets | 55 |
| Short tweets | 473 |
| Tweets kept | 2717 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hj6ebde/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beingandslime's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vtowykv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vtowykv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/beingandslime')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/ben_r_hoffman
|
2021-05-21T20:18:55.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/ben_r_hoffman/1618455389168/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365987365525815304/uxdWurnN_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Anarcho-Moses 🐍 🤖 AI Bot </div>
<div style="font-size: 15px">@ben_r_hoffman bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@ben_r_hoffman's tweets](https://twitter.com/ben_r_hoffman).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 107 |
| Short tweets | 264 |
| Tweets kept | 2876 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vlvpdufz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ben_r_hoffman's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2nf4hyti) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2nf4hyti/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ben_r_hoffman')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/benedictevans
|
2021-05-21T20:20:50.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 19 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/845396356579508224/1ruiOPLI_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Benedict Evans 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@benedictevans bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@benedictevans's tweets](https://twitter.com/benedictevans).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3236</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>662</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>174</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2400</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3an7r50z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @benedictevans's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1k099xll) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1k099xll/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/benedictevans'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/benjinaesen
|
2021-05-21T20:22:02.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1241961365725540353/s1_Jg8dJ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Steven Suptic 🤖 AI Bot </div>
<div style="font-size: 15px">@stevensuptic bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@stevensuptic's tweets](https://twitter.com/stevensuptic).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3190 |
| Retweets | 211 |
| Short tweets | 507 |
| Tweets kept | 2472 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cj525fz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stevensuptic's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/55ewqb50) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/55ewqb50/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/stevensuptic')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/benrcongdon
|
2021-05-21T20:23:27.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/benrcongdon/1616637140236/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1108382380723597313/hDIUPnFe_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ben Congdon 🤖 AI Bot </div>
<div style="font-size: 15px">@benrcongdon bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@benrcongdon's tweets](https://twitter.com/benrcongdon).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3219 |
| Retweets | 394 |
| Short tweets | 515 |
| Tweets kept | 2310 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3aazmqd6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @benrcongdon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7zvkav4e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7zvkav4e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/benrcongdon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/benskerim
|
2021-05-21T20:24:45.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/benskerim/1616795883644/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/573946913327878144/d67c1agn_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">bens-i kareem 🤖 AI Bot </div>
<div style="font-size: 15px">@benskerim bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@benskerim's tweets](https://twitter.com/benskerim).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 546 |
| Retweets | 12 |
| Short tweets | 152 |
| Tweets kept | 382 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vrptz87/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @benskerim's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tluib3u) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tluib3u/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/benskerim')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bentley
|
2021-05-21T20:26:00.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 13 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bentley/1616467138651/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1340882135893364741/B3Xl8AlK_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bentley Rubinstein 🤖 AI Bot </div>
<div style="font-size: 15px">@bentley bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bentley's tweets](https://twitter.com/bentley).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 119 |
| Retweets | 43 |
| Short tweets | 1 |
| Tweets kept | 75 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/exsqu0gt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bentley's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/212vaa17) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/212vaa17/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bentley')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/berniesanders
|
2021-05-21T20:27:07.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/berniesanders/1616774908468/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1097820307388334080/9ddg5F6v_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bernie Sanders 🤖 AI Bot </div>
<div style="font-size: 15px">@berniesanders bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@berniesanders's tweets](https://twitter.com/berniesanders).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 610 |
| Short tweets | 6 |
| Tweets kept | 2633 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1g2gjajv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @berniesanders's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dugxh12) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dugxh12/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/berniesanders')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bestmusiclyric-bygpt3
|
2021-05-21T20:28:19.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 53 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bestmusiclyric-bygpt3/1621260459372/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2113290180/images-1_400x400.jpeg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1284655541227323395/4E-Y6plH_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Best Music Lyric & Wisdom_by_GPT3</div>
<div style="text-align: center; font-size: 14px;">@bestmusiclyric-bygpt3</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Best Music Lyric & Wisdom_by_GPT3.
| Data | Best Music Lyric | Wisdom_by_GPT3 |
| --- | --- | --- |
| Tweets downloaded | 3248 | 293 |
| Retweets | 1092 | 3 |
| Short tweets | 834 | 86 |
| Tweets kept | 1322 | 204 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/101pevjn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bestmusiclyric-bygpt3's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qkafun2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qkafun2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bestmusiclyric-bygpt3')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bestmusiclyric-marknorm
|
2021-05-21T20:30:59.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 19 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bestmusiclyric-marknorm/1621435674803/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2113290180/images-1_400x400.jpeg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/903769803768217600/EKtan_aM_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Best Music Lyric & mark normand</div>
<div style="text-align: center; font-size: 14px;">@bestmusiclyric-marknorm</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Best Music Lyric & mark normand.
| Data | Best Music Lyric | mark normand |
| --- | --- | --- |
| Tweets downloaded | 3247 | 3247 |
| Retweets | 1112 | 138 |
| Short tweets | 820 | 521 |
| Tweets kept | 1315 | 2588 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/41htfpjc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bestmusiclyric-marknorm's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2715uuiw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2715uuiw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bestmusiclyric-marknorm')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bestmusiclyric-poetsorg
|
2021-05-29T15:46:48.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bestmusiclyric-poetsorg/1622303204122/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2113290180/images-1_400x400.jpeg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/818597091215716353/5ejD1Ojs_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Best Music Lyric & Poets.org</div>
<div style="text-align: center; font-size: 14px;">@bestmusiclyric-poetsorg</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Best Music Lyric & Poets.org.
| Data | Best Music Lyric | Poets.org |
| --- | --- | --- |
| Tweets downloaded | 3246 | 3249 |
| Retweets | 1150 | 143 |
| Short tweets | 807 | 13 |
| Tweets kept | 1289 | 3093 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11s270ah/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bestmusiclyric-poetsorg's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/p26o0mhb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/p26o0mhb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bestmusiclyric-poetsorg')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bestmusiclyric
|
2021-05-21T20:32:09.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 39 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bestmusiclyric/1620313468667/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2113290180/images-1_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Best Music Lyric 🤖 AI Bot </div>
<div style="font-size: 15px">@bestmusiclyric bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bestmusiclyric's tweets](https://twitter.com/bestmusiclyric).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 1060 |
| Short tweets | 853 |
| Tweets kept | 1331 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ilv29ew/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bestmusiclyric's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wqx12s6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wqx12s6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bestmusiclyric')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bfkelleher
|
2021-05-21T20:33:42.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bfkelleher/1614109725850/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1005205545144336384/tRX1NN3Z_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian likes Communism 🤖 AI Bot </div>
<div style="font-size: 15px">@bfkelleher bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bfkelleher's tweets](https://twitter.com/bfkelleher).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3097 |
| Retweets | 1424 |
| Short tweets | 248 |
| Tweets kept | 1425 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3gd8lb66/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bfkelleher's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xmh1eim) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xmh1eim/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bfkelleher')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bibliobabble
|
2021-05-21T20:34:50.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bibliobabble/1614116708796/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1080013557717192707/Cm9m3alh_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">┼aco d▲ve 🤖 AI Bot </div>
<div style="font-size: 15px">@bibliobabble bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bibliobabble's tweets](https://twitter.com/bibliobabble).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3206 |
| Retweets | 77 |
| Short tweets | 695 |
| Tweets kept | 2434 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3sdlkzqx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bibliobabble's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/e6mj14rl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/e6mj14rl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bibliobabble')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bichebuni
|
2021-05-21T20:37:06.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bichebuni/1614096170963/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356414477143519232/H2T46KhD_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ellie 🐰 🤖 AI Bot </div>
<div style="font-size: 15px">@bichebuni bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bichebuni's tweets](https://twitter.com/bichebuni).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1578 |
| Retweets | 559 |
| Short tweets | 216 |
| Tweets kept | 803 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jluupd2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bichebuni's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2a0ttba9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2a0ttba9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bichebuni')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/biiiclpher
|
2021-05-21T20:38:15.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/biiiclpher/1613324925504/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/716292569395699712/FxrNVTxe_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bill Cipher 🤖 AI Bot </div>
<div style="font-size: 15px">@biiiclpher bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@biiiclpher's tweets](https://twitter.com/biiiclpher).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3240 |
| Retweets | 0 |
| Short tweets | 404 |
| Tweets kept | 2836 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/iieebvnq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @biiiclpher's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/280557pf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/280557pf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/biiiclpher')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/billgates
|
2021-05-21T20:40:08.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 21 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/billgates/1619112734645/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/988775660163252226/XpgonN0X_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bill Gates 🤖 AI Bot </div>
<div style="font-size: 15px">@billgates bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@billgates's tweets](https://twitter.com/billgates).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3202 |
| Retweets | 184 |
| Short tweets | 5 |
| Tweets kept | 3013 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/odai55lw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billgates's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1w768c2u) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1w768c2u/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/billgates')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/billpshort
|
2021-05-21T20:41:11.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/billpshort/1616611559120/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371497779772715009/_Fgk6GbC_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Will 🕊️🌷 🤖 AI Bot </div>
<div style="font-size: 15px">@billpshort bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@billpshort's tweets](https://twitter.com/billpshort).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3224 |
| Retweets | 502 |
| Short tweets | 646 |
| Tweets kept | 2076 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qcn56oc9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billpshort's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/85i3zyjz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/85i3zyjz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/billpshort')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/billtheponyfan
|
2021-05-21T20:42:18.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 14 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1322690501481533440/gmJWNIzA_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">juggalo kokopelli 🤖 AI Bot </div>
<div style="font-size: 15px">@billtheponyfan bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@billtheponyfan's tweets](https://twitter.com/billtheponyfan).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3178 |
| Retweets | 452 |
| Short tweets | 397 |
| Tweets kept | 2329 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ghn4ya3z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billtheponyfan's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31cu6fzd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31cu6fzd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/billtheponyfan')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/biocrimed-bladeecity-w3bcam
|
2021-06-16T09:00:55.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 0 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/biocrimed-bladeecity-w3bcam/1623834051692/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1398220397049434117/3i7JMNiF_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1399230370109825024/FypJacJv_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1404352885815664642/BEvtg0q4_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">bladee & Nothing person 2 & headaches</div>
<div style="text-align: center; font-size: 14px;">@biocrimed-bladeecity-w3bcam</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from bladee & Nothing person 2 & headaches.
| Data | bladee | Nothing person 2 | headaches |
| --- | --- | --- | --- |
| Tweets downloaded | 1599 | 1863 | 3231 |
| Retweets | 313 | 117 | 62 |
| Short tweets | 486 | 714 | 1451 |
| Tweets kept | 800 | 1032 | 1718 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37jgy6z4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @biocrimed-bladeecity-w3bcam's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1xg0n2ib) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1xg0n2ib/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/biocrimed-bladeecity-w3bcam')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/birkirh
|
2021-05-21T20:43:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/birkirh/1616669653013/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371598614263386115/7NaqMiOP_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🐱🚀 Brikir 🤖 AI Bot </div>
<div style="font-size: 15px">@birkirh bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@birkirh's tweets](https://twitter.com/birkirh).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1105 |
| Retweets | 98 |
| Short tweets | 191 |
| Tweets kept | 816 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1l7dop1n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @birkirh's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zk4c602e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zk4c602e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/birkirh')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bitcoin
|
2021-05-21T20:44:55.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 34 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bitcoin/1612625608055/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/421692600446619648/dWAbC2wg_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bitcoin 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bitcoin bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bitcoin's tweets](https://twitter.com/bitcoin).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3206</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1190</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>390</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1626</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9fss3789/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bitcoin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pqrlo2u) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pqrlo2u/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bitcoin'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bladeecity
|
2021-06-16T10:20:36.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 213 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bladeecity/1623838791358/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1398220397049434117/3i7JMNiF_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">bladee</div>
<div style="text-align: center; font-size: 14px;">@bladeecity</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from bladee.
| Data | bladee |
| --- | --- |
| Tweets downloaded | 1599 |
| Retweets | 313 |
| Short tweets | 486 |
| Tweets kept | 800 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/132d9aul/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18sk9xeo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18sk9xeo/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bladeecity')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bleaksigilkeep
|
2021-05-21T20:47:22.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bleaksigilkeep/1614100737277/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357543393757433856/lBrNiipb_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ghislaine Maxwell's Fat Tiddies Apologist 🤖 AI Bot </div>
<div style="font-size: 15px">@bleaksigilkeep bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bleaksigilkeep's tweets](https://twitter.com/bleaksigilkeep).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3206 |
| Retweets | 1132 |
| Short tweets | 387 |
| Tweets kept | 1687 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/200hepvo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bleaksigilkeep's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ugdbbm9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ugdbbm9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bleaksigilkeep')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bnbuzz
|
2021-05-21T20:48:33.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1306249141018910726/o3bCj_sP_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Barnes & Noble 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bnbuzz bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bnbuzz's tweets](https://twitter.com/bnbuzz).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3156</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>821</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>124</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2211</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tso130j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bnbuzz's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b6k9q0j) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b6k9q0j/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bnbuzz'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bognamk
|
2021-05-21T20:50:38.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bognamk/1616663275652/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1311301456805281793/wiVELS8Y_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">bogna 🤖 AI Bot </div>
<div style="font-size: 15px">@bognamk bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bognamk's tweets](https://twitter.com/bognamk).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 273 |
| Retweets | 26 |
| Short tweets | 22 |
| Tweets kept | 225 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/yelcjqqa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bognamk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/asd5yjvu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/asd5yjvu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bognamk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/boogie2988
|
2021-05-29T21:24:58.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/boogie2988/1622323494391/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1366991202000777216/E5Qeu37S_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">boogie2988 😭🤡</div>
<div style="text-align: center; font-size: 14px;">@boogie2988</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from boogie2988 😭🤡.
| Data | boogie2988 😭🤡 |
| --- | --- |
| Tweets downloaded | 3242 |
| Retweets | 216 |
| Short tweets | 392 |
| Tweets kept | 2634 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30jummgi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boogie2988's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38yren3o) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38yren3o/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/boogie2988')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/borisdayma-elonmusk
|
2021-05-21T20:51:56.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 25 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/borisdayma-elonmusk/1620367858137/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('USER_PROFILE')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Elon Musk & Boris Dayma 🤖 AI Bot </div>
<div style="font-size: 15px">@borisdayma-elonmusk bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@borisdayma-elonmusk's tweets](https://twitter.com/borisdayma-elonmusk).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1 |
| Retweets | 1 |
| Short tweets | 1 |
| Tweets kept | 1 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/s2e28lq5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisdayma-elonmusk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r549ulu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r549ulu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/borisdayma-elonmusk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/borisdayma
|
2021-05-28T17:31:18.000Z
|
[
"pytorch",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 600 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/borisdayma/1622223056849/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1152601773330370560/UhVRDMyp_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Boris Dayma</div>
<div style="text-align: center; font-size: 14px;">@borisdayma</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Boris Dayma.
| Data | Boris Dayma |
| --- | --- |
| Tweets downloaded | 428 |
| Retweets | 55 |
| Short tweets | 7 |
| Tweets kept | 366 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jwi084aa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisdayma's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2m6ezc31) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2m6ezc31/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/borisdayma')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/borisjohnson
|
2021-05-21T20:54:14.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1331215386633756675/NodbPVQv_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Boris Johnson</div>
<div style="text-align: center; font-size: 14px;">@borisjohnson</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Boris Johnson.
| Data | Boris Johnson |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 901 |
| Short tweets | 15 |
| Tweets kept | 2333 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1n972ain/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisjohnson's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2cvhfjnr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2cvhfjnr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/borisjohnson')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/born_2be_loved
|
2021-05-21T20:55:17.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/born_2be_loved/1616671254023/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364744801531293699/qA0KAZC5_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">SHADE 🤖 AI Bot </div>
<div style="font-size: 15px">@born_2be_loved bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@born_2be_loved's tweets](https://twitter.com/born_2be_loved).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3202 |
| Retweets | 431 |
| Short tweets | 401 |
| Tweets kept | 2370 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3626bowi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @born_2be_loved's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/62hd185a) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/62hd185a/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/born_2be_loved')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bovice18
|
2021-05-21T20:56:14.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bovice18/1621524734301/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1194748903402483713/1EnUm3dW_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Beau Wood</div>
<div style="text-align: center; font-size: 14px;">@bovice18</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Beau Wood.
| Data | Beau Wood |
| --- | --- |
| Tweets downloaded | 1516 |
| Retweets | 789 |
| Short tweets | 127 |
| Tweets kept | 600 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22h7nhvi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bovice18's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3iuogy19) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3iuogy19/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bovice18')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bowserbot2
|
2021-05-21T20:57:44.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bowserbot2/1617402800811/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345789137035649025/l4ReFavz_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">bowserbot 🤖 AI Bot </div>
<div style="font-size: 15px">@bowserbot2 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bowserbot2's tweets](https://twitter.com/bowserbot2).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2651 |
| Retweets | 2 |
| Short tweets | 20 |
| Tweets kept | 2629 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/151rlno6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bowserbot2's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15w12pqd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15w12pqd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bowserbot2')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/braintree0173
|
2021-05-21T20:59:16.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/braintree0173/1616858958371/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374497821097820160/JRPTl8gN_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">extinction of mass 🤖 AI Bot </div>
<div style="font-size: 15px">@braintree0173 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@braintree0173's tweets](https://twitter.com/braintree0173).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1237 |
| Retweets | 44 |
| Short tweets | 77 |
| Tweets kept | 1116 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28laggk0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @braintree0173's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fbmoqja) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fbmoqja/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/braintree0173')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/brandoncm1519
|
2021-05-21T21:00:35.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/brandoncm1519/1616700027820/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1317578086356078597/xGuzgaGz_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🅱randon Martin 🤖 AI Bot </div>
<div style="font-size: 15px">@brandoncm1519 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brandoncm1519's tweets](https://twitter.com/brandoncm1519).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 233 |
| Retweets | 26 |
| Short tweets | 40 |
| Tweets kept | 167 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rb3uwyon/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brandoncm1519's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a5chnaj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a5chnaj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brandoncm1519')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/brandonreeves08
|
2021-05-21T21:01:47.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 23 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/890322736626647041/9PcQFxnJ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brandon Reeves 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brandonreeves08 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brandonreeves08's tweets](https://twitter.com/brandonreeves08).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2233</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>813</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>87</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1333</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/25xf6z75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brandonreeves08's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3cboi872) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3cboi872/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brandonreeves08'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/brayleino
|
2021-05-21T21:02:55.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 22 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/brayleino/1602233828988/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1259796666149986304/lCNvP-IU_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">@brayleino 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brayleino bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brayleino's tweets](https://twitter.com/brayleino).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3224</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>896</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>63</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2265</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/kmh7d8rk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brayleino's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1etq1kzi) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1etq1kzi/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brayleino'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/brennacgray
|
2021-05-21T21:04:33.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 15 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/brennacgray/1616792121755/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1097321857110294528/xiPS2QUn_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">The Jackie Weaver of EdTech 🤖 AI Bot </div>
<div style="font-size: 15px">@brennacgray bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brennacgray's tweets](https://twitter.com/brennacgray).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3229 |
| Retweets | 500 |
| Short tweets | 301 |
| Tweets kept | 2428 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5gxea3am/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brennacgray's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ox5zibg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ox5zibg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brennacgray')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bretmanrock
|
2021-05-21T21:05:47.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 38 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bretmanrock/1602246838817/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1314457768733011968/dEHivGiS_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bretman Rock Paper Scissors 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bretmanrock bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bretmanrock's tweets](https://twitter.com/bretmanrock).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2037</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>728</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>121</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1188</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2gwxllzg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bretmanrock's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1vehek6r) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1vehek6r/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bretmanrock'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/brianleiter
|
2021-05-21T21:06:49.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/brianleiter/1616729814445/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/437307042764578816/TM_iRmaF_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian Leiter 🤖 AI Bot </div>
<div style="font-size: 15px">@brianleiter bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brianleiter's tweets](https://twitter.com/brianleiter).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 980 |
| Retweets | 231 |
| Short tweets | 41 |
| Tweets kept | 708 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1try6015/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brianleiter's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2l46qz24) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2l46qz24/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brianleiter')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/brianstelter
|
2021-05-21T21:08:06.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/brianstelter/1617675900278/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1367176133574348806/lZclwq85_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian Stelter 🤖 AI Bot </div>
<div style="font-size: 15px">@brianstelter bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brianstelter's tweets](https://twitter.com/brianstelter).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 1997 |
| Short tweets | 110 |
| Tweets kept | 1141 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ldst3wj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brianstelter's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/shk6mhyu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/shk6mhyu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brianstelter')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/brielikessoda
|
2021-05-21T21:09:10.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/brielikessoda/1614130240109/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339091417776451585/fpJY7SEh_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Piss Chugger, Chugger of Piss 🤖 AI Bot </div>
<div style="font-size: 15px">@brielikessoda bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brielikessoda's tweets](https://twitter.com/brielikessoda).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3201 |
| Retweets | 58 |
| Short tweets | 405 |
| Tweets kept | 2738 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f3gm9t9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brielikessoda's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25fi4n75) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25fi4n75/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brielikessoda')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/brittany_broski
|
2021-05-21T21:10:24.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 12 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/brittany_broski/1605761309372/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318494037981032449/uoutJxSH_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">brittany 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brittany_broski bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brittany_broski's tweets](https://twitter.com/brittany_broski).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1838</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>451</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>392</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>995</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hz6b9b8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brittany_broski's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35sgntcf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35sgntcf/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brittany_broski'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/brlamb
|
2021-05-21T21:11:46.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 13 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/brlamb/1617221536533/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1366529149678940163/6IEMZ_tv_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian Lamb 🤖 AI Bot </div>
<div style="font-size: 15px">@brlamb bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brlamb's tweets](https://twitter.com/brlamb).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 241 |
| Short tweets | 298 |
| Tweets kept | 2709 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fb4wmpbl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brlamb's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gq4ok2e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gq4ok2e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brlamb')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/broschistocks
|
2021-05-21T21:12:48.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 18 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/broschistocks/1614095969958/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1159519240757624838/LEJGJWNz_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">dessicant gourmand 🤖 AI Bot </div>
<div style="font-size: 15px">@broschistocks bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@broschistocks's tweets](https://twitter.com/broschistocks).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 664 |
| Retweets | 331 |
| Short tweets | 66 |
| Tweets kept | 267 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8qbbqieq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @broschistocks's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pnoc5bl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pnoc5bl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/broschistocks')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/brotundsaft
|
2021-05-21T21:14:00.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 33 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/brotundsaft/1601630145453/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1309902055960645640/bVY_UYkL_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">BrotUndSaft 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brotundsaft bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brotundsaft's tweets](https://twitter.com/brotundsaft).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2970</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>526</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>374</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2070</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3lmky9vn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brotundsaft's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/30e4dz6f) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/30e4dz6f/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brotundsaft'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/brucel
|
2021-05-21T21:15:18.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 17 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/807277326539046912/EZR6qL-S_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bruce Lawson, Antifa. Black Lives Matter. 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brucel bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brucel's tweets](https://twitter.com/brucel).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3227</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>406</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>257</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2564</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1cha3dnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brucel's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2qrl7tqt) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2qrl7tqt/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brucel'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bts_bighit
|
2021-05-21T21:16:26.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318205976110010371/hvlZiocy_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">BTS_official 🤖 AI Bot </div>
<div style="font-size: 15px">@bts_bighit bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bts_bighit's tweets](https://twitter.com/bts_bighit).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 807 |
| Short tweets | 17 |
| Tweets kept | 2424 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/346cr95o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bts_bighit's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qrtx438c) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qrtx438c/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bts_bighit')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/btsisoreo
|
2021-05-21T21:18:13.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 14 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/btsisoreo/1601273601954/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1309782271281430529/mb2fNc86_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">ᴮᴱ Sara ⁷ ♡ ☁️ 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@btsisoreo bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@btsisoreo's tweets](https://twitter.com/btsisoreo).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3238</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>276</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>1471</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1491</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/5cw9eogo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btsisoreo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1qmz2ncd) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1qmz2ncd/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/btsisoreo'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/bubblefairyjin
|
2021-05-21T21:19:23.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 22 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bubblefairyjin/1601266953127/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1304743968832356358/82FPDpEH_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">かずみnina⁷ヅ ⟭⟬ 𖧵 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bubblefairyjin bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bubblefairyjin's tweets](https://twitter.com/bubblefairyjin).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3234</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>683</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>919</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1632</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2r11ket4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bubblefairyjin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1nw974ct) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1nw974ct/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bubblefairyjin'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/bubbleteaphd
|
2021-05-21T21:20:49.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bubbleteaphd/1616932743352/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1330795919323910145/pjXnxFQ1_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ru 🌈🌱🎙️ 🤖 AI Bot </div>
<div style="font-size: 15px">@bubbleteaphd bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bubbleteaphd's tweets](https://twitter.com/bubbleteaphd).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3233 |
| Retweets | 324 |
| Short tweets | 321 |
| Tweets kept | 2588 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e2ljtiy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bubbleteaphd's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2k5imxb0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2k5imxb0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bubbleteaphd')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bucksballl
|
2021-05-21T21:22:07.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 11 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bucksballl/1607571899995/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1014709181662810112/xaI-XoAg_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bucksball 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bucksballl bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bucksballl's tweets](https://twitter.com/bucksballl).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1877</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1688</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>34</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>155</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wuewh23/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bucksballl's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2iqbod86) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2iqbod86/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bucksballl'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/buildwithcycy
|
2021-05-21T21:23:54.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"vocab.json"
] |
huggingtweets
| 14 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/buildwithcycy/1603391285588/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1271522987812872193/zjuyQq9V_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cynthia Habonimana 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@buildwithcycy bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@buildwithcycy's tweets](https://twitter.com/buildwithcycy).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>680</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>181</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>80</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>419</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/woos7f0i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buildwithcycy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/39i5bi0o) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/39i5bi0o/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/buildwithcycy'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/bungeebingleton
|
2021-05-21T21:26:29.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 16 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bungeebingleton/1614116708433/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1327852785371582464/VcyBdGsr_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ashe ʕ •ᴥ•ʔ 🤖 AI Bot </div>
<div style="font-size: 15px">@bungeebingleton bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bungeebingleton's tweets](https://twitter.com/bungeebingleton).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3227 |
| Retweets | 154 |
| Short tweets | 659 |
| Tweets kept | 2414 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ssrmafr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bungeebingleton's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/omho87n6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/omho87n6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bungeebingleton')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/butfurniture
|
2021-05-21T21:27:36.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 9 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/butfurniture/1616690321353/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/727827522436521984/ABgwelzi_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthew 🤖 AI Bot </div>
<div style="font-size: 15px">@butfurniture bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@butfurniture's tweets](https://twitter.com/butfurniture).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1787 |
| Retweets | 524 |
| Short tweets | 121 |
| Tweets kept | 1142 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18eo7tos/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @butfurniture's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jx81czr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jx81czr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/butfurniture')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/buttruts
|
2021-05-21T21:28:41.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/buttruts/1617770614427/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1338207979896774656/NsHUE0ZE_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">sunk cock fallacy🔞 🤖 AI Bot </div>
<div style="font-size: 15px">@buttruts bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@buttruts's tweets](https://twitter.com/buttruts).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 727 |
| Retweets | 127 |
| Short tweets | 189 |
| Tweets kept | 411 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4ggl7jjh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buttruts's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3o27rfwn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3o27rfwn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/buttruts')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/byabailey
|
2021-05-21T21:29:43.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/byabailey/1614156784734/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1229128559224115201/k-Yd8LPQ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bailey 🤖 AI Bot </div>
<div style="font-size: 15px">@byabailey bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@byabailey's tweets](https://twitter.com/byabailey).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 581 |
| Retweets | 36 |
| Short tweets | 250 |
| Tweets kept | 295 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oqa41kc6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @byabailey's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2j8cjogh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2j8cjogh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/byabailey')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/bzante
|
2021-05-21T21:30:49.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 14 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/bzante/1605624629004/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1116620292372045824/-um4nYB5_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Benoit Zante 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bzante bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bzante's tweets](https://twitter.com/bzante).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3236</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1973</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>46</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1217</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3nkw4qab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bzante's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9x73lgcb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9x73lgcb/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bzante'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
huggingtweets/c4ndl3w4x
|
2021-05-21T21:31:57.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/c4ndl3w4x/1614133241891/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349837378530193416/WbUsnJ26_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">GIRLBOSS RUN 🤖 AI Bot </div>
<div style="font-size: 15px">@c4ndl3w4x bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@c4ndl3w4x's tweets](https://twitter.com/c4ndl3w4x).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3161 |
| Retweets | 2040 |
| Short tweets | 351 |
| Tweets kept | 770 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dujcwyo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c4ndl3w4x's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/174m72fj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/174m72fj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/c4ndl3w4x')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/c9mang0-deepleffen
|
2021-05-21T21:33:10.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/c9mang0-deepleffen/1621509742616/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1360714045599358978/oh2wRcYm_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & Joseph Marquez</div>
<div style="text-align: center; font-size: 14px;">@c9mang0-deepleffen</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Deep Leffen Bot & Joseph Marquez.
| Data | Deep Leffen Bot | Joseph Marquez |
| --- | --- | --- |
| Tweets downloaded | 459 | 3248 |
| Retweets | 12 | 292 |
| Short tweets | 25 | 482 |
| Tweets kept | 422 | 2474 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/866oe5ny/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c9mang0-deepleffen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bnerj7i) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bnerj7i/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/c9mang0-deepleffen')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/c_harwick
|
2021-05-21T21:34:14.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 8 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/c_harwick/1617771463823/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/928310545245237249/Q4OHc06u_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cameron Harwick 🏛 🤖 AI Bot </div>
<div style="font-size: 15px">@c_harwick bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@c_harwick's tweets](https://twitter.com/c_harwick).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3239 |
| Retweets | 321 |
| Short tweets | 117 |
| Tweets kept | 2801 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qldo0bu4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c_harwick's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/217j7nfd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/217j7nfd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/c_harwick')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/c_hoffmanni
|
2021-05-21T21:35:25.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/c_hoffmanni/1617903388766/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374402371556536326/sNFpq1vb_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">normal girl : ) 🤖 AI Bot </div>
<div style="font-size: 15px">@c_hoffmanni bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@c_hoffmanni's tweets](https://twitter.com/c_hoffmanni).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3226 |
| Retweets | 382 |
| Short tweets | 635 |
| Tweets kept | 2209 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ikod8eq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c_hoffmanni's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2km5k3qc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2km5k3qc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/c_hoffmanni')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/caitlin_higgs
|
2021-05-21T21:37:59.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 10 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/caitlin_higgs/1608309607305/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1321740911450198016/JVR19aQa_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">😃 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@caitlin_higgs bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@caitlin_higgs's tweets](https://twitter.com/caitlin_higgs).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2062</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>288</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>341</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1433</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3o8apxfw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caitlin_higgs's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fxm0h1p) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fxm0h1p/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/caitlin_higgs'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/caitlinmoriah
|
2021-05-21T21:39:14.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/caitlinmoriah/1616725886381/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1353494193360891904/SE2DmqTH_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Green, alas....she is 2 busy tweeting 🤖 AI Bot </div>
<div style="font-size: 15px">@caitlinmoriah bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@caitlinmoriah's tweets](https://twitter.com/caitlinmoriah).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3246 |
| Retweets | 304 |
| Short tweets | 140 |
| Tweets kept | 2802 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vueoynh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caitlinmoriah's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14otv2ch) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14otv2ch/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caitlinmoriah')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/cakesniffe1
|
2021-05-21T21:40:48.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 6 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/cakesniffe1/1616776928773/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342343651675037697/ANa7awLJ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">(Suspiciously unoutra)Ged 🤖 AI Bot </div>
<div style="font-size: 15px">@cakesniffe1 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cakesniffe1's tweets](https://twitter.com/cakesniffe1).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3235 |
| Retweets | 414 |
| Short tweets | 201 |
| Tweets kept | 2620 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kqahg35h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cakesniffe1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b48lj3s) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b48lj3s/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cakesniffe1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/caleblebster
|
2021-05-21T21:42:00.000Z
|
[
"pytorch",
"jax",
"gpt2",
"lm-head",
"causal-lm",
"en",
"transformers",
"huggingtweets",
"text-generation"
] |
text-generation
|
[
".gitattributes",
"README.md",
"config.json",
"flax_model.msgpack",
"merges.txt",
"pytorch_model.bin",
"special_tokens_map.json",
"tokenizer_config.json",
"training_args.bin",
"vocab.json"
] |
huggingtweets
| 7 |
transformers
|
---
language: en
thumbnail: https://www.huggingtweets.com/caleblebster/1616712100600/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1175713241055580160/14sXGl5z_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Caleb Barron 🤖 AI Bot </div>
<div style="font-size: 15px">@caleblebster bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@caleblebster's tweets](https://twitter.com/caleblebster).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1109 |
| Retweets | 197 |
| Short tweets | 77 |
| Tweets kept | 835 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1u2f3qvk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caleblebster's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22tramg6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22tramg6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caleblebster')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.